Ideal Gasses (1)

download Ideal Gasses (1)

of 14

Transcript of Ideal Gasses (1)

  • 8/11/2019 Ideal Gasses (1)

    1/14

    Ideal Gasses

    The question: U(P,T) = ?, r(P,T)= N/V(P,T) = ?

    Here: only for special substances: ideal gasses

    Interactions between moleculesneglected

    Range of interactions: much shorter than distance between molecules

    HW

    2.5

    2.9

    Due 9/11

  • 8/11/2019 Ideal Gasses (1)

    2/14

    PV =NRT

    R = 8.314 J mol-1K-1

    UIG=NU

    IG(T)

    Nnumber of molecules

    UIG(T)kinetic, rotational and vibrational energy of molecules

    No potential energyno interactions

  • 8/11/2019 Ideal Gasses (1)

    3/14

    Heating of ideal gas in a container

    with rigid walls: V = const

    dUIG

    =/dQ=NCV

    IGdT /dW= Fdx

    0

    CV

    IG

    dUIG

    dTHeat capacity at constant volume

    CVIG

    =3R/ 2 (monoatomic gases)Only translational degrees of freedom: no rotational, no vibrational

    Each degree of freedom contributes R/2 to Cv:

    CvIG

    = 5R/2 (linear molecules)

    CV

    U

    T

    V

    For interacting molecules:

    high density, molecules feel each others presence

    Units of Cv: J mol-1

    K-1

  • 8/11/2019 Ideal Gasses (1)

    4/14

    CP

    IG dH

    IG

    dT=

    d

    dTU

    IG

    +PV

    =

    d

    dTU

    IG

    +RT

    = C

    V

    IG+R

    Heating of ideal gas at constant

    pressure: P = const

    U=Q P V Q= (U+PV

    )=

    H

    dW = -Fdx = -PAdx = -PdV

    For any system: CP

    =

    1

    N

    H

    T

    N ,P

    =

    H

    T

    P

  • 8/11/2019 Ideal Gasses (1)

    5/14

    Adiabatic expansion of ideal gasses

    dU= PdV NCV

    IGdT = NPdV = NPd

    RT

    P

    CV

    IGdT= PdV= RdT+

    RT

    PdP

    dQ = 0

    Three variables: P, T, and V

  • 8/11/2019 Ideal Gasses (1)

    6/14

    Eliminating P

    CV

    IGdT= PdV C

    V

    IGdT= RT

    VdV C

    V

    IG dT

    T= RdV

    V

    T

    T0

    =

    V

    V0

    R

    CV

    IG

    =

    V

    V0

    1

    =

    V

    V0

    1

    R

    V

    V

    V

    V

    C

    IGV

    T

    T

    IGV

    T

    T

    IGV

    V

    V

    V

    VRVR

    V

    dVR

    T

    T

    T

    TCTC

    T

    dTC

    IG

    V

    00

    00

    lnln)ln(

    lnln)ln(

    0

    0

    00

    g= Cp/CV = (CvIG+ R)/CV

    IG= 1 + R/CVIG

  • 8/11/2019 Ideal Gasses (1)

    7/14

    Eliminating V

    CV

    IGdT= RdT+

    RT

    PdP

    (CV

    IG+R

    )

    dT

    T= R

    dP

    P C

    P

    IG dT

    T= R

    dP

    P

    T

    T0

    =

    P

    P0

    R

    CP

    IG

    =

    P

    P0

    1

  • 8/11/2019 Ideal Gasses (1)

    8/14

    Eliminating T

    PdV= CV

    IGdT=

    CV

    IG

    Rd(PV)=

    CV

    IG

    R(PdV+VdP)

    CV

    IG

    RVdP=

    CV

    IG+R

    RPdV C

    V

    IG dP

    P=C

    P

    IG dV

    V

    P

    P0

    =

    V

    V0

    =

    V

    V0

    PV = const.

  • 8/11/2019 Ideal Gasses (1)

    9/14

    Summary: Adiabatic expansion of ideal

    gasses

    T

    T0

    =

    V

    V0

    R

    CV

    IG

    =

    V

    V0

    1

    =

    V

    V0

    1

    T

    T0

    =

    P

    P0

    R

    CP

    IG

    =

    P

    P0

    1

    P

    P0

    =

    V

    V0

    =

    V

    V0

    PV = const.

    U= Q +WW=NC

    V

    IG T

  • 8/11/2019 Ideal Gasses (1)

    10/14

    Example:Nimoles of ideal gas at temperatureTiare held in volume V.

    Same gas at temperature Tinis pumped in until Nf.

    No heat transfer.Tf= f(Ti, Tin,Nf/Ni,Cp) = ?

    Solution:

    From first law:

    dU = /dQ+/dW+ HindN

    inenteringstreams

    HoutdNoutleavingstreams

    dU = HindNin

    d(U N)= HindNin

    U dN+ NdU = HindNin = HindN

  • 8/11/2019 Ideal Gasses (1)

    11/14

    Solution: continued

    U(T) = Uo(To) + Cv(T To)

    H(T) = Ho(To) + Cp(T

    To) Ho(To) = Uo(To) + RTo

    U and H known to within a constant:

    Assume To= 0 and Uo= 0

    U(T) = CvT and H(T) = CpT

    We get from

    U dN+ NdU = HindN

    CvTdN + NCVdT = CpTindN

    NCVdT = (CpTinCvT)dN)(

    lnln

    iinf

    iinf

    iin

    fin

    i

    f

    T

    T in

    N

    N

    TTN

    NTT

    TT

    TT

    N

    N

    TT

    dT

    N

    dN f

    i

    f

    i

    gg

    g

    g

    g

    =

  • 8/11/2019 Ideal Gasses (1)

    12/14

    What if Tin= Ti?

    f

    i

    f

    i

    if

    f

    iif

    iif

    iif

    N

    N

    N

    NTT

    N

    NTT

    TTN

    NTT

    gg

    gg

    gg

    )1(

    )(

    1

    1

    ,10

    f

    i

    f

    i

    V

    V

    V

    p

    f

    i

    f

    i

    N

    N

    N

    N

    C

    RTC

    C

    C

    N

    N

    N

    N

    gg

    g

    gg

    If Nf>>Ni,Tf> Ti

    IfNfNi, TfTi

    Tf> Ti

  • 8/11/2019 Ideal Gasses (1)

    13/14

    Problem 2.9

    A container with N2at Pi= 5 bar and Ti= 300 K is quickly filled

    from a much larger cylinder with P = 10 bar and T = 300 K;

    Pf= 10 bar. Tf= ?

  • 8/11/2019 Ideal Gasses (1)

    14/14

    Air

    water

    2.10. Water gun. Air: 750 cm3, P = 2.5 bar, T = 30oC

    Water pumped at 8 m/s for 5 s through 2 mm ID tube

    Tf= ?, Pf= ?