Molecular phylogeny of the highly diversified catfish...

26
Molecular phylogeny of the highly diversified catfish subfamily Loricariinae (Siluriformes, Loricariidae) reveals incongruences with morphological classification q Raphaël Covain a,, Sonia Fisch-Muller a , Claudio Oliveira b , Jan H. Mol c , Juan I. Montoya-Burgos d , Stéphane Dray e,f a Muséum d’histoire naturelle, Département d’herpétologie et d’ichtyologie, route de Malagnou 1, case postale 6434, CH-1211 Genève 6, Switzerland b Departamento de Morfologia, Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociências, Laboratório de Biologia e Genética de Peixes, Rubião Junior 18618-970, Botucatu, SP, Brazil c University of Suriname, Center for Agricultural Research in Suriname, CELOS and Department of Biology, POB 9212, Paramaribo, Suriname d Université de Genève, Département de Génétique et Evolution, Sciences III, quai E. Ansermet 30, CH-1211 Genève 4, Switzerland e Université de Lyon, F-69000 Lyon, France f Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France article info Article history: Received 24 February 2015 Revised 15 September 2015 Accepted 19 October 2015 Available online 26 October 2015 Keywords: Systematics Neotropics Mitochondrial genes Nuclear genes Freshwaters Amazon basin abstract The Loricariinae belong to the Neotropical mailed catfish family Loricariidae, the most species-rich catfish family. Among loricariids, members of the Loricariinae are united by a long and flattened caudal peduncle and the absence of an adipose fin. Despite numerous studies of the Loricariidae, there is no comprehen- sive phylogeny of this morphologically highly diversified subfamily. To fill this gap, we present a molec- ular phylogeny of this group, including 350 representatives, based on the analysis of mitochondrial and nuclear genes (8426 positions). The resulting phylogeny indicates that Loricariinae are distributed into two sister tribes: Harttiini and Loricariini. The Harttiini tribe, as classically defined, constitutes a paraphyletic assemblage and is here restricted to the three genera Harttia, Cteniloricaria, and Harttiella. Two subtribes are distinguished within Loricariini: Farlowellina and Loricariina. Within Farlowellina, the nominal genus formed a paraphyletic group, as did Sturisoma and Sturisomatichthys. Within Loricariina, Loricaria, Crossoloricaria, and Apistoloricaria are also paraphyletic. To solve these issues, and given the lack of clear morphological diagnostic features, we propose here to synonymize several genera (Quiritixys with Harttia; East Andean members of Crossoloricaria, and Apistoloricaria with Rhadinoloricaria; Ixinandria, Hemiloricaria, Fonchiiichthys, and Leliella with Rineloricaria), to restrict others (Crossoloricaria, and Sturisomatichthys to the West Andean members, and Sturisoma to the East Andean species), and to revalidate the genus Proloricaria. Ó 2015 Elsevier Inc. All rights reserved. 1. Introduction The Loricariinae represent a highly diversified subfamily among the large Neotropical catfish family Loricariidae, or suckermouth armored catfish. Loricariids have undergone an evolutionary radia- tion at a subcontinental scale, from Costa Rica to Argentina, which has been compared to that of the Cichlidae of the Great Lakes of the Rift Valley in Africa (Schaefer and Stewart, 1993). The species core flock Loricariidae (sensu Lecointre et al., 2013), represents the most species rich family of the Siluriformes with 898 valid species and an estimated 300 undescribed species distributed in more than 100 genera (Reis et al., 2003; Ferraris, 2007; Eschmeyer and Fong, 2015). Extremely variable color patterns and body shapes among loricariid taxa reflect their high degree of ecological special- ization, and because of their highly specialized morphology lori- cariids were recognized as a monophyletic assemblage in the earliest classifications of the Siluriformes (de Pinna, 1998). The Loricariidae are characterized by a depressed body covered by bony plates, and above all, by the modification of the mouth into a sucker disk. Within the Loricariidae, members of the subfamily Loricariinae are diagnosed by a long and depressed caudal http://dx.doi.org/10.1016/j.ympev.2015.10.018 1055-7903/Ó 2015 Elsevier Inc. All rights reserved. q This paper was edited by the Associate Editor G. Orti. Corresponding author. E-mail addresses: [email protected] (R. Covain), sonia.fisch-muller@ ville-ge.ch (S. Fisch-Muller), [email protected] (C. Oliveira), [email protected] (J.H. Mol), [email protected] (J.I. Montoya-Burgos), stephane.dray@ univ-lyon1.fr (S. Dray). Molecular Phylogenetics and Evolution 94 (2016) 492–517 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev

Transcript of Molecular phylogeny of the highly diversified catfish...

Page 1: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

Molecular Phylogenetics and Evolution 94 (2016) 492–517

Contents lists available at ScienceDirect

Molecular Phylogenetics and Evolution

journal homepage: www.elsevier .com/locate /ympev

Molecular phylogeny of the highly diversified catfish subfamilyLoricariinae (Siluriformes, Loricariidae) reveals incongruences withmorphological classificationq

http://dx.doi.org/10.1016/j.ympev.2015.10.0181055-7903/� 2015 Elsevier Inc. All rights reserved.

q This paper was edited by the Associate Editor G. Orti.⇑ Corresponding author.

E-mail addresses: [email protected] (R. Covain), [email protected] (S. Fisch-Muller), [email protected] (C. Oliveira), [email protected](J.H. Mol), [email protected] (J.I. Montoya-Burgos), [email protected] (S. Dray).

Raphaël Covain a,⇑, Sonia Fisch-Muller a, Claudio Oliveira b, Jan H. Mol c, Juan I. Montoya-Burgos d,Stéphane Dray e,f

aMuséum d’histoire naturelle, Département d’herpétologie et d’ichtyologie, route de Malagnou 1, case postale 6434, CH-1211 Genève 6, SwitzerlandbDepartamento de Morfologia, Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociências, Laboratório de Biologia e Genética de Peixes, Rubião Junior 18618-970,Botucatu, SP, BrazilcUniversity of Suriname, Center for Agricultural Research in Suriname, CELOS and Department of Biology, POB 9212, Paramaribo, SurinamedUniversité de Genève, Département de Génétique et Evolution, Sciences III, quai E. Ansermet 30, CH-1211 Genève 4, SwitzerlandeUniversité de Lyon, F-69000 Lyon, FrancefUniversité Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France

a r t i c l e i n f o a b s t r a c t

Article history:Received 24 February 2015Revised 15 September 2015Accepted 19 October 2015Available online 26 October 2015

Keywords:SystematicsNeotropicsMitochondrial genesNuclear genesFreshwatersAmazon basin

The Loricariinae belong to the Neotropical mailed catfish family Loricariidae, the most species-rich catfishfamily. Among loricariids, members of the Loricariinae are united by a long and flattened caudal peduncleand the absence of an adipose fin. Despite numerous studies of the Loricariidae, there is no comprehen-sive phylogeny of this morphologically highly diversified subfamily. To fill this gap, we present a molec-ular phylogeny of this group, including 350 representatives, based on the analysis of mitochondrial andnuclear genes (8426 positions). The resulting phylogeny indicates that Loricariinae are distributed intotwo sister tribes: Harttiini and Loricariini. The Harttiini tribe, as classically defined, constitutes aparaphyletic assemblage and is here restricted to the three genera Harttia, Cteniloricaria, and Harttiella.Two subtribes are distinguished within Loricariini: Farlowellina and Loricariina. Within Farlowellina,the nominal genus formed a paraphyletic group, as did Sturisoma and Sturisomatichthys. WithinLoricariina, Loricaria, Crossoloricaria, and Apistoloricaria are also paraphyletic. To solve these issues, andgiven the lack of clear morphological diagnostic features, we propose here to synonymize several genera(Quiritixys with Harttia; East Andean members of Crossoloricaria, and Apistoloricaria with Rhadinoloricaria;Ixinandria, Hemiloricaria, Fonchiiichthys, and Leliella with Rineloricaria), to restrict others (Crossoloricaria,and Sturisomatichthys to the West Andean members, and Sturisoma to the East Andean species), and torevalidate the genus Proloricaria.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Loricariinae represent a highly diversified subfamily amongthe large Neotropical catfish family Loricariidae, or suckermoutharmored catfish. Loricariids have undergone an evolutionary radia-tion at a subcontinental scale, from Costa Rica to Argentina, whichhas been compared to that of the Cichlidae of the Great Lakes of the

Rift Valley in Africa (Schaefer and Stewart, 1993). The species coreflock Loricariidae (sensu Lecointre et al., 2013), represents the mostspecies rich family of the Siluriformes with 898 valid species andan estimated 300 undescribed species distributed in more than100 genera (Reis et al., 2003; Ferraris, 2007; Eschmeyer andFong, 2015). Extremely variable color patterns and body shapesamong loricariid taxa reflect their high degree of ecological special-ization, and because of their highly specialized morphology lori-cariids were recognized as a monophyletic assemblage in theearliest classifications of the Siluriformes (de Pinna, 1998). TheLoricariidae are characterized by a depressed body covered bybony plates, and above all, by the modification of the mouth intoa sucker disk. Within the Loricariidae, members of the subfamilyLoricariinae are diagnosed by a long and depressed caudal

Page 2: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517 493

peduncle and by the absence of an adipose fin. They live stuck tothe substrate and show marked variations in body shape accordingto the various habitats colonized, from lotic to lentic systems, onmineral or organic substrates. For example, members of Farlowellaresemble a thin stick and blend remarkably among submergedwood and leafs, whereas members of Pseudohemiodon are largeand flattened and bury themselves in sandy substrates likeflatfishes. Some groups have numerous teeth, pedunculated, andorganized in a comblike manner, while other groups have fewteeth or even no teeth on the premaxillae. Teeth are often stronglydifferentiated, and can be bicuspid straight and thick, spoon-shaped, reduced in size or very long. An important diversity inlip characteristics, which can be strongly papillose, filamentousor smooth, also characterizes this subfamily (Isbrücker, 1979;Covain and Fisch-Muller, 2007).

Different hypotheses have been proposed to classify the Lori-cariinae (summarized in Table 1). The first attempt was performedby Isbrücker (1979) who distributed them into four tribes andeight subtribes on the basis of external morphology, but withoutphylogenetic inferences. These included the Loricariini, comprisingsix subtribes (Loricariina, Planiloricariina, Reganellina, Rinelori-cariina, Loricariichthyina, and Hemiodontichthyina), the Harttiini,including two subtribes (Harttiina and Metaloricariina), the

Table 1Alternative classifications of the Loricariinae according to different authors.

The different colors provide limits of the different recognised tribes. These tribes can iHarttiini; green: Farlowellini; red: Acestridiini.

Farlowellini, and the Acestridiini. The latter were subsequentlyplaced in the subfamily Hypoptopomatinae by Schaefer (1991).In her PhD thesis, Rapp Py-Daniel (1997) proposed a phylogenyof the Loricariinae based on a phylogenetic analysis of morpholog-ical characters. She confirmed the monophyly of the subfamily, andsplit the Loricariinae into two tribes: Loricariini and Harttiini, thelatter comprising Farlowellini (sensu Isbrücker, 1979). In amorphological phylogenetic analysis of the family Loricariidae,Armbruster (2004) also obtained a similar splitting based on arestricted sampling of the Loricariinae, with Harttiini (sensu RappPy-Daniel, 1997, comprising Harttia, Lamontichthys, Sturisoma,and Sturisomatichthys), forming the sister group of Loricariini(sensu Rapp Py-Daniel, 1997, comprising Crossoloricaria, Loricaria,Loricariichthys, Ixinandria, and Rineloricaria). Covain and Fisch-Muller (2007), based on multivariate analyses of generic diagnosticcharacters, also split the subfamily into two tribes, the Harttiiniand the Loricariini, and proposed four morphological groups withinthe Loricariini: (1) the Pseudohemiodon group, (2) the Loricariagroup, (3) the Rineloricaria group, and (4) the Loricariichthysgroup. Montoya-Burgos et al. (1998) proposed a first molecularphylogeny of the family Loricariidae using mitochondrial genes.Although, their analysis included only nine representatives of theLoricariinae, they partially confirmed their subdivision into two

nclude different taxa according to the different authors. Salmon: Loricariini; blue:

Page 3: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

494 R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517

main groups, but with Harttia (nominal genus of Harttiini) formingthe sister genus of all other Loricariinae (comprising Farlowellini,part of Harttiini, and Loricariini). Covain et al. (2008) using mito-chondrial genes, and Rodriguez et al. (2011) using mitochondrialand nuclear markers performed a molecular phylogeny on a smallsampling of the Loricariinae. Both studies restricted Harttiini toHarttia, and included Farlowelliini as a subtribe of Loricariini.Within the latter, the Loricariichthys and Loricaria–Pseudohemiodonmorphological groups (sensu Covain and Fisch-Muller, 2007) wereconfirmed as natural groupings, whereas monophyly of theRineloricaria group was rejected. Similar results were also obtainedusing different markers by Cramer et al. (2011) in a molecularphylogeny of the Hypoptopomatinae (including four Loricariinaein the outgroup), and by Lujan et al. (2015) in a molecular phy-logeny of the Loricariidae (including 14 Loricariinae). In additionto the conflicting results obtained using either morphological ormolecular data, the validity of several genera was regularly ques-tioned by different authors rendering the taxonomy of the groupconfused. Isbrücker and Isbrücker & Michels (in Isbrücker et al.,2001) described four new genera: Fonchiiichthys, Leliella, Quiritixysand Proloricaria, and revalidated the genus Hemiloricaria Bleeker,1862 on the basis of a very restricted number of characters. RappPy-Daniel and Oliveira (2001) considered Cteniloricaria a juniorsynonym of Harttia. Ferraris (2003) maintained the validity ofCteniloricaria, and considered junior synonyms of already describedgenera all the genera described by Isbrücker and Isbrücker &Michels (in Isbrücker et al., 2001). Covain and Fisch-Muller(2007) followed Ferraris (2003) but maintained Cteniloricaria insynonymy with Harttia. Ferraris (2007) modified his previousstatement and considered Fonchiiichthys, Proloricaria, and Hemilori-caria valid. Later on, Covain et al. (2012) revalidated Cteniloricaria.There are currently 239 species of Loricariinae considered valid,distributed in 32 genera (for a review see Covain and Fisch-Muller, 2007; also Ghazzi, 2008; Ingenito et al., 2008; Fichbergand Chamon, 2008; Rapp Py-Daniel and Fichberg, 2008;Rodriguez and Miquelarena, 2008; Rodriguez and Reis, 2008;Rodriguez et al., 2008, 2011, 2012; Thomas and Rapp Py-Daniel,2008; de Carvalho Paixão and Toledo-Piza, 2009; Thomas andSabaj Pérez, 2010; Covain et al., 2012; Vera-Alcaraz et al., 2012;Oyakawa et al., 2013; Thomas et al., 2013; Ballen and Mojica,2014; Fichberg et al., 2014; Londoño-Burbano et al., 2014).

Given the confused systematics of the Loricariinae, we present acomprehensive and robust molecular phylogeny of this groupbased on mitochondrial and nuclear genes. The resulting phy-logeny, in conjunction with morphological diagnostic characters,will be subsequently used to (1) redefine the tribal and subtribalranks of the subfamily; (2) evaluate the validity and monophylyof the different genera, and (3) test alternative hypotheses of clas-sification proposed in the literature.

2. Material and methods

2.1. Taxonomic sampling

The molecular phylogeny was reconstructed using the taxo-nomic sampling given in Covain et al. (2008), and Rodriguezet al. (2011) with the addition of 326 representatives of the Lori-cariinae and 16 outgroup species. The outgroup representativeswere chosen in other subfamilies of the Loricariidae. The list ofmaterial used for this study is provided in Table 2. The analyzedsamples came from the tissue collection of the Muséum d’histoirenaturelle de la Ville de Genève (MHNG); Academy of NaturalSciences of Drexel University in Philadelphia (ANSP); SmithsonianTropical Research Institute (STRI), Panama; Laboratório de Biologiade Peixes, Departamento de Morfologia, Universidade EstadualPaulista, Campus de Botucatu (LBP); Auburn University Museum,

Montgomery (AUM); and Museu de Ciências e Tecnologia of thePontifícia Universidade Católica do Rio Grande do Sul (MCP), PortoAlegre. The sequences were deposited in GenBank.

2.2. DNA extraction, choice of markers, amplification, and sequencing

Tissue samples were preserved in 80% ethanol and stored at�20 �C. Total genomic DNA was extracted with the DNeasy TissueKit (Qiagen) following the instructions of the manufacturer. Thechoice of markers was governed by their ability to resolve intergeneric relationships at subfamilial ranks. We thus selected themitonchondrial genes 12S and 16S for the resolution of phyloge-netic relationships between close ralatives (between species tobetween genera relationships), and the nuclear Fish Reticulon-4receptor (f-rtn4r) gene composed of two introns and three exons.Exons of this marker are rather conserved and provide informationfor deeper relationships (intra-familial to inter-ordinal relation-ships) whereas intronic regions are more variable and offer thepossibility to investigate phylogenetic relationships between clo-sely related species. Thus, the selected molecular makers wereused to examine a range of taxomonic levels at subfamilial rank,from intra-specific to inter-tribal relationshisps. The PCR amplifi-cations of mitochondrial 12S and 16S, and the nuclear f-rtn4r geneswere carried out using the Taq PCR Core Kit (Qiagen). The method-ology for PCR amplifications followed Chiachio et al. (2008) forf-rtn4r using the set of primers Freticul4-D, Freticul4-R, Freticul4D2, and Freticul4 R2 (Roxo et al., 2014). For the complete sequenc-ing of f-rtn4r, three internal primers were designed additionally toFreticul4-iR (Roxo et al., 2014): Freticul4-iD2 50-CAA CAT CAC YTGGAT TGA GG-30, Freticul4-LiD 50-ATG ACC GTG AGC TGC CAG GC-30,and Freticul4-LiR 50-GCT CAG TAA TAC GGT TGT TCT GCA-30. Toamplify the almost complete 12S, tRNAval and 16S mitochondrialgenes in a single 2500 bp long fragment, a Nested PCR protocolwas used. The external round of PCR was performed using the pairof primers Phe-L941 (Roxo et al., 2014) and H3059 (Alves-Gomeset al., 1995). The external amplifications were performed in a totalvolume of 50 ll, containing 5 ll of 10� reaction buffer, 1 ll ofdNTP mix at 10 mM each, 1 ll of each primer at 10 lM, 0.2 ll ofTaq DNA Polymerase equivalent to 1 unit of Polymerase per tube,and 1–4 ll of DNA. Cycles of amplification were programmed withthe following profile: (1) 3 min. at 94 �C (initial denaturing), (2)35 s. at 94 �C, (3) 30 s. at 51 �C, (4) 150 s. at 72 �C, and (5) 5 minat 72 �C (final elongation). Steps 2–4 were repeated 35–39 timesaccording to the quality and concentration of DNA. The internalround of PCR was performed using 1 ll of DNA template sampledfrom external round PCR product, the pair of primers: An12S-1D:50-GTA TGA CAC TGA AGA TGT TAA G-30 and iH3059: 50-GAA CTCAGA TCA CGT AGG-30, and the same protocol as above except forthe annealing temperature that was set to 54 �C. PCR productswere sent to Macrogen Inc. (Seoul, Korea) for sequencing. For thecomplete sequencing of the 2500 bp long mitochondrial fragment,two internal primers were used: Lor1D-1D: 50-AGG AGC CTG TTCTAG AAC CG-30 and Lor12S-3D (Covain et al., 2008) for a walkingsequencing procedure with around 700 bp between each step.

2.3. Sequence alignment, phylogenetic reconstruction, and topologicaltests

The DNA sequences were edited and assembled using BioEdit7.0.1 (Hall, 1999), aligned using ClustalW (Thompson et al.,1994) and final alignment optimized by eye. Regions with ambigu-ous alignments in loop regions of mitochondrial ribosomal geneswere excluded from the analyses. The fragment of the f-rtn4r geneanalyzed here contained relatively long introns, ranging from489 bp in Rineloricaria altipinnis to 1385 bp in R. cf. latirostris forthe first intron, and from 373 bp in R. pentamaculata to 656 bp in

Page 4: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

Table 2Taxa list, specimen and sequence data for the 350 Loricariinae and 18 outgroup representatives analyzed in this study. The acronyms of institutions follow Fricke and Eschmeyer(2015).

Species Catalog number Field number Locality mt 12S + 16S bases+ GenBank No.

Ref. F-RTN4 bases+ GenBank No.

Ref.

Harttia guianensis MHNG 2643.016 GF00-351 French Guiana,Marouini River

2440 EU310447 Covain et al.(2008)

2092 FJ013232 Chiachio et al.(2008)

Loricaria parnahybae MHNG 2602.067 BR98-274 Brazil, Rio Parnahyba 2423 EU310452 Covain et al.(2008)

1967 FJ013231 Chiachio et al.(2008)

Crossoloricariavenezuelae

INHS 35467 VZ 049 Venezuela, Rio SantaRosa

2419 EU310444 Covain et al.(2008)

1994 HM623647 Rodriguez et al.(2011)

Dasyloricariatuyrensis

MHNG 2674.052 PA00-012 Panama, Rio Ipeti 2419 EU310445 Covain et al.(2008)

1996 HM623639 Rodriguez et al.(2011)

Farlowella aff.oxyrrynchac

MHNG 2588.064 PE96-022 Peru, Rio Tambopata 2433 EU310443 Covain et al.(2008)

2228 HM623650 Rodriguez et al.(2011)

Farlowellaplatorynchus

MHNG 2588.093 PE96-071 Peru, Rio Ucayali 2432 EU310446 Covain et al.(2008)

2292 HM623649 Rodriguez et al.(2011)

Hemiodontichthysacipenserinus

MHNG 2651.012 GY04-015 Guyana, RupununiRiver

2422 EU310448 Covain et al.(2008)

2231 HM623645 Rodriguez et al.(2011)

Lamontichthysstibaros

MHNG 2677.039 MUS 208 Peru, aquarium trade,Rio Itayab

2433 EU310449 Covain et al.(2008)

2029 HM623648 Rodriguez et al.(2011)

Limatulichthyspunctatusc

MHNG 2651.013 GY04-018 Guyana, RupununiRiver

2426 EU310450 Covain et al.(2008)

1950 HM623644 Rodriguez et al.(2011)

Loricaria clavipinna MHNG 2640.044 PE98-002 Peru, Rio Putumayo 2427 EU310451 Covain et al.(2008)

1964 HM623653 Rodriguez et al.(2011)

Loricariichthysmaculatus

MHNG 2621.042 SU01-056 Surinam, SarramaccaRiver

2428 EU310453 Covain et al.(2008)

2212 HM623642 Rodriguez et al.(2011)

Loricariichthysmicrodon

MHNG 2650.054 GY04-012 Guyana, RupununiRiver

2427 EU310454 Covain et al.(2008)

1934 HM623643 Rodriguez et al.(2011)

Metaloricariapaucidens

MHNG 2677.086 GF00-083 French Guiana,Marouini River

2438 EU310455 Covain et al.(2008)

2064 HM623637 Rodriguez et al.(2011)

Planiloricariacryptodon

MHNG 2677.038 MUS 211 Peru, aquarium trade,Rio Itayab

2418 EU310456 Covain et al.(2008)

1991 HM623646 Rodriguez et al.(2011)

Rineloricarialanceolata

MHNG 2588.059 PE96-011 Peru, Rio Tambopata 2423 EU310457 Covain et al.(2008)

2211 HM623640 Rodriguez et al.(2011)

Rineloricariaosvaldoic

UFRJ 6-EF4 BR 1114 Brazil, Rio Maranhão 2427 EU310459 Covain et al.(2008)

2008 HM623652 Rodriguez et al.(2011)

Rineloricariaplatyura

MHNG 2651.009 GY04-083 Guyana, RupununiRiver

2423 EU310458 Covain et al.(2008)

2204 HM623641 Rodriguez et al.(2011)

Sturisoma monopelte MHNG 2651.033 GY04-187 Guyana, Sawarab River 2439 EU310461 Covain et al.(2008)

1965 HM623651 Rodriguez et al.(2011)

Sturisoma robustumc MHNG 2588.055 PE96-001 Peru, Rio de las Piedras 2440 EU310460 Covain et al.(2008)

2547 HM623636 Rodriguez et al.(2011)

Sturisomatichthysciturensis

MHNG 2676.004 PA97-032 Panama, Rio Tuyra 2438 EU310462 Covain et al.(2008)

2259 HM623635 Rodriguez et al.(2011)

Fonchiiloricariananodon

MHNG 2710.048 PE08-199 Peru, Rio Monzon 2432 HM592626 Rodriguez et al.(2011)

2006 HM623656 Rodriguez et al.(2011)

Fonchiiloricariananodon

MHNG 2710.060 PE08-336 Peru, Rio Aucayacu 2432 HM592627 Rodriguez et al.(2011)

2006 HM623657 Rodriguez et al.(2011)

Spatuloricaria aff.caquetaec

MHNG 2710.050 PE08-230 Peru, Rio Huallaga 2421 HM592624 Rodriguez et al.(2011)

1971 HM623654 Rodriguez et al.(2011)

Spatuloricaria sp.Nanay

MHNG 2677.071 PE05-014 Peru, aquarium trade,Rio Nanayb

2422 HM592625 Rodriguez et al.(2011)

1980 HM623655 Rodriguez et al.(2011)

Apistoloricariaommation

ANSP 182331 P6265 Peru, Rio Amazonas 2417 KR478088 This study 1981 KR478422 This study

Apistoloricariaommation

MHNG 2708.086 MUS 437 Peru, aquarium trade,Rio Amazonasb

2423 KR478089 This study 1982 KR478423 This study

Aposturisomamyriodon

MHNG 2710.035 PE08-004 Peru, Rio Huacamayo 2435 KR477910 This study 2289 KR478244 This study

Aposturisomamyriodon

MHNG 2710.043 PE08-131 Peru, Rio Huyhuantal 2435 KR477911 This study 2287 KR478245 This study

Brochiloricariamacrodon

LBP 5048 LBPN 24033 Brazil, Rio Paraguay 2425 KR478052 This study 1972 KR478386 This study

Brochiloricaria sp.Uruguay

MCP 28414 MCP 28414 Brazil, Rio Ibicui-Mirim 2426 KR478053 This study 1986 KR478387 This study

Crossoloricaria aff.bahuaja

MHNG 2710.072 PE08-714 Peru, Rio Cushabatai 2415 KR478091 This study 1983 KR478425 This study

Crossoloricariabahuaja

ANSP 180793 P4078 Peru, Rio Madre de Dios 2417 KR478092 This study 1967 KR478426 This study

Crossoloricariacephalaspis

Stri-1449 53 Colombia, Rio San Juan 2421 KR478077 This study 2001 KR478411 This study

Crossoloricariacephalaspis

Stri-1577 22 Colombia, Rio Atrato 2421 KR478076 This study 1997 KR478410 This study

Crossoloricaria rhami MHNG 2710.041 PE08-120 Peru, Rio Aguaytia 2416 KR478083 This study 1984 KR478417 This studyCrossoloricaria

variegataStri-6781 36 Panama, Rio Tuira 2422 KR478075 This study 1986 KR478409 This study

Cteniloricaria napova MHNG 2704.030 SU07-650 Brazil, Paru de OesteRiver

2440 KR477882 This study 2086 KR478216 This study

(continued on next page)

R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517 495

Page 5: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

Table 2 (continued)

Species Catalog number Field number Locality mt 12S + 16S bases+ GenBank No.

Ref. F-RTN4 bases+ GenBank No.

Ref.

Cteniloricariaplatystoma

MHNG 2672.067 SU05-340 Suriname, CorantijnRiver

2439 KR477888 This study 2091 KR478222 This study

Cteniloricariaplatystoma

MHNG 2674.003 SU05-039 Suriname, SurinameRiver

2441 KR477889 This study 2090 KR478223 This study

Cteniloricariaplatystoma

MHNG 2650.082 GY04-336 Guyana, EssequiboRiver

2437 KR477881 This study 2090 KR478215 This study

Cteniloricariaplatystoma

MHNG 2700.054 GF07-265 French Guiana, ManaRiver

2437 KR477902 This study 2089 KR478236 This study

Cteniloricariaplatystoma

MHNG 2643.015 GF00-352 French Guiana,Marouini River

2439 KR477887 This study 2089 KR478221 This study

Dasyloricaria latiura Stri-1559 20 Panama, Rio Atrato 2424 KR477966 This study 2017 KR478300 This studyDasyloricaria

tuyrensisStri-4140 51 Panama, Rio Tuira 2424 KR477965 This study 2018 KR478299 This study

Farlowellaschreitmuelleri

MHNG 2601.087 BR98-106 Brazil, Rio Guamá 2437 KR477943 This study 2241 KR478277 This study

Farlowella acus MER95T-22 42 Venezuela, ValenciaLake

2440 KR477936 This study 2311 KR477936 This study

Farlowella aff. rugosa ANSP 179 768 T2200 Guyana, Simoni River 2435 KR477948 This study 2298 KR478282 This studyFarlowella amazona MHNG 2601.065 BR98-052 Brazil, Rio Acara 2432 KR477937 This study 2299 KR478271 This studyFarlowella curtirostra MER95T-13 43 Venezuela, Rio Motatan 2435 KR477938 This study 2301 KR478272 This studyFarlowella hahni MHNG 2678.022 PR-029 Argentina, Santa Fé 2437 KR477941 This study 2235 KR478275 This studyFarlowella knerii MHNG 2710.052 PE08-259 Peru, Rio Aspuzana 2437 KR477954 This study 2234 KR478288 This studyFarlowella

mariaelenaeVZ-59 45 Venezuela, Rio Caipe 2439 KR477939 This study 2309 KR478273 This study

Farlowella martini VZ-126 49 Venezuela, Rio Aroa 2436 KR477940 This study 2307 KR478274 This studyFarlowella nattereri MHNG 2650.099 GY04-291 Guyana, Kurupukari

cross2439 KR477952 This study 2305 KR478286 This study

Farlowella nattereri MHNG 2654.067 GY04-306 Guyana, Kurupukaricross

2438 KR477944 This study 2306 KR478278 This study

Farlowellaoxyrryncha

MHNG 2710.034 PE08-051 Peru, Rio Huacamayo 2437 KR477953 This study 2239 KR478287 This study

Farlowellaoxyrryncha

MHNG 2613.035 CA 21 Peru, Rio Ucayali 2437 KR477960 This study 2241 KR478294 This study

Farlowellaoxyrryncha

MHNG 2601.095 BR98-118 Brazil, Rio Guamá 2440 KR477958 This study 2240 KR477958 This study

Farlowellaoxyrryncha

LBP 2441 LBPN 16200 Brazil, Rio Araguiaia 2436 KR477956 This study 2183 KR478290 This study

Farlowellaoxyrryncha

MHNG 2710.069 PE08-698 Peru, Rio Neshua 2437 KR477955 This study 2242 KR478289 This study

Farlowellaoxyrryncha

MHNG 2710.081 PE08-823 Peru, Rio Cushabatai 2437 KR477957 This study 2242 KR478291 This study

Farlowellaoxyrryncha

LBP4043 LBPN 22907 Brazil, Rio Jurua 2437 KR477959 This study 2228 KR478293 This study

Farlowellaparaguayensis

Stri-2205 25 Paraguay, ArroyoCuruguati

2437 KR477961 This study 2236 KR478295 This study

Farlowellaparaguayensis

LBP 5217 LBPN 26396 Brazil, Rio Paraná 2434 KR477962 This study 2238 KR478296 This study

Farlowellaplatorynchus

MHNG 2650.096 GY04-290 Guyana, Kurupukaricross

2435 KR477949 This study 2296 KR478283 This study

Farlowellaplatorynchus

MHNG 2602.021 BR98-163 Brazil, Rio Peritoro 2435 KR477950 This study 2302 KR478284 This study

Farlowellaplatorynchus

MHNG 2710.094 PE08-906 Peru, Rio Ucayali 2432 KR477951 This study 2301 KR478285 This study

Farlowella reticulata MHNG 2683.081 GF06-637 French Guiana, MaroniRiver

2439 KR477963 This study 2243 KR478297 This study

Farlowella reticulata MHNG 2683.070 GF06-588 French Guiana, ManaRiver

2438 KR477942 This study 2242 KR478276 This study

Farlowella reticulata MHNG 2681.060 GF06-118 French Guiana, OyapockRiver

2437 KR477964 This study 2242 KR478298 This study

Farlowella smithi ANSP 180541 P4099 Peru, Rio Manuripe 2436 KR477945 This study 2236 KR478279 This studyFarlowella taphorni VZ-89 48 Venezuela, Rio Mayupa 2433 KR477946 This study 2168 KR478280 This studyFarlowella vittata VZ-63 46 Venezuela, Rio Caipe 2438 KR477947 This study 2303 KR478281 This studyHarttia aff. punctata LBP 5839 LBP 28353 Brazil, Rio Tocantins 2433 KR477898 This study 2084 KR478232 This studyHarttia carvalhoi MHNG 2587.027 BR 1236 Brazil, Rio Paraíba do

Sul2432 KR477891 This study 2046 KR478225 This study

Harttia carvalhoi LBP 2115 LBP 21352 Brazil, Rio Paraíba doSul

2433 KR477890 This study 2046 KR478224 This study

Harttia dissidens LBP 5859 LBP 28331 Brazil, Rio Tapajós 2435 KR477892 This study 1955 KR478226 This studyHarttia dissidens LBP 5863 LBP 28339 Brazil, Rio Tapajós 2435 KR477914 This study 1954 KR478248 This studyHarttia duriventris LBP 7505 LBP 34804 Brazil, Rio Tapajós 2432 KR477915 This study 1951 KR478249 This studyHarttia fluminensis MHNG 2690.013 SU01-445 Suriname, Coppename

River2435 KR477884 This study 2092 KR478218 This study

Harttia fowleri MHNG 2643.022 GF99-202 French Guiana, OyapockRiver

2442 KR477880 This study 2086 KR478214 This study

496 R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517

Page 6: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

Table 2 (continued)

Species Catalog number Field number Locality mt 12S + 16S bases+ GenBank No.

Ref. F-RTN4 bases+ GenBank No.

Ref.

Harttia gracilis LBP 6331 LBP 29819 Brazil, Rio Paraná 2433 KR477916 This study 2041 KR478250 This studyHarttia guianensis MHNG 2662.091 GF03-160 French Guiana,

Approuague River2438 KR477885 This study 2092 KR478219 This study

Harttia guianensis MHNG 2680.053 RV-21 French Guiana,Sinnamary River

2443 KR477886 This study 2092 KR478220 This study

Harttia kronei MHNG 2586.058 BR 1166 Brazil, Rio Ribeira deIguape

2424 KR477900 This study 2081 KR478234 This study

Harttia kronei LBP 2661 LBP 17427 Brazil, Rio Ribeira deIguape

2426 KR477894 This study 2083 KR478228 This study

Harttia kronei LBP 2883 LBP 18609 Brazil, Rio Ribeira deIguape

2425 KR477895 This study 2080 KR478229 This study

Harttia kronei LBP 1269 LBP 11215 Brazil, Rio Ribeira deIguape

2426 KR477899 This study 2080 KR478233 This study

Harttia leiopleura LBP 6847 LBP 31528 Brazil, Rio São Francisco 2435 KR477918 This study 2068 KR478252 This studyHarttia leiopleura LBP 6492 LBP 31545 Brazil, Rio São Francisco 2436 KR477917 This study 2068 KR478251 This studyHarttia longipinna DZSJRP 2819 BR98-747 Brazil, Rio São Francisco 2429 KR477903 This study 2072 KR478237 This studyHarttia loricariformis LBP 2121 LBP 21362 Brazil, Rio Paraíba do

Sul2435 KR477896 This study 2041 KR478230 This study

Harttia novalimensis LBP 5836 LBP 28348 Brazil, Rio São Francisco 2429 KR477897 This study 2060 KR478231 This studyHarttia punctata MHNG 2645.059 BR 995 Brazil, Rio Tocantins 2431 KR477893 This study 2084 KR478227 This studyHarttia punctata MHNG 2645.053 BR 1051 Brazil, Rio Tocantins 2430 KR477905 This study 2084 KR478239 This studyHarttia sp. 1 Xingu LBP 5845 LBP 28327 Brazil, Rio Xingu 2433 KR477907 This study 1971 KR478241 This studyHarttia sp. 2 Xingu LBP 5860 LBP 28333 Brazil, Rio Xingu 2432 KR478245 This study 1973 KR478246 This studyHarttia sp. 3 Xingu LBP 5861 LBP 28335 Brazil, Rio Xingu 2436 KR477908 This study 1973 KR478242 This studyHarttia sp. Rio São

FranciscoLBP 5838 LBP 28352 Brazil, Rio São Francisco 2429 KR477904 This study 2061 KR478238 This study

Harttia sp. Serra doCipó

LBP 6528 LBP 31652 Brazil, Rio São Francisco 2431 KR477919 This study 2061 KR477919 This study

Harttia sp. Tapajos LBP 5857 LBP 28329 Brazil, Rio Tapajós 2436 KR477906 This study 1968 KR478240 This studyHarttia sp. Tocantins LBP 5850 LBP 28367 Brazil, Rio Tocantins 2433 KR477901 This study 2085 KR478235 This studyHarttia sp. Três

MariasLBP 5838 LBP 28351 Brazil, Rio São Francisco 2429 KR477920 This study 2061 KR478254 This study

Harttia surinamensis MHNG 2674.042 SU05-001 Suriname, SurinameRiver

2438 KR477883 This study 2092 KR478217 This study

Harttia torrenticola LBP 5835 LBP 28346 Brazil, Rio São Francisco 2433 KR477913 This study 2054 KR478247 This studyHarttia tuna MHNG 2704.029 SU07-644 Brazil, Paru de Oeste

River2437 KR477909 This study 2092 KR478243 This study

Harttiella crassicauda MHNG 2679.098 MUS 306 Suriname, NassauMountains

2418 KR478145 This study 2026 KR478474 This study

Harttiella crassicauda MHNG 2674.051 MUS 221 Suriname, NassauMountains

2417 KR478146 This study 2026 KR478475 This study

Harttiella crassicauda MHNG 2674.051 MUS 231 Suriname, NassauMountains

2418 KR478131 This study 2026 KR478460 This study

Harttiella intermedia MHNG 2713.087 MUS 650 French Guiana, TrinitéMountains

2418 KR478164 This study 2021 KR478490 This study

Harttiella intermedia MHNG 2713.087 MUS 651 French Guiana, TrinitéMountains

2418 KR478165 This study 2022 KR478491 This study

Harttiella intermedia MHNG 2713.087 MUS 652 French Guiana, TrinitéMountains

2418 KR478135 This study 2022 KR478464 This study

Harttiella longicauda MHNG 2723.094 MUS 470 French Guiana,Balenfois Mountains

2418 KR478136 This study 2005 KR478465 This study

Harttiella longicauda MHNG 2723.094 MUS 463 French Guiana,Balenfois Mountains

2419 KR478159 This study 2005 KR478485 This study

Harttiella longicauda MHNG 2723.094 MUS 456 French Guiana,Balenfois Mountains

2418 KR478133 This study 2005 KR478462 This study

Harttiella longicauda MHNG 2699.070 GF07-026 French Guiana, TrinitéMountains

2418 KR478144 This study 2022 KR478473 This study

Harttiella longicauda MHNG 2699.070 GF07-082 French Guiana, TrinitéMountains

2422 KR478134 This study 2022 KR478463 This study

Harttiella longicauda MHNG 2699.070 GF07-111 French Guiana, TrinitéMountains

2418 KR478139 This study 2022 KR478468 This study

Harttiella lucifer MHNG 2721.088 GF10-034 French Guiana, LuciferMountains

2414 KR478153 This study 2152 KR478479 This study

Harttiella lucifer MHNG 2721.088 GF10-043 French Guiana, LuciferMountains

2414 KR478154 This study 2149 KR478480 This study

Harttiella lucifer MHNG 2721.088 GF10-037 French Guiana, LuciferMountains

2414 KR478155 This study 2152 KR478481 This study

Harttiella lucifer MHNG 2721.091 GF10-051 French Guiana, LuciferMountains

2414 KR478156 This study 2152 KR478482 This study

Harttiella lucifer MHNG 2721.091 GF10-053 French Guiana, LuciferMountains

2414 KR478158 This study 2152 KR478484 This study

Harttiella lucifer MHNG 2721.091 GF10-055 French Guiana, LuciferMountains

2414 KR478157 This study 2148 KR478483 This study

Harttiella lucifer MHNG 2712.085 MUS 592 French Guiana, CriqueLimonade

2414 KR478478 This study NA –

(continued on next page)

R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517 497

Page 7: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

Table 2 (continued)

Species Catalog number Field number Locality mt 12S + 16S bases+ GenBank No.

Ref. F-RTN4 bases+ GenBank No.

Ref.

Harttiella lucifer MHNG 2712.085 MUS 593 French Guiana, CriqueLimonade

2414 KR478151 This study NA –

Harttiella lucifer MHNG 2712.085 MUS 594 French Guiana, CriqueLimonade

2413 KR478152 This study NA –

Harttiella parva MHNG 2723.093 MUS 606 French Guiana, AtachiBakka Mountains

2416 KR478147 This study 2026 KR478476 This study

Harttiella parva MHNG 2723.093 MUS 607 French Guiana, AtachiBakka Mountains

2416 KR478148 This study 2026 KR478477 This study

Harttiella parva MHNG 2723.093 MUS 611 French Guiana, AtachiBakka Mountains

2416 KR478477 This study 2026 KR478478 This study

Harttiella pilosa MHNG 2682.055 GF06-344 French Guiana, TortueMountains

2417 KR478132 This study 2026 KR478461 This study

Harttiella pilosa MHNG 2682.055 GF06-343 French Guiana, TortueMountains

2417 KR478137 This study 2026 KR478466 This study

Harttiella pilosa MHNG 2724.002 GF03-033 French Guiana, TortueMountains

2419 KR478138 This study 2026 KR478467 This study

Hemiodontichthysacipenserinus

MHNG 2588.057 PE96-005 Peru, Madre de Dios 2425 KR478140 This study 2259 KR478469 This study

Hemiodontichthysacipenserinus

MHNG 2602.007 BR98-138 Brazil, Rio Guamá 2421 KR478141 This study 2217 KR478470 This study

Hemiodontichthysacipenserinus

MCP 28819 MCP 28819 Brazil, Rio Purus 2424 KR478142 This study 2238 KR478471 This study

Hemiodontichthysacipenserinus

LBP 5524 LBPN 26640 Brazil, Rio Jari 2422 KR478143 This study 2283 KR478472 This study

Ixinandria steinbachi NA IXS2 Argentina, Salta 2427 KR477986 This study 2513 KR478320 This studyLamontichthys

filamentosusMHNG 2680.009 MUS 310 Peru, aquarium trade 2434 KR478262 This study 2116 KR478263 This study

Lamontichthysfilamentosus

LBP 162 LBPN 4038 Brazil, Rio Branco 2433 KR477930 This study 2115 KR478264 This study

Lamontichthysllanero

MHNG 2749.019 MUS 356 Colombia, aquariumtrade

2434 KR477928 This study 2089 KR478262 This study

Lamontichthysstibaros

MHNG 2710.049 PE08-224 Peru, Rio Huallaga 2433 KR477931 This study 2040 KR478265 This study

Limatulichthyspunctatus

ANSP 182707 P6232 Peru, Rio Itaya 2424 KR478095 This study 1957 KR478429 This study

Limatulichthyspunctatus

MHNG 2602.009 BR98-140 Brazil, Rio Guamá 2424 KR478094 This study 1963 KR478428 This study

Limatulichthyspunctatus

AUM 42223 V5319 Venezuela, Rio Orinoco 2425 KR478097 This study 1960 KR478431 This study

Limatulichthyspunctatus

LBP 5055 LBPN 23618 Brazil, Rio Jurua 2422 KR478096 This study 1959 KR478430 This study

Limatulichthyspunctatus

MHNG 2710.037 PE08-112 Peru, Rio Agaytia 2427 KR478093 This study 1959 KR478427 This study

Limatulichthyspunctatus

LBP 5285 LBPN 26769 Brazil, Rio Jari 2427 KR478183 This study 1956 KR478508 This study

Limatulichthyspunctatus

LBP 5249 LBPN 26472 Brazil, Rio Jari 2426 KR478182 This study 1958 KR478507 This study

Loricaria sp. Guyana MHNG 2650.057 GY04-110 Guyana, Pirara River 2424 KR478068 This study 1979 KR478402 This studyLoricaria sp. Guyana MHNG 2651.031 GY04-191 Guyana, Sawarab bridge 2424 KR478069 This study 1983 KR478403 This studyLoricaria aff.

nickeriensisMHNG 2681.009 GF06-044 French Guiana, Oyapock

River2424 KR478061 This study 1944 KR478395 This study

Loricaria aff.parnahybae

LBP 1615 LBPN 11690 Brazil, Rio Araguaia 2434 KR478059 This study 1977 KR478393 This study

Loricaria apeltogaster NA NA Argentina, Entre Rios 2427 KR478056 This study 1973 KR478390 This studyLoricaria cataphracta MHNG 2749.022 GF98-044 French Guiana, Kourou

River2428 KR478057 This study 1943 KR478391 This study

Loricaria cataphracta MHNG 2683.061 GF06-570 French Guiana, ManaRiver

2425 KR478062 This study 1933 KR478396 This study

Loricaria cataphracta MHNG 2744.037 SU08-042 Suriname, SurinameRiver

2424 KR478054 This study 1932 KR478388 This study

Loricaria cataphracta MHNG 2749.021 SU08-943 Suriname, CommewijneRiver

2424 KR478055 This study 1932 KR478389 This study

Loricaria cf. lata LBP 5053 LBPN 16148 Brazil, Rio Araguaia 2423 KR478058 This study 1961 KR478392 This studyLoricaria nickeriensis MHNG 2672.080 SU05-334 Suriname, Corantijn

River2424 KR478060 This study 1932 KR478394 This study

Loricaria prolixa LBP 7511 LBPN 34925 Brazil, Rio Paraná 2429 KR478063 This study 1975 KR478397 This studyLoricaria prolixa LBP 7511 LBPN 34924 Brazil, Rio Paraná 2428 KR478064 This study 1975 KR478398 This studyLoricaria simillima MHNG 2677.075 PE05-030 Peru, aquarium trade,

Rio Amazonasb2424 KR478065 This study 1950 KR478399 This study

Loricaria sp.Araguaia

LBP 5049 LBPN 11506 Brazil, Rio Araguaia 2429 KR478066 This study 2006 KR478400 This study

Loricaria sp. Branco LBP 169 LBPN 4032 Brazil, Rio Branco 2424 KR478067 This study 1969 KR478401 This studyLoricaria sp. Branco LBP 223 LBPN 4101 Brazil, Rio Branco 2424 KR478090 This study 1967 KR478424 This studyLoricaria sp. Mato

GrossoMCP 36566 MCP 36566 Paraguay, Mato Grosso 2429 KR478070 This study 1949 KR478404 This study

498 R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517

Page 8: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

Table 2 (continued)

Species Catalog number Field number Locality mt 12S + 16S bases+ GenBank No.

Ref. F-RTN4 bases+ GenBank No.

Ref.

Loricaria sp. Orinoco AUM 42224 V5315 Venezuela, Rio Orinoco 2426 KR478071 This study 1961 KR478071 This studyLoricaria sp.

ParaguayMHNG 2677.003 PY9093 Paraguay, Rio Paraguay 2427 KR478072 This study 1930 KR478406 This study

Loricaria sp.Rupununi

MHNG 2651.036 GY04-129 Guyana, RupununiRiver

2427 KR478074 This study 1967 KR478408 This study

Loricariatucumanensis

NA AG06-018 Argentina, Ita-Ibate 2423 KR478073 This study 1976 KR478407 This study

Loricariichthys anus MCP 28415 MCP 28415 Brazil, Rio Grande doSul

2430 KR478175 This study 2280 KR478500 This study

Loricariichthys anus MCP 21317 MCP 21317 Brazil, Rio Grande doSul

2430 KR478174 This study 2276 KR478499 This study

Loricariichthys anus LBP 578 LBPN 7309 Brazil, Rio Guiaba 2429 KR478176 This study 2272 KR478501 This studyLoricariichthys

castaneusMHNG 2583.068 BR 162 Brazil, surroundings of

Rio de Janeiro2430 KR478114 This study 2230 KR478444 This study

Loricariichthyscastaneus

LBP 7489 LBPN 35548 Brazil 2429 KR478115 This study 2275 KR478445 This study

Loricariichthyscastaneus

LBP 7490 LBPN 35549 Brazil 2429 KR478116 This study 2279 KR478446 This study

Loricariichthys cf.ucayalensis

ANSP 182668 P6046 Peru, Rio Nanay 2424 KR478117 This study 2197 KR478447 This study

Loricariichthys derbyi MHNG 2602.061 BR98-250 Brazil, Rio Parnahyba 2428 KR478119 This study 2240 KR478449 This studyLoricariichthys derbyi LBP 5531 LBPN 27214 Brazil, Rio Parnahyba 2425 KR478171 This study 2243 KR478497 This studyLoricariichthys

labialisMHNG 2677.001 PY9094 Paraguay, Rio Paraguay 2429 KR478178 This study 1956 KR478503 This study

Loricariichthysmelanocheilus

MCP 28915 MCP 28915 Brazil, Rio Ibicui-Mirim 2426 KR478120 This study 2271 KR478450 This study

Loricariichthysplatymetopon

MHNG 2677.004 PY9098 Paraguay, Rio Paraguay 2427 KR478118 This study 2232 KR478448 This study

Loricariichthys sp.Amazonas

Stri-531 28 Peru, Rio Amazonas 2426 KR478173 This study 2231 KR478498 This study

Loricariichthys sp.Jari

LBP 5517 LBPN 26622 Brazil, Rio Jari 2428 KR478112 This study 2228 KR478442 This study

Loricariichthys sp.Jari

LBP 5420 LBPN 27135 Brazil, Rio Jari 2427 KR478121 This study 2232 KR478451 This study

Loricariichthys sp.Orinoco

AUM 42225 V5310 Venezuela, Rio Orinoco 2426 KR478109 This study NA –

Loricariichthys sp.Rio Baia

LBP 3094 LBPN 19263 Brazil, Rio Baia 2429 KR478113 This study 2226 KR478443 This study

Metaloricaria nijsseni MHNG 2674.025 SU05-012 Suriname, SurinameRiver

2435 KR477934 This study 2089 KR478268 This study

Metaloricaria nijsseni MHNG 2672.053 SU05-359 Suriname, CorantijnRiver

2437 KR477967 This study 2089 KR478301 This study

Metaloricaria nijsseni MHNG 2690.016 SU01-459 Suriname, CoppenameRiver

2441 KR477933 This study 2089 KR478267 This study

Metaloricariapaucidens

MHNG 2681.042 GF06-108 French Guiana, OyapockRiver

2439 KR477932 This study 2073 KR478266 This study

Paraloricaria agastor NA AG06-017 Argentina, Ita-Ibate 2427 KR478167 This study 1984 KR478493 This studyParaloricaria agastor NA AG06-019 Argentina, Puerto Abra 2426 KR478168 This study 1984 KR478494 This studyParaloricaria vetula NA YC-008 Argentina, Entre Rios 2425 KR478166 This study 1984 KR478492 This studyPseudohemiodon aff.

apithanosMHNG 2677.070 PE05-009 Peru, aquarium trade,

Rio Amazonasb2416 KR478080 This study 2003 KR478414 This study

Pseudohemiodon aff.apithanos

ANSP 178115 P1759 Peru, aquarium trade,Rio Itayab

2418 KR478078 This study 2003 KR478412 This study

Pseudohemiodon aff.apithanos

MHNG 2710.086 PE08-852 Peru, Rio Cushabatai 2411 KR478079 This study 2004 KR478413 This study

Pseudohemiodonapithanos

MHNG 2677.073 PE05-020 Peru, aquarium trade,Rio Itayab

2414 KR478110 This study 2012 KR478440 This study

Pseudohemiodonapithanos

MHNG 2677.074 PE05-026 Peru, aquarium trade,Rio Nanayb

2414 KR478081 This study 2012 KR478415 This study

Pseudohemiodonlaminus

MHNG 2677.077 PE05-035 Peru, aquarium trade,Rio Amazonasb

2426 KR478082 This study 2009 KR478416 This study

Pseudohemiodonlaticeps

LBP 4332 LBPN 24034 Brazil, Rio Paraguay 2424 KR478169 This study 2003 KR478495 This study

Pseudohemiodonlaticeps

NA NA Argentina, Corrientes 2424 KR478170 This study 2004 KR478496 This study

Pseudohemiodon sp. MHNG 2677.076 PE05-034 Peru, aquarium trade,Rio Amazonasb

2406 KR478111 This study 1980 KR478441 This study

Pseudoloricarialaeviuscula

AUM 44646 G5231 Guyana, Takutu River 2427 KR478099 This study 1990 KR478433 This study

Pseudoloricarialaeviuscula

AUM 44646 G5232 Guyana, Takutu River 2427 KR478100 This study 1990 KR478434 This study

Pseudoloricarialaeviuscula

AUM 44646 G5233 Guyana, Takutu River 2427 KR478103 This study 1990 KR478436 This study

Pseudoloricarialaeviuscula

INPA 28991 MUS 517 Brazil, Rio Madeira 2430 KR478098 This study 1990 KR478432 This study

(continued on next page)

R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517 499

Page 9: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

Table 2 (continued)

Species Catalog number Field number Locality mt 12S + 16S bases+ GenBank No.

Ref. F-RTN4 bases+ GenBank No.

Ref.

Pterosturisomamicrops

MHNG 2677.072 PE05-016 Peru, aquarium trade 2439 KR477921 This study 2075 KR478255 This study

Rhadinoloricaria aff.macromystax

ANSP 182349 T2364 Guyana, RupununiRiver

2414 KR478084 This study 1967 KR478418 This study

Rhadinoloricaria sp.Orinoco

ANSP 185044 T4029 Venezuela, Rio Orinoco 2415 KR478085 This study 1979 KR478419 This study

Rhadinoloricaria sp.Orinoco

AUM 42094 V5507 Venezuela, Rio Orinoco 2414 KR478086 This study 1980 KR478420 This study

Rhadinoloricaria sp.Orinoco

AUM 42094 V5508 Venezuela, Rio Orinoco 2415 KR478087 This study 1979 KR478421 This study

Rineloricariaaequalicuspis

MCP 29282 MCP 29282 Brazil, Arroio MolhaCoco

2427 KR478213 This study 2499 KR478534 This study

Rineloricaria aff.cadeae

LBP 901 LBPN 7359 Brazil, Eldorado do Sul 2424 KR477987 This study 2492 KR478321 This study

Rineloricaria aff.cadeae

LBP4772 LBPN 25580 Brazil, Rio Guiaba 2424 KR477976 This study 2533 KR478310 This study

Rineloricaria aff.fallax

LBP 4085 LBPN 23512 Brazil, Rio Japim 2420 KR477979 This study 1984 KR478313 This study

Rineloricaria aff.langei

LBP 1189 LBPN 10585 Brazil, Rio Iguaçu 2425 KR478323 This study 2501 KR478324 This study

Rineloricaria aff.latirostris

MHNG 2749.014 MUS 491 Brazil, aquarium trade 2425 KR478185 This study 2507 KR478510 This study

Rineloricaria aff.phoxocephala

MCP 28832 495 Brazil, Rio Purus 2427 KR478104 This study 2243 KR478437 This study

Rineloricaria aff.phoxocephala

MCP 28832 496 Brazil, Rio Purus 2426 KR478126 This study 2246 KR478455 This study

Rineloricaria aff.phoxocephala

MCP 28832 NA Brazil, Rio Purus 2427 KR478125 This study 2243 KR478454 This study

Rineloricaria aff.phoxocephala

LBP 4123 LBPN 23617 Brazil, Rio Jurua 2431 KR478127 This study 2242 KR478456 This study

Rineloricaria aff.phoxocephala

MHNG 2749.013 PI 720 Peru, Rio Momon 2431 KR478128 This study 2241 KR478457 This study

Rineloricaria aff.phoxocephala

ANSP 182368 T2101 Guyana, EssequiboRiver

2431 KR478038 This study 2244 KR478372 This study

Rineloricaria aff.stewarti

MHNG 2663.003 GF03-196 French Guiana,Approuague River

2425 KR478023 This study 2209 KR478357 This study

Rineloricaria aff.stewarti

MHNG 2681.019 GF06-077 French Guiana, OyapockRiver

2422 KR478028 This study 2214 KR478362 This study

Rineloricaria aff.stewarti

MHNG 2682.091 GF06-428 French Guiana, MaroniRiver

2425 KR478025 This study 2209 KR478359 This study

Rineloricaria aff.stewarti

MHNG 2683.049 GF06-538 French Guiana, ManaRiver

2425 KR478024 This study 2209 KR478358 This study

Rineloricaria aff.stewarti

MHNG 2617.015 MUS French Guiana,Sinnamary River

2425 KR478029 This study 2209 KR478363 This study

Rineloricaria aff.stewarti

MHNG 2704.040 SUJM-064 Suriname, SurinameRiver

2429 KR478035 This study 2210 KR478369 This study

Rineloricaria aff.stewarti

MHNG 2749.011 SU08-945 Suriname, CommewijneRiver

2426 KR478037 This study 2210 KR478371 This study

Rineloricaria aff.strigilata

LBP 2949 LBPN 19534 Brazil, Córrego dabatata

2417 KR477992 This study 2258 KR478326 This study

Rineloricariaaltipinnis

Stri-3589 40 Panama, RioChucunaque

2425 KR478026 This study 1866 KR478360 This study

Rineloricariaaltipinnis

MHNG 2709.086 PA97-045 Panama, RioChucunaque

2423 KR478027 This study 1866 KR478361 This study

Rineloricaria cadeae MCP 21217 MCP 21217 Brazil, Rio Grande doSul

2427 KR477991 This study 2479 KR478325 This study

Rineloricariacatamarcensis

NA RC Argentina, Salta 2429 KR477989 This study 2511 KR478323 This study

Rineloricariacatamarcensis

MHNG 2680.033 NA Argentina, Rio Sali 2426 KR477988 This study 2511 KR478322 This study

Rineloricaria cf.kronei

LBP 1248 LBPN 11175 Brazil, Rio Ribeira doIguape

2429 KR478108 This study 2498 KR478439 This study

Rineloricaria cf.latirostris

LBP 771 LBPN 8534 Brazil, Rio Marumbi 2429 KR478347 This study 2802 KR478348 This study

Rineloricariaeigenmanni

NA MUS 494 Colombia, aquariumtrade

2428 KR477984 This study 2206 KR478318 This study

Rineloricaria fallax MHNG 2651.054 GY04-146 Guyana, Takutu River 2429 KR477980 This study 2284 KR478314 This studyRineloricaria fallax MHNG 2672.015 SU05-412 Suriname, Corantijn

River2427 KR477975 This study 2280 KR478309 This study

Rineloricaria fallax MHNG 2650.072 GY04-009 Guyana, RupununiRiver

2427 KR477978 This study 2281 KR478312 This study

Rineloricaria fallax MHNG 2651.034 GY04-396 Guyana, Berbice River 2427 KR477973 This study 2281 KR478307 This studyRineloricaria fallax MHNG 2650.067 GY04-384 Guyana, Demerara

River2427 KR477977 This study 2280 KR478311 This study

500 R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517

Page 10: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

Table 2 (continued)

Species Catalog number Field number Locality mt 12S + 16S bases+ GenBank No.

Ref. F-RTN4 bases+ GenBank No.

Ref.

Rineloricaria fallax LBP 4343 LBPN 24075 Brazil, Boa Vista 2429 KR477974 This study 2285 KR477974 This studyRineloricaria formosa ANSP 185291 V5405 Venezuela, Rio Orinoco 2429 KR477981 This study 2253 KR478315 This studyRineloricaria formosa AUM 43885 V5531 Venezuela, Rio Orinoco 2429 KR477982 This study 2253 KR478316 This studyRineloricaria

heteropteraAUM 43886 V5530 Venezuela, Rio Orinoco 2429 KR477968 This study 2219 KR478302 This study

Rineloricariaheteroptera

AUM 43886 V5534 Venezuela, Rio Orinoco 2429 KR477969 This study 2219 KR478303 This study

Rineloricariaheteroptera

AUM 43886 V5529 Venezuela, Rio Orinoco 2429 KR477970 This study 2219 KR478304 This study

Rineloricariaheteroptera

AUM 43928 V5562 Venezuela, Rio Orinoco 2428 KR477971 This study 2220 KR478305 This study

Rineloricaria hoehnei MHNG 2678.018 PR-018 Paraguay, ParaguayRiver

2424 KR477972 This study 2221 KR478306 This study

Rineloricariajaraguensis

LBP 729 LBPN 8268 Brazil, Jaragua do Sul,Rio Itapocu

2426 KR477985 This study 2208 KR478319 This study

Rineloricarialanceolata

MHNG 2613.029 CA-01 Peru, Rio Ucayali 2423 KR478203 This study 2232 KR478528 This study

Rineloricarialanceolata

MHNG 2651.029 GY04-172 Guyana, Takutu River 2424 KR477996 This study 2231 KR478330 This study

Rineloricarialanceolata

MHNG 2651.059 GY04-252 Guyana, MauishparuRiver

2424 KR477995 This study 2232 KR478329 This study

Rineloricarialanceolata

MHNG 2680.008 MUS 244 Brazil, Purus River 2424 KR477997 This study 2232 KR478331 This study

Rineloricarialanceolata

Stri-2422 26 Argentine RioCorrientes

2425 KR478326 This study 2219 KR478327 This study

Rineloricarialanceolata

LBP 1557 LBPN 11505 Brazil, Rio Araguaia 2424 KR477994 This study 2198 KR478328 This study

Rineloricarialanceolata

MHNG 2710.033 PE08-053 Peru, Rio Huacamayo 2423 KR478202 This study 2230 KR478527 This study

Rineloricarialongicauda

MCP 38347 MCP 38347 Brazil, Rio Grande doSul

2426 KR478018 This study 2804 KR478352 This study

Rineloricaria melini LBP 4409 LBPN 24247 Brazil, Rio Negro,Barcelos

2427 KR477983 This study 2204 KR478317 This study

Rineloricaria melini MHNG 2680.011 MUS 312 Brazil, aquarium trade 2427 KR478013 This study 2203 KR478347 This studyRineloricaria

microlepidogasterMCP 21263 MCP 21263 Brazil, Rio Grande do

Sul2426 KR478212 This study 2504 KR478533 This study

Rineloricariamisionera

MHNG 2680.034 MUS Argentina, Rio Cuna-Piru

2421 KR477999 This study 2214 KR478333 This study

Rineloricariamorrowi

MHNG 2749.015 PI 719 Peru, Rio Momon 2425 GBxxxxx This study 2280 KR478334 This study

Rineloricaria parva MHNG 2678.014 PR-009 Argentina, Santa Fé 2433 KR478012 This study 2522 KR478346 This studyRineloricaria parva LBP 5 LBPN 3656 Brazil, Rio Paraguay 2433 KR478190 This study 2506 KR478515 This studyRineloricaria

pentamaculataLBP 1319 LBPN 11000 Brazil, Rio Tibagi 2432 KR478040 This study 2021 KR478375 This study

Rineloricariaplatyura

LBP 1731 LBPN 12864 Brazil, Rio Amazonas 2421 KR478036 This study 2220 KR478370 This study

Rineloricariaplatyura

MHNG 2601.081 BR98-088 Brazil, Rio Guamá 2428 KR478123 This study NA –

Rineloricariaplatyura

MHNG 2663.004 GF03-193 French Guiana,Approuague River

2427 KR478102 This study 953 KR478435 This study

Rineloricariaplatyura

NA MUS 334 Brazil, Rio Purus 2426 KR478129 This study 2229 KR478458 This study

Rineloricariaplatyura

MHNG 2650.074 GY04-197 Guyana, Takutu River 2424 KR478122 This study 2220 KR478452 This study

Rineloricariaplatyura

MHNG 2749.012 GF99-009 French Guiana, Kaw 2427 KR478101 This study NA –

Rineloricariaplatyura

MHNG 2601.063 BR98-049 Brazil, Rio Acara 2428 KR478124 This study 949 KR478453 This study

Rineloricariaplatyura

MCP 28832 497 Brazil, Rio Purus 2426 KR478130 This study 931 KR478459 This study

Rineloricariaquadrensis

MCP 21195 MCP 21195 Brazil, Lagoa Fortaleza 2427 KR478106 This study 2504 KR478438 This study

Rineloricariasneiderni

Stri-1399 52 Colombia, Rio Baudo 2426 KR478001 This study 2244 KR478335 This study

Rineloricaria sp.Agua Santa

MHNG 2587.054 BR1253 Brazil, Rio Paraíba doSul

2426 KR478194 This study 2790 KR478519 This study

Rineloricaria sp. AoItai

MHNG 2587.015 BR1215 Brazil, Rio Paraíba doSul

2424 KR478191 This study 2507 KR478516 This study

Rineloricaria sp.Araguaia

LBP 1750 LBPN 11818 Brazil, Rio Araguaia 2428 KR478040 This study 2034 KR478040 This study

Rineloricaria sp.Betari

MHNG 2586.083 BR1190 Brazil, Rio Betari 2429 KR478192 This study 2515 KR478517 This study

Rineloricaria sp.Betari

MHNG 2586.072 BR1184 Brazil, Rio Betari 2429 KR478172 This study NA –

Rineloricaria sp.Carombé

LBP 2654 LBPN 17410 Brazil, Rio Carombé 2427 KR478034 This study 2208 KR478368 This study

(continued on next page)

R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517 501

Page 11: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

Table 2 (continued)

Species Catalog number Field number Locality mt 12S + 16S bases+ GenBank No.

Ref. F-RTN4 bases+ GenBank No.

Ref.

Rineloricaria sp.Corantijn

MHNG 2671.085 SU05-450 Suriname, CorantijnRiver

2431 KR478005 This study 2188 KR478339 This study

Rineloricaria sp.Corantijn

MHNG 2704.035 SU07-017 Suriname, SipaliwiniRiver

2430 KR478002 This study 2188 KR478336 This study

Rineloricaria sp.Corantijn

MHNG 2722.048 SU01-417 Suriname, NickerieRiver

2433 KR478006 This study 2194 KR478340 This study

Rineloricaria sp.Corrego Seco

MHNG 2586.065 BR1176 Brazil, Rio Ribeira doIguape

2429 KR478184 This study 2716 KR478509 This study

Rineloricaria sp.Guama 4

MHNG 2601.091 BR98-112 Brazil, Rio Guamá 2426 KR478199 This study 2474 KR478524 This study

Rineloricaria sp.Guama 5

MHNG 2601.044 BR98-010 Brazil, Rio Gurupi 2425 KR478200 This study 2508 KR478525 This study

Rineloricaria sp.Guama 5

MHNG 2601.042 BR98-008 Brazil, Rio Gurupi 2425 KR478201 This study 2510 KR478526 This study

Rineloricaria sp.Guama 5

MHNG 2602.025 BR98-167 Brazil, Rio Piria 2417 KR478198 This study 2508 KR478523 This study

Rineloricaria sp.Guama 6

MHNG 2601.063 BR98-047 Brazil, Rio Acara 2427 KR478501 This study 2285 KR478502 This study

Rineloricaria sp.Huacamayo

MHNG 2613.032 CA-33 Peru, Rio Pisqui 2431 KR478015 This study 2453 KR478349 This study

Rineloricaria sp.Huacamayo

MHNG 2710.032 PE08-057 Peru, Rio Huacamayo 2431 KR478016 This study 2528 KR478350 This study

Rineloricaria sp.Macacu

MHNG 2587.082 BR1273 Brazil, Rio da Toca 2425 KR478017 This study 2506 KR478351 This study

Rineloricaria sp.Maroni 2

MHNG 2749.018 SU08-441 Suriname, PaloemeuRiver

2430 KR478003 This study 2249 KR478337 This study

Rineloricaria sp.Maroni 2

MHNG 2749.018 SU08-442 Suriname, PaloemeuRiver

2430 KR478004 This study 2249 KR478338 This study

Rineloricaria sp.Martinso

MHNG 2586.089 BR1196 Brazil, Rio Martinso 2429 KR478020 This study 2802 KR478354 This study

Rineloricaria sp.Mongaguá

LBP 2128 LBPN 21378 Brazil, Riacho Sitio doMeio

2429 KR478019 This study 2786 KR478353 This study

Rineloricaria sp.Orinoco

AUM 44067 V5435 Venezuela, Rio Orinoco 2428 KR478030 This study 2197 KR478364 This study

Rineloricaria sp.Orinoco

AUM 44067 V5437 Venezuela, Rio Orinoco 2428 KR478031 This study 2197 KR478365 This study

Rineloricaria sp.Panama

MHNG 2749.016 PA00-011 Panama, Rio Ipeti 2427 KR478181 This study 989 KR478506 This study

Rineloricaria sp.Paraiba do Sul

MHNG 2583.065 BR 156 Brazil, Rio Paraíba doSul

2427 KR478107 This study NA –

Rineloricaria sp.Parguaza

LBP 2308 LBPN 15846 Venezuela, RioParguaza

2427 KR478032 This study 2217 KR478366 This study

Rineloricaria sp.Piedade

MHNG 2586.055 BR1163 Brazil, Rio Piedade 2429 KR478039 This study 2226 KR478373 This study

Rineloricaria sp.Previsto

MHNG 2710.047 PE08-186 Peru, Rio Previsto 2433 KR478195 This study 2528 KR478520 This study

Rineloricaria sp.Puerto Ayacucho

MHNG 2749.017 MUS 489 Venezuela, aquariumtrade

2427 KR478033 This study 2279 KR478367 This study

Rineloricaria sp.Ribeira

MHNG 2586.088 BR1195 Brazil, Rio Ribeira doIguape

2429 KR478193 This study 2493 KR478518 This study

Rineloricaria sp. Rioda Toca

MHNG 2587.078 BR1269 Brazil, Rio Macacu 2423 KR478022 This study 2573 KR478356 This study

Rineloricaria sp. SãoJoão

LBP 802 LBPN 7954 Brazil, Rio São João 2429 KR478188 This study 2793 KR478513 This study

Rineloricaria sp. SãoJoão 2

MHNG 2586.052 BR1155 Brazil, Rio Araraguara 2428 KR478187 This study 2505 KR478512 This study

Rineloricaria sp. SãoJoão 2

MHNG 2586.052 BR1156 Brazil, Rio Araraguara 2425 KR478186 This study 2501 KR478511 This study

Rineloricaria sp.Ucayali

MHNG 2710.095 PE08-905 Peru, Rio Ucayali 2426 KR478520 This study 2481 KR478521 This study

Rineloricaria sp.Ucayali 2

LBP 3273 LBPN 20081 Peru, Rio Huancabamba 2433 KR478021 This study 2536 KR478355 This study

Rineloricaria sp.Uruguay

MCP 21616 MCP 21616 Brazil, Rio Grande doSul

2432 KR478189 This study 2506 KR478514 This study

Rineloricaria sp. VonHumbolt

MHNG 2710.068 PE08-697 Peru, bosque VonHumbolt

2430 KR478197 This study 2532 KR478522 This study

Rineloricaria stewarti MHNG 2651.057 GY04-257 Guyana, MauishparuRiver

2424 KR478009 This study 2289 KR478343 This study

Rineloricaria stewarti MHNG 2651.027 GY04-183 Guyana, Takutu River 2429 KR478010 This study 2286 KR478344 This studyRineloricaria stewarti MHNG 2671.015 SU05-592 Suriname, Coppename

River2427 KR478007 This study 2289 KR478341 This study

Rineloricaria stewarti MHNG 2671.084 SU05-457 Suriname, CorantijnRiver

2426 KR478008 This study 2270 KR478342 This study

502 R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517

Page 12: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

Table 2 (continued)

Species Catalog number Field number Locality mt 12S + 16S bases+ GenBank No.

Ref. F-RTN4 bases+ GenBank No.

Ref.

Rineloricariastrigilata

MCP 23751 MCP 23751 Brazil, Rio Grande doSul

2426 KR477998 This study 2780 KR478332 This study

Rineloricaria teffeana NA NA SR, aquarium specimen 2427 KR478011 This study 2281 KR478345 This studyRineloricaria

uracanthaStri-1662 23 Panama, Rio Mandinga 2426 KR478180 This study 2245 KR478505 This study

Rineloricariauracantha

LBP 2762 LBPN 18551 Panama, Santa RitaArriba

2424 KR478179 This study 2230 KR478504 This study

Rineloricaria wolfei ANSP 182695 P6236 Peru, Rio Itaya 2424 KR478105 This study NA –Spatuloricaria cf.

evansiiLBP 2385 LBPN 16145 Brazil, Rio Araguaia 2427 KR478042 This study 1958 KR478376 This study

Spatuloricariapuganensis

ANSP 180486 P4743 Peru, Rio Yanatili 2421 KR478043 This study 1957 KR478377 This study

Spatuloricariapuganensis

ANSP 180789 P4747 Peru, Rio Urubamba 2421 KR478044 This study 1958 KR478378 This study

Spatuloricaria sp.Araguaia

LBP 1556 LBPN 11507 Brazil, Rio Araguaia 2427 KR478046 This study 1960 KR478380 This study

Spatuloricaria sp.Ireng

ANSP 182372 T2361 Guyana, Ireng River 2423 KR478047 This study 1978 KR478381 This study

Spatuloricaria sp.Magdalena 1

MHNG 2722.096 MUS 353 Colombia, aquariumtrade

2426 KR478045 This study 1981 KR478379 This study

Spatuloricaria sp.Magdalena 2

IAvHP 6635 Colombia, RioMagdalena, Honda

2418 KR478048 This study 1960 KR478382 This study

Spatuloricaria sp.Magdalena 2

IAvHP 6637 Colombia, RioMagdalena, Honda

2418 KR478049 This study 1961 KR478383 This study

Spatuloricaria sp.Magdalena 2

IAvHP 6638 Colombia, RioMagdalena, Honda

2419 KR478050 This study 1961 KR478384 This study

Spatuloricaria sp.Orinoco

ANSP 185303 P4006 Venezuela, Rio Orinoco 2427 KR478051 This study 1958 KR478385 This study

Sturisoma aureum NA MUS 286 Colombia, aquariumtrade

2438 KR477925 This study 2287 KR478259 This study

Sturisoma aureum MHNG 2684.019 MUS 357 Colombia, aquariumtrade

2442 KR478160 This study 2287 KR478486 This study

Sturisoma cf.guentheri

ANSP 182587 P6330 Peru, Rio Nanay 2446 KR477926 This study 1977 KR478260 This study

Sturisoma dariense MHNG 2674.059 PA97-019 Panama, Darien 2440 KR477922 This study 2302 KR478256 This studySturisoma festivum MER95T-20 44 Venezuela, Maracaibo

Lake2443 KR477923 This study 2295 KR478257 This study

Sturisoma frenatum Stri-872 47 Colombia, Rio San Juan 2440 KR477924 This study 2304 KR478258 This studySturisoma

nigrirostrumANSP 178322 P1593 Peru, Rio Amazonas 2444 KR478162 This study 2589 KR478488 This study

Sturisomapanamense

MHNG 2674.058 PA00-013 Panama, Rio Ipeti 2443 KR478163 This study 2302 KR478489 This study

Sturisoma robustum MHNG 2677.002 PY9091 Paraguay, Rio Paraguay 2443 KR478161 This study 2540 KR478487 This studySturisoma sp. Rio

BrancoLBP 1615 LBPN 4044 Brazil, Rio Branco 2442 KR477935 This study 2583 KR478269 This study

Sturisomatichthysleightoni

NA MUS 327 Colombia, aquariumspecimen

2440 KR477927 This study 2307 KR478261 This study

Ancistrus cirrhosusa MHNG 2645.037 MUS 202 Argentina, Rio Uruguay 2425 EU310442 Covain et al.(2008)

1809 HM623638 Rodriguez et al.(2011)

Pseudorinelepisgenibarbisa

MHNG 2588.079 PE96-040 Peru, Rio Ucayali 2436 HM592623 Rodriguez et al.(2011)

1925 HM623634 Rodriguez et al.(2011)

Guyanancistrusbrevispinisa

MHNG 2725.099 GF00-103 French Guiana, MaroniRiver

2439 JN855735 Covain and Fisch-Muller (2012)

1807 JN855772 Covain and Fisch-Muller (2012)

Guyanancistruslongispinisa

MHNG 2725.100 GF99-204 French Guiana, OyapockRiver

2439 JN855720 Covain and Fisch-Muller (2012)

1808 JN855757 Covain and Fisch-Muller (2012)

Guyanancistrusnigera

MHNG 2722.089 GF99-185 French Guiana, OyapockRiver

2438 JN855722 Covain and Fisch-Muller (2012)

1809 JN855759 Covain and Fisch-Muller (2012)

Hypostomusgymnorhynchusa

MHNG 2621.098 SU01-160 French Guiana,Approuague River

2442 JN855752 Covain and Fisch-Muller (2012)

1818 JN855789 Covain and Fisch-Muller (2012)

Lasiancistrusheteracanthusa

MHNG 2613.037 CA 13 Peru, Rio Pauya 2432 JN855750 Covain and Fisch-Muller (2012)

1790 JN855787 Covain and Fisch-Muller (2012)

Lithoxus lithoidesa MHNG 2651.087 GY04-136 Guyana, EssequiboRiver

2428 JN855740 Covain and Fisch-Muller (2012)

1715 JN855777 Covain and Fisch-Muller (2012)

Pseudancistrusbarbatusa

MHNG 2653.059 GF00-074 French Guiana, MaroniRiver

2442 JN855724 Covain and Fisch-Muller (2012)

1809 JN855761 Covain and Fisch-Muller (2012)

Hemiancistrusmediansa

MHNG 2664.078 GF00-084 Suriname, TapanahonyRiver

2437 JN855719 Covain and Fisch-Muller (2012)

1820 JF747011 Fisch-Muller et al.(2012)

Peckoltia oligospilaa MHNG 2602.017 BR98-154 Brazil, Rio Guamá 2439 KR478207 This study 1814 JF747020 Fisch-Muller et al.(2012)

Peckoltia sabajia MHNG 2651.016 GY04-029 Guyana, RupununiRiver

2437 KR478206 This study 1815 JF747019 Fisch-Muller et al.(2012)

Peckoltia cavaticaa MHNG 2651.020 GY04-030 Guyana, RupununiRiver

2441 KR478205 This study 1808 JF747017 Fisch-Muller et al.(2012)

Panaqolus kokoa MNHN 2011-0013 GF00-115 French Guiana, MaroniRiver

2435 KR478204 This study 1814 JF747016 Fisch-Muller et al.(2012)

(continued on next page)

R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517 503

Page 13: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

Table 2 (continued)

Species Catalog number Field number Locality mt 12S + 16S bases+ GenBank No.

Ref. F-RTN4 bases+ GenBank No.

Ref.

Scobinancistrusaureatusa

MHNG 2684.020 MUS 358 Brazil, aquarium trade,Rio Xingub

2442 KR478210 This study 1816 KR478531 This study

Hypancistrus zebraa MHNG 2708.072 MUS 420 Brazil, aquarium trade,Rio Xingub

2435 KR478209 This study 1790 KR478530 This study

Megalancistrus cf.parananusa

MHNG 2711.048 MUS 332 Brazil, aquarium trade 2442 KR478208 This study 1816 KR478529 This study

Neoplecostomusmicropsa

MHNG 2588.002 BR 1283 Brazil, Rio dos Frades 2442 KR478211 This study 1816 KR478532 This study

a Outgroup.b According to the exporter.c Specimen reidentified after publication.

504 R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517

Harttiella lucifer for the second, with several species dependentindels that locally challenged the alignment process. To reducethe misleading effects of misaligned regions, we used the modelalignment for this marker given by Rodriguez et al. (2011) thatproduced good assessment statistics according to SOAP 1.2a4(Löytynoja and Milinkovitch, 2001), better than automatic align-ments produced by CLUSTAL-X 1.83 under various parametervalues (i.e. increase in mean nodal support, model adequacy, andtree balance). Moreover, and despite the presence of indels in itsintronic regions, this same marker has proven to be efficient insolving the phylogenetic relationships among other catfish sub-families (Chiachio et al., 2008; Cardoso and Montoya-Burgos,2009; Alexandrou et al., 2011; Cramer et al., 2011; Covain andFisch-Muller, 2012; Roxo et al., 2012, 2014; Costa e Silva et al.,2014). Additionally, Fisch-Muller et al. (2012) demonstrated thatin Ancistrinae, the two introns of f-rtn4r were rather conserved,and displayed less variation than coding mitochondrial genes,making easier detection of homologous regions. Gaps were consid-ered as missing data, and regions impossible to amplify or tosequence were coded as ambiguities (N). The final alignment off-rtn4r marker is accessible on Dryad (http://datadryad.org/) usingaccession number XXXX. Since mitochondrial DNA is presumablytransmitted through maternal lineage as a single non recombininggenetic unit (Meyer, 1993), a first partition corresponding to themitochondrial genes was created. With the mutational patternsin intronic and exonic regions of f-rtn4r being rather characterizedby insertions/deletions and transitions/transversions respectively,two other partitions were created for introns and exons. Congru-ence in phylogenetic signals contained in mitochondrial andnuclear markers was secondarily assessed using the CongruenceAmong Distance Matrices (CADM) test (Legendre and Lapointe,2004) as implemented in ape 2.6.2 (Paradis et al., 2004; Paradis,2006) in R 2.12.1 (R Development Core Team, 2009). Patristic pair-wise maximum likelihood (ML) (Felsenstein, 1981) distances werecomputed as estimates of tree topologies with Treefinder (Jobbet al., 2004) version of October 2008 for each partition using a like-lihood model under which the distances are optimized. Appropri-ate substitution models corresponding to each potential partitionwere accordingly determined with the Akaike Information Crite-rion (Akaike, 1974) as implemented in Treefinder. The CADM testwas computed using 9999 permutations of the three ML distancesmatrices. Two phylogenetic reconstruction methods allowing theanalysis of partitioned data were used. First, a ML reconstructionwas performed with Treefinder, and robustness of the resultswas estimated by resampling the data set with the nonparametricbootstrap (Efron, 1979) following Felsenstein’s (1985) methodol-ogy with 2,000 pseudoreplicates. Second, a Bayesian inferenceanalysis was conducted in MrBayes 3.1.2 (Huelsenbeck andRonquist, 2001; Ronquist and Huelsenbeck, 2003). Two runs ofeight chains (one cold, seven heated) were conducted simultane-

ously for 2 � 107 generations, with the tree space sampled each1000th generation. Convergence between chains occurred after2 � 106 generations (average standard deviation of split frequen-cies <0.01). After a visual representation of the evolution of thelikelihood scores, and checking for the stationarity of all modelparameters using Tracer 1.5 (Rambaut and Drummond, 2007)(i.e.: potential scale reduction factor (PSRF), uncorrected roughlyapproached 1 as runs converged (Gelman and Rubin, 1992), andEffective Sample Size (ESS) of all parameters above 200), the2 � 106 first generations were discarded as burn-in. The remainingtrees were used to compute the consensus tree. Alternativehypotheses (i.e. topologies) were tested against the null hypothesisthat all hypotheses provided equally good explanations of the datausing the Approximately Unbiased (AU) (Shimodaira, 2002), theBootstrap Probability (BP), and the Expected-Likelihood Weights(ELW) of the alternative hypothesis (Strimmer and Rambaut,2002) tests as implemented in Treefinder using 1 � 106 RELLreplicates (Kishino et al., 1990). All alternative topologies wereconstructed in order to reflect, as much as possible given our tax-onomic sampling, already proposed hypotheses (Isbrücker, 1979;Rapp Py-Daniel, 1997; Armbruster, 2004), or the monophyly ofdifferent groups.

3. Results

3.1. Phylogenetic analysis of the subfamily Loricariinae

We sequenced the almost complete 12S and 16S mitochondrialgenes, and the partial nuclear gene f-rtn4r for 326 specimens of217 species of Loricariinae and 8 Loricariidae belonging to Hypos-tominae (7 species) and Neoplecostominae (1 species) as outgroup(Table 1). Other sequences for 24 representatives of Loricariinae,and ten Loricariidae belonging to Rhinelepinae (1 species), andHypostominae (9 species) were obtained from GenBank using theaccession numbers provided in Covain et al. (2008), Chiachio et al.(2008), Rodriguez et al. (2011), Covain and Fisch-Muller (2012),and Fisch-Muller et al. (2012). The sequence alignment initiallyincluding 8503 positions was restricted to 8426 positions afterremoval of regions with ambiguous alignment. A subset of 2545positions corresponded to the mitochondrial genes (962 positionsfor the 12S rRNA gene, 74 for the tRNA Val gene, and 1509 for the16S rRNA gene), and 5881 to the nuclear f-rtn4r gene (894 positionsfor the exonic regions, and 4987 for the intronic regions). No signif-icant conflicting phylogenetic signal was detected in the data set, asthe global CADM test displayed a high coefficient of concordancebetween matrices and rejected the null hypothesis of incongruencebetween them (CADM: W = 0.7964, v2

ref = 163976.6, p(v2refPv2⁄) =0.0001). The CADM a posteriori tests did not detect any conflictingmatrix with the global phylogenetic signal (�rS mitochondrion =0.6295, pð�rSrefP�r�

SÞ ¼ 0:0003Þ ; �rS exons = 0.7239, pð�rSrefP�r�

SÞ ¼ 0:0003;

Page 14: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517 505

�rS introns = 0.7304, pð�rSrefP�r�SÞ ¼ 0:0003). Thus, despite the presence of

indels in the intronic regions, and of a lower contribution of themitochondrial genes to the global phylogenetic signal, there was noindication to discard these regions from the phylogenetic analyses.The sequences were consequently concatenated, and three partitionscorresponding to mitochondrial genes, exonic parts of f-rtn4r, andintronic parts of f-rtn4rwere used to reconstruct the tree. The modelsGTR + G (Tavaré, 1986) for mitochondrial genes and intronic regionsof f-rtn4r, and HKY + G (Hasegawa et al., 1985) for exonic regions off-rtn4r displayed the smallest AIC and accordingly fitted our datathe best as calculated with Treefinder. Maximun Likelihood andBayesian phylogenetic reconstructions lead to equivalent tree topolo-gies (Appendices A and B respectively), both comparable in broad out-line to the one obtained by Covain et al. (2008), and Rodriguez et al.(2011). The ML tree (Fig. 1 and Appendix A; �lnL = 116343.2) andBayesian tree (Appendix B) both showabasal splitwithin the Loricari-inae [100 Bootstrap Probability (BP) and 1 Posterior Probability (PP)]resulting in two highly supported lineages: the Harttiini (clade 1;95.65 BP and 1 PP) and the Loricariini (clade 2; 85.68 BP and 1 PP).The Loricariini was divided, in turn, into two strongly supportedclades: the Farlowellina (clade A; 100 BP and 1 PP); and the Loricariina(clade B; 78.85 BP and 1 PP).Within the Loricariina, threemain groupswere resolved with high supports, one forming the Loricariichthysgroup (sensu Covain and Fisch-Muller, 2007; 85.95 BP and 1 PP), a sec-ond comprising Spatuloricaria in a sister position to the Loricaria plusPseudohemiodon groups (sensu Covain and Fisch-Muller, 2007; 99.95

Fig. 1. Maximum likelihood tree of the Loricariinae (�lnL = 116343.2) inferred from thpartial f-rtn4r nuclear gene. The models GTR + G for mitochondrial genes and intronic regiBayesian reconstructions. Blackened branches in the ingroup indicate nodes with both bindicate incongruence between ML and Bayesian reconstructions. 1: Harttiini; 2: Loricartext. Scale indicates the number of substitutions per site as expected by the model.

BP and 1 PP), and a third comprising all Rineloricaria representatives(99.6 BP and 1 PP). Metaloricaria, Dasyloricaria, and Fonchiiloricariawere not included in these morphological groups.

3.1.1. HarttiiniThe Harttiini tribe formed a monophyletic group (Fig. 1, clade 1)

and included the genera Harttia, Cteniloricaria, and Harttiella(Fig. 2). Cteniloricaria and Harttiella were resolved as monophyleticwith high statistical supports (both with 100 BP and 1 PP; Appen-dices A and B). Cteniloricaria included two species, C. napova andC. platystoma (type species). Harttiella comprised six species,H. crassicauda (type species), H. parva, H. pilosa, H. longicauda,H. intermedia, and H. lucifer. Harttiella intermediawas nested withinH. longicauda. Relationships among other Harttiini belonging toHarttia were partly unresolved. Guianese Harttia comprisingH. guianensis, H. surinamensis, H. fluminensis, and H. tuna formed ahighly supported monophyletic group (100 BP and 1 PP) but wereweakly supported as members of Harttia (BP below 50). In theBayesian inference they formed the sister group of Cteniloricariawith very low posterior probabilities (0.53). The only relationshipbetter supported in Harttia was the clade including Amazonianrepresentatives (H. punctata, H. duriventris, H. dissidens, H. sp.Xingu1, H. sp. Xingu2, H. sp. Xingu3, H. sp. Tapajos, H. sp. Tocantins,and H. aff. punctata) plus the Guianese H. fowleri in a sisterposition to representatives from South East Brazil (includingH. loricariformis, type species of the genus and H. leiopleura type

e combined analysis of sequences of partial 12S and 16S mitochondrial genes, andons of f-rtn4r, and HKY + G for exonic regions of f-rtn4rwere applied for both ML andootstrap supports and posterior probabilities below 50 and 0.70 respectively. Starsiini; A: Farlowellina, B: Loricariina. Circled numbers refer to subtrees figured in the

Page 15: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

506 R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517

species of Quiritixys) with a low bootstrap probability of 54.5 but aposterior probability of 1 (Appendices A and B respectively). Dee-per relationships among genera were not statistically supported.

3.1.2. Loricariini, FarlowellinaThe Loricariini tribe was resolved as monophyletic (Fig. 1, clade

2). Within Loricariini, the subtribe Farlowellina also constituted amonophyletic assemblage (Fig. 1, clade A), and comprised Lamon-

Fig. 2. Maximum likelihood tree, labeled subtree of the Harttiini tribe. Numbers aboveabove 0.70. Within species supports are provided in Appendices A and B. Dash (–) represand posterior probabilities below 50 and 0.70 respectively. Stars indicate incongruentopologies of Appendices A and B. Bold type refers to type species of different genera. S

tichthys, Pterosturisoma, Sturisoma, Farlowella, Aposturisoma, andSturisomatichthys (Fig. 3). Interspecific relationships were congru-ent between both phylogenetic analyses. Lamontichthys (includingL. filamentosus, type species) was monophyletic and formed, withhigh support (100 BP and 1 PP), the sister group of all other repre-sentatives of the subtribe. The second diverging genus was themonotypic Pterosturisoma microps that formed the sister group ofthe remaining Farlowellina. Then all cis-Andean (East of the Andes

branches indicate bootstrap supports above 50 followed by posterior probabilitiesent low supports. Blackened branches indicate nodes with both bootstrap supportsce between ML and Bayesian reconstructions and NAs indicate nodes absent incale indicates the number of substitutions per site as expected by the model.

Page 16: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

Fig. 3. Maximum likelihood tree, labeled subtree of the Loricariini tribe: Farlowellina subtribe. Numbers above branches indicate bootstrap supports above 50 followed byposterior probabilities above 0.70. Within species supports are provided in Appendices A and B. Dash (–) represent low supports. Blackened branches indicate nodes withboth bootstrap supports and posterior probabilities below 50 and 0.70 respectively. Stars indicate incongruence between ML and Bayesian reconstructions and NAs indicatenodes absent in topologies of Appendices A and B. Bold type refers to type species of different genera. Scale indicates the number of substitutions per site as expected by themodel.

R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517 507

Page 17: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

508 R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517

following the definition of Haffer, 1967; and Albert et al., 2006)representatives of Sturisoma included in this study, branched withhigh statistical support (100 BP and 1 PP) in a sister position to allother representatives of Sturisoma, Sturisomatichthys, Farlowellaand Aposturisoma. The subsequent, also highly supported, groupcomprised a mix of representatives of Sturisomatichthys (includingS. leightoni, type species) and of the trans-Andean (West of theAndes) Sturisoma rendering both genera paraphyletic. Within thelast group of Farlowellina, a first group of Farlowella consisted ofthe stockiest forms of the genus (including F. platorynchus, F. ama-zona, F. aff. rugosa, F. taphorni and F. curtirostra) branched in a sisterposition to Aposturisoma myriodon forming in turn and with highsupport (99.96 BP and 1 PP) the sister genus of a second group ofFarlowella (including F. acus, type species) rendering Farlowellaparaphyletic.

3.1.3. Loricariini, LoricariinaThe subtribe Loricariina (Fig. 1, clade B) was also monophyletic

and formed the sister group of Farlowellina (Fig. 1, clade A). Thebasal split (Fig. 4) gave rise to two strongly supported lineages,one comprising the representatives of Metaloricaria (includingMetaloricaria paucidens, type species; 99.9 BP and 1 PP) and thesecond including all other Loricariina (Fig. 4; 99.8 BP and 1 PP).Then a second diverging group comprising Dasyloricaria represen-tatives in a sister position to the monotypic Fonchiiloricaria nan-odon, formed in turn the sister group of the remainingLoricariina. The sister relationship between Dasyloricaria andFonchiiloricaria was however not supported by bootstrap values

Fig. 4. Maximum likelihood tree, labeled subtree of the Loricariini tribe: Loricariina subposterior probabilities above 0.70. Within species supports are provided in Appendices Agenera. Scale indicates the number of substitutions per site as expected by the model.

(BP < 50) but displayed relatively high posterior probability(0.83). The sister group of these two genera split into two groupswith on one side representatives of Rineloricaria and Ixinandria,and on the other side members of the Loricaria–Pseudohemiodonand Loricariichthys groups.

3.1.3.1. Loricariini, Loricariina, Rineloricaria. The genus Rineloricariaformed the most species rich group of the subfamily and consti-tuted a monophyletic assemblage comprising members of Fonchii-ichthys, Hemiloricaria, Leliella, and Ixinandria steinbachi, typespecies of Ixinandria, with high statistical support (Fig. 5; 99.6 BPand 1 PP). The first diverging group of Rineloricaria comprised thetrans-Andean R. altipinnis in a sister relationship to thecis-Andean R. stewarti, R. fallax, R. formosa, R. melini, R. teffeana,R. morrowi, and several undescribed species (88.5 BP and 0.98PP). The second diverging group comprised different populationsof R. lanceolata and R. hoehnei. The latter species was nested withinR. lanceolata and all internal relationships were fully resolved andhighly supported (82.4 < BP < 100 and 1 PP). These two speciesformed the sister group of all remaining Rineloricaria representa-tives. Concerning the sister group of the R. lanceolata clade,the two phylogenetic methods provided alternative hypotheses. TheBayesian inference (Appendix B) resolved the monophyly ofthe Southeastern species of Rineloricaria plus Ixinandria steinbachi(nested within Rineloricaria as sister species of R. misionera) whichformed the sister group of a second monophyletic group compris-ing the representatives of Rineloricaria from the Amazon, Orinoco,and trans-Andean region (except R. altipinnis), whereas the ML

tribe. Numbers above branches indicate bootstrap supports above 50 followed byand B. Dash (–) represent low supports. Bold type refers to type species of different

Page 18: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517 509

reconstruction (Appendix A) resolved the species R. osvaldoi andrelatives as sister group of all the remaining Rineloricaria plusIxinandria. Then the species from the Amazon, Orinoco, and thetrans-Andean region diverged and formed the sister group of

Fig. 5. Maximum likelihood tree, labeled subtree of the Loricariini tribe: Loricariina subtr50 followed by posterior probabilities above 0.70. Within species supports are provided inodes with both bootstrap supports and posterior probabilities below 50 and 0.70 respeNAs indicate nodes absent in topologies of Appendices A and B. Bold type refers to typeexpected by the model.

Amazonian species including R. wolfei in a sister position to theSoutheastern clade (including I. steinbachi, type species of Ixinan-dria). However, the Bayesian inference lead to a better resolutionof the phylogeny with all posterior probabilities greater than 0.6,

ibe, Rineloricaria group. Numbers above branches indicate bootstrap supports aboven Appendices A and B. Dash (–) represent low supports. Blackened branches indicatectively. Stars indicate incongruence between ML and Bayesian reconstructions andspecies of different genera. Scale indicates the number of substitutions per site as

Page 19: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

510 R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517

whereas bootstrap values only supported the monophyly of theSoutheastern clade (98.7 BP). In both reconstructions, the type spe-cies of Ixinandria was nested within Southeastern Rineloricaria. Thespecies R. uracantha (type species of Fonchiiichthys), R. heteroptera

Fig. 6. Maximum likelihood tree, labeled subtree of the Loricariini tribe: Loricariina suabove 50 followed by posterior probabilities above 0.70. Within species supports are provindicates the number of substitutions per site as expected by the model.

(type species of Leliella), and R. eigenmanni and relatives fromOrinoco basin (potentially close relatives of R. caracasensis, typespecies of Hemiloricaria) were all resolved in a nested positionwithin Rineloricaria, in positions strongly supported by bootstrap

btribe, Loricariichthys group. Numbers above branches indicate bootstrap supportsided in Appendices A and B. Bold type refers to type species of different genera. Scale

Page 20: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517 511

values and posterior probabilities (81.85 < BP < 100 and0.98 < PP < 1). The genus Rineloricaria sensu lato constituted the sistergroup of the Loricariichthys and Loricaria–Pseudohemiodon groups.

3.1.3.2. Loricariini, Loricariina, Loricariichthys group. Within Lori-cariina, members of the Loricariichthys group formed a stronglysupported natural group (85.95 BP and 1 PP) comprising Pseudo-loricaria, Limatulichthys, Loricariichthys, and Hemiodontichthys(Fig. 6) and formed the sister clade of the Loricaria–Pseudo-

Fig. 7. Maximum likelihood tree, labeled subtree of the Loricariini tribe: Loricariina subsupports above 50 followed by posterior probabilities above 0.70. Within species supporbranches indicate nodes with both bootstrap supports and posterior probabilities belowreconstructions and NAs indicate nodes absent in topologies of Appendices A and B. Bsubstitutions per site as expected by the model.

hemiodon group. Loricariichthys (including L. maculatus, type spe-cies) was monophyletic and constituted the sister genus of allother members of its groups. The second diverging genus wasthe monotypic Hemiodontichthys acipenserinus with its differentpopulations, and was the sister group of the genera Pseudolori-caria and Limatulichthys. All internal relationships within theLoricariichthys group were congruent in both reconstructionsand fully resolved with high statistical supports (Appendices Aand B).

tribe, Loricaria–Pseudohemiodon group. Numbers above branches indicate bootstrapts are provided in Appendices A and B. Dash (–) represent low supports. Blackened50 and 0.70 respectively. Stars indicate incongruence between ML and Bayesian

old type refers to type species of different genera. Scale indicates the number of

Page 21: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

512 R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517

3.1.3.3. Loricariini, Loricariina, Loricaria–Pseudohemiodon group.The Loricaria–Pseudohemiodon group formed a strongly supportedclade (99.95 BP and 1 PP) comprising the genera Spatuloricaria,Loricaria (including Proloricaria), Brochiloricaria, Paraloricaria,Planiloricaria, Crossoloricaria, Pseudohemiodon, Apistoloricaria, andRhadinoloricaria, and formed the most genera rich group (Fig. 7).Interspecific relationships were congruent between both recon-structions except for the species and populations closely relatedto L. cataphracta. Spatuloricaria was resolved as monophyletic andformed the sister genus of all other genera of the group. Theremaining members of the Loricaria–Pseudohemidon group splitinto two strongly supported clades corresponding to the Loricariagroup (sensu Covain and Fisch-Muller, 2007) on one side and thePseudohemiodon group (sensu Covain and Fisch-Muller, 2007) onthe other side. The Loricaria group was strongly supported (100BP and 1 PP) and comprised Loricaria (including L. cataphracta typespecies), Brochiloricaria, and Paraloricaria. At the exclusion of L. pro-lixa (type species of Proloricaria) and L. apeltogaster, the remainingLoricaria species formed a statistically highly supported mono-phyletic group (100 BP and 1 PP). Loricaria formed the sister genusof all other representatives of its group. The sister group of Loricariacomprised Loricaria prolixa in a sister position to Brochiloricariarepresentatives, both in turn forming the sister group of L. apelto-gater as sister species of representatives of Paraloricaria. However,the positions of L. prolixa and L. apeltogaster were not statisticallysupported (50 < BP and 0.66 < PP < 0.68), with the exception oftheir exclusion of the group containing all other Loricaria represen-tatives (100 BP and 1 PP). The Pseudohemiodon group was alsostrongly supported (86.2 BP and 1 PP). The trans-Andean represen-tatives of Crossoloricaria (including C. variegata, type species) wasthe first diverging group, and formed the sister group of all otherPseudohemiodon group members. The second diverging group com-prised the monotypic Planiloricaria cryptodon in a sister position tothe remaining genera of the group. The third diverging group com-prised the representatives of Pseudohemiodon which were resolvedas monophyletic with high statistical support (99.95 BP and 1 PP).The sister group of Pseudohemiodon was also strongly supported(98.95 BP and 1 PP) and comprised a mix of representatives ofRhadinoloricaria, Apistoloricaria and the cis-Andean Crossoloricaria,where Rhadinoloricariawas obtained paraphyletic. All internal rela-tionships were however fully resolved with strong support(Appendices A and B).

3.2. Evaluation of alternative phylogenetic hypotheses

Alternative hypotheses were evaluated using topological testsand results are summarized in Table 3. The hypothesis proposedby Isbrücker (1979) classifying the Loricariinae into three tribes:Harttiini, Loricariini, and Farlowellini without phylogenetic rela-tionships between them (coded as a polytomy at origin of the three

Table 3Alternative phylogenetic relationships evaluated using the Approximately Unbiased (Aalternative hypothesis tests using 1 � 106 RELL replicates. lnL: likelihood of the hypothesisLikelihood (ML) tree as best explanation of the data. Reported results correspond to p-val

Hypothesis Ref

H0 Best ML tree This studH1 Three tribes: Farlowellini, Loricariini, Harttiini IsbrückeH2 Two tribes: Harttiini (incl. Harttiina and Farlowellina) and Loricariini Rapp Py-

(2004)H3 Monophyly of Sturisoma, Sturisomatichthys, and Farlowella This studH4 Monophyly of Crossoloricaria, Apistoloricaria, and Rhadinoloricaria This studH5 Monophyly of Loricaria This studH6 Monophyly of Ixinandria, Rineloricaria, Hemiloricaria, Fonchiiichthys,

and LeliellaAs define

H7 Monophyly of Harttia, Cteniloricaria, Harttiella, and Quiritixys As define

lineages) was significantly rejected by all testing procedures(Table 3, H1). The hypothesis of Rapp Py-Daniel (1997), partlyconfirmed by Armbruster (2004), and consisting in splitting theLoricariinae into two sister tribes: Harttiini on one side (includingHarttia, Cteniloricaria, Harttiella, Lamontichthys, and Pterosturisomaforming the subtribe Harttiina in a sister position to Farlowella,Aposturisoma, Sturisoma, and Sturisomatichthys forming the sub-tribe Farlowelliina), and Loricariini on the other side (comprisingall other genera) was also significantly rejected (Table 3, H2). Thehypothesis proposing, within Farlowellina (as defined by Covainet al., 2008, 2010), the monophyly of Farlowella as sister genus ofAposturisoma on one side, and of Surisoma as sister genus of Sturi-somatichthys on the other side was also significantly rejected by alltests (Table 3, H3). The enforced monophyly of Crossoloricaria assister genus of Apistoloricaria and Rhadinoloricaria (Table 3, H4),as well as the monophyly of Loricaria, comprising L. prolixa, andL. apeltogaster (Table 3, H5), were both significantly rejected.Within the Rineloricaria clade (Fig. 5), the validity of Ixinandria,Hemiloricaria, Rineloricaria, Leliella, and Fonchiiichthys was evalu-ated by assigning each species to the corresponding genus (aslisted in Isbrücker, 2001) but without providing phylogenetichypothesis of relationships between these five genera (coded as apolytomy at origin of all lineages). This hypothesis was alsorejected (Table 3, H6). In the same way, the validity of Quiritixyswas assessed by creating a polytomy at origin of Cteniloricaria,Harttia, Harttiella, and Quritixys lineages. This hypothesis wasrejected by all testing procedures (Table 3, H7).

4. Discussion

The phylogenetic results confirmed the monophyly of the sub-family Loricariinae, and its splitting into two tribe-level clades,namely the Harttiini, and the Loricariini. Two subtribe-level cladeswere obtained for Loricariini, the Farlowellina and the Loricariina,the latter being the most diversified and further divided in threemain clades. A reappraisal of these tribes, subtribes, and theirrespective genera is here proposed (summarized in Table 4). Thetaxonomic status of some species will also be revised, with newsynonymisations and generic reassignations.

4.1. Harttiini

Corroborating previous results (Montoya-Burgos et al., 1998;Covain et al., 2008; Rodriguez et al., 2011; Lujan et al., 2015), theHarttiini are restricted to Harttia (type genus), Harttiella andCteniloricaria. Moreover, the enlarged definition of Harttiini com-prising Farlowellina (Rapp Py-Daniel, 1997; Armbruster, 2004) ishere significantly rejected (Table 2). Harttiini were primarilydiagnosed by 14 caudal-fin rays, no postorbital notches, no predor-sal keels, a circular mouth with papillose lips, and numerous

U), Bootstrap Probability (BP), and the Expected-Likelihood Weights (ELW) of the; DlnL: difference in likelihood between the alternative hypothesis and the Maximumues.

lnL DlnL AU BP ELW

y �116343.2 – – – –r (1979) �116579.5 236.3 0 0 0Daniel (1997) and Armbruster �116968.6 625.4 0 0 0

y �116723.6 380.4 0 0 0y �116461.5 118.3 0 0 0y �116424.1 80.9 0 0 8.38 � 10�7

d by Isbrücker (2001) �117873.3 1530.1 0 0 0

d by Isbrücker (2001) �116532.8 189.6 0 0 0

Page 22: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

Table 4Loricariinae classification with list of valid genera following this study.

LoricariidaeLoricariinaeHarttiini

Harttia (synonym: Quiritixys)HarttiellaCteniloricaria

LoricariiniFarlowellinaLamontichthysPterosturisomaFarlowellaAposturisoma (possibly a synonym of Farlowella)Sturisoma (restricted to cis-Andean region)Sturisomatichthys (including all trans-Andean Sturisoma)

LoricariinaMetaloricariaDasyloricariaFonchiiloricaria

Rineloricaria groupRineloricaria (synonyms: Fonchiiichthys, Hemiloricaria, Leliella,and Ixinandria)

Loricariichthys groupPseudoloricariaLimatulichthysLoricariichthysHemiodontichthysFurcodontichthys (not available for this study; group assignmentbased on morphology)

Loricaria–Pseudohemiodon groupSpatuloricariaLoricariaProloricaria (revalidated)BrochiloricariaParaloricariaCrossoloricaria (restricted to trans-Andean region)PlaniloricariaPseudohemiodonRhadinoloricaria (including all cis-Andean Crossoloricaria; synonym:Apistoloricaria)Dentectus (not available for this study; group assignment based onmorphology)Reganella (not available for this study; group assignment based onmorphology)Pyxiloricaria (not available for this study; group assignment basedon morphology)Ricola (not available for this study; group assignment based onmorphology)

R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517 513

pedunculated teeth organized in a comblike manner (Isbrücker,1979; Covain and Fisch-Muller, 2007). However, these featuresare shared by Harttiini, Farlowellina and partly by Fonchiiloricariananodon within Loricariini, rendering the definition of Harttiinisensu stricto invalid. We nevertheless note that in Harttiini, theabdominal cover made of small rhombic platelets can be presentor absent, and when it is present, the abdominal cover neverextends to the lower lip margin. The latter condition is, on the con-trary, always observed in Farlowellina. If this criterion applies, thenthe recently described Harttia absaberi (Oyakawa et al., 2013)should be regarded as a putative member of Farlowellina. Deeperrelationships within Harttiini are not resolved due to very shortinternal branches suggesting explosive radiation of the mainlineages. The nested position of H. leiopleura, type species ofQuiritixys, within the Southeastern species of Harttia which alsoincluded H. loricariformis, the type species of the genus, rendersHarttia paraphyletic with the necessity to describe several newgenera (considering our sampling, a total of four would be neededto render each lineage monophyletic). To prevent this taxonomicissue, a conservative approach consists in placing Quiritixys intosynonymy with Harttia. This conclusion is reinforced by the signif-icant rejection of the hypothesis evaluating its validity (Table 2). A

second problem concerns the position of Harttiella intermedianested within H. longicauda. A rapid overview of this situationwould probably lead to the placement of H. intermedia into thesynonymy of H. longicauda. However, based on morphometricanalyses, Covain et al. (2012) demonstrated that the former wasperfectly distinct from the latter, and even belonged to anothermorphological group (the crassicauda group comprising all stockierspecies while H. longicauda belonged to the longicauda group com-prising all slender species). In that study the barcode COI sequenceof H. intermedia was also identical to that of H. longicauda, and theauthors hypothesized introgressive hybridization or a recent foun-der effect in an isolated population to explain this phenomenon,both species being present in the same basin. The use of thenuclear f-rtn4r gene in the present study, and the topological resultidentical to that obtained using barcode sequences, invalidate thehypothesis of introgressive hybridization. Since the establishmentof reciprocal monophyly between two sister taxa is a function oftime (Hubert et al., 2008), when not enough time passed to accu-mulate mutations able to differentiate sister species, a paraphyleticgrouping may be observed with one species nested within a secondone [i.e. the coalescent of the first species is contained within thecoalescent of the second (Meyer and Paulay, 2005)]. Harttiellaintermedia thus represents a rather recent vicariant form of H. long-icauda isolated in the Trinité Massif in French Guiana, and corrob-orates the alternative hypothesis of Covain et al. (2012) of amorphologically fast evolving species not yet genetically distin-guishable from its ancestor following the example of the East Afri-can lacustrine cichlid species flock (e.g. Won et al., 2005).

4.2. Loricariini, Farlowellina

Within Loricariini, the phylogeny of Farlowellina revealed unex-pected results. All genera except Lamontichthys and Pterosturisomaappeared paraphyletic, and their enforced monophyly was signifi-cantly rejected (Table 2). The nested position of Aposturisomawithin Farlowella renders the latter polyphyletic. If one considersAposturisoma a valid genus, based on its particular body shape, eco-logical habits and restricted distribution to the Huacamayo-Aguaytia drainage, members of the F. amazona species group (sensuRetzer and Page, 1997) should be placed in a new genus. However,the lack of significant distinctive features between the F. amazonagroup and other Farlowella, and the close relatedness of Aposturi-soma and Farlowella, may imply that Aposturisoma corresponds toa local form of Farlowella adapted to rheophilic habits. This corrob-orates the hypothesis of Covain and Fisch-Muller (2007) who inter-preted the morphological characteristics of Aposturisoma asadaptations to stream habitat rather than an intermediary shapebetween Farlowella and Sturisoma as supposed by Isbrücker et al.(1983). If this hypothesis is applied, Aposturisoma should be con-sidered a junior synonym of Farlowella. Nevertheless, this questionstill deserves further investigation. The taxonomy of Farlowella isalso confused and the group needs further revision. In the last revi-sion of the genus, Retzer and Page (1997) described F. platorynchuswithout examining the holotype of F. amazona. However, examina-tion of the holotypes of both species strongly suggests thatF. platorynchus is a junior synonym of F. amazona. In addition,F. gladiolus was placed in synonymy with F. amazona, but shouldbe regarded as a valid species. Moreover, identification at specificlevel remains difficult due to the very divergent morphology ofthe genus and the great similarity of its members. Consequently,species with a large geographic distribution may comprise speciescomplexes (see e.g. F. oxyrryncha in Fig. 3). The second paraphylyhighlighted here concerns the genera Sturisoma and Sturiso-matichthys. Contrary to the preceding case, a strong geographicalstructure is represented in this result with one group of Sturisomacomprising all cis-Andean species, and a second group comprising

Page 23: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

514 R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517

all trans-Andean members of Sturisoma and Sturisomatichthys.Moreover, the type species of Sturisoma, S. rostrata, is describedfrom Brazilian rivers, whereas the type species of Sturisomatichthys,S. leightoni, is described from the Magdalena River in Colombia. Forthese reasons, Sturisoma is here restricted to the species occurringin the cis-Andean region (including S. barbatum, S. brevirostre, S.guentheri, S. lyra, S. monopelte, S. nigrirostrum, S. caquetae, S. robus-tum, S. rostratum, and S. tenuirostre) whereas Sturisomatichthyscomprises all former trans-Andean species of Sturisoma andSturisomatichthys (i.e. S. aureum, S. citurensis, S. dariense, S. festivum,S. frenatum, S. kneri, S. leightoni, S. panamense, and S. tamanae). Thediagnostic feature provided by Isbrücker and Nijssen (in Isbrücker,1979) to distinguish Sturisomatichthys from Sturisoma, i.e. theabsence of a rostrum in Sturisomaticthys, is not phylogeneticallyinformative (Covain et al., 2008), as it can be absent or presentaccording to the species, and thus is not a valid criterion todiagnose the genus.

4.3. Loricariini, Loricariina

The Loricariina comprises some particular forms that can beseen as relictual species due to their particular morphological char-acteristics, restricted distributions, and long branches, renderingthe phylogenetic signal noisy. Metaloricaria is indeed the firstdiverging group of the subtribe and it possesses a very particularmorphology reminiscent to that of Harttia with which it sharesthe same habitat (stream waters in riffles). This resemblance prob-ably resulted in the initial description of M. nijsseni as a member ofHarttia (Boeseman, 1976), despite clear autapomorphic featuressuch as a horse-shoe like mouth shape, teeth pedunculated yetreduced in size and number, and 13 caudal-fin rays, that indicatethe future trends of the Loricariina (strong modifications in mouth,lips, and teeth characteristics, decrease of the number of caudal-finrays, etc.). Metaloricaria is restricted to the Guiana Shield in riversflowing through Suriname and French Guiana. In the same way,Dasyloricaria which is restricted to the Pacific slope of the Andes(a unique pattern of distribution within the subfamily), shares amosaic of morphological characteristics with representatives ofother Loricariina mainly distributed on the Atlantic slope. Alongwith members of Rineloricaria, it shares papillose lips and hyper-trophied odontodes along the sides of the head in breeding males.With some representatives of the Loricariichthys group (sensuCovain and Fisch-Muller, 2007), it shares deep postorbital notches,a strongly structured abdominal cover, and a similar mouth shape,including the hypertrophied lower lip of breeding males(Steindachner, 1878). Finally, with some representatives of theLoricaria group, it shares a triangular head, strong predorsal keels,and the upper caudal fin ray produced into a long whip. Finally,Fonchiiloricaria is restricted to the Upper Huallaga River in Peru.It possesses 14 caudal-fin rays, and no postorbital notches, two fea-tures characteristic for Harttiini and Farlowellina. In addition italso possesses autapomorphic features such as an extreme reduc-tion in size and number of premaxillary teeth (when not missing)relative to dentary teeth (Rodriguez et al., 2011). All these relictualspecies exhibit features that will be successively lost or maintainedin other Loricariina lineages. In this case the observed autapomor-phic features would correspond to the retention of ancestralcharacters.

Rineloricaria constitutes by far the most species rich genus ofthe Loricariinae, including 66 valid species and numerous unde-scribed ones. Several attempts have been made to split this genus.Isbrücker and Nijssen (1976) proposed the revalidation ofHemiloricaria Bleecker, 1862 (type species: Hemiloricaria caracasen-sis), but they finally left it in the synonymy of Rineloricaria becauseof the lack of obvious characters to split these two genera. Later on,in an aquarist hobbyist journal, Isbrücker (in Isbrücker et al., 2001)

changed his mind and revalidated Hemiloricaria based on the dis-position of breeding odontodes in males, and assigned 24 speciesto this genus (R. altipinnis, R. beni, R. cacerensis, R. caracasensis,R. castroi, R. eigenmanni, R. fallax, R. formosa, R. hasemani, R. hoehnei,R. jubata, R. konopickyi, R. lanceolata, R. magdalenae, R. melini,R. morrowi, R. nigricauda, R. parva, R. phoxocephala, R. platyura,R. sneiderni, R. stewarti, R. teffeana, and R. wolfei), most of thembelonging to different lineages according to the present results.Moreover, the breeding odontodes on the predorsal area of malesare not always present in the species assigned to this group (e.g.R. platyura). In the same publication, Isbrücker and Micheldescribed Fonchiiichthys (type species: Loricaria uracantha), andIsbrücker described Leliella (type species: Rineloricaria heteroptera)on the basis of subtle differences in sexual dimorphism. However,in our phylogenetic reconstruction R. uracantha, R. heteroptera andR. eigenmanni (a very close relative of R. caracasensis following theexamination of type specimens) were nested within the sameclade, and their enforced monophyly was significantly rejected(Table 3). For these reasons, Hemiloricaria, Fonchiiichthys, andLeliella are here placed in synonymy with Rineloricaria. In addition,the nested position of Ixinandria steinbachi in a sister position toR. misionera within Southeastern representatives of Rineloricaria,renders Rineloricaria paraphyletic. We therefore place Ixinandriain synonymy with Rineloricaria. The diagnostic feature given byIsbrücker and Nijssen (in Isbrücker, 1979) for Ixinandria, a nakedbelly and particular sexual dimorphism, should be considered asspecific characters. This is reinforced by the appearance, in closerelatives of R. steinbachi from Southeast Brazil or Argentina, of agradual increase in the abdominal plating, rendering thus the bellypartly covered (e.g. R. maquinensis, R. aequalicuspis or R. misionera).Finally, the nested position of R. hoehnei within R. lanceolatarenders the latter paraphyletic. We confirm here results of Vera-Alcaraz et al. (2012) and also place R. hoehnei (Miranda Ribeiro,1912) in synonymy with R. lanceolata (Günther, 1868). However,considering the branch lengths of the phylogenetic tree comparedto other species of Rineloricaria, R. lanceolata may prove to host aspecies complex.

The Loricariichthys group appears more structured, with all gen-era resolved as monophyletic and strongly supported. With theexception of the nominal genus, this group surprisingly comprisesmostly monotypic or poorly diversified genera (Limatulichthys,Pseudoloricaria, and Hemiodontichthys, with the addition ofFurcodontichthys following results of Covain and Fisch-Muller,2007). However, given their broad geographic range, and longbranches among populations, Hemiodontichthys acipenserinus andPseudoloricaria laeviuscula could comprise species complexes.Indeed, Isbrücker and Nijssen (1974) reported variations inmorphometric features of H. acipenserinus, with populations fromthe Amazonian region tending to be more slender than those fromthe Paraguay and Guaporé Rivers.

Within the Loricaria group, the nominal genus is resolved asparaphyletic, and its enforced monophyly is statistically rejected(Table 3). Loricaria prolixa connected in a sister position to repre-sentatives of Brochiloricaria, and L. apeltogater in a sister positionto Paraloricaria. Loricaria prolixa was designated by Isbrücker (inIsbrücker et al., 2001) as type species of a new genus Proloricaria,based on a flattened and anteriorly broad body. The weakness ofthese supposed diagnostic features that are also present in othergenera (e.g. Pyxiloricaria, Pseudohemiodon) lead several authors toconsider Proloricaria as a junior synonym of Loricaria (Ferraris inReis et al., 2003; Covain and Fisch-Muller, 2007). However, ourresults sustain the validity of Proloricariawhich is here revalidated.The sister position of L. apeltogater to Paraloricaria needs furtherinvestigation. The specimen included in the present study wasnot preserved, and we can not be certain that it belonged to thespecies. However, in the description of P. agastor, Isbrücker

Page 24: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517 515

(1979) had already noticed the close resemblance of both species(the smallest syntype of L. apeltogaster was even subsequentlyidentified as P. agastor), distinguishing them on the basis of thedentition. Paraloricaria possesses small teeth on both jaws whereasL. apeltogater possesses the typical dentition for Loricaria with pre-maxillary teeth two times longer than dentary ones.

Within the Pseudohemiodon group, the trans-Andean Crossolori-caria which includes C. variegata, type species, branches in a sisterposition to all other genera, whereas the cis-Andean Crossoloricaria,are nested within the remaining members of the Pseudohemiodongroup, rendering Crossoloricaria paraphyletic. Crossoloricaria ispoorly diagnosed, its only distinctive character (incompleteabdominal cover consisting of a double median row of plates)being shared by Apistoloricaria and Rhadinoloricaria. Moreover,Crossoloricaria rhami possesses a complete abdominal plate devel-opment (Isbrücker and Nijssen, 1983), thus rendering the diagnos-tic feature of Crossoloricaria invalid. Apistoloricaria is also not welldiagnosed and is distinguished from Rhadinoloricaria primarily bythe presence or absence of the iris operculum (absent or vestigialin Apistoloricaria versus present in Rhadinoloricaria), a more con-spicuous rostrum in Rhadinoloricaria, and by the number of fringedbarbels (14 in Apistoloricaria versus 12 in Rhadinoloricaria). Basedon the present phylogenetic results, the rejection of the enforcedmonophyly of Crossoloricaria, Apistoloricaria, and Rhadinoloricaria(Table 3), and the weakness of these diagnostic features, Crossolori-caria is here restricted to the trans-Andean region (including C. var-iegata, C. venezuelae, and C. cephalaspis), whereas the cis-Andeanspecies of Crossoloricaria (C. rhami, C. bahuaja) are transferred toRhadinoloricaria. Apistoloricaria is also placed in synonymy withRhadinoloricaria.

5. Conclusions

This work represents the first comprehensive phylogeny of theLoricariinae and provides considerable additional data to the evo-lutionary tree of one of the most diversified vertebrate families.The Loricariinae, the second species-rich subfamily of the Loricari-idae, and hitherto phylogenetically underinvestigated, is analyzedwith 368 OTUs (350 Loricariinae). An important gap in the evolu-tionary tree of the Loricariidae is thus filled, and the present resultscomplement other molecular works at familial and subfamilialranks such as Lujan et al. (2015) on the family Loricariidae withfocus on Hypostominae (203 OTUs), Roxo et al. (2014) on Hypop-topomatinae, Neoplecostominae, and Otothyrinae (155 OTUs),Cramer et al. (2011) on the Loricariidae with focus on Neoplecos-tominae and Hypoptopomatinae (146 OTUs), Chiachio et al.(2008) on Hypoptopomatinae and Neoplecostominae (53 OTUs),and Montoya-Burgos et al. (1998) on the family Loricariidae withemphasis on Hypostominae (58 OTUs), providing thereby a morecomprehensive view of the dramatic diversification of the Loricari-idae in South America.

Acknowledgments

We are grateful to M. Sabaj Perez, and J.G. Lundberg, ANSP; E.Bermingham, and G.R. Reina, STRI; M. Lucena, MCP; J. Armbruster,AUM; O.T. Oyakawa, MZUSP; J. Casciota, and A. Almirón, MLP; Y.P.Cardoso, AUGM-UNLP; M.S. Rodriguez, LIRP; G. Costa Silva, LBP; P.Keith, R. Causse, and P. Pruvost, MNHN; M. van Oijen and K. vanEgmond, RMNH; R. Vonk and H. Praagman, ZMA; J. Maclaine,BMNH; H. Wellendorf, NMW; S. Schaefer, AMNH; M.A. Rogers,FMNH; D. Catania, CAS; G.M. Gonzo, UNSA; L. Rapp Py-Danieland M. Rocha, INPA; C. Dhlouy, San Lorenzo; and S. Rubin and L.Moissonier, France; for the loan of specimens and/or tissue sam-ples. We acknowledge H. Ortega, M. Hidalgo and V. Meza Vargas,MUSM; T. Pequeño and collaborators from CIMA; L. Rodriguez

(Conservación de Recursos Naturales); P. de Rham, Lausanne,P. Gaucher, CNRS Guyane; R. Vigouroux and P. Cerdan, HydrecoGuyane; C. Weber, and A. Merguin, MHNG; M. Dewynter, ONFGuyane; F. Melki, Biotope France; K. Wan Tong You and P. Ouboter,NZCS; C. Bernard, CSBD; the North Rupununi District DevelopmentBoard; and the Iwokrama organization for their field and logisticassistance; the G. and A. Claraz Foundation for their financial sup-port for the missions in Suriname in 2001, 2005, 2007 and 2008,and in French Guiana in 2006; the Académie Suisse des SciencesNaturelles (ScNat) for their financial support for the missions inGuyana 2004 and French Guiana 2006; The C. Topali Fund for theirfinancial contribution to the acquisition of field material for themission Suriname 2007, and lab material in 2009; the All CatfishSpecies Inventory (NSF-DEB 0315963) for the financing of collec-tion consultancies to RC (NMW and ANSP in 09/2007 and12/2007), and open access in Zootaxa to Covain and Fisch-Muller(2007); and the A. Lombard Fund for data acquisition in 2010.We are also grateful to A. Huser, Sallmann-Fehr AG for the gift ofgill nets for the mission in Suriname in 2005 and 2007; the GuyanaEnvironmental Protection Agency, and Ministry of Amerindianaffairs; the French Guiana Diren, and Préfecture; and the Suri-namese Ministry of Agriculture, Animal Husbandry and Fisheriesfor the different necessary authorizations and collecting permits.Part of this project was supported by the Fond National Suisse dela Recherche Scientifique (JIMB 31003-141233). CO researchesare supported by CNPq and FAPESP in Brazil. The figures werefinalized by Florence Marteau, MHNG. John Hollier, MHNG,improved language usage and style. Jan Pawlowski and José Fahrni,University of Geneva, are acknowledged for laboratory facilities.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, inthe online version, at http://dx.doi.org/10.1016/j.ympev.2015.10.018.

References

Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans.Autom. Control 19 (6), 716–723.

Albert, J.S., Lovejoy, N.R., Crampton, W.G.R., 2006. Miocene tectonism and theseparation of cis- and trans-Andean river basins: evidence from Neotropicalfishes. J. S. Am. Earth Sci. 21, 14–27.

Alexandrou, M.A., Oliveira, C., Maillard, M., McGill, R.A., Newton, J., Creer, S., Taylor,M.I., 2011. Competition and phylogeny determine community structure inMüllerian co-mimics. Nature 469 (7328), 84–88.

Alves-Gomes, J.A., Orti, G., Haygood, M., Heiligenberg, W., Meyer, A., 1995.Phylogenetic analysis of the South American electric fishes (orderGymnotiformes) and the evolution of their electrogenic system – a synthesisbased on morphology, electrophysiology, and mitochondrial sequence data.Mol. Biol. Evol. 12, 298–318.

Armbruster, J.W., 2004. Phylogenetic relationships of the suckermouth armouredcatfishes (Loricariidae) with emphasis on the Hypostominae and theAncistrinae. Zool. J. Linnean Soc. 141, 1–80.

Ballen, G.A., Mojica, J.I., 2014. A new trans-Andean Stick Catfish of the genusFarlowella Eigenmann & Eigenmann, 1889 (Siluriformes: Loricariidae) with thefirst record of the genus for the río Magdalena Basin in Colombia. Zootaxa 3765,134–142.

Boeseman, M., 1976. A short review of the Surinam Loricariinae; with additionalinformation on Surinam Harttiinae, including the description of a new species(Loricariidae, Siluriformes). Zoologische Mededelingen (Leiden) 50 (11), 153–177.

Cardoso, Y.P., Montoya-Burgos, J.I., 2009. Unexpected diversity in the catfishPseudancistrus brevispinis reveals dispersal routes in a Neotropical center ofendemism: the Guyanas Region. Mol. Ecol. 18 (5), 947–964.

de Carvalho Paixão, A., Toledo-Piza, M., 2009. Systematics of LamontichthysMiranda-Ribeiro (Siluriformes: Loricariidae), with the description of two newspecies. Neotrop. Ichthyol. 7, 519–568.

Chiachio, M.C., Oliveira, C., Montoya-Burgos, J.I., 2008. Molecular systematic andhistorical biogeography of the armored Neotropical catfishesHypoptopomatinae and Neoplecostominae (Siluriformes: Loricariidae). Mol.Phylogenet. Evol. 49, 606–617.

Costa e Silva, G.de S.da, Roxo, F.F., Britzke, R., Oliveira, C., 2014. New species of thePseudancistrus barbatus group (Siluriformes, Loricariidae) with comments onits biogeography and dispersal routes. Zookeys 29 (406), 1–23.

Page 25: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

516 R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517

Covain, R., Fisch-Muller, S., 2007. The genera of the Neotropical armored catfishsubfamily Loricariinae (Siluriformes: Loricariidae): a practical key and synopsis.Zootaxa 1462, 1–40.

Covain, R., Fisch-Muller, S., 2012. Molecular evidence for the paraphyly ofPseudancistrus sensu lato (Siluriformes, Loricariidae), with revalidation ofseveral genera. Cybium 36 (1), 229–246.

Covain, R., Dray, S., Fisch-Muller, S., Montoya-Burgos, J.I., 2008. Assessingphylogenetic dependence of morphological traits using co-inertia prior toinvestigate character evolution in Loricariinae catfishes. Mol. Phylogenet. Evol.46, 986–1002.

Covain, R., Dray, S., Fisch-Muller, S., Montoya-Burgos, J.I., 2010. Corrigendum to‘‘Assessing phylogenetic dependence of morphological traits using co-inertiaprior to investigate character evolution in Loricariinae catfishes”. Mol.Phylogenet. Evol. 55, 751.

Covain, R., Fisch-Muller, S., Montoya-Burgos, J.I., Mol, J.H., Le Bail, P.-Y., Dray, S.,2012. The Harttiini (Siluriformes, Loricariidae) from the Guianas: a multi-tableapproach to assess their diversity, evolution, and distribution. Cybium 36 (1),115–161.

Cramer, C.A., Bonatto, S.L., Reis, R.E., 2011. Molecular phylogeny of theNeoplecostominae and Hypoptopomatinae (Siluriformes: Loricariidae) usingmultiple genes. Mol. Phylogenet. Evol. 59, 43–52.

Efron, B., 1979. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26.Eschmeyer, W.N., Fong, J.D., 2015. Species by family/subfamily. Catalog of Fishes

<http://researcharchive.calacademy.org/research/ichthyology/catalog/Species-ByFamily.asp>. Electronic version accessed 23 February 2015.

Felsenstein, J., 1981. Evolutionary trees from DNA-sequences – a maximum-likelihood approach. J. Mol. Evol. 17, 368–376.

Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using thebootstrap. Evolution 39, 783–791.

Ferraris, Jr., C.J., 2003. Subfamily Loricariinae (Armoured catfishes). In: Reis, R.E.,Kullander, S.O., Ferraris, Jr. C.J. (Eds.), Check List of the Freshwater Fishes ofSouth and Central America, Edipucrs, Porto Alegre, Brazil, pp. 330–350.

Ferraris Jr., C.J., 2007. Checklist of catfishes, recent and fossil (Osteichthyes:Siluriformes), and catalogue of siluriform primary types. Zootaxa 1418, 1–628.

Fichberg, I., Chamon, C.C., 2008. Rineloricaria osvaldoi (Siluriformes: Loricariidae): anew species of armored catfish from rio Vermelho, Araguaia basin, Brazil.Neotrop. Ichthyol. 6, 347–354.

Fichberg, I., Oyakawa, O.T., de Pinna, M., 2014. The end of an almost 70-year wait: anew species of Spatuloricaria (Siluriformes: Loricariidae) from the Rio Xingu andRio Tapajós Basins. Copeia 2014 (2), 317–324.

Fisch-Muller, S., Montoya-Burgos, J.I., Le Bail, P.-Y., Covain, R., 2012. Diversity of theAncistrini (Siluriformes: Locariidae) from the Guianas: the Panaque group, amolecular appraisal with description of new species. Cybium 36 (1), 163–193.

Fricke, R., Eschmeyer, W.N., 2015. Guide to fish collections. Catalog of fishes <http://researcharchive.calacademy.org/research/ichthyology/catalog/collections.asp>.Electronic version accessed 23 February 2015.

Gelman, A., Rubin, D.B., 1992. Inference from iterative simulation using multiplesequences. Statistical Sci. 7 (4), 457–511.

Ghazzi, M.S., 2008. Nove espécies novas do gênero Rineloricaria (Siluriformes,Loricariidae) do rio Uruguai, do sul do Brasil. Iheringia, Série Zoologia 98, 100–122.

Haffer, J., 1967. Speciation in Colombian forest birds West of the Andes. Am.Museum Novitates 2294, 1–57.

Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor andanalysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

Hasegawa, M., Kishino, H., Yano, T., 1985. Dating of the human-ape splitting by amolecular clock of mitochondrial DNA. J. Mol. Evol. 22 (2), 160–174.

Hubert, N., Hanner, R., Holm, E., Mandrak, N.E., Taylor, E., Burridge, M., Watkinson,D., Dumont, P., Curry, A., Bentzen, P., Zhang, J., April, J., Bernatchez, L., 2008.Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3,e2490.

Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES: Bayesian inference of phylogeny.Bioinformatics 17, 754–755.

Ingenito, L.F.S., Ghazzi, M.S., Duboc, L.F., Abilhoa, V., 2008. Two new species ofRineloricaria (Siluriformes: Loricariidae) from the rio Iguaçu basin, southernBrazil. Neotrop. Ichthyol. 6, 355–366.

Isbrücker, I.J.H., 1979. Description préliminaire de nouveaux taxa de la famille desLoricariidae, poissons-chats cuirassés néotropicaux, avec un catalogue critiquede la sous-famille nominale (Pisces, Siluriformes). Revue Françaised’Aquariologie et Herpétologie 5, 86–116.

Isbrücker, I.J.H., 2001. Nomenklator der Gattungen und Arten der Harnischwelse,Familie Loricariidae Rafinesque, 1815 (Teleostei: Ostariophysi). In:Stawikowski, R. (Ed.), Harnischwelse 2, Die Aquarien und Terrarien Zeitschrift,Sonderheft, Eugen Ulmer, Stuttgart, Germany, p. 25–32.

Isbrücker, I.J.H., Nijssen, H., 1974. On Hemiodontichthys acipenserinus and Reganelladepressa, two remarkable mailed catfishes from South America (Pisces,Siluriformes, Loricariidae). Beaufortia 22, 193–222.

Isbrücker, I.J.H., Nijssen, H., 1976. Rineloricaria heteroptera, a new species of mailedcatfish from Rio Amazonas near Manaus, Brazil (Pisces, Siluriformes,Loricariidae). Zool. Anzeiger 196, 109–124.

Isbrücker, I.J.H., Nijssen, H., 1983. Crossoloricaria rhami n. sp., un nouveau poisson-chat cuirassé du Rio Huacamayo, Pérou (Pisces, Siluriformes, Loricariidae).Revue Française d’Aquariologie et Herpétologie 10, 9–12.

Isbrücker, I.J.H., Britski, H.A., Nijssen, H., Ortega, H., 1983. Aposturisoma myriodon,une espèce et un genre nouveaux de Poisson-Chat cuirassé, tribu Farlowellini

Fowler, 1958 du Bassin du Rio Ucayali, Pérou (Pisces, Siluriformes, Loricariidae).Revue Française d’Aquariologie et Herpétologie 10, 33–42.

Isbrücker, I.J.H., Seidel, I., Michels, J.P., Schraml, E., and Werner, A., 2001. Diagnosevierzehn neuer Gatungen der Familie Loricariidae Rafinesque, 1815 (Teleostei,Ostariophysi). In: Stawikowski, R. (Ed.), Harnischwelse 2, Die Aquarien undTerrarien Zeitschrift, Sonderheft, Eugen Ulmer, Stuttgart, Germany, p. 17–24.

Jobb, G., von Haeseler, A., Strimmer, K., 2004. TREEFINDER: a powerful graphicalanalysis environment for molecular phylogenetics. BMC Evol. Biol. 4, 18.

Kishino, H., Miyata, T., Hasegawa, M., 1990. Maximum likelihood inference ofprotein phylogeny and the origin of chloroplasts. J. Mol. Evol. 31, 151–160.

Lecointre, G., Améziane, N., Boisselier, M.C., Bonillo, C., Busson, F., Causse, R.,Chenuil, A., Couloux, A., Coutanceau, J.P., Cruaud, C., d’Udekem d’Acoz, C., DeRidder, C., Denys, G., Dettaï, A., Duhamel, G., Eléaume, M., Féral, J.P., Gallut, C.,Havermans, C., Held, C., Hemery, L., Lautrédou, A.C., Martin, P., Ozouf-Costaz, C.,Pierrat, B., Pruvost, P., Puillandre, N., Samadi, S., Saucède, T., Schubart, C., David,B., 2013. Is the species flock concept operational? The Antarctic shelf case. PLoSONE 8 (8), e68787.

Legendre, P., Lapointe, F.-J., 2004. Assessing congruence among distance matrices:single malt Scotch whiskies revisited. Austral. New Zealand J. Statistics 46, 615–629.

Londoño-Burbano, A., Lefebvre, S.L., Lujan, N.K., 2014. A new species ofLimatulichthys Isbrücker & Nijssen (Loricariidae, Loricariinae) from thewestern Guiana Shield. Zootaxa 3884 (4), 360–370.

Löytynoja, A., Milinkovitch, M.C., 2001. SOAP, cleaning multiple alignments fromunstable blocks. Bioinformatics 17 (6), 573–574.

Lujan, N.K., Armbruster, J.W., Lovejoy, N.R., López-Fernández, H., 2015. Multilocusmolecular phylogeny of the suckermouth armored catfishes (Siluriformes:Loricariidae) with a focus on subfamily Hypostominae. Mol. Phylogenet. Evol.82, 269–288.

Meyer, A., 1993. Evolution of mitochondrial DNA in fishes. In: Hochachka, P.W.,Mommsen, P. (Eds.), Biochemistry and Molecular Biology of Fishes, Volume 2:Molecular Biology Frontiers. Elsevier Science, Amsterdam, The Netherlands, pp.1–38.

Meyer, C.P., Paulay, G., 2005. DNA barcoding: error rates based on comprehensivesampling. PLoS Biol. 3, 2229–2238.

Montoya-Burgos, J.I., Muller, S., Weber, C., Pawlowski, J., 1998. Phylogeneticrelationships of the Loricariidae (Siluriformes) based on mitochondrial rRNAgene sequences. In: Malabarba, L.R., Reis, R.E., Vari, R.P., Lucena, Z.M.S., Lucena,C.A.S. (Eds.), Phylogeny and Classification of Neotropical Fishes. Edipucrs PortoAlegre, Porto Alegre, Brazil, pp. 363–374.

Oyakawa, O.T., Fichberg, I., Langeani, F., 2013. Harttia absaberi, a new species ofloricariid catfish (Siluriformes: Loricariidae: Loricariinae) from the upper rioParaná basin, Brazil. Neotrop. Ichthyol. 11 (4), 779–786.

Paradis, E., 2006. Analysis of Phylogenetics and Evolution with R. Springer, NewYork, 211 pp.

Paradis, E., Claude, J., Strimmer, K., 2004. APE: analyses of phylogenetics andevolution in R language. Bioinformatics 20, 289–290.

de Pinna, M.C.C., 1998. Phylogenetic relationships of Neotropical Siluriformes(Teleostei: Ostariophysi): historical overview and synthesis of hypotheses. In:Malabarba, L.R., Reis, R.E., Vari, R.P., Lucena, Z.M., Lucena, C.A.S. (Eds.),Phylogeny and classification of Neotropical fishes. Edipucrs Porto Alegre,Porto Alegre, Brazil, pp. 279–330.

R Development Core Team, 2009. R: A language and environment for statisticalcomputing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL. <http://www.R-project.org>.

Rambaut, A., and Drummond, A.J., 2007. Tracer v1.4, Available from http://beast.bio.ed.ac.uk/Tracer.

Rapp Py-Daniel, L.H., 1997. Phylogeny of the Neotropical armored catfishes of thesubfamilly Loricariinae (Siluriformes: Loricariidae). Unpublished Ph.D. Thesis.University of Arizona, Tucson, 280 pp.

Rapp Py-Daniel, L.H., Fichberg, I., 2008. A new species of Rineloricaria (Siluriformes:Loricariidae: Loricariinae) from rio Daraá, rio Negro basin, Amazon, Brazil.Neotrop. Ichthyol. 6, 339–346.

Rapp Py-Daniel, L.H., Oliveira, E.C., 2001. Seven new species of Harttia from theAmazonian-Guyana region (Siluriformes: Loricariidae). Ichthyol. Explor.Freshwat. 12, 79–96.

Reis, R.E., Kullander, S.O., Ferraris, C.J., Jr. (Eds.), 2003. Check List of the FreshwaterFishes of South and Central America. Edipucrs Porto Alegre, Porto Alegre, Brazil,742 pp.

Retzer, M.E., Page, L.M., 1997. Systematics of the stick catfishes, FarlowellaEigenmann & Eigenmann (Pisces, Loricariidae). Proc. Acad. Nat. Sci.,Philadelphia 147, 33–88.

Rodriguez, M.S., Miquelarena, A., 2008. Rineloricaria isaaci (Loricariidae:Loricariinae), a new species of loricariid catfish from the Uruguay River basin.J. Fish Biol. 73, 1635–1647.

Rodriguez, M.S., Reis, R.E., 2008. Taxonomic review of Rineloricaria (Loricariidae:Loricariinae) from the Laguna dos Patos drainage, Southern Brazil, with thedescriptions of two new species and the recognition of two species groups.Copeia 2008, 333–349.

Rodriguez, M.S., Cavallaro, M.R., Thomas, M.R., 2012. A new diminutive species ofLoricaria (Siluriformes: Loricariidae) from the Rio Paraguay system, MatoGrosso do Sul, Brazil. Copeia 2012, 49–56.

Rodriguez, M.S., Cramer, C.A., Bonatto, S.L., Reis, R.E., 2008. Taxonomy of IxinandriaIsbrücker and Nijssen (Loricariidae: Loricariinae) based on morphological andmolecular data. Neotrop. Ichthyol. 6, 367–378.

Page 26: Molecular phylogeny of the highly diversified catfish ...pbil.univ-lyon1.fr/members/dray/files/articles/covain2016.pdf · Molecular phylogeny of the highly diversified catfish subfamily

R. Covain et al. /Molecular Phylogenetics and Evolution 94 (2016) 492–517 517

Rodriguez, M.S., Ortega, H., Covain, R., 2011. Intergeneric phylogenetic relationshipsin Loricariinae catfishes (Siluriformes: Locariidae), with description ofFonchiiloricaria nanodon: a new genus and species from Peru. J. Fish Biol. 79(4), 875–895.

Ronquist, F., Huelsenbeck, J.P., 2003. MRBAYES 3: Bayesian phylogenetic inferenceunder mixed models. Bioinformatics 19, 1572–1574.

Roxo, F.F., Zawadzki, C.H., Alexandrou, M.A., Costa Silva, G.J., Chiachio, M.C., Foresti,F., Oliveira, C., 2012. Evolutionary and biogeographic history of the subfamilyNeoplecostominae (Siluriformes: Loricariidae). Ecol. Evol. 2 (10), 2438–2449.

Roxo, F.F., Albert, J.S., Silva, G.S., Zawadzki, C.H., Foresti, F., Oliveira, C., 2014.Molecular phylogeny and biogeographic history of the armored neotropicalcatfish subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae(Siluriformes: Loricariidae). PLoS ONE 9 (8), e105564.

Schaefer, S.A., 1991. Phylogenetic analysis of the loricariid subfamilyHypoptopomatinae (Pisces: Siluroidei: Loricariidae), with comments ongeneric diagnoses and geographic distribution. Zool. J. Linnean Soc. 102 (1),1–41.

Schaefer, S.A., Stewart, D.J., 1993. Systematics of the Panaque dentex species group(Siluriformes: Loricariidae), wood-eating armored catfishes from tropical SouthAmerica. Ichthyol. Explor. Freshwat. 4, 309–342.

Shimodaira, H., 2002. An approximately unbiased test of phylogenetic treeselection. Syst. Biol. 51, 492–508.

Steindachner, F., 1878. Zur Fischfauna des Magdalenen-Stromes. Anzeiger derMathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie derWissenschaften in Wien, vol. 15, pp. 88–91.

Strimmer, K., Rambaut, A., 2002. Inferring confidence sets of possibly misspecifiedgene trees. Proc. R. Soc. B 269, 137–142.

Tavaré, S., 1986. Some probabilistic and statistical problems in the analysis of DNAsequences. In: Miura, R.M. (Ed.), Some Mathematical Questions in Biology –DNA Sequence Analysis. American Mathematics Society, Providence, RI, pp. 57–86.

Thomas, M.R., Rapp Py-Daniel, L.H., 2008. Three new species of the armored catfishgenus Loricaria (Siluriformes: Loricariidae) from river channels of the Amazonbasin. Neotrop. Ichthyol. 6, 379–394.

Thomas, M.R., Sabaj Pérez, M.H., 2010. A new species of whiptail catfish, genusLoricaria (Siluriformes: Loricariidae), from the Rio Curuá (Xingu Basin), Brazil.Copeia 2010, 274–283.

Thomas, M.R., Rodriguez, M.S., Cavallaro, M.R., Froehlich, O., Castro, R.M.C., 2013.Loricaria luciae, a new species of whiptail catfish (Siluriformes: Loricariidae)from the Paraguay and lower Paraná River basins of southeastern SouthAmerica. Zootaxa 3745 (3), 365–378.

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving thesensitivity of progressive multiple sequence alignment through sequenceweighting, position-specific gap penalties and weight matrix choice. Nucl.Acids Res. 22, 4673–4680.

Vera-Alcaraz, H.S., Pavanelli, C.S., Zawadzki, C.H., 2012. Taxonomic revision of theRineloricaria species (Siluriformes: Loricariidae) from the Paraguay River basin.Neotrop. Ichthyol. 10 (2), 285–311.

Won, Y.-J., Sivasundar, A., Wang, Y., Hey, J., 2005. On the origin of Lake Malawicichlid species: a population genetic analysis of divergence. Proc. Natl. Acad. Sci.102, 6581–6586.