QNET MECHKIT Laboratory - Student Manual

97

Click here to load reader

Transcript of QNET MECHKIT Laboratory - Student Manual

Page 1: QNET MECHKIT Laboratory - Student Manual

QNET-015 MECHKIT

Quanser Engineering Trainer for NI-ELVIS

QNET Mechatronic Sensor Trainer

Student ManualUnder the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of Quanser Inc.

Copyright ©2009, by Quanser Inc. All rights reserved.

Page 2: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Table of Contents

1. INTRODUCTION..........................................................................................................................................1

2. PREREQUISITES.........................................................................................................................................1

3. MECHKIT TRAINER VIRTUAL INSTRUMENTS...........................................................................................2

3.1. Summary...........................................................................................................................................2

3.2. Description........................................................................................................................................33.2.1. Flexgage.................................................................................................................................................3

3.2.2. Pressure Sensor......................................................................................................................................6

3.2.3. Piezo Film Sensor..................................................................................................................................9

3.2.4. Potentiometer.......................................................................................................................................12

3.2.5. Infrared Sensor.....................................................................................................................................15

3.2.6. Sonar Sensor........................................................................................................................................18

3.2.7. Optical Position....................................................................................................................................21

3.2.8. Magnetic Field.....................................................................................................................................24

3.2.9. Encoder................................................................................................................................................27

3.2.10. Temperature.......................................................................................................................................29

3.2.11. Switches and LEDs............................................................................................................................31

3.2.12. Switch Debounce...............................................................................................................................36

4. IN-LAB EXPERIMENTS.............................................................................................................................39

4.1. Strain Gage with Flexible Link.......................................................................................................394.1.1. Collect Data.........................................................................................................................................39

4.1.2. Calibrate Sensor...................................................................................................................................40

4.1.3. Natural Frequency................................................................................................................................41

4.1.4. Exercises..............................................................................................................................................42

4.2. Pressure Sensor...............................................................................................................................444.2.1. Collect Data.........................................................................................................................................44

Document Number 863 ♦ Revision 1.0 ♦ Page i

Page 3: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

4.2.2. Calibrate Sensor...................................................................................................................................45

4.2.3. Exercises..............................................................................................................................................46

4.3. Piezo Sensor....................................................................................................................................474.3.1. Data Analysis.......................................................................................................................................48

4.3.2. Natural Frequency................................................................................................................................48

4.3.3. Exercises..............................................................................................................................................48

4.4. Potentiometer..................................................................................................................................494.4.1. Collect Data.........................................................................................................................................49

4.4.2. Calibrate Sensor...................................................................................................................................50

4.4.3. Exercises..............................................................................................................................................52

4.5. Infrared............................................................................................................................................534.5.1. Collect Data.........................................................................................................................................53

4.5.2. Calibrate Sensor...................................................................................................................................54

4.5.3. Exercises..............................................................................................................................................56

4.6. Sonar...............................................................................................................................................584.6.1. Collect Data.........................................................................................................................................58

4.6.2. Calibrate Sensor...................................................................................................................................59

4.6.3. Exercises..............................................................................................................................................60

4.7. Optical Position..............................................................................................................................624.7.1. Collect Data.........................................................................................................................................62

4.7.2. Calibrate Sensor...................................................................................................................................63

4.7.3. Exercises..............................................................................................................................................65

4.8. Magnetic Field................................................................................................................................664.8.1. Collect Data.........................................................................................................................................66

4.8.2. Calibrate Sensor...................................................................................................................................67

4.8.3. Results..................................................................................................................................................69

4.9. Encoder...........................................................................................................................................704.9.1. Analysis of A, B, and I Signals............................................................................................................70

4.9.2. Encoder Calibration.............................................................................................................................71

4.9.3. Exercises..............................................................................................................................................72

4.10. Temperature Sensor......................................................................................................................734.10.1. Collect Data.......................................................................................................................................73

Document Number 863 ♦ Revision 1.0 ♦ Page ii

Page 4: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

4.10.2. Calibrate Sensor.................................................................................................................................74

4.10.3. Exercises............................................................................................................................................76

4.11. Switches and LEDs.......................................................................................................................784.11.1. Optical Switch....................................................................................................................................78

4.11.2. Micro Switch......................................................................................................................................79

4.11.3. Push Button........................................................................................................................................80

4.11.4. LEDs..................................................................................................................................................81

4.11.5. Exercises............................................................................................................................................83

4.12. Switch Debounce Analysis...........................................................................................................864.12.1. Running the Oscilloscope...................................................................................................................86

4.12.2. Micro Switch......................................................................................................................................87

4.12.3. Push Button........................................................................................................................................88

4.12.4. Exercises............................................................................................................................................89

5. REFERENCES...........................................................................................................................................93

Document Number 863 ♦ Revision 1.0 ♦ Page iii

Page 5: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

1. Introduction

This manual contains laboratory procedures and exercises for the QNET Mechatronic Sensors (MECHKIT) trainer, depicted in Figure 1. See Reference [2] for details about the hardware of this device.

Figure 1: QNET-MECHKIT on ELVIS II.

The prerequisites to run the LabVIEW Virtual Instruments (VIs) for the mechatronic sensors trainer are listed in Section 2 and described in Section 3. The in-lab procedures for each of the on-board sensors and switches are given in Section 4. The exercises are given within the lab procedures and labeled “Exercise”. In that case, enter your answer in the Exercises section found at the end of that particular laboratory.

2. Prerequisites

The following system is required to run the QNET MECHKIT virtual instruments: PC equipped with either:

NI-ELVIS I and an NI E-Series or M-Series DAQ card. NI ELVIS II

Document Number 863 ♦ Revision 1.0 ♦ Page 1

Page 6: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Quanser Engineering Trainer (QNET) module. LabVIEW 8.6.1 with the following add-ons:

DAQmx Control Design and Simulation Module When using ELVIS II: ELVISmx installed for required drivers. When using ELVIS I: ELVIS CD 3.0.1 or later installed.

If these are not all installed the VI will not be able to run! Please make sure all the software and hardware components are installed. If an issue arises, see the troubleshooting section in Reference [2].

3. MECHKIT Trainer Virtual Instruments

3.1. SummaryTable 1 below lists and describes the MECHKIT LabVIEW VIs supplied with the QNET CD.

VI DescriptionQNET_MECHKIT_Flexgage Calibrate strain gage attached to the flexible link and find

natural frequency of link.

QNET_MECHKIT_Pressure Sensor Calibrate pressure sensor attached to plunger device.

QNET_MECHKIT_Piezo Find natural frequency of plastic filament through power spectrum.

QNET_MECHKIT_Potentiometer Calibrate potentiometer to get correct angle.

QNET_MECHKIT_Infrared Calibrate infrared sensor to measure target distance.

QNET_MECHKIT_Sonar Instrument sonar sensor to measure target range..

QNET_MECHKIT_Optical Calibrate optical sensor to measure the position of the flat screw head, which can be adjusted using the knob.

QNET_MECHKIT_Magnetic_Field Instrument magnetic field sensor to measure position of the screw head, which can be adjusted using its knob.

QNET_MECHKIT_Encoder Used to teach the fundamentals of a rotary optical encoder.

QNET_MECHKIT_Temperature Calibrate thermistor to measure correct temperature.

QNET_MECHKIT_Switches_and_LEDs Change the on/off behaviour of the micro switch, push button, and optical switch and drive on-board LEDs.

QNET_MECHKIT_Switch_Debounce High-frequency analysis of micro switch and push button.

Table 1: MECHKIT VIs supplied with the QNET CD.

Document Number 863 ♦ Revision 1.0 ♦ Page 2

Page 7: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

3.2. Description

3.2.1. FlexgageThis VI can be used to view the strain gage measurements when moving the flexible link on the QNET mechatronic sensors trainer. As a quick description, Table 2 lists and describes the main elements of the QNET Flexgage VI and every element is uniquely identified by an ID number in Figure 2, Figure 3, and Figure 4.

Figure 2: QNET-MECHKIT Flexgage VI: “Collect Data” tab selected.

Document Number 863 ♦ Revision 1.0 ♦ Page 3

Page 8: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 3: QNET-MECHKIT Flexgage VI: “Calibrate” tab.

Document Number 863 ♦ Revision 1.0 ♦ Page 4

Page 9: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 4: QNET MECHKIT Flexgage VI: "Natural Frequency".

Document Number 863 ♦ Revision 1.0 ♦ Page 5

Page 10: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

ID # Label Description Unit1 Flexgage (V) Scope showing raw voltage measured by strain

gage.V

2 Link Position (cm) Position of flexible link along printed graduated ruler on QNET board.

cm

3 Sensor Measurement (V) Recorded strain gage measurement for each link position.

V

4 Sensor Readings Graph showing measured and curve fitted data.

5 slope Slope computed by curve fitting algorithm. cm/V

6 intercept Intercept computed by curve fitting algorithm. cm

7 Gain (cm/V) Sensor calibration gain, i.e. slope. cm/V

8 Offset (cm) Sensor calibration offset, i.e. intercept. cm

9 Flexgage (cm), slider Displays position of flexible link using Gain and Offset parameter.

cm

10 Flexgage (cm), scope Displays position of flexible link using Gain and Offset parameter.

cm

11 Power Spectrum Graph showing power spectrum of flexible link (after being perturbed).

12 Cursor Displays numerically the location of the cursor on the Power Spectrum graph.

13 Device Selects the NI DAQ device.

14 Sampling Rate Sets the sampling rate of the VI. Hz

15 Stop Stops the LabVIEW VI from running.

Table 2: Nomenclature of QNET-MECHKIT Flexgage VI.

3.2.2. Pressure SensorThis VI can be used to view the pressure sensor measurements as the plunger is moved at different locations within the syringe on the QNET mechatronic sensors trainer. Table 3 lists and describes the main components of the QNET Pressure Sensor VI and they are uniquely identified by an ID number in Figure 5 and Figure 6.

Document Number 863 ♦ Revision 1.0 ♦ Page 6

Page 11: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

ID # Label Description Unit1 Pressure Sensor (V) Scope showing raw voltage measured by

pressure sensor.V

2 Plunger Position (cm) Position of syringe along printed graduated ruler on QNET board.

cm

3 Sensor Measurement (V) Recorded pressure sensor measurement for each plunger position.

V

4 Sensor Readings Graph showing measured and curve fitted data.

5 c (on Collect Data tab) Intercept computed by curve fitting algorithm. cm

6 b (Collect Data tab) Slope computed by curve fitting algorithm. cm/V

7 a (Collect Data tab) Rate of slope computed by curve fitting algorithm.

cm/V2

8 a (Calibrate Sensor tab) Rate of slope computed by curve fitting algorithm.

cm/V2

9 b (Calibrate Sensor tab) Slope computed by curve fitting algorithm. cm/V

10 c (Calibrate Sensor tab) Intercept computed by curve fitting algorithm. cm

11 Pressure Sensor (cm), scope Chart displays position of flexible link using a, b, and c parameters.

cm

12 Pressure (cm) Slide indicator displays position of flexible link using a, b, and c parameters.

cm

13 Device Selects the NI DAQ device.

14 Sampling Rate Sets the sampling rate of the VI. Hz

15 Stop Stops the LabVIEW VI from running.

Table 3: Nomenclature of QNET-MECHKIT Pressure Sensor VI.

Document Number 863 ♦ Revision 1.0 ♦ Page 7

Page 12: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 5: QNET MECHKIT Pressure Sensor: "Collect Data" tab selected.

Document Number 863 ♦ Revision 1.0 ♦ Page 8

Page 13: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 6: QNET MECHKIT Pressure Sensor VI: "Calib" Tab.

3.2.3. Piezo Film SensorUse the QNET Piezo VI to view the piezo sensor readings as the plastic strip on the QNET MECHKIT trainer is perturbed. The components of the VI are listed in Table 4 and identified in Figure 7 and Figure 8.

Document Number 863 ♦ Revision 1.0 ♦ Page 9

Page 14: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

ID # Label Description Unit1 Piezo (V) Scope showing raw voltage measured by piezo

film sensor.V

2 Power Spectrum Graph showing power spectrum of film (after being perturbed).

3 Cursor Displays numerically the location of the cursor on the Power Spectrum graph.

4 Device Selects the NI DAQ device.

5 Sampling Rate Sets the sampling rate of the VI. Hz

6 Stop Stops the LabVIEW VI from running.

Table 4: Nomenclature of QNET-MECHKIT Piezo VI.

Document Number 863 ♦ Revision 1.0 ♦ Page 10

Page 15: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 7: QNET MECHKIT Piezo Sensor VI.

Document Number 863 ♦ Revision 1.0 ♦ Page 11

Page 16: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 8: QNET MECHKIT Piezo Sensor VI: "Natural Frequency" tab.

3.2.4. PotentiometerThis VI can be used to view the potentiometer measurements when moving the potentiometer knob on the QNET mechatronic sensors trainer. As a quick description, Table 5 lists and describes the main elements of the QNET Potentiometer VI and every element is uniquely identified by an ID number in Figure 9 and Figure 10.

Document Number 863 ♦ Revision 1.0 ♦ Page 12

Page 17: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 9: QNET-MECHKIT Potentiometer VI.

Document Number 863 ♦ Revision 1.0 ♦ Page 13

Page 18: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 10: QNET-MECHKIT Potentiometer VI: "Calibrate Sensor" tab selected.

Document Number 863 ♦ Revision 1.0 ♦ Page 14

Page 19: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

ID # Label Description Unit1 Potentiometer (V) Scope showing raw voltage measured by

potentiometer.V

2 Pot Angle (deg) Angle of top arrow on the potentiometer knob. deg

3 Sensor Measurement (V) Recorded potentiometer measurement for each angle.

V

4 Sensor Readings Graph showing measured and curve fitted data.

5 slope Slope computed by curve fitting algorithm. deg/V

6 intercept Intercept computed by curve fitting algorithm. deg

7 Gain (deg/V) Sensor calibration gain, i.e. slope. deg/V

8 Offset (deg) Sensor calibration offset, i.e. intercept. deg

9 Potentiometer (deg), scope Displays angular position of potentiometer according to the Gain and Offset parameters.

deg

10 Potentiometer (deg), knob Displays position of potentiometer according to the Gain and Offset parameters.

deg

11 Device Selects the NI DAQ device.

12 Sampling Rate Sets the sampling rate of the VI. Hz

13 Stop Stops the LabVIEW VI from running.

Table 5: Nomenclature of QNET-MECHKIT Potentiometer VI.

3.2.5. Infrared SensorUse the QNET Infrared VI to view the readings of the infrared sensor on the MECHKIT as the target distance is changed. The components of the VI are listed in Table 6 and identified in Figure 11 and Figure 12.

Document Number 863 ♦ Revision 1.0 ♦ Page 15

Page 20: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 11: QNET-MECHKIT Infrared VI.

Document Number 863 ♦ Revision 1.0 ♦ Page 16

Page 21: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 12: QNET-MECHKIT Infrared: "Calibrate Sensor" tab.

Document Number 863 ♦ Revision 1.0 ♦ Page 17

Page 22: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

ID # Label Description Unit1 Infrared Sensor (V) Scope showing raw voltage measured by

infrared sensor.V

2 Target Range (cm) Distance between target and IR sensor. cm

3 Sensor Measurement (V) Recorded IR measurement for each target position.

V

4 Sensor Readings Graph showing measured and curve fitted data.

5 c (on Collect Data tab) Intercept computed by curve fitting algorithm. cm

6 b (Collect Data tab) Slope computed by curve fitting algorithm. cm/V

7 a (Collect Data tab) Rate of slope computed by curve fitting algorithm.

cm/V2

8 a (Calibrate Sensor tab) Rate of slope computed by curve fitting algorithm.

cm/V2

9 b (Calibrate Sensor tab) Slope computed by curve fitting algorithm. cm/V

10 c (Calibrate Sensor tab) Intercept computed by curve fitting algorithm. cm

11 IR Sensor (cm) Displays target distance using entered a, b, and c parameters.

cm

12 IR (cm) Knob displays position of target using entered a, b, and c parameters.

cm

13 Device Select the NI DAQ device.

14 Sampling Rate Sets the sampling rate of the VI. Hz

15 Stop Stops the LabVIEW VI from running.

Table 6: Nomenclature of QNET-MECHKIT Infrared VI

3.2.6. Sonar SensorUse this VI to view the sonar measurements as a target is moved at different distances away from the sensor. Table 7 lists and describes the main components of the QNET Sonar VI and they are uniquely identified by an ID number in Figure 13 and Figure 14.

Document Number 863 ♦ Revision 1.0 ♦ Page 18

Page 23: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 13: QNET-MECHKIT Sonar VI.

Document Number 863 ♦ Revision 1.0 ♦ Page 19

Page 24: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 14: QNET-MECHKIT Sonar VI: "Calibrate Sensor" tab.

Document Number 863 ♦ Revision 1.0 ♦ Page 20

Page 25: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

ID # Label Description Unit1 Sonar (V) Scope showing raw voltage measured by sonar. V

2 Target Range (in) Distance between target and sonar sensor. in

3 Sensor Measurement (V) Recorded sonar measurement for each target position.

V

4 Sensor Readings Graph showing measured and curve fitted data.

5 slope Slope computed by curve fitting algorithm. in/V

6 intercept Intercept computed by curve fitting algorithm. in

7 Gain (in/V) Sensor calibration gain, i.e. slope. in/V

8 Offset (in) Sensor calibration offset, i.e. intercept. in

9 Sonar (inch), scope Displays angular position of potentiometer according to the Gain and Offset parameters.

in

10 Sonar (inch), knob Displays position of potentiometer using Gain and Offset parameters.

in

11 Device Selects the NI DAQ device.

12 Sampling Rate Sets the sampling rate of the VI. Hz

13 Stop Stops the LabVIEW VI from running.

Table 7: Nomenclature of QNET-MECHKIT Sonar VI.

3.2.7. Optical PositionThe QNET-MECHKIT Optical VI is used to view the measurements of the optical position sensor as the target is moved at different locations using the knob. The components of the VI are described in Table 8 and identified in Figure 15 and Figure 16.

Document Number 863 ♦ Revision 1.0 ♦ Page 21

Page 26: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 15: QNET-MECHKIT Optical VI.

Document Number 863 ♦ Revision 1.0 ♦ Page 22

Page 27: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 16: QNET-MECHKIT Optical VI: "Calibrate Sensor" tab.

Document Number 863 ♦ Revision 1.0 ♦ Page 23

Page 28: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

ID # Label Description Unit1 Optical Position Sensor (V) Scope showing raw voltage measured by optical

position sensor.V

2 Target Range (in) Distance between target and sensor. in

3 Sensor Measurement (V) Recorded measurement for each target position. V

4 Sensor Readings Graph showing measured and curve fitted data.

5 a Exponential function amplitude parameter computed by curve fitting algorithm.

6 b Exponential function decay/growth parameter computed by curve fitting algorithm.

7 Amplitude Gain of exponential function.

8 Damping Exponential decay/growth factor of exponential function.

9 Optical Position (inch) Scope that shows position of target based on entered Amplitude and Damping parameters.

in

10 Display: Optical Position (in) Slider indicator displays position of target based on entered Amplitude and Damping parameters.

in

11 Device Selects the NI DAQ device.

12 Sampling Rate Sets the sampling rate of the VI. Hz

13 Stop Stops the LabVIEW VI from running.

Table 8: Nomenclature of QNET-MECHKIT Optical VI.

3.2.8. Magnetic FieldUsing this VI, the magnetic field measurements can be read as the target is moved at different locations using the knob on the QNET mechatronic sensors trainer. The components of the QNET Magnetic Field VI are summarized in Table 9 and identified in Figure 17 and Figure 18.

Document Number 863 ♦ Revision 1.0 ♦ Page 24

Page 29: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 17: QNET-MECHKIT Magnetic Field VI.

Document Number 863 ♦ Revision 1.0 ♦ Page 25

Page 30: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 18: QNET-MECHKIT Magnetic Field VI: "Calibrate Sensor" tab.

Document Number 863 ♦ Revision 1.0 ♦ Page 26

Page 31: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

ID # Label Description Unit1 Magnetic Field Sensor (V) Scope showing raw voltage measured by

magnetic field sensor.V

2 Target Range (inch) Distance between target and sensor. in

3 Sensor Measurement (V) Recorded measurement for each target position. V

4 Sensor Readings Graph showing measured and curve fitted data.

5 a Exponential function amplitude parameter computed by curve fitting algorithm.

6 b Exponential function decay/growth parameter computed by curve fitting algorithm.

7 Amplitude Gain of exponential function.

8 Damping Exponential decay/growth factor of exponential function.

9 Magnetic Field (inch) Scope that shows position of target based on entered Amplitude and Damping parameters.

in

10 Display: Magnetic Field (in) Slider indicator displays position of target based on entered Amplitude and Damping parameters.

in

11 Device Selects the NI DAQ device.

12 Sampling Rate Sets the sampling rate of the VI. Hz

13 Stop Stops the LabVIEW VI from running.

Table 9: Nomenclature of QNET-MECHKIT Magnetic Field VI.

3.2.9. EncoderThis VI shows the A, B, and Index signals generated by the rotary optical encoder on the QNET mechatronic sensors trainer as the knob is rotated. The components of the QNET Encoder VI are described in Table 10 and identified in Figure 19.

Document Number 863 ♦ Revision 1.0 ♦ Page 27

Page 32: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 19: QNET-MECHKIT Encoder VI.

Document Number 863 ♦ Revision 1.0 ♦ Page 28

Page 33: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

ID # Label Description Unit1 Encoder A and B (V) Scope showing encoder A (blue) and B (red)

voltage signals. Note the signals are offset by 2.5 V for viewing purposes.

V

2 Encoder Index (V) Scope displays the index trigger. V

3 Reset Resets the encoder count.

4 Enable Index When enabled, the encoder count is reset on an index pulse.

5 16-bit Position (counts) Count generated by decoder. counts

6 Counts per rev Number of counts for every full rotation. count/rev

7 Reload Value (counts) Resets the count to this value. counts

8 Angle (deg) Angle measured by encoder according to the Counter per rev parameter.

deg

9 Device Selects the NI DAQ device.

10 Sampling Rate Sets the sampling rate of the VI. Hz

11 Stop Stops the LabVIEW VI from running.

Table 10: Nomenclature of QNET-MECHKIT Encoder VI.

3.2.10. TemperatureThe measured voltage output from the thermistor circuit is displayed on this VI as well as the calibrated temperature reading. The QNET MECHKIT Temperature VI components are given in Table 11 and identified in Figure 20.

Document Number 863 ♦ Revision 1.0 ♦ Page 29

Page 34: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 20: QNET-MECHKIT Temperature VI.

Document Number 863 ♦ Revision 1.0 ♦ Page 30

Page 35: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

ID # Label Description Unit1 R0 Resistance of thermistor at temperature specified

in T0.

2 T0 Room temperature in Kelvin.

3 B Thermistor equation exponential parameter.

4 Temperature Sensor (V) Scope shows the output voltage of the thermistor circuit.

V

5 Temperature Sensor (deg C) Scope displays the measured temperature based on the T0 and B parameters entered.

deg C

6 Temperature (deg C) Thermometer displays the measured temperature based on the T0 and B parameters entered.

deg C

7 Device Selects the NI DAQ device.

8 Sampling Rate Sets the sampling rate of the VI. Hz

9 Stop Stops the LabVIEW VI from running.

Table 11: Nomenclature of QNET-MECHKIT Temperature VI.

3.2.11. Switches and LEDsThe QNET MECHKIT Switches and LEDs VI allows users to view the output of the optical switch, micro switch, and push button and calibrate them to obtain a desired on/off behaviour. This VI can also be used to drive the digital output lines #0 and #1 that are connected to the LEDs on the QNET mechatronics sensors trainer. The VI components are listed in Table 12 and identified in figures 21, 22, 23, and 24.

Document Number 863 ♦ Revision 1.0 ♦ Page 31

Page 36: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 21: QNET-MECHKIT Switches and LEDs VI: "Opto Switch" tab selected.

Document Number 863 ♦ Revision 1.0 ♦ Page 32

Page 37: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 22: QNET-MECHKIT Switches and LEDs VI: "Micro Switch" tab selected.

Document Number 863 ♦ Revision 1.0 ♦ Page 33

Page 38: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 23: QNET-MECHKIT Switches and LEDs VI: "Push Button" tab selected.

Document Number 863 ♦ Revision 1.0 ♦ Page 34

Page 39: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 24: QNET-MECHKIT Switches and LEDs VI: "Digital Outputs" tab selected.

Document Number 863 ♦ Revision 1.0 ♦ Page 35

Page 40: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

ID # Label Description Unit1 Optical Switch Scope shows the optical switch output voltage. V

2 Optical Switch – Digital Scope displays readout of optical switch when passed through Threshold switch.

3 Threshold Adjusts the threshold of the optical switch that determines when it is ON or OFF.

V

4 Micro Switch Scope shows the micro switch output voltage. V

5 Micro Switch – Digital Scope displays calibrated micro switch output based on Gain and Offset parameters.

6 Gain Micro switch calibration gain.

7 Offset Micro switch calibration offset.

8 Push Button Scope shows the push button output voltage. V

9 Push Switch – Digital Scope displays calibrated push button output based on Gain and Offset parameters.

10 Gain Push button calibration gain.

11 Offset Push button calibration offset.

12 DO 1 Digital output to channel #1 – connected to LED7 on QNET MECHKIT trainer.

13 DO 0 Digital output to channel #0 – connected to LED8 on QNET MECHKIT trainer.

14 Device Selects the NI DAQ device.

15 Sampling Rate Sets the sampling rate of the VI. Hz

16 Stop Stops the LabVIEW VI from running.

Table 12: Nomenclature of QNET-MECHKIT Switches and LEDs VI.

3.2.12. Switch DebounceIn this VI, the triggered output of the Micro Switch and the Push Button can be viewed. The ELVISmx Oscilloscope VI is setup to monitor either the Micro Switch or Push Button analog input lines at a sample rate 100 kHz. Once the signal is triggered, the VI automatically stops and outputs a 1k sample of the voltage output. In effect, this gives a a 10 ms sample of the signal. See Table 13 for a listing of the VI components that are shown in Figure 25.

Document Number 863 ♦ Revision 1.0 ♦ Page 36

Page 41: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 25: QNET-MECHKIT Debounce VI.

Document Number 863 ♦ Revision 1.0 ♦ Page 37

Page 42: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

ID # Label Description Unit1 Type Type of signal trigger.

2 Source Select which ELVIS channel, i.e. 0 or 1, that is to trigger.

3 Slope Select whether the trigger is to occur when the edge is rising (positive) or decreasing (negative).

4 Level (V) Threshold of trigger. V

5 Micro Switch / ELVIS Ch0 Graph displays the triggered micro switch output.

6 Push Button / ELVIS Ch1 Graph displays the triggered push button output.

7 Device Selects the NI DAQ device.

Table 13: Nomenclature of QNET-MECHKIT Debounce VI.

Document Number 863 ♦ Revision 1.0 ♦ Page 38

Page 43: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

4. In-Lab Experiments

4.1. Strain Gage with Flexible Link1. Ensure J7 is set to Strain Gage.2. Open the QNET_MECHKIT_Flexgage.vi.3. Ensure the correct Device is chosen, as shown in Figure 26.

Figure 26: Selecting correct device.

4.1.1. Collect Data1. Run the QNET_MECHKIT_Flexgage.vi, as shown in Figure 27, below2. Move the flexible link to -1 cm.3. Enter the strain gage voltage reading in the Sensor Measurement (V) array (indicated in Figure

27).4. Repeat for -0.5 cm, 0 cm, 0.5 cm, and 1.0 cm. A linear curve is automatically fitted to the data

being entered and its slope and intercept are generated.5. Exercise 1: Enter the measured voltages in Table 14 and capture the Sensor Readings scope.6. Click on Stop button to stop the VI.

Document Number 863 ♦ Revision 1.0 ♦ Page 39

Page 44: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 27: Collecting flexgage data.

4.1.2. Calibrate Sensor1. Run the QNET_MECHKIT_Flexgage.vi.2. Select the Calibrate Sensor tab and enter the slope and intercept obtained in Section 4.1.1 into

the Calibration Gain and Offset controls shown in Figure 28, below. When the link is moved, the slider indicator in the VI should match up with the actual location of the flexible link on the QNET module.

3. Exercise 2: Enter the gain and offset obtained in Table 14. 4. Click on Stop button to stop the VI.

Document Number 863 ♦ Revision 1.0 ♦ Page 40

Page 45: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 28: Calibrating the strain gage sensor.

4.1.3. Natural Frequency1. Run the QNET_MECHKIT_Flexgage.vi.2. Select the Natural Frequency tab.3. Manually perturb the flexible link and stop the VI when it stops resonating (after about 5

seconds). The spectrum should then load in the chart, as shown in Figure 29 (note, however, that the value shown in incorrect).

4. Exercise 3: Enter natural frequency found and capture the resulting power spectrum response.Hint: You can use the cursor to take measurements off the graph.

Document Number 863 ♦ Revision 1.0 ♦ Page 41

Page 46: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 29: Finding natural frequency of flexible link.

4.1.4. ExercisesExercise 1: Collected Data

Parameter Value Units NotesSensor Measurement: at -1.0 cm VSensor Measurement: at -0.5 cm VSensor Measurement: at 0 cm VSensor Measurement: at 0.5 cm VSensor Measurement: at 1.0 cm V

Table 14: Collected strain gage data.

Document Number 863 ♦ Revision 1.0 ♦ Page 42

Page 47: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 2: Sensor Calibration

Parameter Value Units NotesGain cm/VOffset cm

Table 15: Stain gage calibration data.

Document Number 863 ♦ Revision 1.0 ♦ Page 43

Page 48: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 3: Natural Frequency

4.2. Pressure Sensor1. Ensure J9 is set to Pressure.2. Run the QNET_MECHKIT_Pressure_Sensor.vi.3. Important: Completely remove the plunger from the tube and re-insert it. This will ensure the

chamber is pressurized enough.

4.2.1. Collect Data1. Push the plunger up to the 6 cm marked on the MECHKIT board and measure the resulting

voltage using the Pressure (V) scope (or the digital display).2. Enter the result in the Sensor Measurement (V) array, as indicated in Figure 30.3. Repeat for when the plunger is at 5.0 cm, 4.0 cm, 3.0 cm, 2.0 cm, 1.0 cm, and 0 cm. The

pressure sensor is quadratic. The coefficients for the second-order polynomial are generated and the fitted curve is automatically plotted.

Document Number 863 ♦ Revision 1.0 ♦ Page 44

Page 49: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

4. Exercise 1: Enter collected results in Table 16 and capture the Sensor Readings scope.

Figure 30: Pressure sensor VI when collecting data.

4.2.2. Calibrate Sensor1. Run the the QNET_MECHKIT_Pressure_Sensor.vi.2. In the Calibrate Sensor tab, enter the polynomial coefficients, as illustrated in Figure 31, to

measure correct position of the plunger. Verify that the sensor is reading properly, e.g. display should read 0.5 cm when plunger is placed at 0.5 cm.

3. Exercise 2: Enter the a, b, and c, parameters used in Table 17.

Document Number 863 ♦ Revision 1.0 ♦ Page 45

Page 50: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 31: Calibrating the pressure sensor.

4.2.3. ExercisesExercise 1: Collect Data

Parameter Value Units NotesSensor Measurement: 6.0 cm VSensor Measurement: 5.0 cm VSensor Measurement: 4.0 cm VSensor Measurement: 3.0 cm VSensor Measurement: 2.0 cm VSensor Measurement: 1.0 cm VSensor Measurement: 0.0 cm V

Table 16: Data collected from the pressure sensor.

Document Number 863 ♦ Revision 1.0 ♦ Page 46

Page 51: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 2: Sensor Calibration

Parameter Value Units Notesa cm/V2

b cm/Vc cm

Table 17: Pressure sensor parameters.

4.3. Piezo Sensor1. Ensure J8 is set to Piezo.2. Run the QNET_MECHKIT_Piezo.vi.

Document Number 863 ♦ Revision 1.0 ♦ Page 47

Page 52: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

4.3.1. Data Analysis1. Manually perturb the plastic band that is attached to the piezo sensor by flicking it and examine

the response in the Piezo (V) scope.2. Grab the end of the plastic band and move it slowly up and down. Examine the response.3. Exercise 1: From these two tests, what does the Piezo sensor measure? How is this different

then a strain gage measurement? Capture a sample Piezo (V) scope response after it has been perturbed (by flicking it).

4.3.2. Natural Frequency1. Manually perturb the piezo sensor.2. Once it stopped resonating, stop running the VI (after about 3 seconds). The spectrum should be

displayed in the Power Spectrum graph.3. Exercise 2: Capture the resulting power spectrum response and give the measured natural

frequency. Hint: You can use the cursor to take measurements off the graph.

4.3.3. ExercisesExercise 1: Strain Gage versus Piezo

Document Number 863 ♦ Revision 1.0 ♦ Page 48

Page 53: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 2: Measured Natural Frequency

4.4. Potentiometer1. Ensure J10 is set to POT.2. Run the QNET_MECHKIT_Potentiometer VI.

4.4.1. Collect Data1. Rotate the arrowhead of the potentiometer to a certain position, e.g. 45 degrees. 2. Enter the position in the Pot Angle (deg) array, as indicated in Figure 32.3. Enter corresponding measured sensor voltage in Sensor Measurement (V) array (shown in

Figure 32).4. Fill out table with appropriate amount of data points. Notice that as the measured potentiometer

readings are entered, a curve is automatically generated to fit the data. The slope and intercept of this line is generated as well.

5. Exercise 1: Enter the collected data in Table 18 and capture the Sensor Reading chart.

Document Number 863 ♦ Revision 1.0 ♦ Page 49

Page 54: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 32: Collecting potentiometer data.

4.4.2. Calibrate Sensor1. Run the the QNET_MECHKIT_Potentiometer VI.2. In the Calibrate Sensor tab, set the Gain and Offset controls, as indicated in Figure 33, to values

such that the potentiometer measures the correct angle. Verify that the sensor is reading properly, e.g. when pot arrow is turned to 45.0 deg, the Display: Potentiometer (deg) knob indicator should read 45.0 deg..

3. Exercise 2: Enter Gain and Offset values used in Table 19.

Document Number 863 ♦ Revision 1.0 ♦ Page 50

Page 55: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 33: Calibrating the potentiometer.

Document Number 863 ♦ Revision 1.0 ♦ Page 51

Page 56: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

4.4.3. ExercisesExercise 1: Collected Data

Pot Angle (deg) Sensor Measurement (V)

Table 18: Collected potentiometer data.

Document Number 863 ♦ Revision 1.0 ♦ Page 52

Page 57: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 2: Calibration Data

Parameter Value Units NotesGain deg/VOffset deg

Table 19: Gain and offset parameter of calibrated potentiometer.

4.5. Infrared1. Ensure J10 is set to Infrared.2. Run the QNET_MECHKIT_Infrared VI.3. Turn ON the IR switch to enable the Infrared sensor. The IR ON LED should be lit bright red. 4. Important: Make sure you turn OFF the IR switch when the experiment is over. When active,

the infrared sensor tends to generate noise in other sensor measurements.

4.5.1. Collect Data1. Get a target, such as a sturdy piece of cardboard, that is at least 10 by 10 cm2 with a reflective

colour like white or yellow.2. Begin with the target close to the IR sensor and slowly move it away. 3. Once its range of operation is found, enter the distance between the target and the IR sensor in

the Target Range (cm) array, as shown in Figure 34.4. Enter the corresponding measured voltage from the IR sensor in the Sensor Measurement (V)

array, as shown in Figure 34.5. Repeat for different target positions. The IR sensor is quadratic. As the measurements are

entered, the coefficients for the second-order polynomial are generated and the fitted curve is automatically plotted.

6. Exercise 1: Record your distance and voltage observations in Table 20 and capture the corresponding Sensor Readings scope.

7. Exercise 2: What did you notice when the target is close to the IR sensor? That is, did the behaviour of the sensor change when the target was in close proximity as opposed to being further way?

Document Number 863 ♦ Revision 1.0 ♦ Page 53

Page 58: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 34: Collecting IR data.

4.5.2. Calibrate Sensor1. Run the QNET_MECHKIT_Infrared VI.2. In the Calibrate Sensor tab, enter the polynomial coefficients to correctly measure the distance

of the target. Make it is measuring correctly, e.g. when target is 25.0 cm away then display should read 25.0 cm.

3. Exercise 3: Enter a, b, and c, parameters used in Table 21.

Document Number 863 ♦ Revision 1.0 ♦ Page 54

Page 59: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 35: Calibrating the IR sensor to get range measurement.

Document Number 863 ♦ Revision 1.0 ♦ Page 55

Page 60: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

4.5.3. ExercisesExercise 1: Collect Data

Target Range (cm) Sensor Measurement (V)

Table 20: Collected IR data.

Document Number 863 ♦ Revision 1.0 ♦ Page 56

Page 61: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 2: Infrared Sensor Range

Document Number 863 ♦ Revision 1.0 ♦ Page 57

Page 62: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 3: Calibration Parameters

Parameter Value Units Notesa cm/V2

b cm/Vc cm

Table 21: IR sensor calibration parameters.

4.6. Sonar1. Ensure J9 is set to Sonar.2. Run the QNET_MECHKIT_Sonar VI.

4.6.1. Collect Data1. Get a target, such as a sturdy piece of cardboard, that is at least 10 by 10 cm2 with a reflective

colour like white or yellow.2. Begin with the target close to the sonar sensor and slowly move it upwards.3. Once its range of operation is found, enter the distance between the target and the sonar sensor

in the Target Range (cm) array, as shown in Figure 36.4. Enter the corresponding measured voltage from the sonar sensor in the Sensor Measurement (V)

array, as shown in Figure 36.5. Repeat for different target positions. The sonar sensor is linear. The slope and intercept are

generated and the fitted curve is automatically plotted.6. Exercise 1: Enter your collected target distances and voltages in the Table 22. Capture the

Sensor Readings scope as well.7. Exercise 2: What is the resolution and operating range of the sonar sensor? Enter them in in

Table 23, below. How does the resolution and range compare with the IR sensor?

Document Number 863 ♦ Revision 1.0 ♦ Page 58

Page 63: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 36: Collecting sonar data.

4.6.2. Calibrate Sensor1. Run the QNET_MECHKIT_Sonar VI.2. Select the Calibrate Sensor tab and enter Gain and Offset coefficients to correctly measure the

distance of the target. Make sure the coefficients are correct, e.g. when the target is 10.0 inches away then the Sonar (inch) display should read 10.0 inches.

3. Exercise 3: Enter Gain and Offset values used in Table 23.

Document Number 863 ♦ Revision 1.0 ♦ Page 59

Page 64: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

4.6.3. ExercisesExercise 1: Collected Data

Target Range (cm) Sensor Measurement (V)

Table 22: Collected sonar sensor measurements.

Document Number 863 ♦ Revision 1.0 ♦ Page 60

Page 65: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 2: Range and Resolution

Document Number 863 ♦ Revision 1.0 ♦ Page 61

Page 66: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Parameter Value Units NotesRange inResolution in

Table 23: Range and resolution of sonar sensor.

Exercise 3: Calibration Parameters

Parameter Value Units NotesGain in/VOffset in

Table 24: Calibration parameters of sonar sensor.

4.7. Optical Position1. Ensure J7 is set to Optical Position.2. Run the QNET_MECHKIT_Optical VI.

4.7.1. Collect Data1. Gently turn the knob of the optical position sensor clockwise until the flat metal surface gently

rests on top of the tube. Then, rotate the knob slightly counter-clockwise so the 0 mark on the knob faces up. At this point, the reflective target is very close to the optical sensor and will be the reference 0 cm position. Enter the 0 position in the first element of the Target Range (cm) array, shown in Figure 37.

2. Enter the voltage measured by the optical position sensor, when the target is 0 cm away, in the Sensor Measurement (V) array, as indicated in Figure 37.

3. Turn the knob counter-clockwise one rotation to move the target further from the sensor. The target moves 1-inch for every 20 turns. Enter the position the target has moved from the reference in the Target Range (cm) array, which is shown in Figure 37.

4. Record the measured sensor voltage in the Sensor Measurement (V) array. 5. Take samples for the entire range of the target (i.e. until the knob cannot be rotated CCW

anymore).Remark that the optical position sensor is exponential. As data is being entered, the exponential parameters are generated and the fitted curve is automatically plotted.

6. Exercise 1: Enter the measured sensor data in Table 25 and capture the Sensor Readings response.

Document Number 863 ♦ Revision 1.0 ♦ Page 62

Page 67: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 37: Collecting data for optical position sensor.

4.7.2. Calibrate Sensor1. Run the QNET_MECHKIT_Optical VI.2. In the Calibrate Sensor tab, enter values for the Gain and Damping exponential function

parameters, as shown in Figure 38, to correctly measure the distance of the target, e.g. when target is 0.10-inch away then display should read 0.10-inch.

3. Exercise 2: Enter the Gain and Damping parameters used in Table 26.

Document Number 863 ♦ Revision 1.0 ♦ Page 63

Page 68: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 38: Calibrating the optical position sensor.

Document Number 863 ♦ Revision 1.0 ♦ Page 64

Page 69: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

4.7.3. ExercisesExercise 1: Collected Data

Target Range (in) Sensor Measurement (V)

Table 25: Collected measurements from optical sensor.

Document Number 863 ♦ Revision 1.0 ♦ Page 65

Page 70: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 2: Calibration Data

Parameter Value Units NotesGain inDamping

Table 26: Exponential terms of optical position sensor.

4.8. Magnetic Field1. Ensure J8 is set to Magnetic Field.2. Run the QNET_MECHKIT_Magnetic_Field VI.

4.8.1. Collect Data1. Gently turn the knob of the magnetic field sensor clockwise until it is at its limit. Then, rotate

the knob slightly counter-clockwise so the 0 mark on the knob faces up. This will be reference 0 cm target position. Enter this in the Target Range (cm) array, shown in Figure 39.

2. Enter the voltage measured from the magnetic field position sensor for the reference 0 cm position in the Sensor Measurement (V) array. The array is indicated in Figure 39.

3. Turn the knob counter-clockwise one rotation to move the target further from the sensor. The target moves 1-inch for every 20 turns. Enter the position the target has moved from the

Document Number 863 ♦ Revision 1.0 ♦ Page 66

Page 71: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

reference in the Target Range (cm) array.4. Record the measured sensor voltage in the Sensor Measurement (V) array. 5. Take samples for the entire range of the target (i.e. until the knob cannot be rotated CCW

anymore). The magnetic field sensor is exponential. The parameters of the exponential function are outputted and the fitted curve is automatically plotted as data is entered.

6. Exercise 1: Enter the range and measured sensor voltage in Table 27, below, and capture the Sensor Readings scope.

Figure 39: Collecting data for magnetic field sensor.

4.8.2. Calibrate Sensor1. Run the QNET_MECHKIT_Magnetic_Field VI.2. Enter Gain and Damping exponential function parameters to correctly measure the distance of

the target. For instance, when target is at 0.10-inch from the reference then the display should read 0.10-inch.

3. Exercise 2: Record Gain and Damping parameters used for correct measurement in Table 28.

Document Number 863 ♦ Revision 1.0 ♦ Page 67

Page 72: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 40: Magnetic field sensor calibration.

Document Number 863 ♦ Revision 1.0 ♦ Page 68

Page 73: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

4.8.3. ResultsExercise 1: Collected Data

Target Range (in) Sensor Measurement (V)

Table 27: Magnetic field sensor measurements.

Document Number 863 ♦ Revision 1.0 ♦ Page 69

Page 74: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 2: Calibration Data

Parameter Value Units NotesGain in/VDamping

Table 28: Magnetic field calibration parameters.

4.9. Encoder1. Ensure jumpers J7 is set to Enc A, J8 to Enc B, and J10 to Enc I.2. Run the QNET_MECHKIT_Encoder VI.

4.9.1. Analysis of A, B, and I Signals1. Exercise 1: Turn the encoder knob clockwise and examine the response of the A and B signals.

Note that the signals are offset by 2.5 V for display purposes. Enter your observation in Table29. Similarly, turn the encoder knob counter-clockwise and enter your observation.

2. Exercise 2: When is the index pulse triggered? What can this be used for?

Document Number 863 ♦ Revision 1.0 ♦ Page 70

Page 75: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

4.9.2. Encoder Calibration1. Using the 16-bit Position (counts) indicator on the VI, as shown in Figure 41, rotate the knob

and determine how how many counts there are per revolution. Enter your result in the Counts per rev box in the VI. Rotate the knob and confirm that the Angle (deg) indicator is displaying an accurate angle.

2. Turn the knob such that the 0 is in the upward position and reset the counter by clicking on the Reset button.

3. Enable the index by clicking on the Enable Index button. 4. Rotate the knob a full CW turn until the index is triggered. Keep turning the knob until the 0

mark on the knob is pointing upwards. What do you notice about the 16-bit Position (counts) and the Angle (deg) indicator values?

5. Adjust the Reload Value such that Angle (deg) measures 0 degrees when the 0 mark of the knob is pointing up. Confirm this by moving the knob CW.

6. Exercise 3: Enter the Count per rev and the Reload Value values used for a calibrated measurement in Table 30.

7. Exercise 4: Position the knob such that its 0 label is pointing upwards again. The Counts per rev and Angle (deg) should both be reading 0. Rotate the knob in the CCW fashion one full rotation. Is Angle (deg) reading 0 degrees? Discuss why or why not.

Document Number 863 ♦ Revision 1.0 ♦ Page 71

Page 76: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 41: Running the encoder VI.

4.9.3. Exercises

Exercise 1: Synchronization of Encoder A and B Signals

Encoder Knob Rotation A or B Signal Leads?ClockwiseCounter-clockwise

Table 29: A and B signals and encoder rotation.

Document Number 863 ♦ Revision 1.0 ♦ Page 72

Page 77: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 2: Index Pulse

Exercise 3: Encoder Specifications

Parameter Value Units NotesCounts per rev counts/revReload Value counts

Table 30: Encoder calibration.

Exercise 4: Encoder Reset

4.10. Temperature Sensor1. Ensure J9 is set to Temperature.2. Run the QNET_MECHKIT_Temperature VI.

4.10.1. Collect Data1. As discussed in Reference [1], the thermistor is part of a circuit and the output voltage can be

varied using the Gain and Offset potentiometers on the QNET mechatronic sensors board. Rotate the Gain knob on the counter-clockwise until it hits its limit.

2. Adjust the Offset knob such that the Temperature Sensor (V) scope reads 0 V. This is the

Document Number 863 ♦ Revision 1.0 ♦ Page 73

Page 78: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

voltage measured at room temperature, T0 = 298 K.Note: For this step, assume your room is at 25.0 degrees Celsius (deg C) even though it's probably warmer or cooler.

3. Exercise 1: Gently place your fingertip on the temperature sensor and examine the response in the Temperature Sensor (V) scope. The surface temperature of the fingertip is approximately 32.0 deg C. Enter the voltage read at room temperature and with the fingertip in Table 31.

Hint 1: The thermistor is very sensitive. Do not press down too hard on the sensor with your finger when taking measurements. Otherwise, the measurement will not be consistent. Hint 2: After releasing the sensor it takes a a while for the temperature reading to settle back to 0 V. You can bring the temperature down faster by gently blowing on the sensor.

Figure 42: Collecting data for temperature sensor.

4.10.2. Calibrate Sensor1. Exercise 2: The voltage being measured on the QNET MECHKIT is the output voltage, vo, of

the circuit discussed in Reference [1]. Using the circuit and its corresponding equations, derive the formula that can be used to find the thermistor resistance from the output voltage of the circuit, R.

Document Number 863 ♦ Revision 1.0 ♦ Page 74

Page 79: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

2. Exercise 3: Find the thermistor resistance at room temperature, R0, and at the fingertip, R. Enter your results in Table 32.

3. Exercise 4: Derive the equation to find the exponential parameter, B, and compute it based on the obtained results.

4. Run the QNET_MECHKIT_Temperature VI.5. Exercise 5: Enter the B parameter that was found in Exercise 4 in the Temperature Sensor VI,

as shown in Figure 43. Place your fingertip on the sensor and capture the obtained response in Temperature Sensor (deg C) scope.

Figure 43: Temperature sensor calibration.

Document Number 863 ♦ Revision 1.0 ♦ Page 75

Page 80: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

4.10.3. ExercisesExercise 1: Measured Voltage

Temperature (deg C)

Temperature (K)

Measured Voltage (V)

Units Notes

25 298 V Voltage at room temp, T0

32 305 V Voltage with finger, T

Table 31: Measured thermistor readings.

Exercise 2: Thermistor Resistance Equation

Exercise 3: Measured Thermistor Resistance

Temperature (deg C)

Temperature (K)

Measured Resistance (Ω)

Units Notes

25 298 Ω Resistance at room temp, R0

32 305 Ω Resistance with finger, R

Table 32: Measured thermistor resistances.

Document Number 863 ♦ Revision 1.0 ♦ Page 76

Page 81: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 4: Find Exponential Parameter

Document Number 863 ♦ Revision 1.0 ♦ Page 77

Page 82: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 5: Calibrated Temperature Sensor Reading

4.11. Switches and LEDs1. Ensure jumper J7 is set to Opto Switch, J8 to Micro Switch, and J9 to Push Button.2. Run the QNET_MECHKIT_Switches_and_LEDs VI.

4.11.1. Optical Switch1. Select the Opto Switch tab.2. Take piece of paper and slide it up and down into the optical switch. Examine the raw responses

in the Optical Switch scope.3. Adjust threshold, indicated in Figure 44, to obtain an on/off or 0/1 digital measurement in the

Optical Switch - Digital scope.4. Exercise 1: Record threshold used to get on/off measurement and paste the response of the

Optical Switch and Optical Switch – Digital scopes.

Document Number 863 ♦ Revision 1.0 ♦ Page 78

Page 83: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 44: Optical switch VI.

4.11.2. Micro Switch1. Select the Micro Switch tab.2. Press on the Micro Switch and examine its raw response in Micro Switch scope.3. Adjust the Gain and Offset, shown in Figure 45, such that this the signal goes from 0 to 1 in the

Micro Switch – Digital scope when the Micro Switch is pressed.4. Exercise 2: Record the Gain and Offset used in Table 33 and capture representative Micro

Switch and Micro Switch – Digital responses.

Document Number 863 ♦ Revision 1.0 ♦ Page 79

Page 84: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 45: Calibrating micro switch.

4.11.3. Push Button1. Select the Push Button tab.2. Press on the Push Button and examine its raw response in the Push Button scope.3. Adjust the Gain and Offset, indicated in Figure 46, such that this signal goes from 0 to 1 in the

Push Button – Digital scope when the Push Button is pressed.4. Exercise 3: Record the Gain and Offset parameters used in Table 34 and capture representative

Push Button and Push Button – Digital responses.5. Exercise 4: Explain how the Micro Switch and Push Button behave differently.

Document Number 863 ♦ Revision 1.0 ♦ Page 80

Page 85: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 46: Calibrating the push button.

4.11.4. LEDs1. Select the Digital Outputs tab.2. As shown in Figure 47, switch DO 1 and DO 0 between the up/down positions and examine its

effect on the on-board LEDs.3. Exercise 5: In Table 35, record what position, i.e. up or down, the DO 1 and DO 0 switches

have to be in such that the DO 1 and DO 0 LEDs are lit.

Document Number 863 ♦ Revision 1.0 ♦ Page 81

Page 86: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Figure 47: Setting the digital outputs.

Document Number 863 ♦ Revision 1.0 ♦ Page 82

Page 87: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

4.11.5. ExercisesExercise 1: Optical Switch

Document Number 863 ♦ Revision 1.0 ♦ Page 83

Page 88: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 2: Micro Switch

Parameter Value Units NotesGainOffset

Table 33: Micro switch digitization parameters.

Document Number 863 ♦ Revision 1.0 ♦ Page 84

Page 89: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 3: Push Button

Parameter Value Units NotesGainOffset

Table 34: Push button digitization parameters.

Document Number 863 ♦ Revision 1.0 ♦ Page 85

Page 90: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 4: Micro Switch and Push Button Comparison

Exercise 5: Digital Output Switches

Parameter Value Units NotesDO 1 Switch position for DO 1 LED to be onDO 0 Switch position for DO 0 LED to be on

Table 35: Digital output switches.

4.12. Switch Debounce AnalysisNote that this section is for the ELVIS II only. The ELVIS I does not have the functionality to perform this experiment.

1. Ensure jumper J8 is set to Micro Switch and J9 to Push Button.2. Run the Oscilloscope NI ELVISmx instrument. By default, this is located under Start \ All

Programs \ National Instruments \ NI ELVISmx \ Instruments.

4.12.1. Running the Oscilloscope1. Click on the green start arrow to run the Oscilloscope.2. To read the micro switch, set the Source control in Channel 0 Settings to AI 1 (i.e. analog input

channel #1). The response obtained should be similar as shown in Figure 48.3. Press on the micro switch and ensure you are getting the expected signal. Since the Acquisition

Mode is set to continuous, the instrument keeps on running and the signal can be observed in real-time.

4. To examine the behaviour of the micro switch when it is engaged, configure the Trigger section to stop.

Document Number 863 ♦ Revision 1.0 ♦ Page 86

Page 91: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Hint: If preferred, you can change the Acquisition Mode to Run Once so the oscilloscope stops when the trigger is engaged.

5. If the trigger has been setup correctly, then the oscilloscope screen should capture a closeup view of the micro switch signal as it goes from 5 V to 0 V.

6. Try to setup the oscilloscope for the Push Button. This is on analog input channel #2 and you can choose to configure it on the Channel 1 of the oscilloscope (if you do, make sure you enable the channel).

Hint: To increase the sampling rate and obtain a more closeup view of the signal, decrease the Time/Div knob control.

7. When you are done, stop and close down the Oscilloscope instrument.CAUTION: Make sure any ELVISmx instrument, e.g. the oscilloscope, is closed before running any ELVIS II based VI. Otherwise the VI will not be able to run.

Figure 48: NI ELVISmx Oscilloscope instrument when pressing micro switch.

4.12.2. Micro Switch1. The QNET_MECHKIT_Debounce VI, which is shown in Figure 49, has the same functionality

Document Number 863 ♦ Revision 1.0 ♦ Page 87

Page 92: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

as the Oscilloscope tool used in Section 4.12.1. It is already setup with a trigger and does not run continuously as the oscilloscope instrument does.

2. Run the QNET_MECHKIT_Debounce VI.3. Exercise 1: Setup the Trigger for the Micro Switch (ELVIS CH #0) and enter settings in Table

36.4. Press on the micro switch. The VI should stop and a response displayed on both graphs.5. Exercise 2: Capture the Micro Switch scope. What do you notice about the output signal from

the micro switch?

Figure 49: VI used to analyze debounce of micro switch and push button.

4.12.3. Push Button1. Run the QNET_MECHKIT_Debounce VI, depicted in Figure 49.2. Exercise 3: Setup the Trigger for the Push Button (ELVIS CH #1) and enter the settings in

Table 37.3. Press on the push button. The VI should stop and a response displayed on both graphs.4. Exercise 4: Capture the Push Button scope. What do you notice about the push button signal?5. Exercise 5: Which control would require debounce more – micro switch or push button?

Document Number 863 ♦ Revision 1.0 ♦ Page 88

Page 93: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Explain.6. Exercise 6: When triggering on one channel, notice that there is a signal on the other channel

(e.g. when pressing the micro switch observe the Ch1 scope). Capture representative plots and explain why this occurs.

4.12.4. ExercisesExercise 1: Trigger Parameters for Micro Switch

Trigger Parameters Value Units NotesTypeSlopeSourceLevel V

Table 36: Trigger parameter for micro switch.

Document Number 863 ♦ Revision 1.0 ♦ Page 89

Page 94: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 2: Micro Switch Behaviour

Exercise 3: Trigger Parameters for Push Button

Trigger Parameters Value Units NotesTypeSlopeSourceLevel V

Table 37: Trigger parameters for push button.

Document Number 863 ♦ Revision 1.0 ♦ Page 90

Page 95: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 4: Push Button Behaviour

Exercise 5: Push Button and Micro Switch Comparison

Document Number 863 ♦ Revision 1.0 ♦ Page 91

Page 96: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

Exercise 6: Switch Analog Input Signal Analysis

Document Number 863 ♦ Revision 1.0 ♦ Page 92

Page 97: QNET MECHKIT Laboratory - Student Manual

QNET-MECHKIT Laboratory – Student Manual

5. References

[1] QNET Practical Control Guide[2] QNET User Guide

Document Number 863 ♦ Revision 1.0 ♦ Page 93