El Impacto Ambiental Del Sistema de Produccion Carnico

download El Impacto Ambiental Del Sistema de Produccion Carnico

of 65

description

El sector alimentos es una de las actividades productivas que representa mayor impacto ambiental para el medio ambiente, como consecuencia de su actividad industrial y externalidades asociadas a su normal y continuo funcionamiento. La participación en el PIB de Colombia de la ciudad de Bogotá es del 24,4% , de acuerdo a la información reportada por la Superintendencia de Sociedades, de donde los sectores Agropecuario y Manufactura, tienen una representatividad del 1.16% y 18.78% respectivamente . De allí la importancia de implantar acciones que permitan a las industrias garantizar un desarrollo sostenible entre las dimensiones ambiental y económica.

Transcript of El Impacto Ambiental Del Sistema de Produccion Carnico

  • 1

    REPORTTOTHEINTERNATIONALMEATSECRETARIAT

    THEENVIRONMENTALIMPACTOFMEATPRODUCTIONSYSTEMS

    Authors:

    NigelScollan,AberystwythUniversity,Aberystwyth

    DominicMoran,ScottishAgriculturalCollege,Edinburgh

    EunJoongKim,AberystwythUniversity,Aberystwyth

    CledwynThomas,EAAP,Rome(Coordinator)

    Versionstatus:Final

    Date02July2010

  • 2

    Contents

    PageNo.

    IntroductionandBackground....................................................................................................3

    AimsandStructureoftheReview.............................................................................................3

    ExecutiveSummary....................................................................................................................4

    MainReport.............................................................................................................................10

    1.Theroleoflivestocksystemsinsustainableagriculture..................................................10

    1.1Livestockproduction,systemsandfeedresources....................................................10

    1.2Theglobaleconomicsignificanceoflivestockproduction.........................................14

    1.3Livestockfarminginsustainableagriculture..............................................................16

    1.4Effectsoflivestockfarmingonlandscapemanagement,biodiversity,soilconservationandfunctioningagriecosystems................................................................17

    1.5Wateruse...................................................................................................................19

    2.Themeatandlivestockindustryandclimatechange......................................................22

    2.1Sourcesofgreenhousegasemissionsfromlivestock................................................22

    2.2Contributionofthemeatandlivestockindustrytoglobalandregionalgreenhousegasemissions....................................................................................................................23

    2.3TherelativecontributionofcomponentsintheproductioncycletoGHGemissions...........................................................................................................................................26

    2.4Nationalinventoriesanduncertaintyinagriculturalsectoremissions......................29

    3.Contributionofthemeatandlivestockindustrytogreenhousegasmitigation.............33

    3.1Opportunitiestomitigateemissionsusingtechnicalefficiency................................33

    3.2Socioeconomicconsequencesofmitigations...........................................................45

    3.3Adaptationstrategiestoclimatechangeanditsunintendedimpacts......................46

    4.Supplyanddemandsideperspectives.............................................................................48

    4.1Productionside...........................................................................................................48

    5.Conclusions(towardsaroadmapforthemeatindustry)...............................................55

    5.1RoleofIMS..................................................................................................................55

    5.2Researchanddevelopmentimplications...................................................................57

    6.References........................................................................................................................60

  • 3

    REPORTTOTHEINTERNATIONALMEATSECRETARIAT

    THEENVIRONMENTALIMPACTOFMEATPRODUCTIONSYSTEMS

    IntroductionandBackground

    Globaldemandforfood isexpectedto increaseby70%by2050(FAO,2009)asaresultofpopulationgrowth.Tomeetthisdemandtheglobalproductionofmeatisprojectedtomorethandoublefrom229milliontonnesin1999/2001to470milliontonnesin2050.Thisstronggrowth in meat production is driven by the increased demand for animal products asincreasingsectorsofthepopulationbecomemoreaffluent.Thusthebulkofthegrowth inmeat is predicted to occur in developing countries,with China, India and Brazil alreadyrepresentingtwothirdsofcurrentmeatproduction.

    Food supply must increase sustainably to meet this demand and in this respect, couldseverelybeconstrainedbyclimatechange impacts (Godfrayetal.,2010).Agriculture isamajorcontributortogreenhousegasemissions,principallyfrommethaneandnitrousoxide.FAO(Steinfeldetal.,2006)haveestimatedthat livestockproductioncontributedbetween15%and24%ofglobalgreenhousegas(GHG)emissions.

    As countries enact policies to curb GHG emissions, the livestock sector will be a keycomponent of these policy strategies. Understanding how policy frameworks addressingclimatechangewillaffectthemeatchainisthusurgentsinceanextensivepublicdebateisalready taking place. It is vital that this debate is informed by sound science to provideevidencebasedpublicpoliciesandconsumptionrecommendations.

    AimsandStructureoftheReview

    Theaimofthereviewistoproduceanoverviewoftheimpactsthatthemeatandlivestockindustry,and inparticulartheredmeat industry,willhaveontheenvironment.Giventhemajorconcernsandcurrentuncertainties,thereviewwillfocusonclimatechange impactsandwill examine key environmental indicators affected bymeat supply,while reviewingsome of the relevant demand side questions that may inevitably influence productionpatterns.Thiswillbeachievedbyconsidering;

    Theroleoflivestocksystemsinsustainableagriculture Themeatandlivestockindustryandclimatechange The contributionof themeat and livestock industry to greenhouse gasmitigation

    (i.e.emissionsreduction)

    SupplyanddemandsideperspectivesThereportfocusesontheglobal impactof livestock industrybutrecognisesthattherearemajorregionaldifferences.

  • 4

    ExecutiveSummary

    Theroleoflivestocksystemsinsustainableagriculture

    Livestockproductionhasrapidlyrespondedtothegrowingdemandformeat,particularlyindeveloping countries. Over the last 20 years, this has been largely achieved throughincreased livestock numbers rather than enhanced output per animal (yield). Howevermajoradvancesinproductivityhaveoccurredinsomepig,poultryanddairycattlesystemsbut more rarely in beef and sheep. This global trend obscures major advances inproductivityinsomecountries.Futuretrendsshowanincreaseddemandformeatmainlyintransition and developing countries associated with improved affluence. Production isexpected todouble to470million tonnesby2050mainly frompigsandpoultryprimarilycentredinthesecountries.

    Livestockproductiontypicallyrepresentsasignificantproportion(around40%ofincomeorGDP)earnedbyagricultureandemploysaround1.3billionpeopledirectlyandindirectly.Inlessdevelopedcountrieslivestockareconsideredasamultifunctionalassetthatiscentraltothelivelihoodsandwellbeingofsomeofthepoorestsocietiesonearth.

    Traditionally,agricultureandhencelivestocksystemshavebeenabletoignoresomeoftheexternal consequences of production.But the positive benefits to the environment havealso been ignored. This is changing and many governments are now also linkingsustainability concepts to national and global food security objectives. Also in manycountries, consumer awareness is now becoming the principal driver of decisionmakingamongpowerfulretailers

    Livestockagriculture istheworlds largestuseof landresources,andengagesverycloselywith landscapemanagement,biodiversity,soilconservationandtheholistic functioningofagriecosystems.Within these, themajorenvironmental impactsareon landdegradation,waterdepletionandpollutionandbiodiversity.These impactsarehoweverdependentonthe system of production and its intensity. Extensive systems can make positivecontributionstolandscapeandbiodiversityandefficientmanuremanagementcanimprovenutrient supply to soils from pig systems. Conversely, when mismanaged or throughpressureonland,livestockcanhavemarkedadverseenvironmentalimpacts.

    Water will become an increasing constraint to development. Current estimates ofconsumption by livestock need to be treated with caution. Countries need urgently toconductauditsusingrobustmethodologytoprovideaccurateassessmentsofwaterusebytheindustryandmethodstoimproveefficiency.

    MeatandLivestockindustryandclimatechange

    Thedebateonenvironmentalimpacthasrecentlybeendominatedbydiscussionontheroleofagricultureinclimatechange.LivestockproductionisimplicatedasasignificantsourceofgreenhousegasGHG(methane(CH4)andnitrousoxide(N2O))andthroughchangesinland

  • 5

    use,and there isagrowingpolicy imperative toconsiderways to internalise thecostsofthese emissions. There is considerable debate about the magnitude of emissions, withvaluesaboveandbelow theestimatesofFAO (18%0f totalglobalanthropomorphicGHGemissions).Howevertherangeofuncertaintydoesnotobviatetheneedforthesectortobeproactiveinthedebateinderivingimprovedmeasurementsandprovidingsolutionsthatarepracticalandachievablebytheindustry.

    The Intergovernmental Panel on Climate Change (IPCC) stipulates national inventorymethods to record agricultural sector emissions and implicitly the share of differentsubsectors in the sector total (aspartof theKyoto commitments).Thisdoesnot includedeveloping countries and second, while livestock is a category for reporting, meatproductionperseisnot.

    Estimates of emissions from the agriculture sector, in contrastwith other industries, aresubject to much uncertainty. Simple generic coefficients applicable to all animals arecommonly usedwhich takes no account of differences in production efficiency betweenspeciesandsystems.Currentemissionfactorsarereportedashavinganuncertaintyof3050%. IPCC reportingwill likely improve in terms ofmodelling sophistication to dealwithcountryandsystemspecificestimates.Itisimportantthatuniforminventoryproceduresareadoptedinallcountriesinordertoavoiddisplacementofemissions,e.g.reductionsinonecountrysimplybeingoffsetinanotherwithnooverallnetglobalreduction.

    Withinthe livestocksector,thebalanceofemissions isrelatedtoproductionsystemswithruminant systemsdominatedbyCH4 from enteric fermentation and inpigsbyN2O frommanures. Also as ruminant systems becomemore intensive the balance shifts from CH4towardsN2O.MostoftheemissionsofbothCH4andN2Oariseonfarm,withonly3%frommeatprocessing,5%fortransportationand12%fortheconsumercomponent.

    Life cycle assessment (LCA) is the main approach for summarising environmentalinformationaboutproductlifecyclesandtoidentifycriticalcontrolpoints.HoweverLCAcanbe complex because of the wide variation in livestock systems and also the systemboundariesmustbeclearlydefinedandsystemscomparedonalikeforlikebasis.LCAshowthattheproductionof1kgofbeefusesthemostlandandenergyandhasthehighestglobalwarmingpotentialfollowedby1kgofpork,chickeneggsandmilk.

    Contributionofthemeatandlivestockindustrytogreenhousegasmitigation

    Emissionsperunitproductcanbedecreasedeitherby (1) increasing theefficiencyof thelivestockproduction system itselfor (2)directlyby targeting the sourceof theemissions.ThefirstrouteemphasisesthattheopportunitiestodecreaseGHGemissionsfromlivestockandthosetoincreaseproductivityarecloselyrelated.

    Genetic improvement of livestock is a particularly cost effective technology, producingpermanentandcumulativechangesinperformance.Alsochangingthedietofruminantscan

  • 6

    reducemethaneoutputbyavarietyofmeans.These techniquesare readilyavailablebutthey all have, to a greater or lesser extent, disadvantages which limit their use. Otherexamples include use of growth promoters, avoiding excess N in the diet, and suchstrategieshavethepotentialnotonlytoreduceemissionsbutalsotoenhance leantissuegrowth. Pasture based systems present particular challenges to nutritionalmanagementstrategies to reduceN losses.However, recent changes inplantbreedingobjectiveshavethepotentialtoreduceGHGemission.Alsosoilorganiccarbon(SOC)sequestrationbytheworldspermanentpasturescouldpotentiallyoffsetupto4%oftheglobalgreenhousegasemissions.

    Inintensivesystems,particularlypigandpoultry,engineeringandproducttechnologyofferthe likely routes tomitigation. Technologies include onfarm anaerobic digestion (AD) pressureswingadsorption(PSA)fromlivestockmaintainedinpurposedesignedbuildings.Inpigunits, frequent removalof slurry frombelow slattedfloor storagepits to anoutside,coveredstorewillreducetheoverallammoniaemissionaswillmoreefficientmethodsofmanureapplication.

    Thereareclearlya largenumberofstrategiesthathavethepotentialtoreduceemissions.Currentlyhowevertherearelimitationsandrestrictionsontheuseofcertainmaterials(e.g.growthpromoters)andtechnologies(GM)incertainpartsoftheworld.Furthermoremanyofthesetechnologiesarenotalwaysappropriatetosystemsindevelopingcountriesandtoextensivegrazingsystemswhichcontribute tomethaneemissions.Thehighcostshamperexpansion of the technology and in particular represent a considerable constraint indevelopingcountries.Lowcostandappropriatetechnologiesmusttobesoughttoaddresstheemissions thatwill inevitablyarise from rapidexpansionofmeatproduction in thesecountries.

    GHG emissions associated with meat processing are small at about 3%. A key area ofprogress isthroughtheuseof loweremissionenergysources, includingnaturalgasuseofbiomassburners.Wastewaterprocessing isfocusedonreducingCH4emissionsvia lessuseofanaerobicpondsystemsanduseoflandtodistributewastewater.Theadoptionofenergyefficiency measures within processing and distribution (and indeed on farm) to reduceenergydemandthroughauditingsystemsisimportant.

    There is a need to achieve emissions reductions in an economically efficientmanner bychoosing themeasures thatbringabout reductions inemissionsat lowestunit costs (pertonneofCO2e)

    1.Theuseofmarginalabatementcostcurves(MACCs),hasshownthatsomemeasuresareactuallywinwin.Theseincludebreedingtoimproveproductivityandfertility,

    1Thereleaseofgreenhousegasesfromagriculture(predominantlynitrousoxide,methaneandcarbondioxide)istypicallyexpressedintermsofacommonglobalwarmingpotentialunitofcarbondioxideequivalent(CO2e).

  • 7

    theuseof ionophores as feed additives and theefficientuseofNitrogen applications tocrops.

    Supplyanddemandsideperspectives

    Thereare threedifferentapproaches topolicyonemissionscontrolvoluntary,commandandcontrol,andmarketbased instruments.Marketbasedapproachesareamore flexibleform of regulation. The two most commonly discussed instruments are an emissions(pollution)taxandpollutionpermittradingsystems(capandtradesystem).Apermitsystemintheoryguaranteesanoverallpollution limit intermsofthe initialcapandthisprovidesgreatercertainty in termsof theenvironmental target.The introductionofcapand tradesystemsisageneralobjectiveinseveralpartsoftheworld.

    Themovetodecouplesupportfromdirectproductionandmoveittowardsthesupportofenvironmental objectives offers some potential for government leverage or crosscompliance to include emissions reduction objectives. The use of subsidy schemes toincentivisemitigationactivitywillbecomemoreprevalentintheEUandislikelytoincludeawidersuiteofmitigationmeasures.

    Increasinglyanumberofdemandsidefactorsarehavinganinfluenceonthefutureofmeatproduction.Specifically, increasingawarenessofenvironmentalandhumanhealth impactsofdietarychoice isbecomingmoremainstream.Retailersarekeentoadoptapositiononlifecyclecosts,apositionthatcanalsosecurethemacompetitiveadvantage.Butthere isconcernabouttherapidgrowthoflifecycleclaimsforcarbonemissionsofsomeproducts.At least16differentmethodologies for calculating the carbon footprintof foodproductshave been developed since 2007, but as yet there is no international agreement on thesinglebestmethod.

    Arguably there is a case for attributingemissionson a consumptionbasis.Consumptionbased accounting places responsibility at the source of original demand for goods orservices.Thischanges thequestion fromHowmanyGHGemissionsareproduced inourcountry? toWhatquantityofGHGemissions isourcountryresponsible for throughourconsumption? It also highlights the logic of individual carbon budgets but this prospectalthoughethicallycompellingthoughpoliticallyunattractive.

    Towardsaroadmapforthemeatindustry

    Therisingglobaldemandformeatproductsandtheneedoffoodsecuritypresentseveralchallengesfortheindustry.Specifically,

    theneedtocontinuetodeliverproductivitygains improvingenvironmentalsustainability

  • 8

    securethelivelihoodsofthoseinthelivestockindustryindevelopingcountries managinganimalandhumanhealthrisks.

    Addressingtheseaspectswillhelptheindustrycontinuetoplayanimportantroleinglobalfoodsecurityandrurallivelihoods.

    Equallyitisessentialthattheindustryengagecloselywithstakeholdersandpolicymakerstoemphasise themultiple rolesof livestock inmaintaining landscape andbiodiversity, foodsecurityandlivelihoods,particularlyofthepoorandtoachievetargetstodeliverecosystemgoodsandservicesincludingenvironmentalprotection.Theindustryneedstorecognisethatlivestocksystemscanbothdamageandbenefittheenvironment.

    ItisimportantthatIMSsupportthefollowinginitiativestoachievethisaim

    1) To derive more precise methods in calculating national GHG inventories. Theextension of inventories to developing countries not currently signatories to theprotocols.InthesamewayIMSshouldpressforstandardisationofLCAmethodologytoovercometheconfusionthatcurrentlyexists.

    2) Thelivestockindustryhaslargepotentialtocontributetoclimatechangemitigation.TheIMSshouldworkwithrelevantstakeholdersatnationalandinternationallevelstorealisethispotentialandtoenhancecapabilitiestomonitorandreportemissionsfromlivestockproduction.Thisisparticularlyimportantindevelopingcountriesandin thosecountrieswhicharepredicted toshow thegreatestgrowth inproduction.IMS should consider joiningMitigation of Climate Change in Agriculture (MICCA)Projecttohelpachievetheseobjectives,

    http://www.fao.org/climatechange/micca/en/.

    3) The sector is characterised by a variety of production practices that offer thepotential for low cost mitigation (i.e. GHG reduction). For example, improvingproduction efficiency on farm is an important route to reducing GHG emissions.Indeed there is considerable scope for improvements in productivity that deliverwinwinsintermsofreducedproductionscostsandloweremissions.Itisimportantforthesectortoidentifythesemeasuresandforthemtobecomebestpractice.IMSshouldactivelypromotethesemeasures.

    4) Itisimportantforthesectortoembracethechallengeofemissionsreduction,whichoffersasmanyopportunitiesas threats. Forexample,beyond scope forefficiencyimprovement, there is a considerable market potential in the development andexploitationofnewtechnologies

    5) The livestock industry impacts both positively and negatively on social,environmental and public health targets. Given the significance of the livestocksector toagricultureasawhole, the IMS shouldplaya leading role in securingan

  • 9

    internationalframeworkfordevelopmentofthelivestocksectorwithamajorfocusonsustainability.

    6) Ultimately,GHGemissionsarelikelytobeaddressedbysomeformofcarbonprice,which in turn facilitates the use of marketbased instrument like trading. IMSthereforeneeds todevelopaposition in relation tocarbonpricing. Irrespectiveofthe policy instruments chosen by government, retailers are likely topursue nicheopportunitiesinlowcarbonproduct.Retaildemandmeansthatitwillbeincreasinglyimportantforproducerstodemonstratecertifiedemissionsreductions

    7) Asimilarconstraint is likely toemerge in termsofadapting toclimatechangeandspecifically the use of water resources. While the volume of water used inproductioniscontested,thepriceofwaterisinmostcasesbelowthecostofsupply(includingitsenvironmentalcost).IMSmightthereforeconsidertheimplicationsofalternativewaterpricingregimes

    8) A considerable amount of government and privatelyfunded research anddevelopment is now focussed on the deliveryof low emissions livestock systems.Adaptation technologies and policy related research are also of high priority. TheGlobalResearchAllianceonAgriculturalGreenhouseGases,with thus farsome30countriesworkingcollaborativelyonproducingmorefoodwithfeweremissionswaslaunchedinCopenhagenin2010.TheIMSshouldencouragemembersthroughtheirrespectivecountriesto inputtoensurethat livestockemissionsarecentreplace intheAlliancesworkprogramme.

    FinallytheimperativeofcontinuingapublicdebateisparamountandIMSshouldbecloselyinvolved inensuring that the researchagendameets theneedsof industryand toensurethatthepublicdebateisbasedonsoundscience.

  • 10

    MainReport

    1.Theroleoflivestocksystemsinsustainableagriculture

    1.1Livestockproduction,systemsandfeedresources

    1.1.1Trendsinproduction

    Livestock production has rapidly responded to growing demand formeat, particularly indevelopingcountries(Table1.1).MostnotablearetheincreasesinChinaandBrazil,6and 4, respectively. The majority of the increase in meat production has been frommonogastrics, firstly poultry and secondly pigmeat. Increases from ruminant productionhave been small. In 2007, globally, pig and poultry meat accounted for 73% of totalproduction,whilecattleandsheepandgoatsaccountedfor22and5%,respectively(Table1.2).

    Table 1.1 Production of livestock products by region, 1980 and 2007 (million tonnes)(adaptedFAO,2009)

    Region/CountryGroup/Country

    Meat Milk Eggs

    1980 2007 1980 2007 1980 2007 DevelopedCountries 88.6 110.2 350.6 357.8 17.9 18.9 DevelopingCountries 48.1 175.5 114.9 313.5 9.5 48.9 World 136.7 285.7 465.5 671.3 27.4 67.8

    Table 1.2 Production of main categories of meat for 2007 (million tonnes; values inparenthesisarepercentageoftotalproductionforthatspecies;adaptedfromFAO,2009)

    Pigs Poultry Cattle SheepandGoats

    Total

    DevelopedCountries

    39.5(36) 37.0(34) 29.4(27) 3.2(3) 109.1

    DevelopingCountries

    76.0(45) 49.8(29) 32.5(19) 10.8(6) 169.1

    World 115.5(42) 86.8(31) 61.9(22) 14.0(5) 278.2

    FAO(2009)notedincreasedlivestockproductionoccurredasaresultof(1)increaseinanimalnumbersand/or(2)increasedoutputperanimal.Globally,overthelast20years, the increase in production has on average been associated more with

  • 11

    increased livestocknumbersthanincreasedoutputperanimal(yield).However it isclear that there have been considerable technical improvements in livestockproductionsystems.Advancesingenetics,nutrition,healthanddiseaseandhousinghaveplayedamajorrole inhelpingtodriveproductiongrowthandefficiency,withmajorprogressinpoultrymeatproduction,eggsporkmeatanddairyindustriesbutlesssoinbeefandsheep.Howevertheseimprovementsinefficiencygainedmainlyin developed countries have been matched by apparent reductions in grossefficiencyindevelopingcountriesasresultofincreasesinanimalnumberstoachievetheincreasesinproduction.

    1.1.2Livestockspeciesandproductionsystems

    Livestockproductionsystemsdifferwidelyinscaleandintensityacrosstheworldandreflectdifferencesinavailableresources(i.e.land,feed,water),socioeconomicsandtradition.FAO(2009) defines livestock production systems into grazing (both extensive and intensive),mixedfarmingsystems(irrigatedandrainfed)andindustrialsystems(orlandlesssystems)(seeTable1.3).

    Table1.3Globallivestockpopulationandproductionbysystem,average20012003

    Grazing Rainfedmixed

    Irrigatedmixed

    Industrial Total

    Population(millionhead) Cattleandbuffaloes

    406 641 450 29 1526

    Sheepandgoats

    590 632 546 9 1777

    Pigs 941* Production(milliontonnes) Beef 14.6 29.3 12.9 3.9 60.7Mutton 3.8 4.0 4.0 0.1 11.9Pork 0.8 12.5 29.1 52.8 95.2Poultrymeat 1.2 8.0 11.7 52.8 73.7Milk 71.5 319.2 203.7 594.4Eggs 0.5 5.6 17.1 35.7 35.7(FAO,2009afterSteinfeldetal.,2006;(*fromFAOSTAT2008http://faostat.fao.org/site/573/DesktopDefault.aspx?PageID=573#ancorFAO)

    Grazingsystemsaccount for26%oftheearths icefree landmass (Steinfeldetal.,2006)and typicallyuse land that isunsuitable forcropping (i.e.semiaridandaridareas). As noted by Pitesky et al. (2009) such areas include land cleared from

  • 12

    rainforestscontributing to soilerosionand furtherdeforestation. Intensivegrazingsystemsfoundintemperateareasaresupportedbytheproductionofhigherqualityforagesandcarryhigheranimalnumbers.Mixedfarmingsystemsarethoseinwhicharableand livestockproductionare jointactivitiesonfarmandaredefinedbyFAO(2009)asthosesystemsinwhich10%ofdrymatterconsumptionbyanimalscomesfromarablebyproductsorwheremorethan10%oftotalvalueofproductioncomesfromnonlivestockfarming.Theyincludebothrainfedmixedfarmingsystemsandirrigatedmixedfarmingsystems

    Industrial systems aredefined as those inwhich less than 10% of the drymatterconsumption is farmproducedand include forexample intensivebeef cattle,pigsand poultry fed on cereal grain and industrial byproducts purchased outside thefarm.Thesesystemsaccountforapproximately75%,40%and65%ofpoultrymeat,pigmeatandeggs,respectively.

    1.1.3Feedresourcesforlivestock

    Domesticated livestock convert forages, arable crops and associated byproducts intodesirable human foods of high nutritional value (particularly in relation to high qualityproteinandmicronutrients)andplayingakeyroleinfoodsecurity.Howevermanylivestockdiets include ingredientssuchascerealgrainswhichcouldbeeatendirectlybyman.Thishasopenedupadebateon the competitionbetween livestockandhumans for landandotherresourcestoproducecrops.

    Theabilityofruminantstoutilisehuman inediblematerialhasbeenusedbyGilletal. (2010) to representefficienciesof livestockproduction systemsquantifyingnotonly the contribution animal productsmake to food supply, but to the nutrientssupplied by food, namely protein and energy (Table 1.4). In terms of both totalenergyefficiencyandtotalefficiencyofproteinproduction,inallcasesinputsexceedoutputs. Beef production systems are markedly less efficient than monogastricsystems butwhen expressed in terms of humanedible return, outputs exceedinputs.Thus,althoughmonogastriclivestockaremoreefficientintermsoftotalfoodresourceusethanruminants,whendietsarebasedofforagesandcropbyproducts,thenthesesystemscanbenetcontributorsofhumanediblefood.

    Cerealgrainsareamajorsourceofnutrition forpigandpoultryand tosomeextentbeefanddairycattleinintensivesystems.TheFAO(Steinfeldetal.,2006)estimatedthatgloballylivestockuse some33%of the cerealsproduced.Oilseedsand theirbyproducts (cakeormeals)arekeyingredientsofthelivestockdiets(seeTable1.5).

  • 13

    Table1.4Comparativeefficienciesofdifferent livestockproduction systems in theUSA(adaptedGilletal.,2010) Energy Protein Totalefficiency1 Humanedible

    efficiency2Totalefficiency1 Humanedible

    efficiency2Milk 0.25 1.07 0.21 2.08Beef 0.07 0.65 0.08 1.19Pigs 0.21 0.3 0.19 0.29Poultrymeat 0.19 0.28 0.31 0.621Totalefficiencycalculatedasoutputsofhumanedibleenergyandproteindividedbytotalenergyandproteininputs2Humanedibleefficiencycalculatedasoutputsofhumanedibleenergyandproteindividedbyhumanedibleinputs.

    Due to their nutritional importance to livestock, oilseed byproducts are often morevaluablethantheextractedoil(i.e.soyaoilvs.soyabeanmeal).Awiderangeofbyproductsfromotheragriculturalsectorsandfoodindustryarealsousedasanimalfeed.Theseincludemolasses,sugarbeetpulp,bran,distillersgrain,brewersgrain,vegetableandfruitresidues(mainlyprocessed),fat,bakerymeal,strawetc.

    Thecompetitionbetweenhuman,biofuelandlivestockneeds,combinedwithsevereweatherevents,hasalreadyimpactedonglobalstocksofsomestaplefoodscausingspikes in food prices (such as those seen during 2008). These spikeswill becomemore frequent if rising demand cannot be consistentlymatched by supply (IFPRI,2009). These changes are also reflected in prices of byproducts as feedmanufacturerssubstitutecerealswithmorefibrousmaterialsandfats.

    Table1.5Useoffeedconcentratein2005(milliontonnes;FAO,2009)

    Feedconcentrateusein2005(milliontonnes)Commoditygroup Developing

    countriesDevelopedcountries World

    Grains 284.2 457.7 741.9Brans 71.2 34.5 105.7Pulses 6.8 7.3 14.2Oilcrops 13.4 14.3 27.6Oilcake 90.5 101.7 214.9Rootsandtubers 57.8 30.8 142.0Fishmeal 3.8 1.1 3.8Total 602.7 647.4 1250.1

  • 14

    1.2Theglobaleconomicsignificanceoflivestockproduction

    TheagriculturalsectorrepresentsavaryingproportionofGDP(nationalincome)indifferentcountrieswithatypicaltrendtowardsashrinkingcontributionasnationalincomerises.Forexample, the contribution in lessdeveloped low income countries canbehigh (e.g. 42%Ethiopia)relativetoeconomies intransition(approximately10% inThailand15%China)tolessthan10%indevelopedeconomies(6%Brazilandlessthan2%intheUS,lessthan1%intheUK;WorldResourcesInstitute,2007).

    AsnotedbyFAO (Steinfeldetal.,2006) livestockproduction typically representsasignificantproportion(around40%ofglobalincome(orGDP))earnedbyagriculture.Itemployedaround1.3billionpeopleinavarietyofdirectandindirectjobs.Inlessdeveloped countries, livestock are considered as a multifunctional asset that iscentral to the livelihoodsandwellbeingof someof thepoorest societiesonearth(Randolphetal.,2007).These functions includeasourceof incomeandsavings,asourceoffoodandfibreandenergyand inputsoffertiliser. Indevelopedcountrieslivestock are less vital for livelihoods, but are considered as an ecologically andculturally significant part ofmultifunctional farming landscapes.As such, livestocksystems arepartof an agriculturalmosaic thathaselementsof apublic good forwhichcitizensareoftenwillingtopay(Cooperetal.,2009).Theseattributesoftendonotshowup inconventionalmeasuresofeconomiccontribution,buttheymustbeconsideredasoffsettingsomeofthenegativeexternalitiesfromthesector.

    Theeconomicsignificanceof livestockproduction ismirroredbyshiftingconsumerdemand worldwide with significant growth in emerging economies, experiencingcombinationsofrisingpopulation,incomesandurbanisation(ThorntonandHerrero,2010).Thisisparticularlythecase inChinaandIndia,whichaccountfor38%oftheworld'spopulation.Amajoruncertainty in globalprojections is related towhat islikely to happen in these two countries, as it may have considerable impactselsewhere. The different scenarios about meat demand in these countries areconditional on policy responses on food security, biofuels and climate changeadaptation. Nevertheless increased meateating has followed rising affluence inmanypartsof theworld.China's levelsdoubledbetween1990 and2002.Back in1961,theChineseconsumedamere3.6kgperperson,while in2002theyreached52.4kgeach;halfoftheworld'sporkisnowconsumedinChina.TheUSandtheUKare among the few countries whose meat consumption levels have remainedrelatively stable. Surprisingly, it is not the US that has the largest consumption(124.8kg),buttheDanesat145.9kgperpersonin2002.

    Anoverviewofconsumptiontrendsisshown inTable1.6takenfromThorntonandHerrero (2010).Form the same source,Figure1.1 shows the relationshipbetweenpercapitaincomesandmeatconsumption.

  • Table1.6Pastandprojectedtrends inconsumptionofmeatandmilk indevelopinganddevelopedcountries(ThorntonandHerrero,2010). Annualpercapitaconsumption Totalconsumption

    Meat(kg) Milk(kg) Meat(Mt) Milk(Mt)

    Developing 1980 14 34 47 114

    1990 18 38 73 152

    2002 28 44 137 222

    2015 32 55 184 323

    2030 38 67 252 452

    2050 44 78 326 585

    Developed 1980 73 195 86 228

    1990 80 200 100 251

    2002 78 202 102 265

    2015 83 203 112 273

    2030 89 209 121 284

    2050 94 216 126 295

    Figure1.1Therelationshipbetweenmeatconsumptionandpercapitaincomein2002.National per capita income based on purchasing power parity (PPP) (Thornton andHerrero,2010).

    15

  • 16

    Changing patterns of demand are taking place within an increasingly liberalised globaltrading system that drives a wedge between the location of environmental damagesassociatedwithproductionandthefinalconsumptionoflivestockproducts.

    1.3Livestockfarminginsustainableagriculture

    Asan industry,agriculture isessentiallyamanmadeadjunct tonaturalecosystems.Preindustrial forms of farming employed closed loop systems out of necessity, reusing biproductsandwastesasinputsoffeedandfertiliser.Industrialisationledtotheseparationofmany production functions, and the separation of production and consumption. It hasdisplaced many traditional practices providing the ability to buyin inputs adding thepotentialforoveruseoffertilisersandpesticides.

    Traditionally, agriculture has also been able to ignore some of the externalconsequencesofproductionandexcess inputuse.These impacts toairandwaterhavenotbeenpriced,norhas the responsibility forpollutionbeennettedback tothesource.Theadventofthepolluterpaysprinciplesuggeststhatfarming,likeanyother industry,will need to accountmore fully for its external impacts. That is,productionshouldreflectbothfinancialcostsplusthecostsaccruingtootherpartsofsociety.Alsothepositiveimpactsforwhichcitizensareoftenwillingtopayneedto be taken into account. These attributes often do not show up in conventionalmeasuresofeconomiccontribution,buttheymustbeconsideredasoffsettingsomeofthenegativeexternalitiesfromthesector.

    Thedefinitionofsustainableagricultureiscontestedandcanbeextendedtoincludea rangeofbiological, socioeconomicandphilosophicalcriteria.Manygovernmentsare also linking sustainability concepts to national and global food securityobjectives.Fromtheforegoingdiscussion,onedefinitionisproductionsystemsthatminimiseinputuse(i.e.resourceefficiency)2,andinwhichproducerstopaythefullcost of externalities they generate. Different forms of agriculture can claim toapproximatetheseconditions,althoughthereiscurrentlynocomprehensivewayforinternalisingexternalcosts.Instead,systemstendtobedefinedbytheinputsused,withorganicand integratedfarmingsystemsmostcloselyapproximatingtraditionalsystems.

    However growing concern about globalwarming andwater pollution are leadingmanygovernmentstorealisethatagriculturecanneverbecomesustainablewithoutsome formof regulatoryor incentivemechanisms thatdemonstrateexternalcostsandreturnthesetofarmdecisionmakers.Suchregulatorydevicesincludevoluntary,commandandcontrolormarketbased instrumentssuchasgreentaxes (on inputsoroutputs)andtradablepollutionpermits(seesection4).Whilealltheseactonthe

    2Resourceefficiencyisnormallydefinedintermsofmaximisingoutputperunitofinput.

  • 17

    productionside, it isalsopossible forsustainablepracticestobe incentivised fromthedemandside.Inmanycountriesconsumerawareness isbecomingtheprincipaldriver of decision making among powerful retailers. This driver is particularlyrelevant tomeat and livestock production, a sector that has suffered some badpublicity, first associatedwith animal health andwelfare, butmore recently as aresultofgreenhousegasemissions. Increasingaccessto informationonproductionpracticesallowsconsumerstobemorediscerningaboutwhethertoconsumemeatand todemandnicheproducts thatdemonstrate the attributes that theywish topurchase.Retailersareadeptatmeasuringthisdemandandcreatingcorrespondingproductniches.

    1.4Effectsoflivestockfarmingonlandscapemanagement,biodiversity,soilconservationandfunctioningagriecosystems

    FAO (Steinfeldetal.,2006;2009) reported that livestockagriculture is theworlds largestuseoflandresources,withgrazingandlanddedicatedtocropsforfeedrepresenting~80%of all agricultural land. Livestock thus engages very closelywith landscapemanagement,biodiversity,soilconservationandtheholisticfunctioningofagriecosystems.

    Livestockfarminginteractswithagriculturalecosystemsinacomplexmannerandisheavilyinfluencedbythegeographicallocation,availabilityofnaturalresources(i.e.local feeds)andmanagementpractices.Extensive livestock systems typicallymakeuseoflocalresourcesandplayanimportantroleinmaintainingandenhancingplantspecies biodiversity in unique habitats. For example in some regions, followingrestructuring of European payments for farming, producers have been reducinganimalnumbers intheuplandswithnegative impactonbiodiversity.Conversely, inmixed livestockcropping systems livestock contribute manures as an importantinputtothecropproductionandcontributesvitalnutrientstothesoilandhenceapositiveenvironmental impact.Manures improvesoilqualityandfertilityandthereisevidencethatsoilfertilisedwithmanure ismorebiologicallyactiveandofhigherfertility than those fertilised by mineral fertilisers. Manure can also assist inenhancing thecarbon storagepotentialof thesoilhelping to removecarbon fromtheatmosphere(Soussanaetal.,2010)

    However, the growing demand for livestock products has resulted in increasedintensification or industrialisation of livestock production resulting in adisconnectbetweenproductionandlocallyavailablefeedresources.

    Such intensive systemsare frequently characterisedby increased concentrationofmanureproductswhichputspressureontheabilityofthelocalenvironmenttodealwithsuchmaterial.

  • 18

    InrelationtopasturelandsFAO(2009)reportedthreemajortrendso valuable ecosystems i.e. forests are being converted to pastureland for

    grazing;o pasturelandisbeingconvertedtootheruses(cropping,urbanisation)ando degradation,mainly as a result of overgrazing, is resulting in soil erosion,

    degradation of vegetation, release of soil carbon, reduction in biodiversityandimpairedwatercycles.

    Existing pasture land can, on average, be considered to be at capacity and hence anyincreasesinanimalnumbersinthesesystemswillplacefurtherpressureonthedegradationofforests.Ofcoursetherearelargeregionalvariationswithsomeareasundergrazedwhilstothersarecausingextremepressuresonvaluableecosystemsandsoilresources.

    ThemajorenvironmentalimpactsofdifferentproductionsystemsweresummarisedbyFAO(2009; see Table 1.7). These include impact on land degradation, water depletion andpollutionandbiodiversity.

    Thistableisinevitablyanoverviewbutisvaluableinshowingthatsystemscanhavearangeof impactsfrompositivetonegative.However,thisglobalperspectivehides largeregionaland system variations. Grazing systems that are properly managed make an importantcontribution to maintaining habitats and landscape whilst pastures that are heavilyoverstocked result in degradation. Similarly the manures from intensive pig productionsystemshave thepotential to improve soil fertility (anddo so inmany regions)whilst inothers, thepressureson landuseare so intenseas to causemajorpollutionproblems intermsofbothwaterandair.

    Thegrowthindemandforlivestockproducts(seesection1.2)willexacerbatepressuresonnaturalresourcesand theenvironment,demandingapproaches thatwillpermit increasedproductionwhile loweringenvironmentalburdenhencedelivering increasedsustainability.Traditional systems can reduce environmental impact and indeed have some majorpositiveenvironmentalbenefitsbuttheinevitablelowmeatoutputsfromthesesystemswillnotmeetthepredictedgrowthindemand.

  • 19

    TABLE1.7Majorenvironmentalimpactsofdifferentproductionsystems3(AdaptedfromFAO,2009)

    RUMINANTSPECIES(Cattle,Sheep,etc.)

    MONOGASTRICS(Pigs,Poultry)

    Extensivegrazing4

    Intensivesystems5

    Traditionalsystems6

    Industrialsystems

    LANDDEGRADATION

    Expansionintonaturalhabitat ns ns

    Overgrazing(vegetationchange,soilcompaction)

    ns ns ns

    Intensivefeedproduction(soilerosion) ns ns

    Soilfertilisation + + + ++

    WATERDEPLETIONANDPOLLUTION

    Alterationofwatercycle ns ns

    Pollutionwithnutrients,pathogensanddrugresidues

    ns ns

    BIODIVERSITY

    Habitatdestructionfromfeedcropproductionandanimalwastes

    ns

    Habitatpollutionfromfeedcropproductionandanimalwastes

    ns ns

    Lossofdomesticanimalgeneticdiversity ns ns

    Ecosystemmaintenance ++ ns ns ns

    1.5Wateruse

    The likelihoodofextremeeventssuchasdroughtscombinedwith increasedhumanneedsas populations expand have highlighted the importance of water use in agriculture.ChapagainandHoeskstra(2004)havecalculatedthatagricultureaccountsfor86%ofglobalwaterconsumption.Mostofthisisrainwaterusedfortheproductionofcrops.

    One indicationoftherelativewaterrequirementperunitofproduct isprovided inFigure1.2.Thehighvalueattributedtobeef isnotable.Howeverthisfigure,althoughextensivelyquoted, ishighlysimplisticandneedstobe interpretedwithcare.Itassumesanindustrial

    3Observedrelationshipsundercommonmanagementpractices.4Extensivegrazingsystemsforruminantsarepredominantlybasedonnaturalgrasslandsinmarginalenvironments.5Intensivesystemsforruminantsaregenerallybasedonimprovedgrasslands(usingirrigation,fertilizers,improvedvarietiesandpesticides),withsupplementaryfeedingorconfinedfeedingofgrainandsilage.6Traditionalsystemsformonograstricsincludemixedfarmingsystemsorbackyardscavengingsystems.Note:ns=notsignificant

  • beef production system, where it takes on average three years before the animal isslaughteredtoproduceabout200kgofbonelessbeef.

    Figure1.2Wateruseforagriculturalproducts(litresperkg)

    Importantlyof the totalrequirement (15,500 litres) forbeefonly155 litres isusedfor drinking, cleaning and post farm gate processing. The remainder (99.9%) isaccounted forbycropevapotranspiration fedbyrainfallor irrigation forcrops foranimal feed and forage/ grassland.Apart from irrigation, rainwaterwhich fallsongrasslandwould do so irrespectivewhether the landwas grazedby livestock andarguablycouldbediscountedfromtherequirement.InthisrespectrecentmodellingstudiesinAustralia(Petersetal.,2010)showthatthemajorhydrologicalflowsinthesystem are rainfall and evapotranspiration. Transferred water flows and fundsrepresentsmallcomponentsofthetotalwaterinputstotheagriculturalenterprise,and theproportionofwaterdegraded isalso small relative to thewater returnedpure to the atmosphere. The results of this study indicate that water used toproduceredmeatinsouthernAustraliaisinregion18to540litres/kgHSCW.

    It is importantthat individualcountriesnowundertakearigorousanalysisofwateruseinmeatsystemsbasedonsoundprinciples.

    Irrespectiveoftheveracityofthefiguresquotedandtheneedtodefinethesystemsofproduction,itisimportanttoqualifythesignificanceofthisindicator.Importantly,the use ofwater imposes different predominately local external costs relative togreenhouse gas emissions,which are a globalproblem.Clearly irrigation schemescanhavewideregionalimpacts(andabout30%ofruminantsareinmixedirrigatedsystems Table 1.3 in section 1) but in general water demand only matters incontextswherewater is locally scarce andwhere there is no system in place forwater users to pay the full costs ofwater supply, including some element of theenvironmental cost of supply.As it happens,many countries aremoving towards

    20

  • 21

    such formsofwater tariff structure,and sowaterdemandmaybe less significantthanitfirstappears.Thisabilitytousetariffstointernalisethecostsofwateruseisakeydifferencebetweenwater andgreenhouse gases. For the latter, thepotentialdamagecostsaretrulyglobalratherthanlocal,andthereiscurrentlynoequivalentpricing arrangement for emissions. The meat processing industry is alreadyrespondingby reducingwaterusagebut this shouldnot compromise theneed tomeet high hygiene standards. The policy imperatives of water use are furtherdiscussedinsection4.

  • 22

    2.Themeatandlivestockindustryandclimatechange

    2.1Sourcesofgreenhousegasemissionsfromlivestock

    Theclassical studiesbyTyndall in the19thcentury illustrated thatCO2 in theatmosphereincreasesheatretentionandthushighlightedtheimportanceofgreenhousegases(GHG)inclimate change.The critical issue is the increasing ratioofproduction to consumptionofGHG related to human activity resulting in unprecedentedly high levels of GHG in theatmosphere (IPCC, 2007). There is however a continuing debate on the role of human(anthropomorphic) activity on climate change in relation to the large fluxes in nonanthropomorphiccomponents(principallywatervapour).Thisdebateisoutofthescopeofthe present review which adopts the premise that human activity including livestockproductionisacomponentofclimatechange.ItisnoteworthyinthisrespectthatAndereggetal.(2010)recentlyreportedthatsome98%ofclimatescientistswhopublishresearchonthe subject support the view that human activities arewarming theplanet. Further, theresearcherswhowere convinced of the human impact on climate change hadpublishedtwice asmany papers as their sceptical counterparts, andwere cited in other people'sresearchtwotothreetimesmoreoften.

    CO2 equivalents represent the total impact of GHG in the atmosphere on heatretentionandtheGlobalWarmingPotential(GWP)foraparticularGHG istheratioofheattrappedbyoneunitmassoftheGHGtothatofoneunitmassofCO2overaspecificperiodoftime.TheGWPofCO2 is1whiletheGWPformethane(CH4)andnitrousoxide(N2O)are23and296theGWPofCO2(IPCC,2001).MethaneandnitrousoxidearetheprincipaloutputsoflivestocksystemsthatimpactonGHG.

    emissionsarisedirectlyandindirectlyo Directemissionsrefertothosedirectlyproducedbytheanimalfromenteric

    fermentationoffibrebyruminants,manureandurineexcretion.

    o Indirect emissions include those from feed crops used for animal feed,emissionsfrommanureapplication,CO2emissionsfromfertiliserproductionfor feed and CO2 emissions from processing and transportation ofrefrigerated livestock products (IPCC, 1997). Other important indirectemissions include emissions from land to livestock including deforestation,desertificationandreleaseofcarbonfromcultivatedsoils.

    Thegreenhousegasemissionsassociatedwithdifferent stages in theanimal foodchainproductioncycleareshowninTable2.1.

  • 23

    Table2.1Livestocklifecyclestageandassociatedemissions(Garnett,2007)

    Lifecyclestage

    Processcreatingemissions Typeofemissions

    Productionofanimal

    Productionofnitrogenousandotherfertilisers,agriculturalmachinery,pesticidesetc

    N2Oemissionsfromgrazingland,fertiliserproduction;CO2fromfertiliserproduction

    Housing,maintenance,machinery

    Heating,lightingetc CO2

    Digestion(ruminants)

    Entericfermentation CH4

    Wasteproducts

    Manureandurine CH4andN2O

    Slaughtering,processing,wastetreatment

    Machinery,cooking,cooling,chilling,lighting,leatherandwoolproduction,renderingandincineration

    CO2andrefrigerantemissions

    Transport,storage,packaging

    Transport,chilling,lighting,packagingmaterials

    CO2andrefrigerantemissions

    Domesticconsumption

    Refrigerationandcooking CO2andrefrigerantemissions

    Wastedisposal

    Transport,composting,anaerobicdigestionandincineration

    CO2,CH4andN2O

    2.2Contributionofthemeatandlivestockindustrytoglobalandregionalgreenhousegasemissions

    Whilemeat production is implicated in a number of environmental costs (Subak, 1999;World Bank, 2010), controversy about the greenhouse gas impact of meat productiondominatesthedebateontheenvironmentalimpactoflivestock.

    TheUnitedNationsKyotoProtocol, agreed in1997, seeks to limit theGHGproducedbyhumansandthelegallybindingagreementmakescommitmentsforthereductionin6GHG(carbondioxide,methane,nitrousoxide,hydrofluorocarbons,perfluorocarbonsandsulphurhexafluoride). InsomecountriesthiscommitmenttoreducingGHG isnowpartofalowcarboneconomyframework.

    TheFAO (Steinfeldetal.,2006)estimated the contributionofanthropogenicGHGemissions from the livestock sector as 7100 Tg CO2eq per year, equating toapproximately 18% of total global anthropogenicGHG emission. Itwas estimatedthat livestock accounted for 9, 3540 and 65% of the total anthropogenic GHGemittedCO2,CH4andN2O,respectively.

  • 24

    There ismuchongoingdebateabouttheaccuracyoftheFAOestimatesandaboutthe quantity of emissions that should be legitimately attributed to livestockproduction.Beyondthetwomaingases,thereportattributesaconsiderablelevelofcarbonreleasefromlandusechange(esp.tropicaldeforestation)totheconversionoflandforlivestockfeeds.

    TheFAOreporthasbeendiscussedwidely,withfurthercontributionsfromGoodlandand Ahang (2009), actually suggesting that the estimates are conservative (theyestimatethat livestockemissionscouldbeashighas51%ofglobalemissions).Thisreporthas in turnbeenwidelycriticised for someof its scientificassumptions, forexample theway it treats animal respiration. Pitesky et al. (2009) offer anothercritique of FAO and suggest that US livestock emissions are much lower as apercentage of the US emissions total than the global estimate. This observationhighlightstheobviousfactthatlivestockemissionsconstituteadifferentproportionofnationalemissionsdependingon the importanceof the sector relative tootheremittingsectors.Forexample, intheUK in2008,agriculturalemissionswereabout42million tonnesof carbondioxideequivalents7outofanational totalofaround650 million tonnes (i.e. about 8%). Of these emissions, about half came fromlivestock, predominantly from ruminants on a variety of intensive and extensivesystems.Wecanexpectthisfiguretodifferincountrieswhereagricultureaccountsforagreatershareofthenationaleconomy.Inparticulartheprecisecontributionofeachcountrywillvaryaccordingtoproductionsystem,wastemanagementsystemsandimportantlytheextentoflandusechange.

    Notethattheforegoingdiscussionrelatestolivestockemissionsasaccountedforinnational inventory methods (for recording emissions) as stipulated by theIntergovernmentalPanelonClimateChange(IPCC)forreportingpurposesonKyotocommitments. This inventory process requires the recording of agricultural sectoremissionsandimplicitlytheshareofdifferentsubsectorsinthesectortotal.

    Thereare two importantobservations tomakeon thispoint.The first is that thismandatoryreportingonlyappliestocountriesthataresignatorytotheProtocol;socalledAnnexI&IIcountries.Nonannexcountriesincludingalldevelopingcountrieshavenosuchobligationtoundertakean inventoryandthismeansthatwehavenostandardapproachtoquantifyingtheemissionsformanytransitionanddevelopingcountries.This isvitally important inthecontextthatmuchofthefuturegrowth inmeatproductionisprojectedtooccurintheseverycountries.

    Second,whilelivestockisacategoryforreporting,meatproductionperseisnot.Assuch, national inventory figures can only tell us a part of the story on thecontributionofmeatproductiontoglobalemissions.Toderivethisfigurerequiresus

    7Carbondioxideequivalent(CO2e)isthecommonunitofaccountforsummarisingthevolumeofallgreenhousegasesi.e.awayofconvertingmethaneandnitrousoxideintounitsofcarbon

  • 25

    tospecifythewholeproductionchainandtocounttheemissionsateachstageuptoor just before the final purchase by the consumer. A more extreme accountingmethodologywould involve a life cycle assessment (LCA). LCA as applied tomeatproductionisconsideredlater.

    Even themost conservative estimates in these papers indicate that the livestocksector, and implicitly meat production and consumption trends, represents achallenge to the global agenda on greenhouse gas mitigation and agriculturescontributiontoglobalreductions.Thesectorisunlikelytogounnoticedintheefforttodrivedownemissionsinmanycountries.

    Thesestudiesalsohighlightanumberof importantpoints thatallow thesector tounderstand the different strands of the debate and how different policyinterventionsindevelopedversusdevelopingcountriesmaybenecessary.Theyalsoclearly point out that livestock product life cycles (see section 2.3.2) need to beclearlyscrutinisedinordertoidentifytherelevantpointofobligation8foremissions,whichcanbe locatedwithinorbeyondthefarmgate.Aparticularpointof interestconcern the emissions liability for feed inputs,whichwill often be generated incountriesother thanwhere they are actually consumedby livestock. This issue isimportant because it indicates where emissions reductions must occur and whoshould potentially bear the costs of reducing emissions. This in turn provides anindicationofwhereeffectiveandefficientemissionssaving investmentsneedtobetargeted(e.g.onfarmversusprocessingortransportation)9.Thisaspectisdiscussedinthenextsection.

    Reports on the current emissions intensity of production are also paralleled bystudies on the growth of meat consumption and the associated emissionsimplications. AttemptsbyRosegrant(1999),Steinfeldetal.(2006)andFiala(2008)provideusefulattemptstosynthesisrelevantvariables intermsofchangingtastes,demandelasticitiesandproductiontechnologies.Buttheassumptionsnecessaryforforecastingdemandarehighlyuncertainand therefore the resultingquantities (ofmeat demanded) and emissions projectionsmust be treatedwith caution. Thesepapershavebeenparalleledbyothers thathaveattempted to forecastchanges intastesandconsumptionpatternsand inevitablepatternsof landuseandemissions(Rosegrantetal.,1999)andFiala,2009).

    8Thepointofobligationisjargonforthepointintheproductionprocesswhereemissionsarise.Thisislikelytobethepointatwhichanygovernmentregulationislikelytofocus.9http://www.cjr.org/the_observatory/meat_vs_miles.php?page=1

  • 2.3TherelativecontributionofcomponentsintheproductioncycletoGHGemissions.

    Clearlyglobalestimatesobscureregionalandcountryvariations.Also,aspointedoutabove,thereisaneedtounderstandandquantifyemissionsacrossthemeatproductioncycle.

    The extent of the contribution from themain sources ofGHG from livestock systems isindicated in Figure 2.1 (adapted FAO, 2009).Hence, (1)methane emissions from entericfermentation andmanures, (2)N2O frommanures and (3) landuse and landuse changerelatedto livestockproduction(includingdeforestation)arethemajorsourcesof livestockrelatedGHGemissions.Importantly,themajorityofemissionsrelatetowithincomparedtopostfarmgate.

    Figure2.1Majorsourcesoflivestockrelatedgreenhousegasemissions

    Entericfermenationandrespiration

    Animalmanure

    Livestockrelatedlandusechanges

    Desertication

    Cutivatedsoilslivestockrelated

    Feedproduction

    Onfarmfossilfueluse

    Postharvestemissions

    TherelativelysmallproportionofemissionspostfarmgateisemphasisedinarecentreportontheGHG footprint forexportedNewZealand lamb (Ledgardetal.,2010)Thetotalcarbon footprintwas1.9kgCO2equivalents fora100gportionofmeat.This was segmented into 80% for onfarm stage, 3% for meat processing, 5%transportationand12%fortheconsumercomponent(Figure2.2).

    26

  • Figure2.2KeycomponentsoftheGHGfootprintofNewZealandexportedlamb(Ledgardetal.,2010)

    On-farmTransportProcessingConsumption

    Emissionswillalsobe influencedbythespeciesof livestockused intheproductionsystem. Table 2.2 below provides an indication of the contribution by speciesaccording topart in the chain.The impactof thedifferent species isexamined ingreaterdetaillaterinthisreportinthesectiononLifeCycleAssessment.

    Table2.2Chaincomponentemissionsandcontributionbyspecies

    PartinFoodChain

    Estimatedemissions1 Estimatedcontributionbyspecies2

    Gigatonnes %oftotallivestocksector

    emissions

    Cattleandbuffaloes

    Pigs Poultry Smallruminants

    Landuseandlandusechange

    2.50 36 +++ + + ns

    Feedproduction3

    0.40 7 + ++ ++ ns

    Animalproduction4

    1.90 25 ++++ + + ++

    Manuremanagement

    2.20 31 ++ +++ ns ns

    Processingandtransport

    0.03 1 + + +++ ns

    1estimatedquantityofgreenhousegasemissionsexpressedasCO2equivalents2+=lowestand+++=highest,nsnosignificantimpact3excludeschangesinsoilandplantcarbonstocks4includesentericmethane,machineryandbuildings

    27

  • 28

    ItisevidentfromTable2.2thatemissionsassociatedwithlargeruminantsarelikelyto be greater than from pigs and poultry and that these emissions from largeruminantsareprimarilyrelatedtolanduseandlandusechangeandtodirectanimalemissions(i.e.methane).

    Thebalancebetween themajor contributors to livestockGHGemissionswill varywith not onlywith species but alsowithin species by type and efficiency of theproductionsystem,soils,climate,inputstosystem,impactonlanddegradationetc.For example, emissions from extensivebeefproduction aredominatedby entericfermentation (i.e. methane) whereas more intensive feedlot systems are moreinfluencedby landuse and landuse change related livestockproduction arisingfromfeedproduction.Emissionsfrompigproductionsystemsarelargelyrelatedtomanuremanagement(N2O)andfeedproduction. Thisbalance in impactsbetweenlivestockspeciesandintensityofproductionisdepictedintable2.3below.

    Table2.3Greenhousegasemissionsimpactsofdifferentproductionsystems10(AdaptedfromFAO,2009)

    RUMINANTSPECIES(Cattle,Sheep,etc.)

    MONOGASTRICS(Pigs,Poultry)

    Extensivegrazing11

    Intensivesystems12

    Traditionalsystems13

    Industrialsystems

    GREENHOUSEGASEMISSIONS

    CO2 emissions from land use and landuse change for grazing and feedcropproduction

    ns

    CO2 emissions from energy and inputuse

    ns ns

    Carbonsequestrationinrangelands ++ ns ns ns

    Methaneemissionsfromdigestion ns ns

    Nitrousoxidefrommanure ns Negative,+positive,nsnotsignificant

    Clearly in monogastrics low input, extensive systems (Traditional) have lowerimpactsbut inruminantspeciesthis isnotthecasewhere intensification,providedthereisefficientmanuremanagement,canreduceemissions.

    10Observedrelationshipsundercommonmanagementpractices.11Extensivegrazingsystemsforruminantsarepredominantlybasedonnaturalgrasslandsinmarginalenvironments.12Intensivesystemsforruminantsaregenerallybasedonimprovedgrasslands(usingirrigation,fertilizers,improvedvarietiesandpesticides),withsupplementaryfeedingorconfinedfeedingofgrainandsilage.13Traditionalsystemsformonograstricsincludemixedfarmingsystemsorbackyardscavengingsystems.Note:ns=notsignificant

  • 29

    Emissionswillalsobe influencedby feed resources imported into the system.Ashighlighted in section 1.1.3, feed resources and their impacts on GHG emissionsofteninteractwiththeproductionsystem(i.e.monogastricv.ruminantorintensivevs. extensive production system or organic vs. nonorganic). The interactionbetweenfeedandGHGemissions isoftenextendedto includeadebateonfoodv.feed, and in particular do livestock reduce availability of food for humanconsumption.InthiscontextGarnett(2009)posedtwokeyquestionswithregardtofeedresourcesinrelationtoGHGemissions:

    1) What is theGHG opportunity cost of using land to feed animals rather thanfeedingpeople?

    2) Is itnot lessGHGintensiveforhungrypeopletoeatcerealsdirectlysincemuchoftheenergyvalueislostduringconversionfromplanttoanimalsmatter?

    Theanswerstothesequestionsarecomplexandarethesubjectofmuchdebate.The relationship between feed demand and food security is multifacetedinvolvingbothphysical andeconomicdimensions (FAO,2009).Asdiscussed insection1.1.3,inputstolivestocksystemsexceedoutputs,andthemovetomoreintensiveconcentratebaseddietshasexacerbatedthisissue.Increasingdemandfor cereal, oilseeds, and their byproducts tomaintain and enhance livestockproduction is likelyto increaseGHGemissionsduetoenergyandfertilisercostsand loss of carbon sequestration due to additional land use. In terms ofGHGreduction,maximisingproductivityfrompasturelandandincreasedusageofbyproductsare importantstrategies indevelopingfuturefeedingsystems. Itmustalsobenotedthat inmanycountriesmuchofthecerealproducedfor livestockfeedings is reject or produced from land that would not be suitable toproducingcerealsandotherfoodssuitableasfoodforman.

    Estimates of the global contribution of livestock systems to GHG emissions inevitablyobscure the considerable variation between regions and countries resulting fromdifferences in for example the type and efficiency of production systems, the balancebetweenruminantsandmonogastrics,theextentoflanddegradationandthefeedresourceusedintheproductionprocess.IfwearetounderstandandreduceGHGfrommeatchainsweneedmorepreciseestimatesofemissionsatcountry levelandthenatsystem leveltoidentifythecriticalcontrolpoints.

    2.4Nationalinventoriesanduncertaintyinagriculturalsectoremissions

    While agriculture, including livestock, is implicated as a significant source of industrialemissions,itisimportanttobeclearthatthemeasurementofemissionsfromthissectorischaracterisedbymuchuncertaintythatdistinguishesitfromothersectorstypifiedbyfewerindustrial units and a common, relativelywellunderstood set ofmitigation technologies

  • 30

    (e.g. the energy or transportation). In comparison, agriculture and land use are moreatomistic, heterogeneous and regionally diverse. These factors can alter the mitigationpotentialsofmeasuresimplementedindifferentregionsandonamyriadofdifferentfarmtypes,whicharealmostbydefinition,biologicallyunique.

    2.3.1NationalInventories

    UnderTier1UNFCCCreporting,GHGemissiondataarecompiledusingdefaultemissionfactorsforthevariouslivestockcategoriesandtheirmanures.Thisapproacheffectivelyuses livestock population numbers multiplied by a standard factor, does notdifferentiate between standard practices, new or innovative processes, and takes noaccount of anymitigation practice designed to reduce GHG emissions. The emissionfactorscurrentlyusedhavebeengenerated frompublisheddata (see IPCC,2006).ForexampleIPCC(2006)quote8kgCH4/head/yearforsheepindevelopedcountriesand57kgCH4/head/yearforothercattleinWesternEurope.

    As with other sectors, the effectiveness of measures is influenced by interactionsbetweenmeasures and their environment. Thismeans that precisemeasurement ofemissionsfromallsystemsiscomplexandsomeformofapproximationisrequired.Thisapproximation isreflected in the fixedemissions factorsrecommendedby the IPCC tocharacterise sector emissions for national inventory reporting. Inventory reporting ismandatoryforcompliancewithKyotocommitments.Atpresent,signatorygovernmentsareonlyrequiredtouseTier1coefficientswhicharegenericcoefficientsapplicabletoall animals. Thus, a countrys livestock emissions are simply derived from themultiplicationof the livestockpopulationby the emissions (per animal) coefficient. Itfollows that a country can reduce its emissions directly by reducing its livestockpopulations.ButTier1emissionsarenotdiscriminatingenoughtorecordmoresubtleorindirectroutestoreduceemissionse.g.viaproductivityimprovementsusingbreedingorreducingdiseaseincidence.ThismeansthatusingTier1reporting,countriesmaynotbecredited with legitimate mitigation actions. This issue has led to a push for moresophisticatedanddetailedemissionsreportingmethodsatTier2and3.

    There isa largeamountof imprecisionassociatedwiththeagriculturalGHG inventory,with the current emission factors reported as having an uncertainty of 3050%. Inorder to reduce this uncertainty, and to help determine the effects of efforts tomitigation approaches (see later sections), those involved in evolving nationalinventoriesaremovingtomoresophisticatedTier2/Tier3accountingmethods,whichusedisaggregatedemission factors linkedwith farmbusinessactivitydata.These tierscanbemorecountryspecificintheiruseofbiophysicalmodellingtodevelopemissionsestimatesthataremorespecifictofarmtypesandwhichcanencompassotherindirectmitigationmeasures.

  • 31

    The importance of farm types is highlighted by EdwardsJones et al. (2009). TheydemonstratedlargevariationintotalGHGemissionswithinandbetweenthetwoWelshmixed sheep/cattle farms (Table 2.4). The difference in emissions between farmsprimarilyrelatedtonitrousoxidesemittedfromtheorganicsoilsoncasestudyfarm2.

    Table2.4TotalGHGemissionsinkgCO2eq/ha/yearontwomixedsheep/cattlefarms.

    Casestudyfarm1 Casestudyfarm2 Min. Max. Mid. Min. Max. Mid.

    Total 368.1 3725.8 1215.1 789.4 9305.7 3091.3All emissions calculatedusing a rangeof values reported in the literature. Theminimum (min.),maximum(max.)andmiddlevalue(mid)oftheserangeswereusedtorepresentthebestcase,worstcaseandaveragescenario.(AdaptedfromEdwardJonesetal.,2009)

    Modelsatcountrylevelneedtoabletoaccountforsuchdifferencestobemeaningful.Inaddition, understanding the sources of this variation (including how tomeasure andmoreaccuratelyestimateemissionson farm) isessential tounderpindevelopmentofeffective and robustmethodologies to footprint individual farmbusinesses. Improvedemission factorswill also assist in delivering greater precision in assessments of theimpact ofmeasures tomitigate greenhouse gas emissions from livestock (Gill et al.,2010). There is as general expectation that IPCC reporting will improve in terms ofmodellingsophisticationand there isagooddealof flexibilityas tohowgovernmentscanadoptresearchimprovementstoimprovetheirowninventories.Manygovernmentsarecurrentlyreviewingtheirinventoryprocesseswiththisaim.

    2.3.2Overviewofmeatandlivestocksectorlifecycleanalysis

    Emissions canbemeasuredat the levelof theanimalor fieldbut the farm is theunitofobligationforlikelypolicyinstrumentse.g.voluntaryprogrammesortradingschemes.Butthere isalsomuch interest inhowemissions informationcanbepresentedas relevant tofinal products to consumers. Clear information on the emissions intensity of a productallows final consumers some discretion over their product attributes. Arguably it isconsumerchoicethatactsasthemostsignificantsignaltoretailersandproducesuppliersandprocessors.Importantlythereisaneedtoidentifycriticalpointswithinthesystemsandoptionsforchangetobeconsidered.

    Life cycle assessment is the main approach for summarising environmentalinformation about product life cycles. Two types of environmental impacts aretypicallyconsidered:useofresourcessuchas landor fossil fuels,andemissionsofpollutantssuchasammoniaormethane.

  • 32

    LCAisnormallycalculatedtorelateemissionsperfunctionalunite.g.perkgmeatproduced or litre of milk. But it is also possible to communicate resource useequivalents in otherways. For example the concept of an ecological footprint isoften used to express the ecological sink (i.e. land area) equivalent necessary tooffset a unit of greenhouse emissions. LCA can be very complicated since it ispossibletorearanimalsinarangeofconditionsandprocessingsystemscaninvolvedifferentenergyrequirements(andthusemissionsimplications)intermsofhousingandtransportation.Caremustthereforebetakenwhencomparingsystemsonalikeforlikebasis.Forexample,itisimportanttobeclearaboutthesystemboundaryofanLCAstudybeforemakingcomparisons.

    Atleast16differentLCAmethodologiesforcalculatingthecarbonfootprintoffoodproducts have been developed since 2007, but as yet there is no internationalagreementonthesinglebestmethod.Thisneedstoberesolved.

    AlargenumberoflivestockproductLCAstudieshavebeenundertakenandaresummarisedbydeVriesanddeBoer (2010) (see table2.5).Theseshow that theproductionof1kgofbeefusesthemostlandandenergyandhasthehighestglobalwarmingpotential(intermsofthe lifecycleemissionofallgreenhousegases).This isfollowedby1kgofpork,chickeneggs andmilk.Differences in impacts between pork, chicken and beef can be explainedmainlybythreefactors:utilisationofnutrientsandenergyinfeed,differencesinentericCH4emissionsbetweencattle,pigsandchickenanddifferences inreproductionrates.Arecentstudy by FAO (2010) shows that the dairy sector accounts for around 4% of all globalanthropogenic GHG emissions including both emissions associated with the production,processing and transportation of milk products as well as emissions related to meatproducedfromanimalsoriginatingfromthedairysystem(FAO,2010).

    Table2.5Globalwarmingpotential(kgCO2e/kg)andlanduse(m2/kg)requiredtoproducelivestockproducts(deVriesanddeBoer,2010)

    EmissionskgCO2e/kg

    Landrequirementm2/kg

    Pork 3.910 8.912.1

    Chicken 3.76.9 8.19.9Beef 1432 2749Milk 0.841.3 1.12.0Eggs 3.94.9 4.56.2

  • 33

    3.Contributionofthemeatandlivestockindustrytogreenhousegasmitigation

    3.1Opportunitiestomitigateemissionsusingtechnicalefficiency

    Mitigationstrategiesmust target thekeyareasofemissionsand thesedifferaccording toproduction system. In ruminant systems the main problem is methane whilst inmonogastrics it is the lossofnitrogencompounds frommanures to theenvironment thatrepresentsthemainchallenge.Although80%orsooftheGHGemissionsoccuronthefarm,it is importanttoconsiderstrategiesthatapplythroughoutthechain.Thissectionreviewsoptionsthatareavailabletothe industrytohelpminimiseGHGemissions.Notalloptionsaremutuallyexclusiveandthatpracticesthatminimiseoneemissionmayleadtoemissionofanother.Thebalanceofmitigationoptionsavailable to individuals that leads tooverallbestpracticedependsonlocalclimate,soiltype,farminfrastructureandotherfactors.

    3.1.1IncreasedanimalefficiencyBeef,pigs&sheep

    Productionefficiencyon farm is an important route to reducingGHGemissions and alsoreducestheeconomiccostsandhenceisawinwinstrategyaddressesGHGandeconomics.The industryhasmade largeprogress in improvingproductionefficiencyoverthe lastfiftyyears as knowledgeon genetics, feeding, animalhealth andwelfarehave increased.ThisemphasisesthattheopportunitiestodecreaseGHGemissionsfrom livestockandthosetoincreaseproductivityarecloselyrelated.Themitigationpotentialisdependentonthebaselevelofproductivity and isevidently greater indeveloping countries. Improving genetics,healthandfertilityallcontributetoreducedanimalnumbersperkgproduct(Figure3.1).

    Theemissionsperunitproductcanbedecreasedeitherby (1) increasingtheefficiencyofthelivestockproductionsystemitself(forexamplebygenetics,health,fertilityor(2)directlyby targeting the source of the emissions, for example by feeding or use of noveltechnologiestoreducemethanefromruminants.Asanexample,dietswithahigher levelsofconcentratesandlipid(suchaslinseedoil)mayenhanceoutputandlowerGHGemissionssuch as CH4, it is imperative that such changes in diet do not give further impetus toclearanceof land toproduce these feedstuffcontributing toCO2emissions from landusechange(Figure3.1;Garnett,2009;Gilletal.,2010).

  • Figure 3.1 Avenues to improve productivity and reduce GHG emissions from livestock(AdaptedfromGilletal.2010)

    Inthefollowingsectionstheoptionstomitigatewillbeexaminedinmoredetailinordertounderstand their potential and also some of the problems associated with theirimplementation.

    IncreasingEfficiency

    Geneticsandbreeding(bothanimalandplant)

    Plantandanimalbreedingtechnologieshavemademajorprogressoverthelast50yearsinunderpinning productivity gains. Genetic improvement of livestock is a particularly costeffectivetechnology,producingpermanentandcumulativechanges inperformance.Thereare 3 routes through which genetic improvement can help to reduce emissions per kgproductinlivestock:

    1.Improvedproductivityandefficiencyintheanimal;

    2.Reducingwastage(e.g.involuntaryculling,emptyreproductivecycles)attheherdorflocklevel;and

    3.Directresponsetoselectiononemissions,iforwhenthesearemeasurable.

    Selectiongoalsinruminantshavelargelyfocussedonproductioncharacteristicsandlessonhealth,reproduction,longevitytraits(Cartaetal.,2009;MigliorandSewalem,2009;Oram and Lodge, 2003; Zamaratskaia and Squires, 2009). Selecting for traits such as

    34

  • 35

    higher fertility or increased longevity of ewes / suckler cows,would results in fewerreplacement breeding beef cows or ewes being needed, thereby reducing livestocknumbers in total. Importantly, these robustness traits will not only contribute toreducingnumbersofanimalsrequiredbeunitofproductbutwillbecome increasinglyimportant to adaptation strategies. Also in forage crops, past activities haveconcentrated on improving yield but recent efforts have focused on improvednutritionalcharacteristics(e.g.aminoacidbalance,watersolublecarbohydratecontent,fibre). Thesewill have subsequent benefits on nutrient utilisation by the animal (seelater).

    Uptakeofimprovedgeneticsishighinthepoultry,dairy,andpigindustries,assistedbythe highly integrated breeding and rearing systems, infrastructures and the use ofartificial insemination. Jones et al. (2008) have estimated that in pigs for example,geneticchangeshaveresultedinreductionsinemissionsofmethane,nitrousoxideandammonia(perunitproduct)ofabout0.75%p.a.Ratesarehigherinpoultryatbetween1and1.5%p.a.Theauthorsconsiderthatthisrateofimprovementwillcontinueoverthenextyearsandmayaccelerateifmoleculargenetictoolsareadaptedmorewidely.

    In contrast to dairy cattle and monogastrics, the use of improved genotypes hasgenerallybeen low inbeefandsheepsystems,particularly inextensivesystems.Thisisduetoconstraintsoflackofresources,smallscaleandpoorlyintegratedsystems/lackofinfrastructurehavehampereduptakeparticularlyinmanydevelopingcountries.

    Thereareofcourseexceptions.Forexample inNewZealandsheepsystems,comparedto1990, farms in2009produced slightlymore lambmeatbyweight,but froma43%smaller national flock. Itwas estimated that this reduced theGHG footprint ofNewZealand lamb by about 22%. Productivity improvementswere achieved through newfarmmanagementtechniquesandgeneticsthatallowmoreewestohavetwinortripletlambsandbyincreasingtheaverageweightofthoselambs.

    Major advances in growth rate and efficiency have also been made in some beefsystems by using sires of highmature bodyweight. Analyses of the data by Hyslop(2008)showed that thereweresignificantbreeddifferencessuggesting thatbreedsofcattlewithhighmaturebodyweightsproduced feweremissionsperunitoutput thanthetraditionalsmallerbreeds(Hyslop,2008).Therearemanyotherexamples.

    Considerableopportunitydoesthereforeexistforsheepandbeefcattlesectorstomakeuse of improved genetics but it is vital that constraints of uptake are overcomeparticularly in developing countries where much of the growth in demand andproductionispredictedtooccur.

    Reducedresidualfeedintake(consumptionoffoodabovethatrequiredforproduction)isheritableandbreedingprogrammesareplacingmoreemphasison this trait tohelpachieve a permanent reduction in CH4 output (Alford et al., 2006). Also, individual

  • 36

    ruminants can have innately reduced CH4 outputs, possibly associated with rumenprotozoal populations, and may be of use in breeding programmes (Hegarty et al.,2008). Alford et al. (2006) estimated breeding for lower residual feed intake in beefcattle could reduce annualCH4outputsby 3.1%on anational (Australia)basis,or tomuchgreaterreductions(uptonearly16%)onan individualfarmbasisovera25yearperiod.

    Theuseofgrowthpromotinghormones

    Growthpromotingimplantshavebeenusedintheproductionofcattleandsheepforover40years.Theycancontribute to reducingemissionsbyenhancing the rateof liveweightgain,grossefficiencyand insomecases improvingnitrogenefficiency,allowinganimalstobefinishedmorequickly,reducingtheamountoftimeonfarmwheretheyproduceCH4andcontributetoN2Oemissions.

    Implants includenaturalhormonesoestradiol17, testosteroneandprogesterone,and artificial analogues trenbolone and zeranol and more recently rBST (growthhormone).Preston(1999)calculatedthatimplantsimprovegrowthratebybetween+10 to 30%, feed efficiency by +5 to 15% and carcass leanness by+5 to 8%.Importantlytheseresponseareadditiveto increases inperformanceandefficiencyachievedbyanimalbreeding.

    Thereisnoevidencethatthesematerialsimpactonhumanhealth.Despitethis,theuseofrBSTandotherhormonesiscurrentlynotallowedunderEUregulations.

    Nutritionalmanagementdirectlytoreducemethaneandnitrogenemissions

    Methane

    In ruminants,dietarycarbohydratesonce introduced into the rumenarebrokendown tosmallermoleculesresultingmainly intheproductionofacetic,propionicandbutyricacids,carbondioxideandhydrogenviatheintermediatepyruvate.Ruminalmethanogensconvertthecarbondioxideandhydrogentomethane,providingakeyhydrogensinkfortherumenecosystem. The proportion of these volatile fatty acids has a direct influence on theproduction of methane as acetate and butyrate promote methane production, whilepropionateformationcanbeconsideredasacompetitivepathwayforhydrogenuseintherumen.Changing thedietof ruminants can reducemethaneoutput (Martinetal.,2010).Thiscanbeachievedby:

    ReplacingroughagewithconcentrateCH4decreaseswithconcentratefeedingasaresult of a change in fermented substrate from fibre to starch and a decline inruminalpH

  • 37

    Changingcarbohydratetype forexamplesolublesugarshavegreater impactthanstarches

    Adding lipid to the diet can result in a 5% reduction inmethane output (per kgintake)foreach1%inclusionoffat

    Theuseionophoressuchasmonensinalterrumenfermentationtoreducemethaneoutput

    Pasture improvement by improving the digestibility of pasture and increasing thesupplyofenergy:protein

    Legumeinclusion Organicacidssuchasfumarateandacrylate

    Althoughthesetechniquesarereadilyavailabletheyallhave,toagreateror lesserextent,disadvantageswhichlimittheiruse.Forexample:

    The simpleexpedientof increasing thedietaryproportionof concentrateshigh instarch(cerealgrains)despitehavingtheaddedadvantageofalsoincreasinggainandgross efficiency can reduce farm profitability when prices are high and clearlyexacerbatetheconflictbetweenhumanandanimalneeds.Alsotheresponse isnotlinear.Methane lossesappearrelativelyconstant fordietscontainingupto30%to40%concentrateandthendecreaserapidlytolowvaluesfordietscontaining80%to90%concentrateandsuchhighlevelscaninduceacidosisandillhealth.

    Inclusionoffatscanreducefeedintakeandneedtobelimitedtoatotaldietaryfatcontentof6%.

    Althoughmonensinhasbeenshowntobeeffectiveintheshorttermthereissomeevidenceofreducedresponseovertimeand inanyeventcannotcurrentlybeusedintheEU.

    Nitrogencompounds

    In relation to NOx compounds, avoiding excess N in the diet, correctly balancingprotein with energy requirements, and/or making dietary N more available fordigestion allows the concentration of these nutrients in the diet to be reducedwithoutadverselyaffectinganimalperformance.ThesemethodsreducetheamountofN excreted, either directly to fields under grazing or viamanure, and therebyminimise additions to the pools of N that are sources of diffuse pollution (NO3leaching,N2OandNH3emissions;NiderkornandBaumont,2009).

  • 38

    Suchstrategieshavethepotentialnotonlytoreduceemissionsbutalsotoenhancelean tissue growth. New applied feeding systems allow much more precisecharacterisation of the fate of nitrogen in both ruminants andmonogastric diets.Furthermore theuseofsuchdynamicmodelsofdigestive functioncanbeused toderivestrategiestoreduce lossestotheenvironment.Majoradvances inrationinganddietaryformulationsbeingmade indairycowsandmonogastricsbutagainthetranslationofthisknowledgeintopracticalbeefandsheepsystemsislacking.

    With major developments in agricultural practice and requirements to reduceemissions it is vital that thenutrient requirements for livestock areupdatedon aregularbasis.Inthemanycountries(includingUS,UK)therearenownomechanismsand little funding to incorporate the new nutritional information into rationingsystems.

    Pasture based systems present particular challenges to nutritional managementstrategiestoreducenitrogenlossestotheenvironment.Intensivegrazingcanresultin high loss of nitrate (via urine) into drainage water. Difficulties in estimatingherbageintakeinfarmconditionsplusmonitoringofmarkedfluctuationsinproteincontentalsomakeaccuraterationingdifficult.

    However, recent changes in plant breeding objectives (e.g. for increased watersoluble carbohydrate (WSC) concentrations in perennial ryegrass) offers thepotential to reduce GHG emissions from animals at grazing by reducing theproportionofdietaryNthatisexcretedinurine.AnincreasedWSCconcentrationinryegrass correlated with reduced proportions of urine N excretion (Miller et al.,2001).This is likely to impact thenonN2Oemissions fromurinepatches ingrazedland.

    Forpigsandpoultry, considerable stepshavealreadybeenmade through theusesyntheticaminoacids(althoughnotinorganicunits)tomeetrequirements.Thereislimited scope for further reducing theN contentofpig andpoultrydietswithoutreducingproductiveoutput(Kerretal.,2006;Nahm,2002;Veensetal.,2009).Thereare concerns that reducing nutrient inputs may also have adverse effects onreproductive performance and carcass quality. The scope to usemore digestiblematerialsinbroilerdietsislimitedasmostdietsalreadyhighdigestibilityfeeds.

    Animalhealthanddisease

    Animalhealthanddiseasesimpactonsocietyintwoways(1)socioeconomicand(2)humanhealth risks (FAO, 2009). Socioeconomic effects include livestock productivity losses,market disruptions and livelihood risks. Human health risks include pandemic disease,endemicdiseaseandfoodbourneillnesses.

  • 39

    Increases inairtemperatureand/orhumidityhavethepotentialtoaffectconceptionratesofdomesticanimalsnotadaptedtothoseconditions.Thisisparticularlythecaseforcattle,inwhich theprimarybreedingseasonoccurs in thespringandsummermonths.Also, theonset of a thermal challenge to livestock often results in voluntary declines in physicalactivitywithassociateddeclinesineatingandgrazingactivity

    Otherkeypointsare:

    Animal disease risks are increasing as a result of rapid expansion and structuralchanges in the livestock industry, clustering of intensive livestock productionfacilitiesnearurbanpopulationcentresand themovementofanimals,peopleandpathogensbetweenintensiveandtraditionalsystems(FAO,2009).

    Climatechangeisalteringpatternsoflivestockdiseaseoccurrences,sincepathogensand the vectors that carry thementernewecological zones (Randolph,2010; vanDijketal.,2010).

    Stakeholderandpolicymakersmustbeengagedinthedesignandimplementationofprogrammestopreventandcontrolanimaldiseaseandimprovefoodsafety.

    From a productivity perspective, improving the health of animals to increaselongevity,reduceturnoverrate(therebyreducingthenumberoffollowersrequired),and ensure that animals are producing as efficiently as possible. In addition toreduced opportunistic losses during production, healthier animals would reducecarcasecondemnationduetodisease.

    Studieshavebeen initiated tostudy thespreadofanimaldiseasesandpests from low tomidlatitudes due towarming, a continuance of trends already underway. For instance,modelsprojectthatbluetongue,affectingmostlysheep,occasionallygoatanddeer,wouldspreadfromthetropicstomidlatitudes(vanWuijckhuiseetal.,2006).Likewise,Whiteetal.(2003) simulated under climate change increased vulnerability of beef production to thecattletick(Boophilusmicroplus).

    3.1.2Engineeringandproducttechnology

    Anaerobicdigestionoflivestockmanurestocapturemethaneemissions

    Anaerobic digestion of organic materials by microbial populations in a sealedcontainer results in the formation of CH4, CO2, hydrogen and digestate.Onfarmanaerobicdigestion(AD)ofmanuresandslurrieshasmuchpotentialtoreduceCH4emissions from manure storage and spreading. Biogas can be used for heatingand/orelectricityproduction,andthereforesubstitutesforfossilfuels.Theresidualliquor can be used a liquid fertiliser, and the residual fibrous material as a soilconditioner, helping to reduce use of artificial fertiliser.Methane emissions fromslurrystoragecanbesignificantlyreduced(estimatedatupto90%)bythismethod

  • 40

    comparedwithconventional slurry storage.There isalsoconsiderablepotential toutilisefoodwasteinthesamesystem.

    High costs of installing and running the AD equipment hamper expansion of thetechnology,butinsomecountries,forexampleGermany,uptakeisgoodwithgroupsoffarmsworkingtogetherwithacentralisedADfacility.

    These technologies are clearly less applicable to ruminant systemswhich have alargecomponentofgrazing.Importantlythehighcostsofcurrentsystemsrepresenta considerable constraint in developing countries and low cost and appropriatetechnologiesneedtobesought.

    Methaneandammoniacapturefromlivestockhousing

    New technologiesandmanagementprocedures tohandlemanurecollection, storageanddisposal offer potential to reducemethane and ammonia from housed livestock and inparticular represent the key route for reducing emissions frommonogastric systems andintensiveindoorruminantsystems.Someexamplesoftechnologiesare:

    Development of fully housed intensive systems and capture of enteric methaneemissions from ruminant livestock.Methane couldbe capturedbypressure swingadsorption (PSA) from livestockmaintained in purpose designed buildings. PSA isused topurifymethane from landfill gas.However, the technologywould requiresignificant development to capture the methane housed livestock as theconcentrations of methane involved aremuch lower than those associated withlandfill. The energy required to power ventilation and PSA extraction equipmentwould need to be compared with the emissions reduced/energy created frommethanecapture.Dragositsetal.(2008)haveestimatedthatfullyhousedintensivedairy compared with conventional intensive systems would reduce emissions ofnitrousoxide.ThiscouldbelinkedtouseofanaerobicdigestiontocaptureCH4fromtheassociatedmanure.

    Exhaustairfrommechanicallyventilatedpigandpoultryhousingmaybetreatedbyacid scrubbersorbiotrickling filters to removeammonia.While thismethoddoesnot reduce the ammonia emission from floor/slurry surfaceswithin the house, itremovesammoniafromtheexhaustairstream,therebyreducingtheemissionfromthehouseintothewiderenvironment.Thedischargewaterfromtheairscrubberorbiotricklingfiltercanbeusedasaninorganicfertiliser,subjecttowasteregulations.Technologyismostappropriatetonewpurposebuiltfacilitiesandwhereadoptedinthe Netherlands, Germany and Denmark, reduction efficiencies of 7095% in theanimalhousehavebeencited(Aarninketal.,2007).

    Inpigunits, frequent removalofslurry frombelowslattedfloorstoragepits toanoutside,coveredstorewillreducetheoverallammoniaemission(this ismandatory

  • 41

    insomecountries(e.g.Denmark).However,thiswillresult ingreaterammoniumNcontentoftheslurryinstorageandhenceappropriatemitigationmethodsmustbeused to minimise emissions from slurry storage and land spreading. Similartechnologiesexistforpoultryunits.

    Ammonia emissions from pig unitsmay be influenced by floor type in the unit.Employingapartsolidfloorandslattedfloorslurrystorage(i.e.50:50)comparedtoa fully slated design may help to reduce ammonia emissions (Chambers andNicholson,2005).Themethodisdependentonreducingtheoverallemittingsurfaceareaofslurry.

    Installationofventilation/drying systems to reduce themoisture contentof layinghenmanure (indeeppitoronbelts)orpoultry litterwithin thehouse.Dryingwillinhibithydrolysisoftheuricacid(readilyavailableN)contentofthemanure,slowingtheformationofammoniumandtherebyreducingammoniaemission.

    Constraintstotheuseofmitigationstrategiesonfarm

    Thereareclearlya largenumberofstrategiesthathavethepotentialtoreduceemissions.Genetic progress represents a sustainable solution that will form the base for othertechnologiesand it isvital that theprogressmade indairycattle,pigsandpoultry isalsotransferred into beef and sheep systems. Currently however there are limitations andrestrictionsontheuseofcertainmaterials(e.g.growthpromoters)andtechnologies(GM)in certain parts of the world. Furthermore many of these technologies are not alwaysappropriate to systems in developing countries and to extensive grazing systemswhichcontribute tomethaneemissions. For this reason it seemsunlikely that theuseof thesemitigations alone is sufficiently large in the ruminant sector to meet the challengesassociated with a doubling in demand for meat products. This inevitable leads to theconclusionthatthisgrowthmustbemetprimarilythroughpigandpoultrysystemsorthereneedstoastepchangeinthetechnologiesavailable.Theprospectsforthiswillbediscussedlater.

    Thehighcostsof installingandrunningequipmenttoreduceemissionsthroughanaerobicdigestion,ventilation,slurryremovalhamperexpansionofthetechnologyandinparticularrepresent a considerable constraint in developing countries and thus low cost andappropriate technologiesmust tobe sought to address theemissions thatwill inevitablyarisefromrapidexpansionofmeatproductioninthesecountries.

    Thekeyobjective istoderivewinwinsolutionsthatnotonlyreduceemissionsbutalsoimproveprofitalongthechain.Approachestoderivingsuchsolutionswillbediscussedlater.

  • Innovationsinprocessingandtransportationandconsumerstages

    Processing, transportationandconsumerstagescollectivelymayrepresentaround20%oftheGHGofmeatandhenceareimportantissuestoconsider.

    Emissionsassociatedwithmeatprocessingaresmall,forexample3% inthecarbonfootprintofNewZealand lamb (Figure2.2 insection2).Emissions relate touseoffossilfuelstogeneratehotwaterandsteam(seeFigure3.2).Electricity isessentialfor runningmachinery, lighting,wastewater treatment, chilling and freezingmeatandmeatproducts.Emissionsarealsofoundviawastewaterandintestinalcontents.

    Figure3.2MeatprocessingGHGFootprintNZLamb(Ledgardetal.2010)

    The industry is very focused on maximising efficiency which delivers benefits inreducingGHGemissions.Akeyareaofprogressisthroughtheuseofloweremissionenergy sources, including natural gas use of biomass burners. Wastewaterprocessing is focused on reducing CH4 emissions via less use of anaerobic pondsystemsanduseoflandtodistributewastewater.

    Energyefficiencymeasureswithinprocessinganddistribution(and indeedonfarm)to reduceenergydemand is important. Thismaybe aidedby conductingenergyefficiencyaudits inabattoirsand implementing recommendationsdeliversbenefitsin reducing GHG emissions; investment in new energy and resource efficientequipmentandbuildingareimportantstrategies.

    Use of fossil fuel in road and oceanic transportation is small but important incontributingGHGemissions,forexample5%inthecarbonfootprintofNewZealandlamb(Figure2.2 insection2).Manufacturersofroadvehiclesandoceanicshippingwork closely with meat processors to develop more efficient transportation,includingchillingunits.