NBEC 2014 - Conventional Roofs: Measuring Impacts of Insulation Strategy and Membrane Colour in...

29
Conventional Roofs: Measuring Impacts of Insulation Strategy and Membrane Colour in Canada LORNE RICKETTS, MASC RDH BUILDING ENGINEERING LTD. VANCOUVER, BC CO-AUTHORS: GRAHAM FINCH, MASC, P.ENG. & MARCUS DELL, MASC P.ENG.

Transcript of NBEC 2014 - Conventional Roofs: Measuring Impacts of Insulation Strategy and Membrane Colour in...

Conventional Roofs: Measuring Impacts of Insulation Strategy and Membrane Colour in Canada LORNE RICKETTS, MASC

RDH BUILDING ENGINEERING LTD. VANCOUVER, BC

CO-AUTHORS: GRAHAM FINCH, MASC, P.ENG. & MARCUS DELL, MASC P.ENG.

Outline

à  Introduction & Background à  What prompted the study?

à Study of Conventional Roof Performance à  Laboratory Testing

à  Field Monitoring

à  Energy Modelling

à Conclusions & Areas of Continuing Research

Conventional Roofing Recap

à  Most common low-slope roof in North America

à  Air barrier and vapour control layer below

insulation on top of structure, then insulation,

then membrane on top

à  Insulation typically foam plastic (polyiso, EPS),

mineral fibre also used

à  Roof slope typically achieved by tapered

insulation unless structure is sloped

à  Roof membrane exposed to temperature, UV,

traffic – needs to be durable

à  Attachment of membrane/insulation can be

adhered, mechanically attached, loose laid

ballasted, or combination

Polyiso Shrinkage

Ridged Membrane

Insulation Issues

à  Long-term shrinkage

à  Thermal expansion/contraction

What Prompted the Study?

XPS Expansion

EPS Shrinkage

What Prompted the Study?

Cover Board Issues

à  Delamination & fungal growth

Wood fiberboard cover-board wetting and delamination

Wetting & resulting fungal growth on gypsum cover board

What Prompted the Study

The Great Colo(u)r Debate à  Darker Colours (more absorptive, less reflective)

à  Higher temperatures, more movement and

membrane stress, higher cooling loads, lower

heating loads

à  Lighter Colours (less absorptive, more reflective)

à  Lower temperatures, less movement and

membrane stress, lower cooling loads, higher

heating loads

à  LEED points for use of highly

reflective roofs regardless of energy

implication and local climate

à  Balance needed between membrane

durability, assembly movement,

heating and cooling loads

Confused owner?

New 5 Years Old

Study of Conventional Roof Performance

Guiding Purpose of the Study – Why?

à  Quantify performance of different colours of exposed roof membrane

à  White, Grey, & Black

à  Quantify performance of different insulation types

à  Stone wool, Polyiso, & Hybrid

à  Quantify combined impact of membrane colour and insulation

à  Observe impact of the long-term soiling of white SBS cap sheets

à  Monitor long-term shrinkage/movement of insulation and relative

humidity/moisture levels within insulation

à  Laboratory testing of material properties

Roof Membrane Colours

à  3 different 2-ply SBS roof

membrane cap sheet colours

(white reflective, grey, black)

White Reflective Cap Sheet:

SRI 70, Reflectance 0.58, Emittance 0.91

Grey Cap Sheet:

SRI 9, Reflectance 0.14, Emittance 0.85

Black Cap Sheet:

SRI -4, Reflectance 0.04, Emittance 0.85

3 Different Insulation Strategies

Stone wool - R-21.4 (2.5” + 3.25”, adhered)

Weight: 26.7 kg/m2 Heat Capacity: 22.7 kJ/K/m2

Polyiso - R-21.5 (2.0” + 1.5”, adhered)

Weight: 4.6 kg/m2 Heat Capacity: 6.8 kJ/K/m2

Hybrid - R-21.3 (2.5” Stone wool + 2.0” Polyiso, adhered)

Weight 14.3 kg/m2, Heat Capacity – 13.7 kJ/K/m2

Design target: Each Assembly the same ~R-21.5 nominal

Insulation and Cap Sheet Layout

à  9 unique roof test areas, each 40’ x 40’ and each behaving

independently

à  Similar indoor conditions (room temperature) and building use

(warehouse storage)

à  Climate Zone 4

Figure  1 Study  Building  and  Layout  of  Roof  Membrane  Cap  Sheet  Color  and  Insulation  Strategy  

 

Polyiso  

Hybrid  

Stone  wool  

120’  120’  

Grey

White

Black

Polyiso Hybrid

Stonewool

Sensor Selection and Installation

à  Temperature

à  Heat Flux

à  Relative Humidity

à  Moisture Detection

à  Displacement

à  Solar Radiation

Heat Flux

Relative Humidity & Moisture Detection

Displacement

Temperature

Solar Radiation

Laboratory Testing of Insulation Performance

Laboratory Testing of Insulation R-values

à 3rd Party ASTM C518 thermal

transmission material testing

à Polyiso and stone wool insulation removed from site & 4 year old polyiso samples from prior study

Laboratory Testing of Project Insulation

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

-­‐10 0 10 20 30 40 50

R-­‐value  pe

r  inch

Mean  Temperature  of  Insulation  [°C]

Installed  &  Aged  Insulation  R-­‐values  -­‐ Based  on  Mean  Temperature

Polyiso  -­‐  Maximum Polyiso  -­‐  Average Polyiso  -­‐  Minimum

Polyiso  -­‐  Aged  (4  years) Stone  Wool  -­‐  Average

14

15

16

17

18

19

20

21

22

23

24

-­‐10 0 10 20 30 40 50 60

Effective  Assembly  R-­‐value

Outdoor  Membrane  Surface  Temperature  (Indoor,  21oC)

Effective  Roof  Insulation  R-­‐value  -­‐ Based  on  Roof  Membrane  Temperature

Stone  Wool  (Initial  or  Aged)

Hybrid  (Initial  Average)

Hybrid  (Aged)

Polyiso  (Initial  Average)

Polyiso  (Aged)

Varying R-value of Field Roof Assemblies

Field Monitoring Findings

Study Findings: What is the Impact of Membrane Colour?

32

50

68

86

104

122

140

158

176

194

0

10

20

30

40

50

60

70

80

90

May Jun Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr

Tempe

rature  [°F]

Tempe

rature  [°C]

Monthly  Average  of  Daily  Maximum  Membrane  Temperatures  and  Maximum  Membrane  Temperature  for  Each  Month  by  Membrane  Colour

White Grey Black White  -­‐  Maximum Grey  -­‐  Maximum Black  -­‐  Maximum

* *

*W-­‐ISO-­‐SW had  significant  data  loss  in  August  and  September  and  is  removed  from  the  average  for  those  months.

Colour – Impact on Surface Temperatures

à  Increased temperatures affect:

à  Membrane degradation/durability

à  Heat/Energy Flow through assembly

Study Findings: What is the impact of insulation arrangement?

Insulation Impact on Peak & Lagging Membrane & Metal Deck Temperatures

Ro

of

Mem

bra

ne

Meta

l D

eck

Heat Flow – Variation with Insulation Strategy

SENSOR CODING: SW - stone wool, ISO – polyiso, ISO-SW - hybrid

-­‐25

-­‐20

-­‐15

-­‐10

-­‐5

0

5

10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Heat  Flux  [W

/m²]

Heat  Flux  Sensors

 G-­‐ISO  HF

 G-­‐ISO-­‐SW  HF

 G-­‐SW  HF

Net Annual Impact of Insulation Strategy

0

100

200

300

400

500

600

-­‐150

-­‐100

-­‐50

0

50

100

May Jun Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr Annual

Degree

 Days  [°C·∙da

ys]

Daily  Ene

rgy  Tran

sfer  [W

·∙hr/m²  p

er  day]

Monthly  Average  Daily  Energy  Transfer  by  Insulation  Arrangement

ISO ISO-­‐SW SW Heating  Degree  Days  (18°C)

OutwardHe

at  Flow

InwardHe

at  Flow

1 W/m2 = 0.32 Btu/hr·ft2

Ou

tward

H

eat

Flo

w

Inw

ard

H

eat

Flo

w

Other Findings to Date

à  Insulation Movement monitoring ongoing

à  Observing daily insulation swings

à  Seeing some long-term movement of

insulation, but also movement of metal deck

structure interfering with long-term data

à  Relative Humidity and moisture movement

ongoing

à  Seeing harmless seasonal and daily

movement of built-in water vapor

à  Water vapor also moves energy – latent heat

à  Cut-tests confirm roofs all dry and no issues

Impact of Membrane Colour and Insulation Strategy on Energy Consumption

Energy Consumption and Membrane/ Insulation Design

à  Energy modeling performed for a commercial retail building (ASHRAE

building prototype template) to compare

roof membrane colour & insulation strategy

à  Included more realistic thermal performance of

insulation into energy models

à  Stone wool: Lower R-value/inch

Higher heat capacity and mass

à  Polyiso: Higher R-value/inch

(varies with temperature a lot)

Lower heat capacity

Lower mass à  Hybrid: Moderates temperature extremes

of polyiso – makes polyiso

perform better

Most Energy Efficient Roofing Combination?

Lighter membrane, stone wool or hybrid is better for same design R-value

Darker membrane, stone wool or hybrid

is better for same design R-value

Conclusions & Continuing Research

à  Aging and temperature have significant effects on the thermal performance

of insulation – all types affected to varying degrees

à  Effective insulation R-values, thermal mass, latent heat transfer, membrane

colo(u)r all impact membrane temperatures and heat flows

à  Effects building energy consumption and membrane durability

Rated R-values of insulation do not tell the whole

story about actual heat flow through roofs.

à  2 years so far, but study is ongoing

à  Soiling, long-term movements, aging etc.

à  Confirm impacts of moisture movement within the assemblies

à  rdh.com

Questions LORNE RICKETTS, MASC, EIT [email protected] – 604-873-1181