ECEN689: Special Topics in High-Speed Links Circuits and...

37
Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010 Lecture 32: CDR Wrap-Up

Transcript of ECEN689: Special Topics in High-Speed Links Circuits and...

Page 1: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Sam PalermoAnalog & Mixed-Signal Center

Texas A&M University

ECEN689: Special Topics in High-Speed Links Circuits and Systems

Spring 2010

Lecture 32: CDR Wrap-Up

Page 2: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Announcements

• Exam 2 is April 30• Will emphasize (but not limited to)

• Equalization properties & circuits• Link Budgeting (noise & timing)• PLLs• CDRs (high-level properties)

• Project Feedback meetings on Friday

• Final Project Report Due May 4

2

Page 3: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Agenda

• CDR circuits• PI• DLL

• CDR Jitter Properties

• Injection-Locked Oscillator De-Skew

3

Page 4: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Embedded Clock I/O Circuits

4

• TX PLL

• TX Clock Distribution

• CDR• Per-channel PLL-based• Dual-loop w/ Global PLL &

• Local DLL/PI• Local Phase-Rotator PLLs• Global PLL requires RX

clock distribution to individual channels

Page 5: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Phase Interpolator (PI) Based CDR• Frequency synthesis loop

produces multiple clock phases used by the phase interpolators

• Phase interpolator mixes between input phases to produce a fine sampling phase • Ex: Quadrature 90° PI inputs

with 5 bit resolution provides sampling phases spaced by 90°/(25-1)=2.9°

• Digital phase tracking loop offers advantages in robustness, area, and flexibility to easily reprogram loop parameters

5

[Hsieh]

Page 6: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Phase Interpolator (PI) Based CDR

• Frequency synthesis loop can be a global PLL

• Can be difficult to distribute multiple phases long distance• Need to preserve phase

spacing• Clock distribution power

increases with phase number• If CDR needs more than 4

phases consider local phase generation

6

Page 7: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

DLL Local Phase Generation

• Only differential clock is distributed from global PLL

• Delay-Locked Loop (DLL) locally generates the multiple clock phases for the phase interpolators• DLL can be per-channel or

shared by a small number (4)

• Same architecture can be used in a forwarded-clock system• Replace frequency synthesis

PLL with forwarded-clock signals

7

Page 8: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Phase Rotator PLL

• Phase interpolators can be expensive in terms of power and area

• Phase rotator PLL places one interpolator in PLL feedback to adjust all VCO output phases simultaneously

• Now frequency synthesis and phase recovery loops are coupled• Need PLL bandwidth greater

than phase loop• Useful in filtering VCO noise

8

Page 9: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Phase Interpolators

• Phase interpolators realize digital-to-phase conversion (DPC)

• Produce an output clock that is a weighted sum of two input clock phases

• Common circuit structures• Tail current summation

interpolation• Voltage-mode interpolation

• Interpolator code mapping techniques• Sinusoidal • Linear

9

[Bulzacchelli]

[Weinlader]

Page 10: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Sinusoidal Phase Interpolation

10

)sin( tAX I ω=

( )tAtAX Q ωπω cos)2/sin( −=−=

( )

( ) ( ) ( ) ( )

( ) ( ) QIQI XaXaXX

tAtA

tAY

21sincos2

0cossinsincos

sin

+=+=

≤≤−=

−=

φφ

πφωφωφ

φω

• Arbitrary phase shift can be generated with linear summation of I/Q clock signal

( )( ) ( )

1

sincos

sin

22

21

21

211

=+

==

+=−=

aaaa

XaXatAY Q

φφ

φω

and where

Page 11: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Sinusoidal vs Linear Phase Interpolation

11

• It can be difficult to generate a circuit that implements sinusoidal weighting

122

21 =+ aa

• In practice, a linear weighting is often used

121 =+ aa

[Kreienkamp]

Page 12: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Phase Interpolator Model

• Interpolation linearity is a function of the phase spacing, ∆t, to ouput time constant, RC, ratio

12

small output τ

large output τ

w/ ideal step inputs

Page 13: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Phase Interpolator Model

13

w/ ideal step inputs w/ finite input transition time

Spice simulation

w/ ideal step inputs:

w/ finite input transition time:

For more details see D. Weinlader’s Stanford PhD thesis

Page 14: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Tail-Current Summation PI

14

[Bulzacchelli JSSC 2006]

• For linearity over a wide frequency range, important to control either input or output time constant (slew rate)

Page 15: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Voltage-Mode Summation PI

15

[Joshi VLSI Symp 2009]

• For linearity over a wide frequency range, important to control either input or output time constant (slew rate)

Page 16: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Delay-Locked Loop (DLL)

• DLLs lock delay of a voltage-controlled delay line (VCDL)• Typically lock the delay to 1 or ½ input clock cycles

• If locking to ½ clock cycle the DLL is sensitive to clock duty cycle

• DLL does not self-generate the output clock, only delays the input clock

16

[Sidiropoulos JSSC 1997]

Page 17: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Voltage-Controlled Delay Line

17

KDL

[Sidiropoulos]

Page 18: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Delay-Locked Loop (DLL)

• First-order loop as delay line doesn’t introduce a pole

• VCDL doesn’t accumulate jitter like a VCO

• DLL doesn’t filter input jitter18

[Maneatis JSSC 1996]

Page 19: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

CDR Jitter Properties

• Jitter Transfer

• Jitter Generation

• Jitter Tolerance

19

Page 20: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

CDR Jitter Model

20

“Linearized” KPD

[Lee]

Page 21: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Jitter Transfer

21

“Linearized” KPD

[Lee]

• Jitter transfer is how much input jitter “transfers” to the output• If the PLL has any peaking in the phase transfer function, this jitter can

actually be amplified

Page 22: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Jitter Transfer Measurement

[Walker]22

Page 23: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Jitter Transfer Specification

[Walker]

23

Page 24: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Jitter Generation

24

( ) 22

2

2

2

2 nnLoopLoopn

outn ss

s

NK

RCsN

Ks

ssHVCO

VCO ωζωφφ

++=

+

+

==VCO Phase Noise:

[Mansuri]

• Jitter generation is how much jitter the CDR “generates”• Assumed to be dominated by VCO

• Assumes jitter-free serial data input

For CDR, N should be 1

Page 25: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Jitter Generation

25

θout(s)θvcon(s)

20log10

High-Pass Transfer FunctionJitter accumulates up to time ∝1/PLL bandwidth

• SONET specification:• rms output jitter ≤ 0.01 UI

[McNeill]

Page 26: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Jitter Tolerance

26

• How much sinusoidal jitter can the CDR “tolerate” and still achieve a given BER? [Sheikholeslami]

[Lee]

Page 27: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Jitter Tolerance Measurement

27

[Lee]

Page 28: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Jitter Tolerance Measurement

28

[Lee]

Page 29: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Injection Locking Oscillation

Jie Zou

The Analog & Mixed Signal CenterTexas A&M University

Page 30: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Injection Locking in LC Tanks

30

a) a free-running oscillator consisting of an idealpositive feedback amplifier and an LC tank;

b) we insert a phase shift in the loop. We know this will cause the oscillation frequency to shift since the loop gain has tohave exactly 2π phase shift(or multiples).

Page 31: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

31

Phase Shift for Injected Signal

• Assume the oscillator “locks” onto the injectedcurrent and oscillates at the same frequency.

• Since the locking signal is not in general at the resonant center frequency, the tank introduces a phase shift

• In order for the oscillator loop gain to be equalto unity with zero phase shift, the sum of thecurrent of the transistor and the injectedcurrents must have the proper phase shift tocompensate for the tank phase shift.

Page 32: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Injection Locked Oscillator Phasors

32

Note that the frequency of the injection signal determines the extra phase shift Φ0 of the tank. This is fixed by the frequency offset.

The current from the transistor is fed by the tank voltage, which by definition the tank current times the tank impedance, which introduces Φ0 between the tank current/voltage. The angle between the injected current and the oscillator current θ must be such that their sum aligns with the tank current.

Page 33: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Injection Geometry

33

The geometry of the problem implies the following constraints on the injected current amplitude relative to the oscillation amplitude.

Page 34: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Locking Range

34

At the edge of the lock range, the injected current is orthogonal to the tank current.

The phase angle between the injected current and the oscillator is 90° + Φ0,max

iosc

inj

iosc

inj

injoscinjosc

inj

T

inj

II

ifII

IIII

III

−==⇒

++==

θφ

θ

θθφ

cos.,sin

cos2

sinsinsin

max,0

220

220

00

0

11100

220

220

201

0

,tan

)(2tan

)(tan)(tan2

,1),(2

)(tan2

injoscTT

inj

p

p

IIIII

Q

xxQR

LR

L

−==

−≈∴

=−=⋅

−≈−

−⋅

⋅−=

−−−

φ

ωωω

φ

πωωωωωω

ωωωωπφ

A second-order parallel tank consisting of L. C, Rp exhibits a phase shift of:

Source: Razavi

Page 35: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Locking Range

35

2

2

00

00

2

2

2

2

00

1

12

)(2

1

1

1

1

)(2

osc

injosc

injinj

osc

injosc

inj

osc

injosc

inj

T

osc

osc

inj

T

inj

III

IQ

Q

III

IIII

III

II

QII

⋅⋅≈−⇒

−≈

⋅⇒

⋅=⋅

−≈⇒

ωωω

ωωω

ωωω

osc

injinjL I

IQ⋅≈−=∆ 2

00,

ωωωω

oscinj II <<

1.0,5,10: 0 ====osc

inj

II

KQGHzWhen ω

MHzL 100, ≈=> ∆ω

Page 36: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Digital Controlled Oscillator (DCO) with Injection Locking

36

The digitally controlled switch-capacitor bank tunes the free-running frequency of DCO to adjust the phase of the forwarded clock and also compensate for PVT.

Shekhar, Sudip et al, “Strong Injection Locking in Low-Q LC Oscillators: Modeling and Application in a Forwarded-Clocked I/O Receiver”, IEEE JSSC, 2009.

Page 37: ECEN689: Special Topics in High-Speed Links Circuits and ...spalermo/ecen689/lecture32_ee689_cdr_circuits.pdf · Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN689:

Next Time

• Optical I/O

37