Gigapixel big data movies provide cost-effective seascape ...

13
Ecology and Evolution. 2018;1–12. | 1 www.ecolevol.org Received: 16 November 2017 | Revised: 14 May 2018 | Accepted: 17 May 2018 DOI: 10.1002/ece3.4301 ORIGINAL RESEARCH Gigapixel big data movies provide cost-effective seascape scale direct measurements of open-access coastal human use such as recreational fisheries David J. H. Flynn 1,2 | Tim P. Lynch 1 | Neville S. Barrett 2 | Lincoln S. C. Wong 1,2 | Carlie Devine 1 | David Hughes 1 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Tweet: Big data seascape scale movies allow for cost-effective high-frequency monitoring of coastal recreational use #CSIRO #CRAGS #Tuna. 1 The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans & Atmosphere, Hobart, TAS, Australia 2 The Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, TAS, Australia Correspondence Tim P. Lynch, The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans & Atmosphere, Castray Esplanade, Hobart, TAS 7000, Australia. Email: [email protected] Funding information University of Tasmania: Part of the IMAS Honours Project; The Coasts Program; CSIRO CAPEX Gigapan ruggerdization MkII 2014/15 Abstract Collecting data on unlicensed open-access coastal activities, such as some types of recreational fishing, has often relied on telephone interviews selected from landline directories. However, this approach is becoming obsolete due to changes in communi- cation technology such as a switch to unlisted mobile phones. Other methods, such as boat ramp interviews, are often impractical due to high labor cost. We trialed an au- tonomous, ultra-high-resolution photosampling method as a cost effect solution for direct measurements of a recreational fishery. Our sequential photosampling was batched processed using a novel software application to produce “big data” time se- ries movies from a spatial subset of the fishery, and we validated this with a regional bus-route survey and interviews with participants at access points. We also compared labor costs between these two methods. Most trailer boat users were recreational fishers targeting tuna spp. Our camera system closely matched trends in temporal variation from the larger scale regional survey, but as the camera data were at much higher frequency, we could additionally describe strong, daily variability in effort. Peaks were normally associated with weekends, but consecutive weekend tuna fish- ing competitions led to an anomaly of high effort across the normal weekday lulls. By reducing field time and batch processing imagery, monthly labor costs for the camera sampling were a quarter of the bus-route survey; and individual camera samples cost 2.5% of bus route samples to obtain. Gigapixel panoramic camera observations of fishing were representative of the temporal variability of regional fishing effort and could be used to develop a cost-efficient index. High-frequency sampling had the added benefit of being more likely to detect abnormal patterns of use. Combinations of remote sensing and on-site interviews may provide a solution to describing highly variable effort in recreational fisheries while also validating activity and catch. KEYWORDS big data, coastal, CSIRO Ruggerdised Autonomous Gigapixel System, GigaPan, open-access fisheries, photomosaic, remote sensing, southern bluefin tuna, time interval count, time-lapse

Transcript of Gigapixel big data movies provide cost-effective seascape ...

Page 1: Gigapixel big data movies provide cost-effective seascape ...

Ecology and Evolution 20181ndash12 emsp|emsp1wwwecolevolorg

Received16November2017emsp |emsp Revised14May2018emsp |emsp Accepted17May2018DOI101002ece34301

O R I G I N A L R E S E A R C H

Gigapixel big data movies provide cost- effective seascape scale direct measurements of open- access coastal human use such as recreational fisheries

David J H Flynn12emsp|emspTim P Lynch1 emsp|emspNeville S Barrett2emsp|emspLincoln S C Wong12emsp|emsp Carlie Devine1emsp|emspDavid Hughes1

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicensewhichpermitsusedistributionandreproductioninanymediumprovidedtheoriginalworkisproperlycitedcopy2018TheAuthorsEcology and EvolutionpublishedbyJohnWileyampSonsLtd

TweetBigdataseascapescalemoviesallowforcost-effectivehigh-frequencymonitoringofcoastalrecreationaluseCSIROCRAGSTuna

1TheCommonwealthScientificandIndustrialResearchOrganisation(CSIRO)OceansampAtmosphereHobartTASAustralia2TheInstituteforMarineandAntarcticStudies(IMAS)UniversityofTasmaniaHobartTASAustralia

CorrespondenceTimPLynchTheCommonwealthScientificandIndustrialResearchOrganisation(CSIRO)OceansampAtmosphereCastrayEsplanadeHobartTAS7000AustraliaEmailtimlynchcsiroau

Funding informationUniversityofTasmaniaPartoftheIMASHonoursProjectTheCoastsProgramCSIROCAPEXGigapanruggerdizationMkII201415

AbstractCollectingdataonunlicensedopen-accesscoastalactivitiessuchassometypesofrecreationalfishinghasoftenreliedontelephoneinterviewsselectedfromlandlinedirectoriesHoweverthisapproachisbecomingobsoleteduetochangesincommuni-cationtechnologysuchasaswitchtounlistedmobilephonesOthermethodssuchasboatrampinterviewsareoftenimpracticalduetohighlaborcostWetrialedanau-tonomousultra-high-resolutionphotosamplingmethodasacosteffectsolutionfordirect measurements of a recreational fishery Our sequential photosampling wasbatchedprocessedusinganovelsoftwareapplicationtoproduceldquobigdatardquotimese-riesmoviesfromaspatialsubsetofthefisheryandwevalidatedthiswitharegionalbus-routesurveyandinterviewswithparticipantsataccesspointsWealsocomparedlaborcostsbetweenthesetwomethodsMost trailerboatuserswererecreationalfishers targeting tuna sppOur camera systemcloselymatched trends in temporalvariationfromthelargerscaleregionalsurveybutasthecameradatawereatmuchhigher frequency we could additionally describe strong daily variability in effortPeakswerenormallyassociatedwithweekendsbutconsecutiveweekendtunafish-ingcompetitionsledtoananomalyofhigheffortacrossthenormalweekdaylullsByreducingfieldtimeandbatchprocessingimagerymonthlylaborcostsforthecamerasamplingwereaquarterofthebus-routesurveyandindividualcamerasamplescost25of bus route samples toobtainGigapixel panoramic cameraobservationsoffishingwererepresentativeofthetemporalvariabilityofregionalfishingeffortandcould be used to develop a cost-efficient indexHigh-frequency sampling had theaddedbenefitofbeingmorelikelytodetectabnormalpatternsofuseCombinationsofremotesensingandon-siteinterviewsmayprovideasolutiontodescribinghighlyvariableeffortinrecreationalfisherieswhilealsovalidatingactivityandcatch

K E Y W O R D S

bigdatacoastalCSIRORuggerdisedAutonomousGigapixelSystemGigaPanopen-accessfisheriesphotomosaicremotesensingsouthernbluefintunatimeintervalcounttime-lapse

2emsp |emsp emspensp FLYNN et aL

1emsp |emspINTRODUC TION

Worldwidecoastalzonesaresomeofthemostheavilyimpactedpartsoftheoceanbypeoplebothintermsofactivitytypesandparticipationrates(Halpernetal2008)Aparticularfocusofre-search on coastal use has been recreational fishing as this pop-ular activity can significantly affect fish and invertebrate stocks(Arlinghaus 2006 Cooke amp Cowx 2004 Lewin Arlinghaus ampMehner2006McPheeLeadbitterampSkilleter2002)asformanyspecies harvest can exceed the take of the commercial fishery(GiriampHall2015LyleStarkampTracey2014ZischkeGriffithsampTibbetts2012)

Unlikecommercialfisherieswhicharecommonlydocumentedbyoperatorsloggingtheircatchandeffortassessmentsofopen-accessnonreporting activities suchas recreational fisheries require sam-plingThiscanbebothdifficultandexpensiveduetotheiroftenlargespatialextenthightemporalvariationandforthefisheriesagenciesundertaking the work which often requires weekend and holidaysurveyinghighlaborcosts(Maetal2018PollockJonesampBrown1994 Rocklin Levrel Drogou Herfaut amp Veron 2014 VenturelliHyderampSkov2017)Due to these issues assessmentshave typi-callyrelieduponindirectdatacollectionfromoff-sitetelephonesur-veysbasedondataframesdevelopedaroundregionallsquowhitepagesrsquoor landline telephonedirectorieswhichtraditionallyhavehadhighresponseratesandeasilyscalablesamplesizes(Mooreetal2015Pollocketal1994)Suchapproachesmaynowriskundersamplingactivefishersbecauseofdemographicallybiasandoveralldecreasedlandlinephoneuseunlistedandnonregionalcodedmobilephonesandlowresponsesuccessfromvoicecallstomobilephones(Badcocketal 2016 Blumberg amp Luke 2009 Teixeira Zischke ampWebley2016)

Other formsof recreational fisheryassessmentsemploydirecton-sitesurveymethodssuchasbus-routesurveyswhichuseclerkstraveling around a fisherymdashfollowing randomly selected predeter-minedschedulesmdashinterviewingandobservingfisherstotrackfish-ingeffortcatchandrelease(McGlennonampKinloch1997Pollocketal 1994) On-sitemethods that cover broad geographic areashowever are seldom performed due to high labor costs (JonesampPollock2012)

Given these limitations remote sensing tools and technol-ogies such as autonomous photography are an emerging fieldofferingdirectmonitoringasanalternativeorsupplementtoon-site interviews (HartillPayneRushampBian2016KellerSteffeLowryMurphyampSuthers2016ParnellDaytonFisherLoarieampDarrow2010PowersampAnson2016vanPoortenCarruthersWardampVarkey 2015Wood LynchDevineKelleramp Figueira2016) One such system is the CSIRO Ruggedised AutonomousGigapixel System (CRAGS) which is a programmable weather-proofcameratrapthatprovidesultra-highresolutiontime-lapseandhigh-frequencypanoramic imagesTheCRAGSutilizesmod-ified commercially available hardware and software known as aGigaPanreg (httpgigapancom)tocapturephotographicsampleswith such high pixel density (gigapans) that wide fields of view

andassociatedobjectsofinterestscanbeexaminedcloselywith-out the loss of broader environmental context at landscape orseascape scales (LynchAldermanampHobday 2015) (SupportingInformationAppendixS1)

Thisroboticcamerasystemallowsformuchbroaderscaledphoto-graphicassessmentsthansimplecameratrapsbyautonomouslytak-ingandthenstitchingtogethermultipletelephotomegapixelimagesinto high-resolution gigapixel panorama The resulting tiled imageallowsfullyzoomableviewingforeithermultiplesmalltargetssuchasAlbatrossnestsacrossacolony(Lynchetal2015)ormorewidelyspacedlargertargetssuchasidentifyingcommercialvsrecreationalvessels around an offshore artificial reef (Wood etal 2016) Thebenefitofthesystemcomparedtosimplercameratrapsisbeingabletoobserve inhighdetail fromtheone imagestreammanyobjectssimultaneously across landscapeor seascape scalesWith somuchinformationdatahandlingcanbecomeoverwhelmingsoabatchpro-cessingmethod calledGigapanTimemachinehasbeendevelopedOriginallyusedforviewingcosmologicalsimulations(Yuetal2011)TimeMachineproducesavideostreamthatallowsviewerstofluidlyexploregigatotetrapixel-scaledvideosacrossbothspaceandtime

InAustraliaannualrecreationalfishingparticipationhasbeenes-timatedat195(HenryampLyle2003)whichiswellabovetheglobalaverageofaround10(ArlinghausTillnerampBork2015)AroundtheAustralian island state of Tasmania the annual participation rate is293whichwellexceedsthenationalaverageTheTasmanPeninsulainTasmaniarsquossoutheast (Figure1) isapopularfishingregionneartothelargestcityandstatecapitalofHobartwhereasteepbathymetricprofileandmigratorygame-fishpathwayoverlapprovidingcoastalac-cesstonormallyoffshorefishingopportunitiestorecreationalfisherintrailerboatsPelagicgamefishsuchassouthernbluefintuna(Thunnus maccoyii)aretargetedinlateAustralSummerandAutumn(MortonampLyle2004)butasthefisheryisunlicensedandepisodictrendsinef-fortandcatcharepoorlyunderstood(LowryampMurphy2003Mooreetal2015)Thisparticularrecreationalfisheryisalsoofmoregeneralinterestasthetargetsarecommerciallyimportantspecieswhichin-cludethosewithinternationallynegotiatedquotas(Ponsetal2017Zischke etal 2012) Recreational fishers are also often associatedwithotherusersofthemarineenvironment(FarrStoecklampSutton2014Kearney2002)orinthiscasetouristsenjoyingthelocalnationalparksHencehighusesitesmaybeimportanttomonitornotonlyforfisheriesandecologicalreasonsbutformanagingsocialvaluescon-flict resolutionandplanning (AlessaKliskeyampBrown2008Lynchetal2004)

WetrailedourCRAGSmethodtoseewhetherwecoulddevelopa high-frequency time series of temporal trends of observed trailerboat fishingeffortatanoffshoreconcentrationpoint for the recre-ationalgamefisheryWealsotestedboththesuitabilityandlaborcost-effectivenessofthehardwareandanovelapplicationofTimeMachinebatchprocessingsoftwaretoautomaticallyproducealdquobigdatardquointer-activemoviesmadefromourgigapixelpanoramasAsthepeninsulais isolatedandservicedbyonlya limitednumberofboatrampsweaimed tovalidate the representativenessof the temporal trendsweobservedwithCRAGSbycorrelatingtomatchsamplesobtainedfrom

lyn088
Cross-Out
lyn088
Cross-Out
lyn088
Inserted Text
M

emspensp emsp | emsp3FLYNN et aL

asimultaneousregionallyscaledbus-routetrailerboatsurveyatthethreerampsonthepeninsularsuitableforlaunchinglargetrailerboatsWe also undertook on-ground interviewswith trailer boat users togroundtruthactivitytype(fishingornonfishing)andtargetspeciesByundertakingbothcameraandboatrampsurveysourover-overarchingaimwastoinvestigatehowremoteimagerymayreplacecomplimentoroptimizeconventionalon-siteapproachesforrecreationalfishing

2emsp |emspMATERIAL S AND METHODS

WedeployedtheCRAGSbetween1May2015and30June2015toassesstrailerboatsoffshorefromwateradjacenttotheTasman

Peninsula (Figure1) This period was chosen as it correspondswith the main tuna fishing season For large trailer boats (gt5mlength) localaccess to the fishery is limitedto threeboat ramps(Figure1)althoughtheareamayalsobevisitedbylargervesselssteaming frommarinas and anchorages further north (MortonampLyle2004)butforthepurposesofourstudyweexcludedtheserelativelyrare largervesselsWefocusedourCRAGSsurveyataknown game fishing concentration the Hippolyte Rock MarineConservationArea (HRMCA)which are a group of small islandsabout6-kmoffshore (Figures1and2)aroundwhichrecreationalfishingispermittedWhiletheCRAGSdeploymentwasmarginallycloser to the FortescueBayRampwe commonly observe boatsapproachingtheHRMCAfromdirectionsthatcorrespondedtothe

F IGURE 1emspTheTasmanPeninsulainSETasmaniaBus-routesurveysamplingoccurredatramps locatedatPiratesFortescueandStuartsBayTheCRAGSlocationisshownasacameraiconandtheareaobservedbythecamerawhichincludestheHippolyteRocksMarineConservationArea(HRMCA)isdescribedasatriangle

Text

Pirates Bay

Fortesque Bay

StewartsBay

0 3 6 9 1215Kilometers

0 30 60 90 12015Kilometers

Tasman Is

Australia

Tasmania

Hobart

TasmanPeninsular

HippolyteRocksMCA

43deg 01 30

147deg 52 30

TAS

4emsp |emsp emspensp FLYNN et aL

locationof all three rampsWe fixed theCRAGS to a clifftop atWaterfall Baywhich overlooks the site fromvery high sea cliffs(~250m)withthecamerafocusingonthewesternsideofHRMCA(Figure1)ForeachsampleCRAGScapturedaseriesof68pho-tographsthroughatelephotolenswhichwhenstitchedtogetherprovide a high-resolution panoramic image with a wide field ofview (~140deg) (Supporting Information Appendix S1) The size ofareasurveyedbyCRAGScomparedtotheregionalareaaccessibleby trailer boatswas estimated using google earth polygons andtheUniversityofNewHampshireKMLextensiontoolmdashhttpsex-tensionunhedukmlToolsindexcfm

Thetimeof the initialCRAGSpanoramasamplewasrandomlyselected Samples were then collected sequentially through-out daylight hours (0600ndash1800) As less recreational fishing fortuna occurred at night no samples were taken with the CRAGSprogrammed to ldquoblankrdquo these hours from the sampling sched-ule (Supporting InformationAppendix S1) Photographic sessionswereprogrammedtobeseparatedbyarecurring93-mingapthus

producing a forward shift in sample capture time andminimizingpotentialautocorrelationsbetweenboatingactivitiesandsamplingtimesPhotographswerebatchprocessedtobothformpanoramicimagesforeachsampleandforcompilingintoaninteractivetime-lapsemovieusingCREATELabrsquosTimeMachinesoftware (CREATELabregPittsburgPAUSA)

TimeMachinemovies are fully interactive and are able to bezoomedintopausedandplayedatvariousspeedsandarealsotimeanddate-stamped(Figure3)UsingthisinteractivemoviesoftwareeachGigaPanmoviewassystematicallypausedateachsamplefullyzoomedandscannedlefttorighttoptobottomforobjectsintheseascapebytheleadauthor(Figure3)Vesselcountswererecordedforeachsamplewithobjectslargerthan~10minlength(nottrailerboats)or requiring longer than10seconds todistinguish (eg lowresolutionandimageartifact)beingdiscountedSampleswerecat-egorized into two strataweekdays andweekendspublic holidaysusing the time and date stamp provided on each GigaPan scene(Figure3)

F IGURE 2emspAnunmodifiedGigaPanEpicPROunit(left)andaCRAGSdeployedatWaterfallBaySETasmania(right)

F IGURE 3emspScreencaptureoutputsfromtheTimeMachineinteractivedataviewershowinganozoomandpanoramicextentoftheHippolyteRockMarineConservationArea(HRMCA)b=13zoommainHippolyterock~6kmfromcamerac=12zoomofalargetrailerboatd=fullzoom

lyn088
Cross-Out
lyn088
Inserted Text
(a)
lyn088
Cross-Out
lyn088
Inserted Text
(b)
lyn088
Cross-Out
lyn088
Inserted Text
(c)
lyn088
Cross-Out
lyn088
Inserted Text
(d)
lyn088
Inserted Text
s

emspensp emsp | emsp5FLYNN et aL

Thecountofboatsforeachsamplewasthenextrapolatedintoanestimateofdailyaverageboatingeffort(hoursplusmnSE)usingthein-stantaneouscountmethod(Equation1)

where ei is theextrapolatedboatinghours for the ithday Ii is theaveragenumberoftrailerboatsobservedacrosstheinstantaneoussamplesfordayiandTisthedailysamplingperiod(daylighthours)Asbadweathercanbeamajorfactoraffectingthedecisiontoboatorfish(ForbesTraceyampLyle2009)boatingeffortwasassumedtobe0whenadverseweathermadeobservationsofboatsimpossible

Next total effort for each day-type strata (Ejk) within sam-pling months (k) was calculated to estimate the monthly effort(Equation2)AsCRAGSallowedforcontinuoussamplingthroughoutthesurveyperiodthesamplingprobability(πk)wassetto1

Standarderrorandeffortvarianceformonthlyestimateswerecalculated(Equation3)accordingtoPollocketal(1994)forstrata

where nj is thenumberofsampleddaysofstrata j Njk is thetotalnumberofdaysofstratajinmonthk

Asvariationforeachstratawascalculatedseparatelyweusedasumofsquaredstandarderrorsapproach(Equation4)toestimatethetotalmonthlyvariation

Assampleswereobtainedinaserialandcontinuousfashionatimeseriesmodelusingrollingaverageswasalsoappliedtothedata(Diggle1995)(Equation5)

where smt is the smoothed average of extrapolated effort e persampletwhichisweightedacrossthreesampleseachseparatedby93minThisprovidedasmoothedaveragewithindays

Wealsoconductedabus-routestylesurveytoestimatefishingeffortfromtrailerboatsfortheregion(Pollocketal1994Robsonamp Jones1989)WhileCRAGSsampleswerecollected throughoutMayandJunethecomparablebus-routesurveywasonlyconductedinMaydue to logistical constraintsWesurveyed the threemajorboatrampsintheregionatPiratesBayFortescueBayandStewartsBaybetween3May2015and30May2015(Figure1)

Atotalof20bus-routesampleswerescheduledWeundertookrandomstratifiedsamplingwithdaytypedividedintoweekdaysorweekendpublic holidays To reflect expected higher recreationaleffortduringweekendsandpublicholidays(McCluskeyampLewison2008)thesamplingprobability(πk)wasweightedtowardthisstrata

over weekdays at 12 to eight samples (Supporting InformationAppendix S2) We stratified the sample time into morning (am0600ndash1159)andafternoon(pm1200ndash1800)withequalproba-bilitiesofsamplingTominimizetemporalautocorrelationthestart-ing location and travel direction of the routewere also randomlyselectedwithoutreplacementEqualsamplingweightwasprovidedtoeachrampduetolackofpriorknowledgeofuserates

At each boat ramp surveys were conducted by first countingparkedboattrailersthenbymonitoringvesselentryandexitsduringa1-hrsamplingperiod(KinlochMcGlennonNicollampPike1997Pollocketal1994)The1-hrperiodwaschosendueto travel timeanddis-tancebetweensitesallowingforabus-routesampletobecompletedforallrampswithinthetemporalstrata(AMorPM)ofthedailysam-plingframeInterviewswereconductedwithallpartieslaunchingandretrievingvesselsduringtheclerkrsquoswaittimedeterminingpartysizetargetspeciesgroupandactivity(iefishingornot)forestimatesoffishing effort This well-established procedure produced a monthlyextrapolatedestimationofboateffort instandardizedunitsofefforthoursplusmnSEwhichcouldthenbeadjustedtofishingeffortviathepro-portionofintervieweesactivities(Pollocketal1994RobsonampJones1989)(SupportingInformationAppendixS3)PartysizebetweenrampswastestedforanydifferenceusingaonefactorANOVA

Thebus-route surveyhenceprovidesanestimationofall fish-ing effort from trailer boats around this isolated peninsular TheCRAGSdataarethusahigh-frequencyspatialsubsetoftheentiretrailer boat fishing effort for the period thatwas extrapolated bytheregionalsurveyThisallowedustobothtesttherelativeuseoftheHRMCAcomparedtowiderpeninsularuseandtheabilityofourremoteobservationswithourCRAGsunitofanactualsubsetofthefisherytotracklargertemporalpatternsofpeninsularwideeffort

TovalidatetherepresentativenessoftheCRAGShigh-frequencytrackingofeffortmetricsover timeweundertookaSpearmanrankcorrelationbetweentime-matchedeffortestimationsbyCRAGSandthe regional bus-route survey For graphing bus-routeextrapolationestimates were overlaid onto extrapolations from daily averages ofboatfishingeffortfromCRAGSWealsocarefullyloggedalltimespentontheprojecttocomparetotallaborcostsbetweenCRAGSandthebusrouteforbothdatacollectionandprocessingtodetermineeffortacrossthecomparativemonthaswellasforcostpersample

3emsp |emspRESULTS

The CRAGS operated successfully and continuously throughoutthestudycapturing545plusmn198SE(May)and483plusmn088SE(June)panoramasperdaymakinga totalof314 samplesWemade895observationsofboatsbut51samplesacross21daysreturnedzerocountsofboats(17oftotalsamples)Thesewereconcentratedonweekdaysmdashwith 44 zero-count samples across 18daysmdashwhile onweekendsandpublicholidaytherewereonlysevensamplesacross3dayswithnoactivityInclementweatherrendered27samplesun-usableTheimagesandbatch-processedTimeMachinemoviescon-sumed4274GBofmemory

(1)ei=IitimesT

(2)Ejk=

nsum

i=1

(

ei

120587k

)

(3)SEjk=

1

njminus1

sumn

i=1(eiminus ei)

2

njtimes (Njk)

2

(4)SEk=

radic

SE21k+SE2

2khellip+SE2

jk

(5)smt=etminus1+ et+ et+1

3

6emsp |emsp emspensp FLYNN et aL

Based on boat ramp interviews the average trailer boat partysize (P) was 287 people per vessel throughout May (plusmn0133 SEn=84)andpartysizebetweensitesshowednosignificantdiffer-ence (df=2F = 302p = 068) The averagemonthly boat fishingeffort(hours)extrapolatedforourCRAGSobservationsofHRMCAwas5629hr(plusmn711SE)with4096hr(plusmn607SE)inMayand1534hr(plusmn370 SE) in June (Figure4)mdashthis could be extrapolated to fisherhoursbymultiplyingbytheaveragepartysizebutasnointerviewswereconductedinJuneweleftboththeCRAGSandbusrouteex-trapolationsasboatfishingeffortonly

The total subset area observed by CRAGSwas 96km2 which comparedto318km2thatwaseasilyavailabletotrailerboatsaroundtheTasmanPeninsularwhichcorrespondstoaround3ofthetotalareaComparedtothetotalfishingeffortforMayextrapolatedfromtheregionalbus-routesurvey therelativelysmallareaaroundtheHRM(~3)receivedalargeamountofthefishingeffort(~23)

ThehighfrequencyofCRAGSsamplingpermittedtheexamina-tionoffine-scaleinter-dailytemporalvariationwhichdisplayedarag-gedsinusoidoscillation(Figure5)Effortwasgenerallylowwithinthe

weekdaystrataandthen increasedrapidly to largepeaksonweek-ends (Figure5) One exception to this was between the 18th and22ndMaywhichhadmoreeffortonweekdays thanotherperiods(Figure5)Bracketingthisperiodweretwoweekendsoffishingcom-petitions theldquoTunaClubofTasmaniarsquosrsquoFarSouthClassicrdquo (16ndash17thMay)andRally4Northerninvitationalweekendrally(23rdMay)

A total of 16 bus-route samples were conducted logistic fail-uresledtotheabandonmentoffour(20)oftheplannedsamplesRegionalTrailerboateffortfromaroundtheTasmanPeninsularwasestimatedtobe19650hr (plusmn2858SE) inMay (Figure4)Notrailersat individual rampswere recorded four timeswith all of theseoc-curringonweekdaysThetotalnumberoftrailerssightedperramprangedfrom0to16duringweekdaysand1ndash54forweekendswiththehighestnumberrecordedon16May2015atPiratesBayDuringhigh-intensitydays(particularlyweekendsholidaysmornings)therewereoftenlargeoverflowsfromrampcarparkswithparkedcarsandboattrailersextendingasmuchasonekilometerfromtheboatramp

During thebus-route survey 84 interviewswere conductedThemajorityofmariners(905n=96)indicatedfishingwastheir

F IGURE 4emspExtrapolatedmonthlytrailerboateffort(hoursplusmnSE)fortheentireTasmanPeninsulaassessedbyabus-routesurvey(May)andforthesubsetoftheareaaroundtheHRMCAsampledwithCRAGS(MayandJune)

F IGURE 5emspHigh-frequencyinterdailyextrapolatedCRAGSestimationsofboatefforthoursaroundthe(HRMCA)

0

100

200

300

400

500

600

Rolli

ng m

ean

daily

effo

rt in

hou

rs

DayWeekdays Weekends + Public Holidays

lyn088
Inserted Text
CA
lyn088
Cross-Out
lyn088
Cross-Out
lyn088
Inserted Text
t

emspensp emsp | emsp7FLYNN et aL

primaryactivity (Table1)Overall643 (n=54) indicated theirprimary target were tuna with 179 (n=15) specifically tar-geting southern bluefin tuna (Thunnus maccoyii)Other commonrecreationaltargetsincludedflathead(Platycephalusspp595)Southernrocklobster(Jasus edwardsii107)andsquidcalamari(Sepioteuthis australisandNototodarus gouldi476)(Table1)

Basedon the responsesofactivity type from interviews totalboatfishingeffortinMaywasestimatedtobe17783hr(plusmn2586SE)Asmostnonfishingactivitieswerenear shoreweassumed trailerboatingactivityatHMRCAobservedbyCRAGSwasallfishing

Therewere16directcomparisonsamplesbetweenthebusrouteandCRAGSmethodsbetweenthe2ndandthe29thofMaySamplesconsisted of 7 weekdays and 9 weekendspublic holiday samples

(Figure6)Infourcaseswheretwobus-routesamplesweretakenonthe same day (Supporting Information Appendix S2) they are com-bined toadailyestimation for tabulation (Table2)Theproportionaldifferencebetweenestimatedeffortsusingthetwomethodsrangedfrom078-to418-folddifferencehoweverranksestimatesbetweenCRAGS and bus-route samples were strongly associated (n=16ρ(12)=087p=lt001)Interdailysamplingstrata(ampm)werealsoexaminedseparatelyforcorrelationwhichremainedstrongforbotham(n=9ρ(7)=080p=lt001)andpm(n=7ρ(5)=089p=lt001)

ForthecomparativemonthCRAGStook169samplescomparedtothebusroutesrsquo16(Table3)WehadtwofieldtripdaysforCRAGSwith four people on the setup and three on the breakdown daywhichresultedinsevenfull-timeequivalent(FTE)daysofworkThiscomparedto16fielddaysforthebus-routemethodwhichincludedtraveltothefieldsiteforbetweentwoandthreestaffwhichaccu-mulatedto40FTEdaysofworkSettingupourCRAGSautomatedstitching took one FTE day (though this is faster for experiencedofficers)whiledataextractionperimagewasestimatedtotakeon

TABLE 1emsp Intervieweesreportedprimarytargettaxaoractivity

Primary target taxaspeciesactivity Interview responses

Tuna(unspecified) 37 440

SouthernBluefinTuna 15 179

AlbacoreTuna 2 238

AllTuna 54 643

Flathead 5 595

Southernrocklobster 9 107

Squidcalamari 4 476

Abalone 1 119

SmallPelagics 1 119

SnottyTrevalla 2 238

Allnearshorespecies 22 262

Surfing 1 119

SCUBA 3 357

DemonCavevisitors 3 357

PleasureCruise 1 119

Allnonextractive 8 952

Note ldquoTunardquo responsesdenote anglers targeting all specieswithin thefamilyThunnini

F IGURE 6emspDailyboatingeffort(hours)extrapolatedusingbus-routeaccesspointsurvey(bar)andCRAGS(line)Effortestimatefrombus-routesurveywascalculatedfrommorning(amdarkgray)andafternoon(pmlightgray)surveyCRAGSsurveywasconductedbetweenMayandJunewhilethebus-routesurveywasonlyconductedinMay

TABLE 2emspRankingofeffortforpairedsamplesbetweenCRAGSandthebusroute

DateCRAGS hours (rank)

Bus- route hours (rank) Δ Rank

2052015 330(9) 1208(10) minus1

3052015 303(8) 1471(11) minus3

12052015 0(1) 48(2) minus1

14052015 0(1) 24(1) 0

16052015 387(11) 1794(12) minus1

19052015 93(4) 89(4) 0

20052015 57(3) 117(5) minus2

22052015 228(7) 283(6) 1

23052015 513(12) 414(8) 4

24052015 345(10) 1155(9) 1

25052015 122(6) 323(7) minus1

29052015 102(5) 79(3) 1

8emsp |emsp emspensp FLYNN et aL

average75mincomparedto1minforenteringthebus-routedatasheetWhiledataextraction forCRAGS took longer compared tothe bus routemdashat 381 FTE daysmdashtotal monthly labor for CRAGStookonlyaquarterofthetimeandonaper-samplecomparisonwasonly25ofthebus-routelaborcost

4emsp |emspDISCUSSION

Over our autumn samplingmost trailer boat owners accessing thewaters around theTasmanPeninsula via the regional boating infra-structurewererecreationallyfishingwithfisherspredominatelytar-getingtunaTrailerboatrecreationalfishersconstitutealargetrancheof coastal users in Australia (McPhee etal 2002) and our resultssuggestedthatthisregionremainsonewhererecreationalfishing isconcentrated(MortonampLyle2004)EffortobservedbyCRAGSwasa spatial subsetof thegeneral areaeasily accessedby trailer boatsaroundtheTasmanPeninsularwhichweregionallyassessedwithourbus-routerovingsurveyAsCRAGSonlyobserved~3of thetotalarea but corresponded to ~23 of themonthly bus-route boat ef-fort theHippolyteRocksMarineConservationArea (HRMCA) is afurtherconcentrationpointwithintheregionforrecreationalfishingAsthisoffshorefishingeffortaroundtheHRMCAwasmostprobablyfocusedontotunamdashwhichaccountedfor634ofallinterviewedfish-ers activitiesmdashthe actual proportionofpeninsularwide tuna fishingthatwasobservedbyCRAGSwaspotentiallymuchhigherthan23

For developing effort metrics finding a representative site toobservemaybe important forprecise trackingof trendsThetightrankcorrelationbetweenpairedregionalbus-routeandCRAGScam-era samples suggest that effort atHRMCAwas representative ofregionaltemporaltrendsOurresultsarealsosimilartootherstud-ieswheresamplingmethodsforrecreationalfisheriesoverbroaderscaleswhencomparedtoindextrendsofeffortcollectedfrompointsourcesshowstrongcorrelations(Hartilletal2016)

CRAGSwithitsseascapescaleofdatacaptureobservesactualeffortonfishinggroundsratherthan indirectmetricsfrommove-ment past access points (Hartill etal 2016 Smallwood PollockWise Hall amp Gaughan 2012 van Poorten amp Brydle 2018) This

makesthechoiceofaccesspointstomonitorimmaterialfortrendcol-lectionandmaybeofparticularinterestforpelagicfisheriesWhilenonintuitiverecreationalfishingforwide-rangingmigratorypelagicspeciesisoftenspatiallyconcentratedintosmallareas(Lynch2006)duetotightoverlapsbetweeneaseofaccessbyfishersandfishbe-haviorrelatedtobathymetrymigrationhabitatandpreyavailability(Lynchetal2004PattersonEvansCarterampGunn2008)

Unlikespatialpatternstheintensityofcoastalrecreationaltemporaleffortcanbehighlyvariableovertime(Lynch20082014WiseTelferLaiHallampJackson2012)thoughitisgenerallythoughttofollowpre-dictablepatternsrelativetoholidayandnonholidayperiods(JonesampPollock2012)Ourresultsdemonstratedtheselargefluctuationsrang-ingfromzerouptogt400hroftrailerboateffortforadjacentdaysIncombinationwithholidayperiodsothersourcesofvariabilitymayalsooccurduetoindividualorcombinationsoffactorssuchasfishingcluborcompetitionactivitiesandweatherconditionsHigh-frequencysam-plingcanovercomethesecommontemporaldisjunctionsinobservedfishingeffortwherebychanceduetolownumbersofsampleslogis-ticallypermissiblewithtraditionalrovingoraccesspointsurveyslargeerrorsintheestimationofeffortcanbeintroduced(Hartilletal2016vanPoortenampBrydle2018vanPoortenetal2015)

With multiple daily observations abnormal episodes are morelikelytobeobservedForinstanceaweek-longperiodofintenseef-fortwasrecordedbetween15May2015and27May2015whichwasbracketedbytwoconsecutiveweekendswherefishingcompetitionswereheldontheTasmanPeninsularThenormalsinusoidpatternoflowweekdayandhighweekendeffortwasmuchlesspronouncedastheweekdaylullsineffortwerepartiallybridgedbyanglerscontinuingtofishAsbus-routedesignsusedaytypeasstratawithlowerprob-abilitiesforsamplingweekdaysandmuchfewersamplesoverallthistypeofeffectcouldeasilybemissedWhileourbus-routesamplesdidoverlapwiththetunafishingcompetitionsthiswaspurelybychanceSucheventswhichresultinlargespikesofeffortcanhavemarkedim-pactsonlocalecosystemsandharvestestimates(McPheeetal2002MonzPickeringampHadwen2013)andwithoutpriorknowledgearemorelikelytobecapturedwithmonitoringathigherfrequencies

Methodsforgatheringdataoncoastalusesuchasrecreationalfishing moved away from direct approaches and toward off-sitemethodssuchastelephoneinterviews(McCluskeyampLewison2008Pollock etal 1994) due to unsustainable costs from staffing andoperationsparticularlyduringperiodsof intenseusesuchasearlymornings weekends and public holidays which require overtimepaymentsHoweversamplingissueswithoff-sitemethodsareofpar-ticularconcernforopen-accessactivitiessuchasunlicensedfisheriesasthereisnolicensedatabaseofcontactphonenumbersonwhichtobaseasampleframeThisisparticularlysofornicherecreationalfisheriessuchaspelagicgamefishingasthefishersbecomeincreas-inglydilutewithinthegeneralpopulationandhencearehardtoac-cessparticularlyviaoff-sitemethodssuchastelephone interviews(Griffithsetal2010)

Remoteandautonomousdeploymentofsensorsmaythereforeprovideanalternativeandcost-effectivemethodforlong-termmon-itoring particularly for effort across a range of applicationsOur

TABLE 3emspFulltimeequivalent(FTE)labordaysforCRAGSandbusroutesurveystoestimatepatternsofeffort

CRAGS Bus route

Numberofsamples 169 16

Fielddays 2 16

Averagepeopleperfieldday 35 25

Field FTE days subtotals 7 40

StitchingsetupFTE 1 0

DataextractionFTE(persample) 0017 0002

Subtotal data extraction FTE 381 004

FTEdayspersample 006 250

Total FTE days 108 400

emspensp emsp | emsp9FLYNN et aL

comparisonsofmatchedpairsofdatafromtwomethodssuggestedthat theCRAGSoutputswerewell correlatedwith regionalefforttrendsOuranalysisoflabordemonstratesthattryingtounderstandthistemporalvariabilitywithsamplingviaboatrampsurveyswouldbeprohibitivelyexpensiveOurCRAGSallowsforatemporaleffortmetric derived fromactual observationsof fishing to be cheaplydeveloped with sampling frequency at subdaily scales This high-frequencysamplingapproachwasvalidatedagainstour largerbutmuchmorecostlybus-routesurveyOuranalysisoflaborrequiredtobothcollectandprocessdatashowedthatCRAGSrequiredconsid-erablylessresourcestocollectapproximatelyninetimesmorefre-quenttemporaldatathanthebus-routemethodMajorlaborsavingswereduetotheruggedizedandautonomouscapabilityofCRAGSasonlytwofieldtripswererequired(deploymentandretrievaltook7FTEdays)comparedtothebus-routersquos16fieldtrips inamonthwhichconsumed40FTEdaysandincludedanadditional780kmofinter-ramproadtravel(SupportingInformationAppendixS3)AsitisweatherproofautonomousandabletobeprogrammedwithatimedelaysetupCRAGSldquofireandforgetrdquonaturebothremovestheneedforobservertobephysicallylocatedattheregiontocountactivity(EdwardsampSchindler2017)andworkduringovertimeperiodsTheldquoblankingperiodrdquowhichstopsandstartssamplingmdashinthiscaseover-nightmdashalso reduces battery and memory use In combined thesetechnological advances have allowed long-term CRAGS deploy-mentsacross4yearsof4ndash6monthrotationsontooffshoreislandsand for several seasons in Antarctica to monitor seabirds (Lynchetal2017)Thelaborestimateforthebusroutewasconservativeasitdidnotincludeovertimeloadingforthe6weekenddaysofsam-plingorearlymorningcommencementofamsamples

Theadditional381FTEprocessingtimerequiredbythecameraapproach did not impact greatly on the overall labor budgetwhenconsideredagainstfieldworkTheuseoftheTimeMachinebatchpro-cessingsoftwaretoautomaticallyproducetheldquobigdatardquointeractivemoviewasalsoatechnologicalinnovationthatsignificantlyreducedthelaborofdatahandlingcomparedtothemanualopeningofindivid-ualGigaPansusedinpreviousstudies(Lynchetal2015Woodetal2016)IncomparativetermsattheindividualsampleleveltotracktheeffortmetriceachCRAGSsamplerequired24ofthelaborofthebus-routesurvey

Thedevelopmentandapplicationofimagerecognitionsoftware(machine learning) to detect classify and count boats automati-cally (Bousetouane amp Morris 2015) would further reduce post-processingcostsTherequiredfrequencyofsamplingshouldalsobeconsideredonacase-by-casebasisdependentontheresearchquestion as image collection can be somewhat open-ended andresult inunwieldydata sets that require subsampling tobe cost-effective(Parnelletal2010)Inourcasethesettingof~5imagesperdayappearedtoadequatelydescribetheinterdailyvariation

Whileouroneautonomouscameraprovidedastrongcorrelationwithtemporaltrendsineffortcomparedtotheregionalsurveyitdidnotprovide relativespatialdistributionsofeffortacross the fisheryThesedistributionshowevercanbepredictableandhighlyconcen-trated(Lynch20062014Parnelletal2010)anobservationthatwas

alsoshownbyourresultsandmuchsmallerlevelsofsamplingeffortwouldprobablyberequiredtoresolvevariationinspatialdistributionscomparedtowhatisrequiredtoresolvethehightemporalvariationsineffortUnderstandingfine-scalespatialdistributionsofrecreationalfishingeffortiscommonlyachievedusingaerialcounton-watersur-veysorvantagepointsurveys(Lynch2006Smallwoodetal2012)thoughotherremotemethodssuchashigh-resolutionsatelliteimag-ery(FretwellScofieldampPhillips2017)mayprovideacheapersolu-tionThesetypesofwidersurveyshavealsobeensuggestedashighlycompatiblewithpointsourcemetricssuchasremotecamerasystemstoallowforcalibrationorldquoup-ratingrdquoforeffortexpansionstoestimateoveralleffortwithinthefishery(Hartilletal2016)

Thelongdistance(~6km)betweentheHMRCAandthedeploy-ment location stretched the resolution limit of the current CRAGSsetup aswewere unable to distinguish party size or activity typepurelyusing thecamerasystemThis isunlikepreviousCRAGSde-ploymentwhichhadahighsuccessrateofidentifyingpartysizeac-tivity typeata shorter rangeofapproximately19km (Woodetal2016) Thus ground-truthing information about the fisherywas re-quiredforthesystemtoworkeffectivelyAutonomouscamerasystemalsodonotcollectcreel(catch)databutbyallowingforcost-effectivecollectionofthehighlyvariabletemporaleffortdatatheymayallowforhumanresourcestobespentelsewhereduringsurveyperiods(egtoundertakeboatrampinterviews)(vanPoortenampBrydle2018)

Our studywas a small-scale trial of new technology andwhilepreliminary results are encouraging validated seasonal effort esti-mationsobservedviaCRAGSwereoutsidethescopeofthisprojectOur comparisons would hence have been improved by extendingCRAGSdeploymentsandwithmorecomparisonstoregionalsurveysSimilarly usingmultiple CRAGS simultaneously would have bettertested for differences in subregional patterns of temporal trendsorconcentrationof infishingeffortfor instanceboatsaroundthenearbyTasmanIsland

Insummarytheprogrammablesamplinganddataextractionof-feredbyhigh-resolutionautonomouscamerasystemscanallowforfine-scalelong-termmonitoringoffishingefforttrendsorpotentiallymanyothertypesofactivitiesatseascapescalesMorewidespreadadoptionofhigh-frequencysamplingapproachesforeffortestima-tionwouldalsohelpavoidcollectionofmisrepresentativedatabyidentifyingeffortanomalies(McCluskeyampLewison2008)suchastheweekdaycontinuationeffectofraisedeffortbetweenadjacentweekendfishingcompetitionByimprovingtheinformationdensityovertraditionalsurveymethodsautonomouscamerasystemsandotherremotesystemsmayprovideanewwaveofoptimizationfordirectmeasurementofcoastalhumanusesuchasrecreationalfish-eriesalthoughcomplimentarymethodsarestillrequiredtodeter-minespatialdistributionstargetspeciesandharvest

ACKNOWLEDG MENTS

We thankMsGeorginaWoodMs SaraAdkinsMsBelleMonkMrRSherringtonandMsPaigeKellyforconstructiveinsighten-thusiasmandassistanceduringfieldworkWealsothankMrPhillip

10emsp |emsp emspensp FLYNN et aL

CulversonMrStuartDudgeonandMrMattStapenellKarenEvensprovidedhelpfulcommentsonaninternaldraftGreatestthankstothemany recreational anglerswhowillingly shared information tosurveyclerkswithouttheirinvolvementthisprojectwouldnothavecometofruitionThreeanonymousreviewersprovidedcommentsthatimprovedthemanuscript

CONFLIC T OF INTERE S TS

Theauthorsdeclarenoconflictofinterests

AUTHOR CONTRIBUTIONS

MrFlynnhelpeddesignthestudyledthefieldworkundertookmostoftheanalysisandhelpwritethemanuscriptDrLynchhelpdesignthestudyassisted inthefieldworkprovidedadviceontheanaly-sisanddidsomeanalysisconstructedfiguresandafterMrFlynncontributedthemosttothedraftingofthemanuscriptDrBarretthelpeddesign the study assisted in some fieldwork provided ad-viceonanalysisandeditedthemanuscriptMrWonghelpedexten-sivelywithfieldworkassistedwithanalysisconstructedfiguresandhelpedwritethemanuscriptMsDevineassistedwithfieldworkandconfigurationoftheequipmentincludingtheapplicationofthebigdatamoviesoftwareandhandlingofphotographsandalsohelpedwritethemanuscriptMrHughesdevelopedtheelectronicsfortheequipmentoversaw thebuildofgearwrote the software topro-gramtherobotandreviewedandeditedthemanuscript

DATA ACCE SSIBILIT Y

Survey sampling schedules data collection sheets extrapolationproceduresandtechnicalCRAGSspecificationsarealluploadedasonlinesupportinginformationappendixRawdatafromsurveysandCRAGSDOIhttpdoiorg105061dryadv10d218

RE SE ARCH E THIC S COMPLIANCE AND FUNDERS

ResearchabidesbytheAustraliancodeofhumanresearchandex-perimentation(NationalStatementonEthicalConductinHumanResearch of 2007) Permission to conduct research on humanparticipants was granted by the University of Tasmania SocialScience under reference H0014772mdashldquoRemote investigation ofcoastal area user group quantification and variationrdquo aswell asfromtheCSIROSocialScienceHumanResearchEthicsCommitteeunder reference 08115mdashldquoHawkesbury Region Project HumanUsePatternsrdquoFundingwasbyUTASasPartoftheIMASHonoursProject funding and through internal support from the CoastsProgram

ORCID

Tim P Lynch httporcidorg0000-0002-5346-8454

R E FE R E N C E S

Alessa L Kliskey A amp Brown G (2008) Socialndashecological hotspotsmapping A spatial approach for identifying coupled socialndasheco-logicalspaceLandscape and Urban Planning8527ndash39httpsdoiorg101016jlandurbplan200709007

ArlinghausR(2006)Overcominghumanobstaclestoconservationofrecreational fishery resources with emphasis on central EuropeEnvironmental Conservation 33 46ndash59 httpsdoiorg101017S0376892906002700

Arlinghaus R Tillner R amp Bork M (2015) Explaining participationratesinrecreationalfishingacrossindustrialisedcountriesFisheries Management and Ecology 22 45ndash55 httpsdoiorg101111fme12075

BadcockPBPatrickKSmithAMASimpsonJMPennayDRisselCEhellipRichtersJ(2016)Differencesbetweenlandlineandmobilephoneusers in sexualbehavior researchArchives of Sexual Behavior46(6)1711ndash1721

Blumberg S J amp Luke J V (2009) Reevaluating the need for con-cern regarding noncoverage bias in landline surveys American Journal of Public Health 99 1806ndash1810 httpsdoiorg102105AJPH2008152835

Bousetouane F ampMorris B (2015) Off-the-shelf CNN features forfine-grainedclassificationofvesselsinamaritimeenvironmentInGBebisRBoyleBParvinDKoracinIPavlidisRFerisTMcGrawMElendtRKopperERaganZYeampGWeber(Eds)Advances in visual computing 11th International symposium ISVC 2015 Las Vegas NV USA December 14ndash16 2015 proceedings Part II (pp379ndash388)Cham Switzerland Springer International Publishing httpsdoiorg101007978-3-319-27863-6

Cooke S J amp Cowx I G (2004) The role of recreational fish-ing in global fish crises BioScience 54 857ndash859 httpsdoiorg1016410006-3568(2004)054[0857TRORFI]20CO2

DiggleP J (1995)Time-series a biostatistical introductionOxfordUKClarendonPress

EdwardsJampSchindlerE (2017)Avideomonitoringsystemtoeval-uate ocean recreational fishing effort in Astoria OregonMarine recreational information program (pp 31) Newport OR OregonDepartmentofFishandWildlife

FarrMStoecklNampSuttonS(2014)RecreationalfishingandboatingArethedeterminantsthesameMarine Policy47126ndash137httpsdoiorg101016jmarpol201402014

ForbesETraceySampLyle JM (2009)Assessment of the 2008 rec-reational gamefish fishery of Southeast Tasmania with particular refer-ence to Southern Bluefin TunaHobartTASTasmanianAquacultureandFisheriesInstituteUniversityofTasmania

FretwellPTScofieldPampPhillipsRA(2017)Usingsuper-highres-olutionsatelliteimagerytocensusthreatenedalbatrossesIbis159481ndash490httpsdoiorg101111ibi12482

GiriKampHallK (2015)SouthAustralian recreational fishingsurveyFisheries Victoria internal report series (pp 63) Queenscliff VicFisheriesVictoria

Griffiths S P Pollock K H Lyle J M Pepperell J G TonksM L amp Sawynok W (2010) Following the chain to elu-sive anglers Fish and Fisheries 11 220ndash228 httpsdoiorg101111j1467-2979201000354x

Halpern B SWalbridge S Selkoe K A Kappel C V Micheli FDrsquoAgrosaChellipWatsonR(2008)AglobalmapofhumanimpactonmarineecosystemsScience319948ndash952httpsdoiorg101126science1149345

Hartill BW Payne GW Rush N amp Bian R (2016) Bridging thetemporal gap Continuous and cost-effective monitoring of dy-namic recreational fisheries by web cameras and creel surveysFisheries Research 183 488ndash497 httpsdoiorg101016jfishres201606002

emspensp emsp | emsp11FLYNN et aL

HenryGWampLyleJM(2003)NationalrecreationalandindigenousfishingsurveyFinal report to the fisheries research amp development cor-poration and the fisheries action program (pp 188) Canberra ACTFRDC

JonesCMampPollockKH(2012)Recreationalanglersurveymeth-odsEstimationofeffortharvestandreleasedcatchInAZaleDLParrishampTMSutton(Eds)Fisheries techniquesBethesdaMDAmericanFisheriesSociety

Kearney R E (2002) Co-management The resolution of conflict be-tween commercial and recreational fishers in Victoria AustraliaOcean amp Coastal Management45201ndash214httpsdoiorg101016S0964-5691(02)00055-8

KellerKSteffeASLowryMMurphyJJampSuthersIM(2016)Monitoringboat-basedrecreationalfishingeffortatanearshorearti-ficialreefwithashore-basedcameraFisheries Research18184ndash92httpsdoiorg101016jfishres201603025

KinlochMAMcGlennonDNicollGampPikePG(1997)Evaluationof the bus-route creel surveymethod in a largeAustralianmarinerecreationalfisheryISurveydesignFisheries Research33101ndash121httpsdoiorg101016S0165-7836(97)00068-4

LewinWCArlinghausRampMehnerT(2006)Documentedandpo-tential biological impacts of recreational fishing Insights forman-agementandconservationReviews in Fisheries Science14305ndash367httpsdoiorg10108010641260600886455

LowryMampMurphy J (2003)Monitoring the recreational gamefishfisheryoffsouth-easternAustraliaMarine and Freshwater Research54425ndash434httpsdoiorg101071MF01269

LyleJMStarkKEampTraceySR(2014)2012ndash2013 Survey of rec-reational fishing in TasmaniaHobart TAS Institute forMarine andAntarcticStudies

Lynch T P (2006) Incorporation of recreational fishing ef-fort into design of marine protected areas Incorporacioacuten delEsfuerzo de Pesca Recreativa en el Disentildeo de Aacutereas MarinasProtegidas Conservation Biology 20 1466ndash1476 httpsdoiorg101111j1523-1739200600509x

LynchTP(2008)Thedifferencebetweenspatialandtemporalvaria-tioninrecreationalfisheriesforplanningofmarineprotectedareasResponse toSteffeConservation Biology22486ndash491httpsdoiorg101111j1523-1739200800888x

LynchTP (2014)Adecadal time-seriesof recreational fishingeffortcollectedduringandafterimplementationofamultipleusemarinepark shows high inter-annual but low spatial variability Fisheries Research15185ndash90httpsdoiorg101016jfishres201309014

LynchTPAldermanRampHobdayAJ(2015)Ahigh-resolutionpan-orama camera system formonitoring colony-wide seabird nestingbehaviourMethods in Ecology and Evolution6491ndash499httpsdoiorg1011112041-210X12339

LynchTFlynnDWoodGKimJ-HParkJampHobdayAJ(2017)Metrics parameters and results from fisheries and wildlife studies with the CSIRO Ruggedized Autonomous Gigapixel Systems (CRAGS)DarwinNTAustralianMarineScienceAssociation

LynchTPWilkinsonEMellingLHamiltonRMacreadyAampFearyS(2004)ConflictandimpactsofdiversandanglersinamarineparkEnvironmental Management 33 196ndash211 httpsdoiorg101007s00267-003-3014-6

MaHOgawaTKSminkeyTRBreidtFJLesserVMOpsomerJDhellipVanVoorheesDA(2018)Pilotsurveystoimprovemonitoringofmarine recreational fisheries inHawaiʻiFisheries Research204197ndash208httpsdoiorg101016jfishres201802010

McCluskey S M amp Lewison R L (2008) Quantifying fish-ing effort A synthesis of current methods and their ap-plications Fish and Fisheries 9 188ndash200 httpsdoiorg101111j1467-2979200800283x

McGlennonDampKinlochMA(1997)Evaluationofthebus-routecreelsurveymethod in a largeAustralianmarine recreational fishery II

PilotsurveysandoptimalsamplingallocationFisheries Research3389ndash99httpsdoiorg101016S0165-7836(97)00067-2

McPheeDLeadbitterDampSkilleterGA(2002)SwallowingthebaitIs recreational fishing in Australia ecologically sustainable Pacific Conservation Biology840httpsdoiorg101071PC020040

Monz C A Pickering C M amp HadwenW L (2013) Recent ad-vances in recreation ecology and the implications of differentrelationships between recreation use and ecological impactsFrontiers in Ecology and the Environment11441ndash446httpsdoiorg101890120358

MooreAHallKGiriKTraceySPenroseLHansenShellipBrownP(2015)Developingrobustandcost-effectivemethodsforestimatingthenationalrecreationalcatchofSouthernBluefinTunainAustraliaFRDC Projectpp123

Morton A J amp Lyle J M (2004) Preliminary assessment of the rec-reational gamefish fishery in Tasmania with particular reference to Southern Bluefin Tuna Taroona TAS Tasmanian Aquaculture andFisheriesInstitute

ParnellPEDaytonPKFisherRALoarieCCampDarrowRD(2010)SpatialpatternsoffishingeffortoffSanDiegoImplicationsfor zonal management and ecosystem function Ecological Applications202203ndash2222httpsdoiorg10189009-15431

PattersonTAEvansKCarterTLampGunnJS(2008)Movementand behaviour of large southern bluefin tuna (Thunnus maccoyii)in the Australian region determined using pop-up satellite ar-chival tags Fisheries Oceanography 17 352ndash367 httpsdoiorg101111j1365-2419200800483x

PollockKH JonesCMampBrownTL (1994)Angler survey meth-ods and their applications in fisheries management Bethesda MDAmericanFisheriesSociety

PonsM Branch T AMelnychukM C JensenO P Brodziak JFromentinJMhellipHilbornR(2017)EffectsofbiologicaleconomicandmanagementfactorsontunaandbillfishstockstatusFish and Fisheries181ndash21httpsdoiorg101111faf12163

PowersSPampAnsonK (2016)Estimating recreationaleffort in theGulf of Mexico Red Snapper Fishery using boat ramp camerasReduction in federalseason lengthdoesnotproportionally reducecatchNorth American Journal of Fisheries Management 36 1156ndash1166httpsdoiorg1010800275594720161198284

Robson D amp Jones C M (1989) The theoretical basis of an ac-cess site angler survey design Biometrics 45 83ndash98 httpsdoiorg1023072532036

Rocklin D Levrel H Drogou M Herfaut J amp Veron G (2014)Combining telephone surveys and fishing catches self-reportTheFrenchseabass recreational fisheryassessmentPLoS ONE9e87271httpsdoiorg101371journalpone0087271

Smallwood C B Pollock K HWise B S Hall N G amp GaughanD J (2012) Expanding aerial-roving surveys to include counts ofshore-based recreational fishers from remotely operated camerasBenefitslimitationsandcosteffectivenessNorth American Journal of Fisheries Management321265ndash1276httpsdoiorg101080027559472012728181

Teixeira D ZischkeM T ampWebley J A C (2016) Investigatingbias in recreational fishing surveys Fishers listed in public tele-phone directories fish similarly to their unlisted counterpartsFisheries Research 181 127ndash136 httpsdoiorg101016jfishres201604012

van Poorten B T amp Brydle S (2018) Estimating fishing effortfrom remote traffic counters Opportunities and challengesFisheries Research 204 231ndash238 httpsdoiorg101016jfishres201802024

van Poorten B T Carruthers T RWardHGM ampVarkeyD A(2015)Imputingrecreationalanglingeffortfromtime-lapsecamerasusinganhierarchicalBayesianmodelFisheries Research172265ndash273httpsdoiorg101016jfishres201507032

12emsp |emsp emspensp FLYNN et aL

VenturelliPAHyderKampSkovC(2017)AnglerappsasasourceofrecreationalfisheriesdataOpportunitieschallengesandproposedstandardsFish and Fisheries18578ndash595httpsdoiorg101111faf12189

WiseBSTelferCFLaiEKMHallNGampJacksonG(2012)Long-termmonitoringofboat-basedrecreational fishing inSharkBayWesternAustraliaProvidingscientificadviceforsustainablemanagement in a World Heritage Area Marine and Freshwater Research631129ndash1141httpsdoiorg101071MF12054

WoodGLynchTPDevineCKellerKampFigueiraW(2016)High-resolutionphoto-mosaictime-seriesimageryformonitoringhumanuseofanartificialreefEcology and Evolution66963ndash6968httpsdoiorg101002ece32342

YuFRupertACCDiTizianaMNishikantaKRandySIllahNhellipJeffreyG(2011)TerapixelimagingofcosmologicalsimulationsThe Astrophysical Journal Supplement Series19718

Zischke M T Griffiths S P amp Tibbetts I R (2012) Catch and ef-fort from a specialised recreational pelagic sport fishery off

eastern Australia Fisheries Research 127ndash128 61ndash72 httpsdoiorg101016jfishres201204011

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle

How to cite this articleFlynnDJHLynchTPBarrettNSWongLSCDevineCHughesDGigapixelbigdatamoviesprovidecost-effectiveseascapescaledirectmeasurementsofopen-accesscoastalhumanusesuchasrecreationalfisheriesEcol Evol 2018001ndash12 httpsdoiorg101002ece34301

Graphical AbstractThecontentsofthispagewillbeusedaspartofthegraphicalabstractofhtmlonly

Itwillnotbepublishedaspartofmainarticle

Wetrailedaremoteautonomousultra-high-resolutionphotosamplingmethodasacosteffectsolutionfordirectseascape-scaledmeasure-mentsOursequentialphotosamplingwasbatchedprocessesusingnovelTimeMachinedatahandlingsoftwaretoproduceldquobigdatardquotimeseriesmoviesfromaspatialsubsetofanoffshorefisherywhichwecomparedtoaregionalbus-routesurveyofboattrailersandinterviewswithparticipantsOurcamerasamplescloselytrackedlargerscaleregionaltrendsbutwithlaborcostsaquarterofthebus-routesurveycostsforanindividualsample25ofthebusroutes

Page 2: Gigapixel big data movies provide cost-effective seascape ...

2emsp |emsp emspensp FLYNN et aL

1emsp |emspINTRODUC TION

Worldwidecoastalzonesaresomeofthemostheavilyimpactedpartsoftheoceanbypeoplebothintermsofactivitytypesandparticipationrates(Halpernetal2008)Aparticularfocusofre-search on coastal use has been recreational fishing as this pop-ular activity can significantly affect fish and invertebrate stocks(Arlinghaus 2006 Cooke amp Cowx 2004 Lewin Arlinghaus ampMehner2006McPheeLeadbitterampSkilleter2002)asformanyspecies harvest can exceed the take of the commercial fishery(GiriampHall2015LyleStarkampTracey2014ZischkeGriffithsampTibbetts2012)

Unlikecommercialfisherieswhicharecommonlydocumentedbyoperatorsloggingtheircatchandeffortassessmentsofopen-accessnonreporting activities suchas recreational fisheries require sam-plingThiscanbebothdifficultandexpensiveduetotheiroftenlargespatialextenthightemporalvariationandforthefisheriesagenciesundertaking the work which often requires weekend and holidaysurveyinghighlaborcosts(Maetal2018PollockJonesampBrown1994 Rocklin Levrel Drogou Herfaut amp Veron 2014 VenturelliHyderampSkov2017)Due to these issues assessmentshave typi-callyrelieduponindirectdatacollectionfromoff-sitetelephonesur-veysbasedondataframesdevelopedaroundregionallsquowhitepagesrsquoor landline telephonedirectorieswhichtraditionallyhavehadhighresponseratesandeasilyscalablesamplesizes(Mooreetal2015Pollocketal1994)Suchapproachesmaynowriskundersamplingactivefishersbecauseofdemographicallybiasandoveralldecreasedlandlinephoneuseunlistedandnonregionalcodedmobilephonesandlowresponsesuccessfromvoicecallstomobilephones(Badcocketal 2016 Blumberg amp Luke 2009 Teixeira Zischke ampWebley2016)

Other formsof recreational fisheryassessmentsemploydirecton-sitesurveymethodssuchasbus-routesurveyswhichuseclerkstraveling around a fisherymdashfollowing randomly selected predeter-minedschedulesmdashinterviewingandobservingfisherstotrackfish-ingeffortcatchandrelease(McGlennonampKinloch1997Pollocketal 1994) On-sitemethods that cover broad geographic areashowever are seldom performed due to high labor costs (JonesampPollock2012)

Given these limitations remote sensing tools and technol-ogies such as autonomous photography are an emerging fieldofferingdirectmonitoringasanalternativeorsupplementtoon-site interviews (HartillPayneRushampBian2016KellerSteffeLowryMurphyampSuthers2016ParnellDaytonFisherLoarieampDarrow2010PowersampAnson2016vanPoortenCarruthersWardampVarkey 2015Wood LynchDevineKelleramp Figueira2016) One such system is the CSIRO Ruggedised AutonomousGigapixel System (CRAGS) which is a programmable weather-proofcameratrapthatprovidesultra-highresolutiontime-lapseandhigh-frequencypanoramic imagesTheCRAGSutilizesmod-ified commercially available hardware and software known as aGigaPanreg (httpgigapancom)tocapturephotographicsampleswith such high pixel density (gigapans) that wide fields of view

andassociatedobjectsofinterestscanbeexaminedcloselywith-out the loss of broader environmental context at landscape orseascape scales (LynchAldermanampHobday 2015) (SupportingInformationAppendixS1)

Thisroboticcamerasystemallowsformuchbroaderscaledphoto-graphicassessmentsthansimplecameratrapsbyautonomouslytak-ingandthenstitchingtogethermultipletelephotomegapixelimagesinto high-resolution gigapixel panorama The resulting tiled imageallowsfullyzoomableviewingforeithermultiplesmalltargetssuchasAlbatrossnestsacrossacolony(Lynchetal2015)ormorewidelyspacedlargertargetssuchasidentifyingcommercialvsrecreationalvessels around an offshore artificial reef (Wood etal 2016) Thebenefitofthesystemcomparedtosimplercameratrapsisbeingabletoobserve inhighdetail fromtheone imagestreammanyobjectssimultaneously across landscapeor seascape scalesWith somuchinformationdatahandlingcanbecomeoverwhelmingsoabatchpro-cessingmethod calledGigapanTimemachinehasbeendevelopedOriginallyusedforviewingcosmologicalsimulations(Yuetal2011)TimeMachineproducesavideostreamthatallowsviewerstofluidlyexploregigatotetrapixel-scaledvideosacrossbothspaceandtime

InAustraliaannualrecreationalfishingparticipationhasbeenes-timatedat195(HenryampLyle2003)whichiswellabovetheglobalaverageofaround10(ArlinghausTillnerampBork2015)AroundtheAustralian island state of Tasmania the annual participation rate is293whichwellexceedsthenationalaverageTheTasmanPeninsulainTasmaniarsquossoutheast (Figure1) isapopularfishingregionneartothelargestcityandstatecapitalofHobartwhereasteepbathymetricprofileandmigratorygame-fishpathwayoverlapprovidingcoastalac-cesstonormallyoffshorefishingopportunitiestorecreationalfisherintrailerboatsPelagicgamefishsuchassouthernbluefintuna(Thunnus maccoyii)aretargetedinlateAustralSummerandAutumn(MortonampLyle2004)butasthefisheryisunlicensedandepisodictrendsinef-fortandcatcharepoorlyunderstood(LowryampMurphy2003Mooreetal2015)Thisparticularrecreationalfisheryisalsoofmoregeneralinterestasthetargetsarecommerciallyimportantspecieswhichin-cludethosewithinternationallynegotiatedquotas(Ponsetal2017Zischke etal 2012) Recreational fishers are also often associatedwithotherusersofthemarineenvironment(FarrStoecklampSutton2014Kearney2002)orinthiscasetouristsenjoyingthelocalnationalparksHencehighusesitesmaybeimportanttomonitornotonlyforfisheriesandecologicalreasonsbutformanagingsocialvaluescon-flict resolutionandplanning (AlessaKliskeyampBrown2008Lynchetal2004)

WetrailedourCRAGSmethodtoseewhetherwecoulddevelopa high-frequency time series of temporal trends of observed trailerboat fishingeffortatanoffshoreconcentrationpoint for the recre-ationalgamefisheryWealsotestedboththesuitabilityandlaborcost-effectivenessofthehardwareandanovelapplicationofTimeMachinebatchprocessingsoftwaretoautomaticallyproducealdquobigdatardquointer-activemoviesmadefromourgigapixelpanoramasAsthepeninsulais isolatedandservicedbyonlya limitednumberofboatrampsweaimed tovalidate the representativenessof the temporal trendsweobservedwithCRAGSbycorrelatingtomatchsamplesobtainedfrom

lyn088
Cross-Out
lyn088
Cross-Out
lyn088
Inserted Text
M

emspensp emsp | emsp3FLYNN et aL

asimultaneousregionallyscaledbus-routetrailerboatsurveyatthethreerampsonthepeninsularsuitableforlaunchinglargetrailerboatsWe also undertook on-ground interviewswith trailer boat users togroundtruthactivitytype(fishingornonfishing)andtargetspeciesByundertakingbothcameraandboatrampsurveysourover-overarchingaimwastoinvestigatehowremoteimagerymayreplacecomplimentoroptimizeconventionalon-siteapproachesforrecreationalfishing

2emsp |emspMATERIAL S AND METHODS

WedeployedtheCRAGSbetween1May2015and30June2015toassesstrailerboatsoffshorefromwateradjacenttotheTasman

Peninsula (Figure1) This period was chosen as it correspondswith the main tuna fishing season For large trailer boats (gt5mlength) localaccess to the fishery is limitedto threeboat ramps(Figure1)althoughtheareamayalsobevisitedbylargervesselssteaming frommarinas and anchorages further north (MortonampLyle2004)butforthepurposesofourstudyweexcludedtheserelativelyrare largervesselsWefocusedourCRAGSsurveyataknown game fishing concentration the Hippolyte Rock MarineConservationArea (HRMCA)which are a group of small islandsabout6-kmoffshore (Figures1and2)aroundwhichrecreationalfishingispermittedWhiletheCRAGSdeploymentwasmarginallycloser to the FortescueBayRampwe commonly observe boatsapproachingtheHRMCAfromdirectionsthatcorrespondedtothe

F IGURE 1emspTheTasmanPeninsulainSETasmaniaBus-routesurveysamplingoccurredatramps locatedatPiratesFortescueandStuartsBayTheCRAGSlocationisshownasacameraiconandtheareaobservedbythecamerawhichincludestheHippolyteRocksMarineConservationArea(HRMCA)isdescribedasatriangle

Text

Pirates Bay

Fortesque Bay

StewartsBay

0 3 6 9 1215Kilometers

0 30 60 90 12015Kilometers

Tasman Is

Australia

Tasmania

Hobart

TasmanPeninsular

HippolyteRocksMCA

43deg 01 30

147deg 52 30

TAS

4emsp |emsp emspensp FLYNN et aL

locationof all three rampsWe fixed theCRAGS to a clifftop atWaterfall Baywhich overlooks the site fromvery high sea cliffs(~250m)withthecamerafocusingonthewesternsideofHRMCA(Figure1)ForeachsampleCRAGScapturedaseriesof68pho-tographsthroughatelephotolenswhichwhenstitchedtogetherprovide a high-resolution panoramic image with a wide field ofview (~140deg) (Supporting Information Appendix S1) The size ofareasurveyedbyCRAGScomparedtotheregionalareaaccessibleby trailer boatswas estimated using google earth polygons andtheUniversityofNewHampshireKMLextensiontoolmdashhttpsex-tensionunhedukmlToolsindexcfm

Thetimeof the initialCRAGSpanoramasamplewasrandomlyselected Samples were then collected sequentially through-out daylight hours (0600ndash1800) As less recreational fishing fortuna occurred at night no samples were taken with the CRAGSprogrammed to ldquoblankrdquo these hours from the sampling sched-ule (Supporting InformationAppendix S1) Photographic sessionswereprogrammedtobeseparatedbyarecurring93-mingapthus

producing a forward shift in sample capture time andminimizingpotentialautocorrelationsbetweenboatingactivitiesandsamplingtimesPhotographswerebatchprocessedtobothformpanoramicimagesforeachsampleandforcompilingintoaninteractivetime-lapsemovieusingCREATELabrsquosTimeMachinesoftware (CREATELabregPittsburgPAUSA)

TimeMachinemovies are fully interactive and are able to bezoomedintopausedandplayedatvariousspeedsandarealsotimeanddate-stamped(Figure3)UsingthisinteractivemoviesoftwareeachGigaPanmoviewassystematicallypausedateachsamplefullyzoomedandscannedlefttorighttoptobottomforobjectsintheseascapebytheleadauthor(Figure3)Vesselcountswererecordedforeachsamplewithobjectslargerthan~10minlength(nottrailerboats)or requiring longer than10seconds todistinguish (eg lowresolutionandimageartifact)beingdiscountedSampleswerecat-egorized into two strataweekdays andweekendspublic holidaysusing the time and date stamp provided on each GigaPan scene(Figure3)

F IGURE 2emspAnunmodifiedGigaPanEpicPROunit(left)andaCRAGSdeployedatWaterfallBaySETasmania(right)

F IGURE 3emspScreencaptureoutputsfromtheTimeMachineinteractivedataviewershowinganozoomandpanoramicextentoftheHippolyteRockMarineConservationArea(HRMCA)b=13zoommainHippolyterock~6kmfromcamerac=12zoomofalargetrailerboatd=fullzoom

lyn088
Cross-Out
lyn088
Inserted Text
(a)
lyn088
Cross-Out
lyn088
Inserted Text
(b)
lyn088
Cross-Out
lyn088
Inserted Text
(c)
lyn088
Cross-Out
lyn088
Inserted Text
(d)
lyn088
Inserted Text
s

emspensp emsp | emsp5FLYNN et aL

Thecountofboatsforeachsamplewasthenextrapolatedintoanestimateofdailyaverageboatingeffort(hoursplusmnSE)usingthein-stantaneouscountmethod(Equation1)

where ei is theextrapolatedboatinghours for the ithday Ii is theaveragenumberoftrailerboatsobservedacrosstheinstantaneoussamplesfordayiandTisthedailysamplingperiod(daylighthours)Asbadweathercanbeamajorfactoraffectingthedecisiontoboatorfish(ForbesTraceyampLyle2009)boatingeffortwasassumedtobe0whenadverseweathermadeobservationsofboatsimpossible

Next total effort for each day-type strata (Ejk) within sam-pling months (k) was calculated to estimate the monthly effort(Equation2)AsCRAGSallowedforcontinuoussamplingthroughoutthesurveyperiodthesamplingprobability(πk)wassetto1

Standarderrorandeffortvarianceformonthlyestimateswerecalculated(Equation3)accordingtoPollocketal(1994)forstrata

where nj is thenumberofsampleddaysofstrata j Njk is thetotalnumberofdaysofstratajinmonthk

Asvariationforeachstratawascalculatedseparatelyweusedasumofsquaredstandarderrorsapproach(Equation4)toestimatethetotalmonthlyvariation

Assampleswereobtainedinaserialandcontinuousfashionatimeseriesmodelusingrollingaverageswasalsoappliedtothedata(Diggle1995)(Equation5)

where smt is the smoothed average of extrapolated effort e persampletwhichisweightedacrossthreesampleseachseparatedby93minThisprovidedasmoothedaveragewithindays

Wealsoconductedabus-routestylesurveytoestimatefishingeffortfromtrailerboatsfortheregion(Pollocketal1994Robsonamp Jones1989)WhileCRAGSsampleswerecollected throughoutMayandJunethecomparablebus-routesurveywasonlyconductedinMaydue to logistical constraintsWesurveyed the threemajorboatrampsintheregionatPiratesBayFortescueBayandStewartsBaybetween3May2015and30May2015(Figure1)

Atotalof20bus-routesampleswerescheduledWeundertookrandomstratifiedsamplingwithdaytypedividedintoweekdaysorweekendpublic holidays To reflect expected higher recreationaleffortduringweekendsandpublicholidays(McCluskeyampLewison2008)thesamplingprobability(πk)wasweightedtowardthisstrata

over weekdays at 12 to eight samples (Supporting InformationAppendix S2) We stratified the sample time into morning (am0600ndash1159)andafternoon(pm1200ndash1800)withequalproba-bilitiesofsamplingTominimizetemporalautocorrelationthestart-ing location and travel direction of the routewere also randomlyselectedwithoutreplacementEqualsamplingweightwasprovidedtoeachrampduetolackofpriorknowledgeofuserates

At each boat ramp surveys were conducted by first countingparkedboattrailersthenbymonitoringvesselentryandexitsduringa1-hrsamplingperiod(KinlochMcGlennonNicollampPike1997Pollocketal1994)The1-hrperiodwaschosendueto travel timeanddis-tancebetweensitesallowingforabus-routesampletobecompletedforallrampswithinthetemporalstrata(AMorPM)ofthedailysam-plingframeInterviewswereconductedwithallpartieslaunchingandretrievingvesselsduringtheclerkrsquoswaittimedeterminingpartysizetargetspeciesgroupandactivity(iefishingornot)forestimatesoffishing effort This well-established procedure produced a monthlyextrapolatedestimationofboateffort instandardizedunitsofefforthoursplusmnSEwhichcouldthenbeadjustedtofishingeffortviathepro-portionofintervieweesactivities(Pollocketal1994RobsonampJones1989)(SupportingInformationAppendixS3)PartysizebetweenrampswastestedforanydifferenceusingaonefactorANOVA

Thebus-route surveyhenceprovidesanestimationofall fish-ing effort from trailer boats around this isolated peninsular TheCRAGSdataarethusahigh-frequencyspatialsubsetoftheentiretrailer boat fishing effort for the period thatwas extrapolated bytheregionalsurveyThisallowedustobothtesttherelativeuseoftheHRMCAcomparedtowiderpeninsularuseandtheabilityofourremoteobservationswithourCRAGsunitofanactualsubsetofthefisherytotracklargertemporalpatternsofpeninsularwideeffort

TovalidatetherepresentativenessoftheCRAGShigh-frequencytrackingofeffortmetricsover timeweundertookaSpearmanrankcorrelationbetweentime-matchedeffortestimationsbyCRAGSandthe regional bus-route survey For graphing bus-routeextrapolationestimates were overlaid onto extrapolations from daily averages ofboatfishingeffortfromCRAGSWealsocarefullyloggedalltimespentontheprojecttocomparetotallaborcostsbetweenCRAGSandthebusrouteforbothdatacollectionandprocessingtodetermineeffortacrossthecomparativemonthaswellasforcostpersample

3emsp |emspRESULTS

The CRAGS operated successfully and continuously throughoutthestudycapturing545plusmn198SE(May)and483plusmn088SE(June)panoramasperdaymakinga totalof314 samplesWemade895observationsofboatsbut51samplesacross21daysreturnedzerocountsofboats(17oftotalsamples)Thesewereconcentratedonweekdaysmdashwith 44 zero-count samples across 18daysmdashwhile onweekendsandpublicholidaytherewereonlysevensamplesacross3dayswithnoactivityInclementweatherrendered27samplesun-usableTheimagesandbatch-processedTimeMachinemoviescon-sumed4274GBofmemory

(1)ei=IitimesT

(2)Ejk=

nsum

i=1

(

ei

120587k

)

(3)SEjk=

1

njminus1

sumn

i=1(eiminus ei)

2

njtimes (Njk)

2

(4)SEk=

radic

SE21k+SE2

2khellip+SE2

jk

(5)smt=etminus1+ et+ et+1

3

6emsp |emsp emspensp FLYNN et aL

Based on boat ramp interviews the average trailer boat partysize (P) was 287 people per vessel throughout May (plusmn0133 SEn=84)andpartysizebetweensitesshowednosignificantdiffer-ence (df=2F = 302p = 068) The averagemonthly boat fishingeffort(hours)extrapolatedforourCRAGSobservationsofHRMCAwas5629hr(plusmn711SE)with4096hr(plusmn607SE)inMayand1534hr(plusmn370 SE) in June (Figure4)mdashthis could be extrapolated to fisherhoursbymultiplyingbytheaveragepartysizebutasnointerviewswereconductedinJuneweleftboththeCRAGSandbusrouteex-trapolationsasboatfishingeffortonly

The total subset area observed by CRAGSwas 96km2 which comparedto318km2thatwaseasilyavailabletotrailerboatsaroundtheTasmanPeninsularwhichcorrespondstoaround3ofthetotalareaComparedtothetotalfishingeffortforMayextrapolatedfromtheregionalbus-routesurvey therelativelysmallareaaroundtheHRM(~3)receivedalargeamountofthefishingeffort(~23)

ThehighfrequencyofCRAGSsamplingpermittedtheexamina-tionoffine-scaleinter-dailytemporalvariationwhichdisplayedarag-gedsinusoidoscillation(Figure5)Effortwasgenerallylowwithinthe

weekdaystrataandthen increasedrapidly to largepeaksonweek-ends (Figure5) One exception to this was between the 18th and22ndMaywhichhadmoreeffortonweekdays thanotherperiods(Figure5)Bracketingthisperiodweretwoweekendsoffishingcom-petitions theldquoTunaClubofTasmaniarsquosrsquoFarSouthClassicrdquo (16ndash17thMay)andRally4Northerninvitationalweekendrally(23rdMay)

A total of 16 bus-route samples were conducted logistic fail-uresledtotheabandonmentoffour(20)oftheplannedsamplesRegionalTrailerboateffortfromaroundtheTasmanPeninsularwasestimatedtobe19650hr (plusmn2858SE) inMay (Figure4)Notrailersat individual rampswere recorded four timeswith all of theseoc-curringonweekdaysThetotalnumberoftrailerssightedperramprangedfrom0to16duringweekdaysand1ndash54forweekendswiththehighestnumberrecordedon16May2015atPiratesBayDuringhigh-intensitydays(particularlyweekendsholidaysmornings)therewereoftenlargeoverflowsfromrampcarparkswithparkedcarsandboattrailersextendingasmuchasonekilometerfromtheboatramp

During thebus-route survey 84 interviewswere conductedThemajorityofmariners(905n=96)indicatedfishingwastheir

F IGURE 4emspExtrapolatedmonthlytrailerboateffort(hoursplusmnSE)fortheentireTasmanPeninsulaassessedbyabus-routesurvey(May)andforthesubsetoftheareaaroundtheHRMCAsampledwithCRAGS(MayandJune)

F IGURE 5emspHigh-frequencyinterdailyextrapolatedCRAGSestimationsofboatefforthoursaroundthe(HRMCA)

0

100

200

300

400

500

600

Rolli

ng m

ean

daily

effo

rt in

hou

rs

DayWeekdays Weekends + Public Holidays

lyn088
Inserted Text
CA
lyn088
Cross-Out
lyn088
Cross-Out
lyn088
Inserted Text
t

emspensp emsp | emsp7FLYNN et aL

primaryactivity (Table1)Overall643 (n=54) indicated theirprimary target were tuna with 179 (n=15) specifically tar-geting southern bluefin tuna (Thunnus maccoyii)Other commonrecreationaltargetsincludedflathead(Platycephalusspp595)Southernrocklobster(Jasus edwardsii107)andsquidcalamari(Sepioteuthis australisandNototodarus gouldi476)(Table1)

Basedon the responsesofactivity type from interviews totalboatfishingeffortinMaywasestimatedtobe17783hr(plusmn2586SE)Asmostnonfishingactivitieswerenear shoreweassumed trailerboatingactivityatHMRCAobservedbyCRAGSwasallfishing

Therewere16directcomparisonsamplesbetweenthebusrouteandCRAGSmethodsbetweenthe2ndandthe29thofMaySamplesconsisted of 7 weekdays and 9 weekendspublic holiday samples

(Figure6)Infourcaseswheretwobus-routesamplesweretakenonthe same day (Supporting Information Appendix S2) they are com-bined toadailyestimation for tabulation (Table2)Theproportionaldifferencebetweenestimatedeffortsusingthetwomethodsrangedfrom078-to418-folddifferencehoweverranksestimatesbetweenCRAGS and bus-route samples were strongly associated (n=16ρ(12)=087p=lt001)Interdailysamplingstrata(ampm)werealsoexaminedseparatelyforcorrelationwhichremainedstrongforbotham(n=9ρ(7)=080p=lt001)andpm(n=7ρ(5)=089p=lt001)

ForthecomparativemonthCRAGStook169samplescomparedtothebusroutesrsquo16(Table3)WehadtwofieldtripdaysforCRAGSwith four people on the setup and three on the breakdown daywhichresultedinsevenfull-timeequivalent(FTE)daysofworkThiscomparedto16fielddaysforthebus-routemethodwhichincludedtraveltothefieldsiteforbetweentwoandthreestaffwhichaccu-mulatedto40FTEdaysofworkSettingupourCRAGSautomatedstitching took one FTE day (though this is faster for experiencedofficers)whiledataextractionperimagewasestimatedtotakeon

TABLE 1emsp Intervieweesreportedprimarytargettaxaoractivity

Primary target taxaspeciesactivity Interview responses

Tuna(unspecified) 37 440

SouthernBluefinTuna 15 179

AlbacoreTuna 2 238

AllTuna 54 643

Flathead 5 595

Southernrocklobster 9 107

Squidcalamari 4 476

Abalone 1 119

SmallPelagics 1 119

SnottyTrevalla 2 238

Allnearshorespecies 22 262

Surfing 1 119

SCUBA 3 357

DemonCavevisitors 3 357

PleasureCruise 1 119

Allnonextractive 8 952

Note ldquoTunardquo responsesdenote anglers targeting all specieswithin thefamilyThunnini

F IGURE 6emspDailyboatingeffort(hours)extrapolatedusingbus-routeaccesspointsurvey(bar)andCRAGS(line)Effortestimatefrombus-routesurveywascalculatedfrommorning(amdarkgray)andafternoon(pmlightgray)surveyCRAGSsurveywasconductedbetweenMayandJunewhilethebus-routesurveywasonlyconductedinMay

TABLE 2emspRankingofeffortforpairedsamplesbetweenCRAGSandthebusroute

DateCRAGS hours (rank)

Bus- route hours (rank) Δ Rank

2052015 330(9) 1208(10) minus1

3052015 303(8) 1471(11) minus3

12052015 0(1) 48(2) minus1

14052015 0(1) 24(1) 0

16052015 387(11) 1794(12) minus1

19052015 93(4) 89(4) 0

20052015 57(3) 117(5) minus2

22052015 228(7) 283(6) 1

23052015 513(12) 414(8) 4

24052015 345(10) 1155(9) 1

25052015 122(6) 323(7) minus1

29052015 102(5) 79(3) 1

8emsp |emsp emspensp FLYNN et aL

average75mincomparedto1minforenteringthebus-routedatasheetWhiledataextraction forCRAGS took longer compared tothe bus routemdashat 381 FTE daysmdashtotal monthly labor for CRAGStookonlyaquarterofthetimeandonaper-samplecomparisonwasonly25ofthebus-routelaborcost

4emsp |emspDISCUSSION

Over our autumn samplingmost trailer boat owners accessing thewaters around theTasmanPeninsula via the regional boating infra-structurewererecreationallyfishingwithfisherspredominatelytar-getingtunaTrailerboatrecreationalfishersconstitutealargetrancheof coastal users in Australia (McPhee etal 2002) and our resultssuggestedthatthisregionremainsonewhererecreationalfishing isconcentrated(MortonampLyle2004)EffortobservedbyCRAGSwasa spatial subsetof thegeneral areaeasily accessedby trailer boatsaroundtheTasmanPeninsularwhichweregionallyassessedwithourbus-routerovingsurveyAsCRAGSonlyobserved~3of thetotalarea but corresponded to ~23 of themonthly bus-route boat ef-fort theHippolyteRocksMarineConservationArea (HRMCA) is afurtherconcentrationpointwithintheregionforrecreationalfishingAsthisoffshorefishingeffortaroundtheHRMCAwasmostprobablyfocusedontotunamdashwhichaccountedfor634ofallinterviewedfish-ers activitiesmdashthe actual proportionofpeninsularwide tuna fishingthatwasobservedbyCRAGSwaspotentiallymuchhigherthan23

For developing effort metrics finding a representative site toobservemaybe important forprecise trackingof trendsThetightrankcorrelationbetweenpairedregionalbus-routeandCRAGScam-era samples suggest that effort atHRMCAwas representative ofregionaltemporaltrendsOurresultsarealsosimilartootherstud-ieswheresamplingmethodsforrecreationalfisheriesoverbroaderscaleswhencomparedtoindextrendsofeffortcollectedfrompointsourcesshowstrongcorrelations(Hartilletal2016)

CRAGSwithitsseascapescaleofdatacaptureobservesactualeffortonfishinggroundsratherthan indirectmetricsfrommove-ment past access points (Hartill etal 2016 Smallwood PollockWise Hall amp Gaughan 2012 van Poorten amp Brydle 2018) This

makesthechoiceofaccesspointstomonitorimmaterialfortrendcol-lectionandmaybeofparticularinterestforpelagicfisheriesWhilenonintuitiverecreationalfishingforwide-rangingmigratorypelagicspeciesisoftenspatiallyconcentratedintosmallareas(Lynch2006)duetotightoverlapsbetweeneaseofaccessbyfishersandfishbe-haviorrelatedtobathymetrymigrationhabitatandpreyavailability(Lynchetal2004PattersonEvansCarterampGunn2008)

Unlikespatialpatternstheintensityofcoastalrecreationaltemporaleffortcanbehighlyvariableovertime(Lynch20082014WiseTelferLaiHallampJackson2012)thoughitisgenerallythoughttofollowpre-dictablepatternsrelativetoholidayandnonholidayperiods(JonesampPollock2012)Ourresultsdemonstratedtheselargefluctuationsrang-ingfromzerouptogt400hroftrailerboateffortforadjacentdaysIncombinationwithholidayperiodsothersourcesofvariabilitymayalsooccurduetoindividualorcombinationsoffactorssuchasfishingcluborcompetitionactivitiesandweatherconditionsHigh-frequencysam-plingcanovercomethesecommontemporaldisjunctionsinobservedfishingeffortwherebychanceduetolownumbersofsampleslogis-ticallypermissiblewithtraditionalrovingoraccesspointsurveyslargeerrorsintheestimationofeffortcanbeintroduced(Hartilletal2016vanPoortenampBrydle2018vanPoortenetal2015)

With multiple daily observations abnormal episodes are morelikelytobeobservedForinstanceaweek-longperiodofintenseef-fortwasrecordedbetween15May2015and27May2015whichwasbracketedbytwoconsecutiveweekendswherefishingcompetitionswereheldontheTasmanPeninsularThenormalsinusoidpatternoflowweekdayandhighweekendeffortwasmuchlesspronouncedastheweekdaylullsineffortwerepartiallybridgedbyanglerscontinuingtofishAsbus-routedesignsusedaytypeasstratawithlowerprob-abilitiesforsamplingweekdaysandmuchfewersamplesoverallthistypeofeffectcouldeasilybemissedWhileourbus-routesamplesdidoverlapwiththetunafishingcompetitionsthiswaspurelybychanceSucheventswhichresultinlargespikesofeffortcanhavemarkedim-pactsonlocalecosystemsandharvestestimates(McPheeetal2002MonzPickeringampHadwen2013)andwithoutpriorknowledgearemorelikelytobecapturedwithmonitoringathigherfrequencies

Methodsforgatheringdataoncoastalusesuchasrecreationalfishing moved away from direct approaches and toward off-sitemethodssuchastelephoneinterviews(McCluskeyampLewison2008Pollock etal 1994) due to unsustainable costs from staffing andoperationsparticularlyduringperiodsof intenseusesuchasearlymornings weekends and public holidays which require overtimepaymentsHoweversamplingissueswithoff-sitemethodsareofpar-ticularconcernforopen-accessactivitiessuchasunlicensedfisheriesasthereisnolicensedatabaseofcontactphonenumbersonwhichtobaseasampleframeThisisparticularlysofornicherecreationalfisheriessuchaspelagicgamefishingasthefishersbecomeincreas-inglydilutewithinthegeneralpopulationandhencearehardtoac-cessparticularlyviaoff-sitemethodssuchastelephone interviews(Griffithsetal2010)

Remoteandautonomousdeploymentofsensorsmaythereforeprovideanalternativeandcost-effectivemethodforlong-termmon-itoring particularly for effort across a range of applicationsOur

TABLE 3emspFulltimeequivalent(FTE)labordaysforCRAGSandbusroutesurveystoestimatepatternsofeffort

CRAGS Bus route

Numberofsamples 169 16

Fielddays 2 16

Averagepeopleperfieldday 35 25

Field FTE days subtotals 7 40

StitchingsetupFTE 1 0

DataextractionFTE(persample) 0017 0002

Subtotal data extraction FTE 381 004

FTEdayspersample 006 250

Total FTE days 108 400

emspensp emsp | emsp9FLYNN et aL

comparisonsofmatchedpairsofdatafromtwomethodssuggestedthat theCRAGSoutputswerewell correlatedwith regionalefforttrendsOuranalysisoflabordemonstratesthattryingtounderstandthistemporalvariabilitywithsamplingviaboatrampsurveyswouldbeprohibitivelyexpensiveOurCRAGSallowsforatemporaleffortmetric derived fromactual observationsof fishing to be cheaplydeveloped with sampling frequency at subdaily scales This high-frequencysamplingapproachwasvalidatedagainstour largerbutmuchmorecostlybus-routesurveyOuranalysisoflaborrequiredtobothcollectandprocessdatashowedthatCRAGSrequiredconsid-erablylessresourcestocollectapproximatelyninetimesmorefre-quenttemporaldatathanthebus-routemethodMajorlaborsavingswereduetotheruggedizedandautonomouscapabilityofCRAGSasonlytwofieldtripswererequired(deploymentandretrievaltook7FTEdays)comparedtothebus-routersquos16fieldtrips inamonthwhichconsumed40FTEdaysandincludedanadditional780kmofinter-ramproadtravel(SupportingInformationAppendixS3)AsitisweatherproofautonomousandabletobeprogrammedwithatimedelaysetupCRAGSldquofireandforgetrdquonaturebothremovestheneedforobservertobephysicallylocatedattheregiontocountactivity(EdwardsampSchindler2017)andworkduringovertimeperiodsTheldquoblankingperiodrdquowhichstopsandstartssamplingmdashinthiscaseover-nightmdashalso reduces battery and memory use In combined thesetechnological advances have allowed long-term CRAGS deploy-mentsacross4yearsof4ndash6monthrotationsontooffshoreislandsand for several seasons in Antarctica to monitor seabirds (Lynchetal2017)Thelaborestimateforthebusroutewasconservativeasitdidnotincludeovertimeloadingforthe6weekenddaysofsam-plingorearlymorningcommencementofamsamples

Theadditional381FTEprocessingtimerequiredbythecameraapproach did not impact greatly on the overall labor budgetwhenconsideredagainstfieldworkTheuseoftheTimeMachinebatchpro-cessingsoftwaretoautomaticallyproducetheldquobigdatardquointeractivemoviewasalsoatechnologicalinnovationthatsignificantlyreducedthelaborofdatahandlingcomparedtothemanualopeningofindivid-ualGigaPansusedinpreviousstudies(Lynchetal2015Woodetal2016)IncomparativetermsattheindividualsampleleveltotracktheeffortmetriceachCRAGSsamplerequired24ofthelaborofthebus-routesurvey

Thedevelopmentandapplicationofimagerecognitionsoftware(machine learning) to detect classify and count boats automati-cally (Bousetouane amp Morris 2015) would further reduce post-processingcostsTherequiredfrequencyofsamplingshouldalsobeconsideredonacase-by-casebasisdependentontheresearchquestion as image collection can be somewhat open-ended andresult inunwieldydata sets that require subsampling tobe cost-effective(Parnelletal2010)Inourcasethesettingof~5imagesperdayappearedtoadequatelydescribetheinterdailyvariation

Whileouroneautonomouscameraprovidedastrongcorrelationwithtemporaltrendsineffortcomparedtotheregionalsurveyitdidnotprovide relativespatialdistributionsofeffortacross the fisheryThesedistributionshowevercanbepredictableandhighlyconcen-trated(Lynch20062014Parnelletal2010)anobservationthatwas

alsoshownbyourresultsandmuchsmallerlevelsofsamplingeffortwouldprobablyberequiredtoresolvevariationinspatialdistributionscomparedtowhatisrequiredtoresolvethehightemporalvariationsineffortUnderstandingfine-scalespatialdistributionsofrecreationalfishingeffortiscommonlyachievedusingaerialcounton-watersur-veysorvantagepointsurveys(Lynch2006Smallwoodetal2012)thoughotherremotemethodssuchashigh-resolutionsatelliteimag-ery(FretwellScofieldampPhillips2017)mayprovideacheapersolu-tionThesetypesofwidersurveyshavealsobeensuggestedashighlycompatiblewithpointsourcemetricssuchasremotecamerasystemstoallowforcalibrationorldquoup-ratingrdquoforeffortexpansionstoestimateoveralleffortwithinthefishery(Hartilletal2016)

Thelongdistance(~6km)betweentheHMRCAandthedeploy-ment location stretched the resolution limit of the current CRAGSsetup aswewere unable to distinguish party size or activity typepurelyusing thecamerasystemThis isunlikepreviousCRAGSde-ploymentwhichhadahighsuccessrateofidentifyingpartysizeac-tivity typeata shorter rangeofapproximately19km (Woodetal2016) Thus ground-truthing information about the fisherywas re-quiredforthesystemtoworkeffectivelyAutonomouscamerasystemalsodonotcollectcreel(catch)databutbyallowingforcost-effectivecollectionofthehighlyvariabletemporaleffortdatatheymayallowforhumanresourcestobespentelsewhereduringsurveyperiods(egtoundertakeboatrampinterviews)(vanPoortenampBrydle2018)

Our studywas a small-scale trial of new technology andwhilepreliminary results are encouraging validated seasonal effort esti-mationsobservedviaCRAGSwereoutsidethescopeofthisprojectOur comparisons would hence have been improved by extendingCRAGSdeploymentsandwithmorecomparisonstoregionalsurveysSimilarly usingmultiple CRAGS simultaneously would have bettertested for differences in subregional patterns of temporal trendsorconcentrationof infishingeffortfor instanceboatsaroundthenearbyTasmanIsland

Insummarytheprogrammablesamplinganddataextractionof-feredbyhigh-resolutionautonomouscamerasystemscanallowforfine-scalelong-termmonitoringoffishingefforttrendsorpotentiallymanyothertypesofactivitiesatseascapescalesMorewidespreadadoptionofhigh-frequencysamplingapproachesforeffortestima-tionwouldalsohelpavoidcollectionofmisrepresentativedatabyidentifyingeffortanomalies(McCluskeyampLewison2008)suchastheweekdaycontinuationeffectofraisedeffortbetweenadjacentweekendfishingcompetitionByimprovingtheinformationdensityovertraditionalsurveymethodsautonomouscamerasystemsandotherremotesystemsmayprovideanewwaveofoptimizationfordirectmeasurementofcoastalhumanusesuchasrecreationalfish-eriesalthoughcomplimentarymethodsarestillrequiredtodeter-minespatialdistributionstargetspeciesandharvest

ACKNOWLEDG MENTS

We thankMsGeorginaWoodMs SaraAdkinsMsBelleMonkMrRSherringtonandMsPaigeKellyforconstructiveinsighten-thusiasmandassistanceduringfieldworkWealsothankMrPhillip

10emsp |emsp emspensp FLYNN et aL

CulversonMrStuartDudgeonandMrMattStapenellKarenEvensprovidedhelpfulcommentsonaninternaldraftGreatestthankstothemany recreational anglerswhowillingly shared information tosurveyclerkswithouttheirinvolvementthisprojectwouldnothavecometofruitionThreeanonymousreviewersprovidedcommentsthatimprovedthemanuscript

CONFLIC T OF INTERE S TS

Theauthorsdeclarenoconflictofinterests

AUTHOR CONTRIBUTIONS

MrFlynnhelpeddesignthestudyledthefieldworkundertookmostoftheanalysisandhelpwritethemanuscriptDrLynchhelpdesignthestudyassisted inthefieldworkprovidedadviceontheanaly-sisanddidsomeanalysisconstructedfiguresandafterMrFlynncontributedthemosttothedraftingofthemanuscriptDrBarretthelpeddesign the study assisted in some fieldwork provided ad-viceonanalysisandeditedthemanuscriptMrWonghelpedexten-sivelywithfieldworkassistedwithanalysisconstructedfiguresandhelpedwritethemanuscriptMsDevineassistedwithfieldworkandconfigurationoftheequipmentincludingtheapplicationofthebigdatamoviesoftwareandhandlingofphotographsandalsohelpedwritethemanuscriptMrHughesdevelopedtheelectronicsfortheequipmentoversaw thebuildofgearwrote the software topro-gramtherobotandreviewedandeditedthemanuscript

DATA ACCE SSIBILIT Y

Survey sampling schedules data collection sheets extrapolationproceduresandtechnicalCRAGSspecificationsarealluploadedasonlinesupportinginformationappendixRawdatafromsurveysandCRAGSDOIhttpdoiorg105061dryadv10d218

RE SE ARCH E THIC S COMPLIANCE AND FUNDERS

ResearchabidesbytheAustraliancodeofhumanresearchandex-perimentation(NationalStatementonEthicalConductinHumanResearch of 2007) Permission to conduct research on humanparticipants was granted by the University of Tasmania SocialScience under reference H0014772mdashldquoRemote investigation ofcoastal area user group quantification and variationrdquo aswell asfromtheCSIROSocialScienceHumanResearchEthicsCommitteeunder reference 08115mdashldquoHawkesbury Region Project HumanUsePatternsrdquoFundingwasbyUTASasPartoftheIMASHonoursProject funding and through internal support from the CoastsProgram

ORCID

Tim P Lynch httporcidorg0000-0002-5346-8454

R E FE R E N C E S

Alessa L Kliskey A amp Brown G (2008) Socialndashecological hotspotsmapping A spatial approach for identifying coupled socialndasheco-logicalspaceLandscape and Urban Planning8527ndash39httpsdoiorg101016jlandurbplan200709007

ArlinghausR(2006)Overcominghumanobstaclestoconservationofrecreational fishery resources with emphasis on central EuropeEnvironmental Conservation 33 46ndash59 httpsdoiorg101017S0376892906002700

Arlinghaus R Tillner R amp Bork M (2015) Explaining participationratesinrecreationalfishingacrossindustrialisedcountriesFisheries Management and Ecology 22 45ndash55 httpsdoiorg101111fme12075

BadcockPBPatrickKSmithAMASimpsonJMPennayDRisselCEhellipRichtersJ(2016)Differencesbetweenlandlineandmobilephoneusers in sexualbehavior researchArchives of Sexual Behavior46(6)1711ndash1721

Blumberg S J amp Luke J V (2009) Reevaluating the need for con-cern regarding noncoverage bias in landline surveys American Journal of Public Health 99 1806ndash1810 httpsdoiorg102105AJPH2008152835

Bousetouane F ampMorris B (2015) Off-the-shelf CNN features forfine-grainedclassificationofvesselsinamaritimeenvironmentInGBebisRBoyleBParvinDKoracinIPavlidisRFerisTMcGrawMElendtRKopperERaganZYeampGWeber(Eds)Advances in visual computing 11th International symposium ISVC 2015 Las Vegas NV USA December 14ndash16 2015 proceedings Part II (pp379ndash388)Cham Switzerland Springer International Publishing httpsdoiorg101007978-3-319-27863-6

Cooke S J amp Cowx I G (2004) The role of recreational fish-ing in global fish crises BioScience 54 857ndash859 httpsdoiorg1016410006-3568(2004)054[0857TRORFI]20CO2

DiggleP J (1995)Time-series a biostatistical introductionOxfordUKClarendonPress

EdwardsJampSchindlerE (2017)Avideomonitoringsystemtoeval-uate ocean recreational fishing effort in Astoria OregonMarine recreational information program (pp 31) Newport OR OregonDepartmentofFishandWildlife

FarrMStoecklNampSuttonS(2014)RecreationalfishingandboatingArethedeterminantsthesameMarine Policy47126ndash137httpsdoiorg101016jmarpol201402014

ForbesETraceySampLyle JM (2009)Assessment of the 2008 rec-reational gamefish fishery of Southeast Tasmania with particular refer-ence to Southern Bluefin TunaHobartTASTasmanianAquacultureandFisheriesInstituteUniversityofTasmania

FretwellPTScofieldPampPhillipsRA(2017)Usingsuper-highres-olutionsatelliteimagerytocensusthreatenedalbatrossesIbis159481ndash490httpsdoiorg101111ibi12482

GiriKampHallK (2015)SouthAustralian recreational fishingsurveyFisheries Victoria internal report series (pp 63) Queenscliff VicFisheriesVictoria

Griffiths S P Pollock K H Lyle J M Pepperell J G TonksM L amp Sawynok W (2010) Following the chain to elu-sive anglers Fish and Fisheries 11 220ndash228 httpsdoiorg101111j1467-2979201000354x

Halpern B SWalbridge S Selkoe K A Kappel C V Micheli FDrsquoAgrosaChellipWatsonR(2008)AglobalmapofhumanimpactonmarineecosystemsScience319948ndash952httpsdoiorg101126science1149345

Hartill BW Payne GW Rush N amp Bian R (2016) Bridging thetemporal gap Continuous and cost-effective monitoring of dy-namic recreational fisheries by web cameras and creel surveysFisheries Research 183 488ndash497 httpsdoiorg101016jfishres201606002

emspensp emsp | emsp11FLYNN et aL

HenryGWampLyleJM(2003)NationalrecreationalandindigenousfishingsurveyFinal report to the fisheries research amp development cor-poration and the fisheries action program (pp 188) Canberra ACTFRDC

JonesCMampPollockKH(2012)Recreationalanglersurveymeth-odsEstimationofeffortharvestandreleasedcatchInAZaleDLParrishampTMSutton(Eds)Fisheries techniquesBethesdaMDAmericanFisheriesSociety

Kearney R E (2002) Co-management The resolution of conflict be-tween commercial and recreational fishers in Victoria AustraliaOcean amp Coastal Management45201ndash214httpsdoiorg101016S0964-5691(02)00055-8

KellerKSteffeASLowryMMurphyJJampSuthersIM(2016)Monitoringboat-basedrecreationalfishingeffortatanearshorearti-ficialreefwithashore-basedcameraFisheries Research18184ndash92httpsdoiorg101016jfishres201603025

KinlochMAMcGlennonDNicollGampPikePG(1997)Evaluationof the bus-route creel surveymethod in a largeAustralianmarinerecreationalfisheryISurveydesignFisheries Research33101ndash121httpsdoiorg101016S0165-7836(97)00068-4

LewinWCArlinghausRampMehnerT(2006)Documentedandpo-tential biological impacts of recreational fishing Insights forman-agementandconservationReviews in Fisheries Science14305ndash367httpsdoiorg10108010641260600886455

LowryMampMurphy J (2003)Monitoring the recreational gamefishfisheryoffsouth-easternAustraliaMarine and Freshwater Research54425ndash434httpsdoiorg101071MF01269

LyleJMStarkKEampTraceySR(2014)2012ndash2013 Survey of rec-reational fishing in TasmaniaHobart TAS Institute forMarine andAntarcticStudies

Lynch T P (2006) Incorporation of recreational fishing ef-fort into design of marine protected areas Incorporacioacuten delEsfuerzo de Pesca Recreativa en el Disentildeo de Aacutereas MarinasProtegidas Conservation Biology 20 1466ndash1476 httpsdoiorg101111j1523-1739200600509x

LynchTP(2008)Thedifferencebetweenspatialandtemporalvaria-tioninrecreationalfisheriesforplanningofmarineprotectedareasResponse toSteffeConservation Biology22486ndash491httpsdoiorg101111j1523-1739200800888x

LynchTP (2014)Adecadal time-seriesof recreational fishingeffortcollectedduringandafterimplementationofamultipleusemarinepark shows high inter-annual but low spatial variability Fisheries Research15185ndash90httpsdoiorg101016jfishres201309014

LynchTPAldermanRampHobdayAJ(2015)Ahigh-resolutionpan-orama camera system formonitoring colony-wide seabird nestingbehaviourMethods in Ecology and Evolution6491ndash499httpsdoiorg1011112041-210X12339

LynchTFlynnDWoodGKimJ-HParkJampHobdayAJ(2017)Metrics parameters and results from fisheries and wildlife studies with the CSIRO Ruggedized Autonomous Gigapixel Systems (CRAGS)DarwinNTAustralianMarineScienceAssociation

LynchTPWilkinsonEMellingLHamiltonRMacreadyAampFearyS(2004)ConflictandimpactsofdiversandanglersinamarineparkEnvironmental Management 33 196ndash211 httpsdoiorg101007s00267-003-3014-6

MaHOgawaTKSminkeyTRBreidtFJLesserVMOpsomerJDhellipVanVoorheesDA(2018)Pilotsurveystoimprovemonitoringofmarine recreational fisheries inHawaiʻiFisheries Research204197ndash208httpsdoiorg101016jfishres201802010

McCluskey S M amp Lewison R L (2008) Quantifying fish-ing effort A synthesis of current methods and their ap-plications Fish and Fisheries 9 188ndash200 httpsdoiorg101111j1467-2979200800283x

McGlennonDampKinlochMA(1997)Evaluationofthebus-routecreelsurveymethod in a largeAustralianmarine recreational fishery II

PilotsurveysandoptimalsamplingallocationFisheries Research3389ndash99httpsdoiorg101016S0165-7836(97)00067-2

McPheeDLeadbitterDampSkilleterGA(2002)SwallowingthebaitIs recreational fishing in Australia ecologically sustainable Pacific Conservation Biology840httpsdoiorg101071PC020040

Monz C A Pickering C M amp HadwenW L (2013) Recent ad-vances in recreation ecology and the implications of differentrelationships between recreation use and ecological impactsFrontiers in Ecology and the Environment11441ndash446httpsdoiorg101890120358

MooreAHallKGiriKTraceySPenroseLHansenShellipBrownP(2015)Developingrobustandcost-effectivemethodsforestimatingthenationalrecreationalcatchofSouthernBluefinTunainAustraliaFRDC Projectpp123

Morton A J amp Lyle J M (2004) Preliminary assessment of the rec-reational gamefish fishery in Tasmania with particular reference to Southern Bluefin Tuna Taroona TAS Tasmanian Aquaculture andFisheriesInstitute

ParnellPEDaytonPKFisherRALoarieCCampDarrowRD(2010)SpatialpatternsoffishingeffortoffSanDiegoImplicationsfor zonal management and ecosystem function Ecological Applications202203ndash2222httpsdoiorg10189009-15431

PattersonTAEvansKCarterTLampGunnJS(2008)Movementand behaviour of large southern bluefin tuna (Thunnus maccoyii)in the Australian region determined using pop-up satellite ar-chival tags Fisheries Oceanography 17 352ndash367 httpsdoiorg101111j1365-2419200800483x

PollockKH JonesCMampBrownTL (1994)Angler survey meth-ods and their applications in fisheries management Bethesda MDAmericanFisheriesSociety

PonsM Branch T AMelnychukM C JensenO P Brodziak JFromentinJMhellipHilbornR(2017)EffectsofbiologicaleconomicandmanagementfactorsontunaandbillfishstockstatusFish and Fisheries181ndash21httpsdoiorg101111faf12163

PowersSPampAnsonK (2016)Estimating recreationaleffort in theGulf of Mexico Red Snapper Fishery using boat ramp camerasReduction in federalseason lengthdoesnotproportionally reducecatchNorth American Journal of Fisheries Management 36 1156ndash1166httpsdoiorg1010800275594720161198284

Robson D amp Jones C M (1989) The theoretical basis of an ac-cess site angler survey design Biometrics 45 83ndash98 httpsdoiorg1023072532036

Rocklin D Levrel H Drogou M Herfaut J amp Veron G (2014)Combining telephone surveys and fishing catches self-reportTheFrenchseabass recreational fisheryassessmentPLoS ONE9e87271httpsdoiorg101371journalpone0087271

Smallwood C B Pollock K HWise B S Hall N G amp GaughanD J (2012) Expanding aerial-roving surveys to include counts ofshore-based recreational fishers from remotely operated camerasBenefitslimitationsandcosteffectivenessNorth American Journal of Fisheries Management321265ndash1276httpsdoiorg101080027559472012728181

Teixeira D ZischkeM T ampWebley J A C (2016) Investigatingbias in recreational fishing surveys Fishers listed in public tele-phone directories fish similarly to their unlisted counterpartsFisheries Research 181 127ndash136 httpsdoiorg101016jfishres201604012

van Poorten B T amp Brydle S (2018) Estimating fishing effortfrom remote traffic counters Opportunities and challengesFisheries Research 204 231ndash238 httpsdoiorg101016jfishres201802024

van Poorten B T Carruthers T RWardHGM ampVarkeyD A(2015)Imputingrecreationalanglingeffortfromtime-lapsecamerasusinganhierarchicalBayesianmodelFisheries Research172265ndash273httpsdoiorg101016jfishres201507032

12emsp |emsp emspensp FLYNN et aL

VenturelliPAHyderKampSkovC(2017)AnglerappsasasourceofrecreationalfisheriesdataOpportunitieschallengesandproposedstandardsFish and Fisheries18578ndash595httpsdoiorg101111faf12189

WiseBSTelferCFLaiEKMHallNGampJacksonG(2012)Long-termmonitoringofboat-basedrecreational fishing inSharkBayWesternAustraliaProvidingscientificadviceforsustainablemanagement in a World Heritage Area Marine and Freshwater Research631129ndash1141httpsdoiorg101071MF12054

WoodGLynchTPDevineCKellerKampFigueiraW(2016)High-resolutionphoto-mosaictime-seriesimageryformonitoringhumanuseofanartificialreefEcology and Evolution66963ndash6968httpsdoiorg101002ece32342

YuFRupertACCDiTizianaMNishikantaKRandySIllahNhellipJeffreyG(2011)TerapixelimagingofcosmologicalsimulationsThe Astrophysical Journal Supplement Series19718

Zischke M T Griffiths S P amp Tibbetts I R (2012) Catch and ef-fort from a specialised recreational pelagic sport fishery off

eastern Australia Fisheries Research 127ndash128 61ndash72 httpsdoiorg101016jfishres201204011

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle

How to cite this articleFlynnDJHLynchTPBarrettNSWongLSCDevineCHughesDGigapixelbigdatamoviesprovidecost-effectiveseascapescaledirectmeasurementsofopen-accesscoastalhumanusesuchasrecreationalfisheriesEcol Evol 2018001ndash12 httpsdoiorg101002ece34301

Graphical AbstractThecontentsofthispagewillbeusedaspartofthegraphicalabstractofhtmlonly

Itwillnotbepublishedaspartofmainarticle

Wetrailedaremoteautonomousultra-high-resolutionphotosamplingmethodasacosteffectsolutionfordirectseascape-scaledmeasure-mentsOursequentialphotosamplingwasbatchedprocessesusingnovelTimeMachinedatahandlingsoftwaretoproduceldquobigdatardquotimeseriesmoviesfromaspatialsubsetofanoffshorefisherywhichwecomparedtoaregionalbus-routesurveyofboattrailersandinterviewswithparticipantsOurcamerasamplescloselytrackedlargerscaleregionaltrendsbutwithlaborcostsaquarterofthebus-routesurveycostsforanindividualsample25ofthebusroutes

Page 3: Gigapixel big data movies provide cost-effective seascape ...

emspensp emsp | emsp3FLYNN et aL

asimultaneousregionallyscaledbus-routetrailerboatsurveyatthethreerampsonthepeninsularsuitableforlaunchinglargetrailerboatsWe also undertook on-ground interviewswith trailer boat users togroundtruthactivitytype(fishingornonfishing)andtargetspeciesByundertakingbothcameraandboatrampsurveysourover-overarchingaimwastoinvestigatehowremoteimagerymayreplacecomplimentoroptimizeconventionalon-siteapproachesforrecreationalfishing

2emsp |emspMATERIAL S AND METHODS

WedeployedtheCRAGSbetween1May2015and30June2015toassesstrailerboatsoffshorefromwateradjacenttotheTasman

Peninsula (Figure1) This period was chosen as it correspondswith the main tuna fishing season For large trailer boats (gt5mlength) localaccess to the fishery is limitedto threeboat ramps(Figure1)althoughtheareamayalsobevisitedbylargervesselssteaming frommarinas and anchorages further north (MortonampLyle2004)butforthepurposesofourstudyweexcludedtheserelativelyrare largervesselsWefocusedourCRAGSsurveyataknown game fishing concentration the Hippolyte Rock MarineConservationArea (HRMCA)which are a group of small islandsabout6-kmoffshore (Figures1and2)aroundwhichrecreationalfishingispermittedWhiletheCRAGSdeploymentwasmarginallycloser to the FortescueBayRampwe commonly observe boatsapproachingtheHRMCAfromdirectionsthatcorrespondedtothe

F IGURE 1emspTheTasmanPeninsulainSETasmaniaBus-routesurveysamplingoccurredatramps locatedatPiratesFortescueandStuartsBayTheCRAGSlocationisshownasacameraiconandtheareaobservedbythecamerawhichincludestheHippolyteRocksMarineConservationArea(HRMCA)isdescribedasatriangle

Text

Pirates Bay

Fortesque Bay

StewartsBay

0 3 6 9 1215Kilometers

0 30 60 90 12015Kilometers

Tasman Is

Australia

Tasmania

Hobart

TasmanPeninsular

HippolyteRocksMCA

43deg 01 30

147deg 52 30

TAS

4emsp |emsp emspensp FLYNN et aL

locationof all three rampsWe fixed theCRAGS to a clifftop atWaterfall Baywhich overlooks the site fromvery high sea cliffs(~250m)withthecamerafocusingonthewesternsideofHRMCA(Figure1)ForeachsampleCRAGScapturedaseriesof68pho-tographsthroughatelephotolenswhichwhenstitchedtogetherprovide a high-resolution panoramic image with a wide field ofview (~140deg) (Supporting Information Appendix S1) The size ofareasurveyedbyCRAGScomparedtotheregionalareaaccessibleby trailer boatswas estimated using google earth polygons andtheUniversityofNewHampshireKMLextensiontoolmdashhttpsex-tensionunhedukmlToolsindexcfm

Thetimeof the initialCRAGSpanoramasamplewasrandomlyselected Samples were then collected sequentially through-out daylight hours (0600ndash1800) As less recreational fishing fortuna occurred at night no samples were taken with the CRAGSprogrammed to ldquoblankrdquo these hours from the sampling sched-ule (Supporting InformationAppendix S1) Photographic sessionswereprogrammedtobeseparatedbyarecurring93-mingapthus

producing a forward shift in sample capture time andminimizingpotentialautocorrelationsbetweenboatingactivitiesandsamplingtimesPhotographswerebatchprocessedtobothformpanoramicimagesforeachsampleandforcompilingintoaninteractivetime-lapsemovieusingCREATELabrsquosTimeMachinesoftware (CREATELabregPittsburgPAUSA)

TimeMachinemovies are fully interactive and are able to bezoomedintopausedandplayedatvariousspeedsandarealsotimeanddate-stamped(Figure3)UsingthisinteractivemoviesoftwareeachGigaPanmoviewassystematicallypausedateachsamplefullyzoomedandscannedlefttorighttoptobottomforobjectsintheseascapebytheleadauthor(Figure3)Vesselcountswererecordedforeachsamplewithobjectslargerthan~10minlength(nottrailerboats)or requiring longer than10seconds todistinguish (eg lowresolutionandimageartifact)beingdiscountedSampleswerecat-egorized into two strataweekdays andweekendspublic holidaysusing the time and date stamp provided on each GigaPan scene(Figure3)

F IGURE 2emspAnunmodifiedGigaPanEpicPROunit(left)andaCRAGSdeployedatWaterfallBaySETasmania(right)

F IGURE 3emspScreencaptureoutputsfromtheTimeMachineinteractivedataviewershowinganozoomandpanoramicextentoftheHippolyteRockMarineConservationArea(HRMCA)b=13zoommainHippolyterock~6kmfromcamerac=12zoomofalargetrailerboatd=fullzoom

lyn088
Cross-Out
lyn088
Inserted Text
(a)
lyn088
Cross-Out
lyn088
Inserted Text
(b)
lyn088
Cross-Out
lyn088
Inserted Text
(c)
lyn088
Cross-Out
lyn088
Inserted Text
(d)
lyn088
Inserted Text
s

emspensp emsp | emsp5FLYNN et aL

Thecountofboatsforeachsamplewasthenextrapolatedintoanestimateofdailyaverageboatingeffort(hoursplusmnSE)usingthein-stantaneouscountmethod(Equation1)

where ei is theextrapolatedboatinghours for the ithday Ii is theaveragenumberoftrailerboatsobservedacrosstheinstantaneoussamplesfordayiandTisthedailysamplingperiod(daylighthours)Asbadweathercanbeamajorfactoraffectingthedecisiontoboatorfish(ForbesTraceyampLyle2009)boatingeffortwasassumedtobe0whenadverseweathermadeobservationsofboatsimpossible

Next total effort for each day-type strata (Ejk) within sam-pling months (k) was calculated to estimate the monthly effort(Equation2)AsCRAGSallowedforcontinuoussamplingthroughoutthesurveyperiodthesamplingprobability(πk)wassetto1

Standarderrorandeffortvarianceformonthlyestimateswerecalculated(Equation3)accordingtoPollocketal(1994)forstrata

where nj is thenumberofsampleddaysofstrata j Njk is thetotalnumberofdaysofstratajinmonthk

Asvariationforeachstratawascalculatedseparatelyweusedasumofsquaredstandarderrorsapproach(Equation4)toestimatethetotalmonthlyvariation

Assampleswereobtainedinaserialandcontinuousfashionatimeseriesmodelusingrollingaverageswasalsoappliedtothedata(Diggle1995)(Equation5)

where smt is the smoothed average of extrapolated effort e persampletwhichisweightedacrossthreesampleseachseparatedby93minThisprovidedasmoothedaveragewithindays

Wealsoconductedabus-routestylesurveytoestimatefishingeffortfromtrailerboatsfortheregion(Pollocketal1994Robsonamp Jones1989)WhileCRAGSsampleswerecollected throughoutMayandJunethecomparablebus-routesurveywasonlyconductedinMaydue to logistical constraintsWesurveyed the threemajorboatrampsintheregionatPiratesBayFortescueBayandStewartsBaybetween3May2015and30May2015(Figure1)

Atotalof20bus-routesampleswerescheduledWeundertookrandomstratifiedsamplingwithdaytypedividedintoweekdaysorweekendpublic holidays To reflect expected higher recreationaleffortduringweekendsandpublicholidays(McCluskeyampLewison2008)thesamplingprobability(πk)wasweightedtowardthisstrata

over weekdays at 12 to eight samples (Supporting InformationAppendix S2) We stratified the sample time into morning (am0600ndash1159)andafternoon(pm1200ndash1800)withequalproba-bilitiesofsamplingTominimizetemporalautocorrelationthestart-ing location and travel direction of the routewere also randomlyselectedwithoutreplacementEqualsamplingweightwasprovidedtoeachrampduetolackofpriorknowledgeofuserates

At each boat ramp surveys were conducted by first countingparkedboattrailersthenbymonitoringvesselentryandexitsduringa1-hrsamplingperiod(KinlochMcGlennonNicollampPike1997Pollocketal1994)The1-hrperiodwaschosendueto travel timeanddis-tancebetweensitesallowingforabus-routesampletobecompletedforallrampswithinthetemporalstrata(AMorPM)ofthedailysam-plingframeInterviewswereconductedwithallpartieslaunchingandretrievingvesselsduringtheclerkrsquoswaittimedeterminingpartysizetargetspeciesgroupandactivity(iefishingornot)forestimatesoffishing effort This well-established procedure produced a monthlyextrapolatedestimationofboateffort instandardizedunitsofefforthoursplusmnSEwhichcouldthenbeadjustedtofishingeffortviathepro-portionofintervieweesactivities(Pollocketal1994RobsonampJones1989)(SupportingInformationAppendixS3)PartysizebetweenrampswastestedforanydifferenceusingaonefactorANOVA

Thebus-route surveyhenceprovidesanestimationofall fish-ing effort from trailer boats around this isolated peninsular TheCRAGSdataarethusahigh-frequencyspatialsubsetoftheentiretrailer boat fishing effort for the period thatwas extrapolated bytheregionalsurveyThisallowedustobothtesttherelativeuseoftheHRMCAcomparedtowiderpeninsularuseandtheabilityofourremoteobservationswithourCRAGsunitofanactualsubsetofthefisherytotracklargertemporalpatternsofpeninsularwideeffort

TovalidatetherepresentativenessoftheCRAGShigh-frequencytrackingofeffortmetricsover timeweundertookaSpearmanrankcorrelationbetweentime-matchedeffortestimationsbyCRAGSandthe regional bus-route survey For graphing bus-routeextrapolationestimates were overlaid onto extrapolations from daily averages ofboatfishingeffortfromCRAGSWealsocarefullyloggedalltimespentontheprojecttocomparetotallaborcostsbetweenCRAGSandthebusrouteforbothdatacollectionandprocessingtodetermineeffortacrossthecomparativemonthaswellasforcostpersample

3emsp |emspRESULTS

The CRAGS operated successfully and continuously throughoutthestudycapturing545plusmn198SE(May)and483plusmn088SE(June)panoramasperdaymakinga totalof314 samplesWemade895observationsofboatsbut51samplesacross21daysreturnedzerocountsofboats(17oftotalsamples)Thesewereconcentratedonweekdaysmdashwith 44 zero-count samples across 18daysmdashwhile onweekendsandpublicholidaytherewereonlysevensamplesacross3dayswithnoactivityInclementweatherrendered27samplesun-usableTheimagesandbatch-processedTimeMachinemoviescon-sumed4274GBofmemory

(1)ei=IitimesT

(2)Ejk=

nsum

i=1

(

ei

120587k

)

(3)SEjk=

1

njminus1

sumn

i=1(eiminus ei)

2

njtimes (Njk)

2

(4)SEk=

radic

SE21k+SE2

2khellip+SE2

jk

(5)smt=etminus1+ et+ et+1

3

6emsp |emsp emspensp FLYNN et aL

Based on boat ramp interviews the average trailer boat partysize (P) was 287 people per vessel throughout May (plusmn0133 SEn=84)andpartysizebetweensitesshowednosignificantdiffer-ence (df=2F = 302p = 068) The averagemonthly boat fishingeffort(hours)extrapolatedforourCRAGSobservationsofHRMCAwas5629hr(plusmn711SE)with4096hr(plusmn607SE)inMayand1534hr(plusmn370 SE) in June (Figure4)mdashthis could be extrapolated to fisherhoursbymultiplyingbytheaveragepartysizebutasnointerviewswereconductedinJuneweleftboththeCRAGSandbusrouteex-trapolationsasboatfishingeffortonly

The total subset area observed by CRAGSwas 96km2 which comparedto318km2thatwaseasilyavailabletotrailerboatsaroundtheTasmanPeninsularwhichcorrespondstoaround3ofthetotalareaComparedtothetotalfishingeffortforMayextrapolatedfromtheregionalbus-routesurvey therelativelysmallareaaroundtheHRM(~3)receivedalargeamountofthefishingeffort(~23)

ThehighfrequencyofCRAGSsamplingpermittedtheexamina-tionoffine-scaleinter-dailytemporalvariationwhichdisplayedarag-gedsinusoidoscillation(Figure5)Effortwasgenerallylowwithinthe

weekdaystrataandthen increasedrapidly to largepeaksonweek-ends (Figure5) One exception to this was between the 18th and22ndMaywhichhadmoreeffortonweekdays thanotherperiods(Figure5)Bracketingthisperiodweretwoweekendsoffishingcom-petitions theldquoTunaClubofTasmaniarsquosrsquoFarSouthClassicrdquo (16ndash17thMay)andRally4Northerninvitationalweekendrally(23rdMay)

A total of 16 bus-route samples were conducted logistic fail-uresledtotheabandonmentoffour(20)oftheplannedsamplesRegionalTrailerboateffortfromaroundtheTasmanPeninsularwasestimatedtobe19650hr (plusmn2858SE) inMay (Figure4)Notrailersat individual rampswere recorded four timeswith all of theseoc-curringonweekdaysThetotalnumberoftrailerssightedperramprangedfrom0to16duringweekdaysand1ndash54forweekendswiththehighestnumberrecordedon16May2015atPiratesBayDuringhigh-intensitydays(particularlyweekendsholidaysmornings)therewereoftenlargeoverflowsfromrampcarparkswithparkedcarsandboattrailersextendingasmuchasonekilometerfromtheboatramp

During thebus-route survey 84 interviewswere conductedThemajorityofmariners(905n=96)indicatedfishingwastheir

F IGURE 4emspExtrapolatedmonthlytrailerboateffort(hoursplusmnSE)fortheentireTasmanPeninsulaassessedbyabus-routesurvey(May)andforthesubsetoftheareaaroundtheHRMCAsampledwithCRAGS(MayandJune)

F IGURE 5emspHigh-frequencyinterdailyextrapolatedCRAGSestimationsofboatefforthoursaroundthe(HRMCA)

0

100

200

300

400

500

600

Rolli

ng m

ean

daily

effo

rt in

hou

rs

DayWeekdays Weekends + Public Holidays

lyn088
Inserted Text
CA
lyn088
Cross-Out
lyn088
Cross-Out
lyn088
Inserted Text
t

emspensp emsp | emsp7FLYNN et aL

primaryactivity (Table1)Overall643 (n=54) indicated theirprimary target were tuna with 179 (n=15) specifically tar-geting southern bluefin tuna (Thunnus maccoyii)Other commonrecreationaltargetsincludedflathead(Platycephalusspp595)Southernrocklobster(Jasus edwardsii107)andsquidcalamari(Sepioteuthis australisandNototodarus gouldi476)(Table1)

Basedon the responsesofactivity type from interviews totalboatfishingeffortinMaywasestimatedtobe17783hr(plusmn2586SE)Asmostnonfishingactivitieswerenear shoreweassumed trailerboatingactivityatHMRCAobservedbyCRAGSwasallfishing

Therewere16directcomparisonsamplesbetweenthebusrouteandCRAGSmethodsbetweenthe2ndandthe29thofMaySamplesconsisted of 7 weekdays and 9 weekendspublic holiday samples

(Figure6)Infourcaseswheretwobus-routesamplesweretakenonthe same day (Supporting Information Appendix S2) they are com-bined toadailyestimation for tabulation (Table2)Theproportionaldifferencebetweenestimatedeffortsusingthetwomethodsrangedfrom078-to418-folddifferencehoweverranksestimatesbetweenCRAGS and bus-route samples were strongly associated (n=16ρ(12)=087p=lt001)Interdailysamplingstrata(ampm)werealsoexaminedseparatelyforcorrelationwhichremainedstrongforbotham(n=9ρ(7)=080p=lt001)andpm(n=7ρ(5)=089p=lt001)

ForthecomparativemonthCRAGStook169samplescomparedtothebusroutesrsquo16(Table3)WehadtwofieldtripdaysforCRAGSwith four people on the setup and three on the breakdown daywhichresultedinsevenfull-timeequivalent(FTE)daysofworkThiscomparedto16fielddaysforthebus-routemethodwhichincludedtraveltothefieldsiteforbetweentwoandthreestaffwhichaccu-mulatedto40FTEdaysofworkSettingupourCRAGSautomatedstitching took one FTE day (though this is faster for experiencedofficers)whiledataextractionperimagewasestimatedtotakeon

TABLE 1emsp Intervieweesreportedprimarytargettaxaoractivity

Primary target taxaspeciesactivity Interview responses

Tuna(unspecified) 37 440

SouthernBluefinTuna 15 179

AlbacoreTuna 2 238

AllTuna 54 643

Flathead 5 595

Southernrocklobster 9 107

Squidcalamari 4 476

Abalone 1 119

SmallPelagics 1 119

SnottyTrevalla 2 238

Allnearshorespecies 22 262

Surfing 1 119

SCUBA 3 357

DemonCavevisitors 3 357

PleasureCruise 1 119

Allnonextractive 8 952

Note ldquoTunardquo responsesdenote anglers targeting all specieswithin thefamilyThunnini

F IGURE 6emspDailyboatingeffort(hours)extrapolatedusingbus-routeaccesspointsurvey(bar)andCRAGS(line)Effortestimatefrombus-routesurveywascalculatedfrommorning(amdarkgray)andafternoon(pmlightgray)surveyCRAGSsurveywasconductedbetweenMayandJunewhilethebus-routesurveywasonlyconductedinMay

TABLE 2emspRankingofeffortforpairedsamplesbetweenCRAGSandthebusroute

DateCRAGS hours (rank)

Bus- route hours (rank) Δ Rank

2052015 330(9) 1208(10) minus1

3052015 303(8) 1471(11) minus3

12052015 0(1) 48(2) minus1

14052015 0(1) 24(1) 0

16052015 387(11) 1794(12) minus1

19052015 93(4) 89(4) 0

20052015 57(3) 117(5) minus2

22052015 228(7) 283(6) 1

23052015 513(12) 414(8) 4

24052015 345(10) 1155(9) 1

25052015 122(6) 323(7) minus1

29052015 102(5) 79(3) 1

8emsp |emsp emspensp FLYNN et aL

average75mincomparedto1minforenteringthebus-routedatasheetWhiledataextraction forCRAGS took longer compared tothe bus routemdashat 381 FTE daysmdashtotal monthly labor for CRAGStookonlyaquarterofthetimeandonaper-samplecomparisonwasonly25ofthebus-routelaborcost

4emsp |emspDISCUSSION

Over our autumn samplingmost trailer boat owners accessing thewaters around theTasmanPeninsula via the regional boating infra-structurewererecreationallyfishingwithfisherspredominatelytar-getingtunaTrailerboatrecreationalfishersconstitutealargetrancheof coastal users in Australia (McPhee etal 2002) and our resultssuggestedthatthisregionremainsonewhererecreationalfishing isconcentrated(MortonampLyle2004)EffortobservedbyCRAGSwasa spatial subsetof thegeneral areaeasily accessedby trailer boatsaroundtheTasmanPeninsularwhichweregionallyassessedwithourbus-routerovingsurveyAsCRAGSonlyobserved~3of thetotalarea but corresponded to ~23 of themonthly bus-route boat ef-fort theHippolyteRocksMarineConservationArea (HRMCA) is afurtherconcentrationpointwithintheregionforrecreationalfishingAsthisoffshorefishingeffortaroundtheHRMCAwasmostprobablyfocusedontotunamdashwhichaccountedfor634ofallinterviewedfish-ers activitiesmdashthe actual proportionofpeninsularwide tuna fishingthatwasobservedbyCRAGSwaspotentiallymuchhigherthan23

For developing effort metrics finding a representative site toobservemaybe important forprecise trackingof trendsThetightrankcorrelationbetweenpairedregionalbus-routeandCRAGScam-era samples suggest that effort atHRMCAwas representative ofregionaltemporaltrendsOurresultsarealsosimilartootherstud-ieswheresamplingmethodsforrecreationalfisheriesoverbroaderscaleswhencomparedtoindextrendsofeffortcollectedfrompointsourcesshowstrongcorrelations(Hartilletal2016)

CRAGSwithitsseascapescaleofdatacaptureobservesactualeffortonfishinggroundsratherthan indirectmetricsfrommove-ment past access points (Hartill etal 2016 Smallwood PollockWise Hall amp Gaughan 2012 van Poorten amp Brydle 2018) This

makesthechoiceofaccesspointstomonitorimmaterialfortrendcol-lectionandmaybeofparticularinterestforpelagicfisheriesWhilenonintuitiverecreationalfishingforwide-rangingmigratorypelagicspeciesisoftenspatiallyconcentratedintosmallareas(Lynch2006)duetotightoverlapsbetweeneaseofaccessbyfishersandfishbe-haviorrelatedtobathymetrymigrationhabitatandpreyavailability(Lynchetal2004PattersonEvansCarterampGunn2008)

Unlikespatialpatternstheintensityofcoastalrecreationaltemporaleffortcanbehighlyvariableovertime(Lynch20082014WiseTelferLaiHallampJackson2012)thoughitisgenerallythoughttofollowpre-dictablepatternsrelativetoholidayandnonholidayperiods(JonesampPollock2012)Ourresultsdemonstratedtheselargefluctuationsrang-ingfromzerouptogt400hroftrailerboateffortforadjacentdaysIncombinationwithholidayperiodsothersourcesofvariabilitymayalsooccurduetoindividualorcombinationsoffactorssuchasfishingcluborcompetitionactivitiesandweatherconditionsHigh-frequencysam-plingcanovercomethesecommontemporaldisjunctionsinobservedfishingeffortwherebychanceduetolownumbersofsampleslogis-ticallypermissiblewithtraditionalrovingoraccesspointsurveyslargeerrorsintheestimationofeffortcanbeintroduced(Hartilletal2016vanPoortenampBrydle2018vanPoortenetal2015)

With multiple daily observations abnormal episodes are morelikelytobeobservedForinstanceaweek-longperiodofintenseef-fortwasrecordedbetween15May2015and27May2015whichwasbracketedbytwoconsecutiveweekendswherefishingcompetitionswereheldontheTasmanPeninsularThenormalsinusoidpatternoflowweekdayandhighweekendeffortwasmuchlesspronouncedastheweekdaylullsineffortwerepartiallybridgedbyanglerscontinuingtofishAsbus-routedesignsusedaytypeasstratawithlowerprob-abilitiesforsamplingweekdaysandmuchfewersamplesoverallthistypeofeffectcouldeasilybemissedWhileourbus-routesamplesdidoverlapwiththetunafishingcompetitionsthiswaspurelybychanceSucheventswhichresultinlargespikesofeffortcanhavemarkedim-pactsonlocalecosystemsandharvestestimates(McPheeetal2002MonzPickeringampHadwen2013)andwithoutpriorknowledgearemorelikelytobecapturedwithmonitoringathigherfrequencies

Methodsforgatheringdataoncoastalusesuchasrecreationalfishing moved away from direct approaches and toward off-sitemethodssuchastelephoneinterviews(McCluskeyampLewison2008Pollock etal 1994) due to unsustainable costs from staffing andoperationsparticularlyduringperiodsof intenseusesuchasearlymornings weekends and public holidays which require overtimepaymentsHoweversamplingissueswithoff-sitemethodsareofpar-ticularconcernforopen-accessactivitiessuchasunlicensedfisheriesasthereisnolicensedatabaseofcontactphonenumbersonwhichtobaseasampleframeThisisparticularlysofornicherecreationalfisheriessuchaspelagicgamefishingasthefishersbecomeincreas-inglydilutewithinthegeneralpopulationandhencearehardtoac-cessparticularlyviaoff-sitemethodssuchastelephone interviews(Griffithsetal2010)

Remoteandautonomousdeploymentofsensorsmaythereforeprovideanalternativeandcost-effectivemethodforlong-termmon-itoring particularly for effort across a range of applicationsOur

TABLE 3emspFulltimeequivalent(FTE)labordaysforCRAGSandbusroutesurveystoestimatepatternsofeffort

CRAGS Bus route

Numberofsamples 169 16

Fielddays 2 16

Averagepeopleperfieldday 35 25

Field FTE days subtotals 7 40

StitchingsetupFTE 1 0

DataextractionFTE(persample) 0017 0002

Subtotal data extraction FTE 381 004

FTEdayspersample 006 250

Total FTE days 108 400

emspensp emsp | emsp9FLYNN et aL

comparisonsofmatchedpairsofdatafromtwomethodssuggestedthat theCRAGSoutputswerewell correlatedwith regionalefforttrendsOuranalysisoflabordemonstratesthattryingtounderstandthistemporalvariabilitywithsamplingviaboatrampsurveyswouldbeprohibitivelyexpensiveOurCRAGSallowsforatemporaleffortmetric derived fromactual observationsof fishing to be cheaplydeveloped with sampling frequency at subdaily scales This high-frequencysamplingapproachwasvalidatedagainstour largerbutmuchmorecostlybus-routesurveyOuranalysisoflaborrequiredtobothcollectandprocessdatashowedthatCRAGSrequiredconsid-erablylessresourcestocollectapproximatelyninetimesmorefre-quenttemporaldatathanthebus-routemethodMajorlaborsavingswereduetotheruggedizedandautonomouscapabilityofCRAGSasonlytwofieldtripswererequired(deploymentandretrievaltook7FTEdays)comparedtothebus-routersquos16fieldtrips inamonthwhichconsumed40FTEdaysandincludedanadditional780kmofinter-ramproadtravel(SupportingInformationAppendixS3)AsitisweatherproofautonomousandabletobeprogrammedwithatimedelaysetupCRAGSldquofireandforgetrdquonaturebothremovestheneedforobservertobephysicallylocatedattheregiontocountactivity(EdwardsampSchindler2017)andworkduringovertimeperiodsTheldquoblankingperiodrdquowhichstopsandstartssamplingmdashinthiscaseover-nightmdashalso reduces battery and memory use In combined thesetechnological advances have allowed long-term CRAGS deploy-mentsacross4yearsof4ndash6monthrotationsontooffshoreislandsand for several seasons in Antarctica to monitor seabirds (Lynchetal2017)Thelaborestimateforthebusroutewasconservativeasitdidnotincludeovertimeloadingforthe6weekenddaysofsam-plingorearlymorningcommencementofamsamples

Theadditional381FTEprocessingtimerequiredbythecameraapproach did not impact greatly on the overall labor budgetwhenconsideredagainstfieldworkTheuseoftheTimeMachinebatchpro-cessingsoftwaretoautomaticallyproducetheldquobigdatardquointeractivemoviewasalsoatechnologicalinnovationthatsignificantlyreducedthelaborofdatahandlingcomparedtothemanualopeningofindivid-ualGigaPansusedinpreviousstudies(Lynchetal2015Woodetal2016)IncomparativetermsattheindividualsampleleveltotracktheeffortmetriceachCRAGSsamplerequired24ofthelaborofthebus-routesurvey

Thedevelopmentandapplicationofimagerecognitionsoftware(machine learning) to detect classify and count boats automati-cally (Bousetouane amp Morris 2015) would further reduce post-processingcostsTherequiredfrequencyofsamplingshouldalsobeconsideredonacase-by-casebasisdependentontheresearchquestion as image collection can be somewhat open-ended andresult inunwieldydata sets that require subsampling tobe cost-effective(Parnelletal2010)Inourcasethesettingof~5imagesperdayappearedtoadequatelydescribetheinterdailyvariation

Whileouroneautonomouscameraprovidedastrongcorrelationwithtemporaltrendsineffortcomparedtotheregionalsurveyitdidnotprovide relativespatialdistributionsofeffortacross the fisheryThesedistributionshowevercanbepredictableandhighlyconcen-trated(Lynch20062014Parnelletal2010)anobservationthatwas

alsoshownbyourresultsandmuchsmallerlevelsofsamplingeffortwouldprobablyberequiredtoresolvevariationinspatialdistributionscomparedtowhatisrequiredtoresolvethehightemporalvariationsineffortUnderstandingfine-scalespatialdistributionsofrecreationalfishingeffortiscommonlyachievedusingaerialcounton-watersur-veysorvantagepointsurveys(Lynch2006Smallwoodetal2012)thoughotherremotemethodssuchashigh-resolutionsatelliteimag-ery(FretwellScofieldampPhillips2017)mayprovideacheapersolu-tionThesetypesofwidersurveyshavealsobeensuggestedashighlycompatiblewithpointsourcemetricssuchasremotecamerasystemstoallowforcalibrationorldquoup-ratingrdquoforeffortexpansionstoestimateoveralleffortwithinthefishery(Hartilletal2016)

Thelongdistance(~6km)betweentheHMRCAandthedeploy-ment location stretched the resolution limit of the current CRAGSsetup aswewere unable to distinguish party size or activity typepurelyusing thecamerasystemThis isunlikepreviousCRAGSde-ploymentwhichhadahighsuccessrateofidentifyingpartysizeac-tivity typeata shorter rangeofapproximately19km (Woodetal2016) Thus ground-truthing information about the fisherywas re-quiredforthesystemtoworkeffectivelyAutonomouscamerasystemalsodonotcollectcreel(catch)databutbyallowingforcost-effectivecollectionofthehighlyvariabletemporaleffortdatatheymayallowforhumanresourcestobespentelsewhereduringsurveyperiods(egtoundertakeboatrampinterviews)(vanPoortenampBrydle2018)

Our studywas a small-scale trial of new technology andwhilepreliminary results are encouraging validated seasonal effort esti-mationsobservedviaCRAGSwereoutsidethescopeofthisprojectOur comparisons would hence have been improved by extendingCRAGSdeploymentsandwithmorecomparisonstoregionalsurveysSimilarly usingmultiple CRAGS simultaneously would have bettertested for differences in subregional patterns of temporal trendsorconcentrationof infishingeffortfor instanceboatsaroundthenearbyTasmanIsland

Insummarytheprogrammablesamplinganddataextractionof-feredbyhigh-resolutionautonomouscamerasystemscanallowforfine-scalelong-termmonitoringoffishingefforttrendsorpotentiallymanyothertypesofactivitiesatseascapescalesMorewidespreadadoptionofhigh-frequencysamplingapproachesforeffortestima-tionwouldalsohelpavoidcollectionofmisrepresentativedatabyidentifyingeffortanomalies(McCluskeyampLewison2008)suchastheweekdaycontinuationeffectofraisedeffortbetweenadjacentweekendfishingcompetitionByimprovingtheinformationdensityovertraditionalsurveymethodsautonomouscamerasystemsandotherremotesystemsmayprovideanewwaveofoptimizationfordirectmeasurementofcoastalhumanusesuchasrecreationalfish-eriesalthoughcomplimentarymethodsarestillrequiredtodeter-minespatialdistributionstargetspeciesandharvest

ACKNOWLEDG MENTS

We thankMsGeorginaWoodMs SaraAdkinsMsBelleMonkMrRSherringtonandMsPaigeKellyforconstructiveinsighten-thusiasmandassistanceduringfieldworkWealsothankMrPhillip

10emsp |emsp emspensp FLYNN et aL

CulversonMrStuartDudgeonandMrMattStapenellKarenEvensprovidedhelpfulcommentsonaninternaldraftGreatestthankstothemany recreational anglerswhowillingly shared information tosurveyclerkswithouttheirinvolvementthisprojectwouldnothavecometofruitionThreeanonymousreviewersprovidedcommentsthatimprovedthemanuscript

CONFLIC T OF INTERE S TS

Theauthorsdeclarenoconflictofinterests

AUTHOR CONTRIBUTIONS

MrFlynnhelpeddesignthestudyledthefieldworkundertookmostoftheanalysisandhelpwritethemanuscriptDrLynchhelpdesignthestudyassisted inthefieldworkprovidedadviceontheanaly-sisanddidsomeanalysisconstructedfiguresandafterMrFlynncontributedthemosttothedraftingofthemanuscriptDrBarretthelpeddesign the study assisted in some fieldwork provided ad-viceonanalysisandeditedthemanuscriptMrWonghelpedexten-sivelywithfieldworkassistedwithanalysisconstructedfiguresandhelpedwritethemanuscriptMsDevineassistedwithfieldworkandconfigurationoftheequipmentincludingtheapplicationofthebigdatamoviesoftwareandhandlingofphotographsandalsohelpedwritethemanuscriptMrHughesdevelopedtheelectronicsfortheequipmentoversaw thebuildofgearwrote the software topro-gramtherobotandreviewedandeditedthemanuscript

DATA ACCE SSIBILIT Y

Survey sampling schedules data collection sheets extrapolationproceduresandtechnicalCRAGSspecificationsarealluploadedasonlinesupportinginformationappendixRawdatafromsurveysandCRAGSDOIhttpdoiorg105061dryadv10d218

RE SE ARCH E THIC S COMPLIANCE AND FUNDERS

ResearchabidesbytheAustraliancodeofhumanresearchandex-perimentation(NationalStatementonEthicalConductinHumanResearch of 2007) Permission to conduct research on humanparticipants was granted by the University of Tasmania SocialScience under reference H0014772mdashldquoRemote investigation ofcoastal area user group quantification and variationrdquo aswell asfromtheCSIROSocialScienceHumanResearchEthicsCommitteeunder reference 08115mdashldquoHawkesbury Region Project HumanUsePatternsrdquoFundingwasbyUTASasPartoftheIMASHonoursProject funding and through internal support from the CoastsProgram

ORCID

Tim P Lynch httporcidorg0000-0002-5346-8454

R E FE R E N C E S

Alessa L Kliskey A amp Brown G (2008) Socialndashecological hotspotsmapping A spatial approach for identifying coupled socialndasheco-logicalspaceLandscape and Urban Planning8527ndash39httpsdoiorg101016jlandurbplan200709007

ArlinghausR(2006)Overcominghumanobstaclestoconservationofrecreational fishery resources with emphasis on central EuropeEnvironmental Conservation 33 46ndash59 httpsdoiorg101017S0376892906002700

Arlinghaus R Tillner R amp Bork M (2015) Explaining participationratesinrecreationalfishingacrossindustrialisedcountriesFisheries Management and Ecology 22 45ndash55 httpsdoiorg101111fme12075

BadcockPBPatrickKSmithAMASimpsonJMPennayDRisselCEhellipRichtersJ(2016)Differencesbetweenlandlineandmobilephoneusers in sexualbehavior researchArchives of Sexual Behavior46(6)1711ndash1721

Blumberg S J amp Luke J V (2009) Reevaluating the need for con-cern regarding noncoverage bias in landline surveys American Journal of Public Health 99 1806ndash1810 httpsdoiorg102105AJPH2008152835

Bousetouane F ampMorris B (2015) Off-the-shelf CNN features forfine-grainedclassificationofvesselsinamaritimeenvironmentInGBebisRBoyleBParvinDKoracinIPavlidisRFerisTMcGrawMElendtRKopperERaganZYeampGWeber(Eds)Advances in visual computing 11th International symposium ISVC 2015 Las Vegas NV USA December 14ndash16 2015 proceedings Part II (pp379ndash388)Cham Switzerland Springer International Publishing httpsdoiorg101007978-3-319-27863-6

Cooke S J amp Cowx I G (2004) The role of recreational fish-ing in global fish crises BioScience 54 857ndash859 httpsdoiorg1016410006-3568(2004)054[0857TRORFI]20CO2

DiggleP J (1995)Time-series a biostatistical introductionOxfordUKClarendonPress

EdwardsJampSchindlerE (2017)Avideomonitoringsystemtoeval-uate ocean recreational fishing effort in Astoria OregonMarine recreational information program (pp 31) Newport OR OregonDepartmentofFishandWildlife

FarrMStoecklNampSuttonS(2014)RecreationalfishingandboatingArethedeterminantsthesameMarine Policy47126ndash137httpsdoiorg101016jmarpol201402014

ForbesETraceySampLyle JM (2009)Assessment of the 2008 rec-reational gamefish fishery of Southeast Tasmania with particular refer-ence to Southern Bluefin TunaHobartTASTasmanianAquacultureandFisheriesInstituteUniversityofTasmania

FretwellPTScofieldPampPhillipsRA(2017)Usingsuper-highres-olutionsatelliteimagerytocensusthreatenedalbatrossesIbis159481ndash490httpsdoiorg101111ibi12482

GiriKampHallK (2015)SouthAustralian recreational fishingsurveyFisheries Victoria internal report series (pp 63) Queenscliff VicFisheriesVictoria

Griffiths S P Pollock K H Lyle J M Pepperell J G TonksM L amp Sawynok W (2010) Following the chain to elu-sive anglers Fish and Fisheries 11 220ndash228 httpsdoiorg101111j1467-2979201000354x

Halpern B SWalbridge S Selkoe K A Kappel C V Micheli FDrsquoAgrosaChellipWatsonR(2008)AglobalmapofhumanimpactonmarineecosystemsScience319948ndash952httpsdoiorg101126science1149345

Hartill BW Payne GW Rush N amp Bian R (2016) Bridging thetemporal gap Continuous and cost-effective monitoring of dy-namic recreational fisheries by web cameras and creel surveysFisheries Research 183 488ndash497 httpsdoiorg101016jfishres201606002

emspensp emsp | emsp11FLYNN et aL

HenryGWampLyleJM(2003)NationalrecreationalandindigenousfishingsurveyFinal report to the fisheries research amp development cor-poration and the fisheries action program (pp 188) Canberra ACTFRDC

JonesCMampPollockKH(2012)Recreationalanglersurveymeth-odsEstimationofeffortharvestandreleasedcatchInAZaleDLParrishampTMSutton(Eds)Fisheries techniquesBethesdaMDAmericanFisheriesSociety

Kearney R E (2002) Co-management The resolution of conflict be-tween commercial and recreational fishers in Victoria AustraliaOcean amp Coastal Management45201ndash214httpsdoiorg101016S0964-5691(02)00055-8

KellerKSteffeASLowryMMurphyJJampSuthersIM(2016)Monitoringboat-basedrecreationalfishingeffortatanearshorearti-ficialreefwithashore-basedcameraFisheries Research18184ndash92httpsdoiorg101016jfishres201603025

KinlochMAMcGlennonDNicollGampPikePG(1997)Evaluationof the bus-route creel surveymethod in a largeAustralianmarinerecreationalfisheryISurveydesignFisheries Research33101ndash121httpsdoiorg101016S0165-7836(97)00068-4

LewinWCArlinghausRampMehnerT(2006)Documentedandpo-tential biological impacts of recreational fishing Insights forman-agementandconservationReviews in Fisheries Science14305ndash367httpsdoiorg10108010641260600886455

LowryMampMurphy J (2003)Monitoring the recreational gamefishfisheryoffsouth-easternAustraliaMarine and Freshwater Research54425ndash434httpsdoiorg101071MF01269

LyleJMStarkKEampTraceySR(2014)2012ndash2013 Survey of rec-reational fishing in TasmaniaHobart TAS Institute forMarine andAntarcticStudies

Lynch T P (2006) Incorporation of recreational fishing ef-fort into design of marine protected areas Incorporacioacuten delEsfuerzo de Pesca Recreativa en el Disentildeo de Aacutereas MarinasProtegidas Conservation Biology 20 1466ndash1476 httpsdoiorg101111j1523-1739200600509x

LynchTP(2008)Thedifferencebetweenspatialandtemporalvaria-tioninrecreationalfisheriesforplanningofmarineprotectedareasResponse toSteffeConservation Biology22486ndash491httpsdoiorg101111j1523-1739200800888x

LynchTP (2014)Adecadal time-seriesof recreational fishingeffortcollectedduringandafterimplementationofamultipleusemarinepark shows high inter-annual but low spatial variability Fisheries Research15185ndash90httpsdoiorg101016jfishres201309014

LynchTPAldermanRampHobdayAJ(2015)Ahigh-resolutionpan-orama camera system formonitoring colony-wide seabird nestingbehaviourMethods in Ecology and Evolution6491ndash499httpsdoiorg1011112041-210X12339

LynchTFlynnDWoodGKimJ-HParkJampHobdayAJ(2017)Metrics parameters and results from fisheries and wildlife studies with the CSIRO Ruggedized Autonomous Gigapixel Systems (CRAGS)DarwinNTAustralianMarineScienceAssociation

LynchTPWilkinsonEMellingLHamiltonRMacreadyAampFearyS(2004)ConflictandimpactsofdiversandanglersinamarineparkEnvironmental Management 33 196ndash211 httpsdoiorg101007s00267-003-3014-6

MaHOgawaTKSminkeyTRBreidtFJLesserVMOpsomerJDhellipVanVoorheesDA(2018)Pilotsurveystoimprovemonitoringofmarine recreational fisheries inHawaiʻiFisheries Research204197ndash208httpsdoiorg101016jfishres201802010

McCluskey S M amp Lewison R L (2008) Quantifying fish-ing effort A synthesis of current methods and their ap-plications Fish and Fisheries 9 188ndash200 httpsdoiorg101111j1467-2979200800283x

McGlennonDampKinlochMA(1997)Evaluationofthebus-routecreelsurveymethod in a largeAustralianmarine recreational fishery II

PilotsurveysandoptimalsamplingallocationFisheries Research3389ndash99httpsdoiorg101016S0165-7836(97)00067-2

McPheeDLeadbitterDampSkilleterGA(2002)SwallowingthebaitIs recreational fishing in Australia ecologically sustainable Pacific Conservation Biology840httpsdoiorg101071PC020040

Monz C A Pickering C M amp HadwenW L (2013) Recent ad-vances in recreation ecology and the implications of differentrelationships between recreation use and ecological impactsFrontiers in Ecology and the Environment11441ndash446httpsdoiorg101890120358

MooreAHallKGiriKTraceySPenroseLHansenShellipBrownP(2015)Developingrobustandcost-effectivemethodsforestimatingthenationalrecreationalcatchofSouthernBluefinTunainAustraliaFRDC Projectpp123

Morton A J amp Lyle J M (2004) Preliminary assessment of the rec-reational gamefish fishery in Tasmania with particular reference to Southern Bluefin Tuna Taroona TAS Tasmanian Aquaculture andFisheriesInstitute

ParnellPEDaytonPKFisherRALoarieCCampDarrowRD(2010)SpatialpatternsoffishingeffortoffSanDiegoImplicationsfor zonal management and ecosystem function Ecological Applications202203ndash2222httpsdoiorg10189009-15431

PattersonTAEvansKCarterTLampGunnJS(2008)Movementand behaviour of large southern bluefin tuna (Thunnus maccoyii)in the Australian region determined using pop-up satellite ar-chival tags Fisheries Oceanography 17 352ndash367 httpsdoiorg101111j1365-2419200800483x

PollockKH JonesCMampBrownTL (1994)Angler survey meth-ods and their applications in fisheries management Bethesda MDAmericanFisheriesSociety

PonsM Branch T AMelnychukM C JensenO P Brodziak JFromentinJMhellipHilbornR(2017)EffectsofbiologicaleconomicandmanagementfactorsontunaandbillfishstockstatusFish and Fisheries181ndash21httpsdoiorg101111faf12163

PowersSPampAnsonK (2016)Estimating recreationaleffort in theGulf of Mexico Red Snapper Fishery using boat ramp camerasReduction in federalseason lengthdoesnotproportionally reducecatchNorth American Journal of Fisheries Management 36 1156ndash1166httpsdoiorg1010800275594720161198284

Robson D amp Jones C M (1989) The theoretical basis of an ac-cess site angler survey design Biometrics 45 83ndash98 httpsdoiorg1023072532036

Rocklin D Levrel H Drogou M Herfaut J amp Veron G (2014)Combining telephone surveys and fishing catches self-reportTheFrenchseabass recreational fisheryassessmentPLoS ONE9e87271httpsdoiorg101371journalpone0087271

Smallwood C B Pollock K HWise B S Hall N G amp GaughanD J (2012) Expanding aerial-roving surveys to include counts ofshore-based recreational fishers from remotely operated camerasBenefitslimitationsandcosteffectivenessNorth American Journal of Fisheries Management321265ndash1276httpsdoiorg101080027559472012728181

Teixeira D ZischkeM T ampWebley J A C (2016) Investigatingbias in recreational fishing surveys Fishers listed in public tele-phone directories fish similarly to their unlisted counterpartsFisheries Research 181 127ndash136 httpsdoiorg101016jfishres201604012

van Poorten B T amp Brydle S (2018) Estimating fishing effortfrom remote traffic counters Opportunities and challengesFisheries Research 204 231ndash238 httpsdoiorg101016jfishres201802024

van Poorten B T Carruthers T RWardHGM ampVarkeyD A(2015)Imputingrecreationalanglingeffortfromtime-lapsecamerasusinganhierarchicalBayesianmodelFisheries Research172265ndash273httpsdoiorg101016jfishres201507032

12emsp |emsp emspensp FLYNN et aL

VenturelliPAHyderKampSkovC(2017)AnglerappsasasourceofrecreationalfisheriesdataOpportunitieschallengesandproposedstandardsFish and Fisheries18578ndash595httpsdoiorg101111faf12189

WiseBSTelferCFLaiEKMHallNGampJacksonG(2012)Long-termmonitoringofboat-basedrecreational fishing inSharkBayWesternAustraliaProvidingscientificadviceforsustainablemanagement in a World Heritage Area Marine and Freshwater Research631129ndash1141httpsdoiorg101071MF12054

WoodGLynchTPDevineCKellerKampFigueiraW(2016)High-resolutionphoto-mosaictime-seriesimageryformonitoringhumanuseofanartificialreefEcology and Evolution66963ndash6968httpsdoiorg101002ece32342

YuFRupertACCDiTizianaMNishikantaKRandySIllahNhellipJeffreyG(2011)TerapixelimagingofcosmologicalsimulationsThe Astrophysical Journal Supplement Series19718

Zischke M T Griffiths S P amp Tibbetts I R (2012) Catch and ef-fort from a specialised recreational pelagic sport fishery off

eastern Australia Fisheries Research 127ndash128 61ndash72 httpsdoiorg101016jfishres201204011

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle

How to cite this articleFlynnDJHLynchTPBarrettNSWongLSCDevineCHughesDGigapixelbigdatamoviesprovidecost-effectiveseascapescaledirectmeasurementsofopen-accesscoastalhumanusesuchasrecreationalfisheriesEcol Evol 2018001ndash12 httpsdoiorg101002ece34301

Graphical AbstractThecontentsofthispagewillbeusedaspartofthegraphicalabstractofhtmlonly

Itwillnotbepublishedaspartofmainarticle

Wetrailedaremoteautonomousultra-high-resolutionphotosamplingmethodasacosteffectsolutionfordirectseascape-scaledmeasure-mentsOursequentialphotosamplingwasbatchedprocessesusingnovelTimeMachinedatahandlingsoftwaretoproduceldquobigdatardquotimeseriesmoviesfromaspatialsubsetofanoffshorefisherywhichwecomparedtoaregionalbus-routesurveyofboattrailersandinterviewswithparticipantsOurcamerasamplescloselytrackedlargerscaleregionaltrendsbutwithlaborcostsaquarterofthebus-routesurveycostsforanindividualsample25ofthebusroutes

Page 4: Gigapixel big data movies provide cost-effective seascape ...

4emsp |emsp emspensp FLYNN et aL

locationof all three rampsWe fixed theCRAGS to a clifftop atWaterfall Baywhich overlooks the site fromvery high sea cliffs(~250m)withthecamerafocusingonthewesternsideofHRMCA(Figure1)ForeachsampleCRAGScapturedaseriesof68pho-tographsthroughatelephotolenswhichwhenstitchedtogetherprovide a high-resolution panoramic image with a wide field ofview (~140deg) (Supporting Information Appendix S1) The size ofareasurveyedbyCRAGScomparedtotheregionalareaaccessibleby trailer boatswas estimated using google earth polygons andtheUniversityofNewHampshireKMLextensiontoolmdashhttpsex-tensionunhedukmlToolsindexcfm

Thetimeof the initialCRAGSpanoramasamplewasrandomlyselected Samples were then collected sequentially through-out daylight hours (0600ndash1800) As less recreational fishing fortuna occurred at night no samples were taken with the CRAGSprogrammed to ldquoblankrdquo these hours from the sampling sched-ule (Supporting InformationAppendix S1) Photographic sessionswereprogrammedtobeseparatedbyarecurring93-mingapthus

producing a forward shift in sample capture time andminimizingpotentialautocorrelationsbetweenboatingactivitiesandsamplingtimesPhotographswerebatchprocessedtobothformpanoramicimagesforeachsampleandforcompilingintoaninteractivetime-lapsemovieusingCREATELabrsquosTimeMachinesoftware (CREATELabregPittsburgPAUSA)

TimeMachinemovies are fully interactive and are able to bezoomedintopausedandplayedatvariousspeedsandarealsotimeanddate-stamped(Figure3)UsingthisinteractivemoviesoftwareeachGigaPanmoviewassystematicallypausedateachsamplefullyzoomedandscannedlefttorighttoptobottomforobjectsintheseascapebytheleadauthor(Figure3)Vesselcountswererecordedforeachsamplewithobjectslargerthan~10minlength(nottrailerboats)or requiring longer than10seconds todistinguish (eg lowresolutionandimageartifact)beingdiscountedSampleswerecat-egorized into two strataweekdays andweekendspublic holidaysusing the time and date stamp provided on each GigaPan scene(Figure3)

F IGURE 2emspAnunmodifiedGigaPanEpicPROunit(left)andaCRAGSdeployedatWaterfallBaySETasmania(right)

F IGURE 3emspScreencaptureoutputsfromtheTimeMachineinteractivedataviewershowinganozoomandpanoramicextentoftheHippolyteRockMarineConservationArea(HRMCA)b=13zoommainHippolyterock~6kmfromcamerac=12zoomofalargetrailerboatd=fullzoom

lyn088
Cross-Out
lyn088
Inserted Text
(a)
lyn088
Cross-Out
lyn088
Inserted Text
(b)
lyn088
Cross-Out
lyn088
Inserted Text
(c)
lyn088
Cross-Out
lyn088
Inserted Text
(d)
lyn088
Inserted Text
s

emspensp emsp | emsp5FLYNN et aL

Thecountofboatsforeachsamplewasthenextrapolatedintoanestimateofdailyaverageboatingeffort(hoursplusmnSE)usingthein-stantaneouscountmethod(Equation1)

where ei is theextrapolatedboatinghours for the ithday Ii is theaveragenumberoftrailerboatsobservedacrosstheinstantaneoussamplesfordayiandTisthedailysamplingperiod(daylighthours)Asbadweathercanbeamajorfactoraffectingthedecisiontoboatorfish(ForbesTraceyampLyle2009)boatingeffortwasassumedtobe0whenadverseweathermadeobservationsofboatsimpossible

Next total effort for each day-type strata (Ejk) within sam-pling months (k) was calculated to estimate the monthly effort(Equation2)AsCRAGSallowedforcontinuoussamplingthroughoutthesurveyperiodthesamplingprobability(πk)wassetto1

Standarderrorandeffortvarianceformonthlyestimateswerecalculated(Equation3)accordingtoPollocketal(1994)forstrata

where nj is thenumberofsampleddaysofstrata j Njk is thetotalnumberofdaysofstratajinmonthk

Asvariationforeachstratawascalculatedseparatelyweusedasumofsquaredstandarderrorsapproach(Equation4)toestimatethetotalmonthlyvariation

Assampleswereobtainedinaserialandcontinuousfashionatimeseriesmodelusingrollingaverageswasalsoappliedtothedata(Diggle1995)(Equation5)

where smt is the smoothed average of extrapolated effort e persampletwhichisweightedacrossthreesampleseachseparatedby93minThisprovidedasmoothedaveragewithindays

Wealsoconductedabus-routestylesurveytoestimatefishingeffortfromtrailerboatsfortheregion(Pollocketal1994Robsonamp Jones1989)WhileCRAGSsampleswerecollected throughoutMayandJunethecomparablebus-routesurveywasonlyconductedinMaydue to logistical constraintsWesurveyed the threemajorboatrampsintheregionatPiratesBayFortescueBayandStewartsBaybetween3May2015and30May2015(Figure1)

Atotalof20bus-routesampleswerescheduledWeundertookrandomstratifiedsamplingwithdaytypedividedintoweekdaysorweekendpublic holidays To reflect expected higher recreationaleffortduringweekendsandpublicholidays(McCluskeyampLewison2008)thesamplingprobability(πk)wasweightedtowardthisstrata

over weekdays at 12 to eight samples (Supporting InformationAppendix S2) We stratified the sample time into morning (am0600ndash1159)andafternoon(pm1200ndash1800)withequalproba-bilitiesofsamplingTominimizetemporalautocorrelationthestart-ing location and travel direction of the routewere also randomlyselectedwithoutreplacementEqualsamplingweightwasprovidedtoeachrampduetolackofpriorknowledgeofuserates

At each boat ramp surveys were conducted by first countingparkedboattrailersthenbymonitoringvesselentryandexitsduringa1-hrsamplingperiod(KinlochMcGlennonNicollampPike1997Pollocketal1994)The1-hrperiodwaschosendueto travel timeanddis-tancebetweensitesallowingforabus-routesampletobecompletedforallrampswithinthetemporalstrata(AMorPM)ofthedailysam-plingframeInterviewswereconductedwithallpartieslaunchingandretrievingvesselsduringtheclerkrsquoswaittimedeterminingpartysizetargetspeciesgroupandactivity(iefishingornot)forestimatesoffishing effort This well-established procedure produced a monthlyextrapolatedestimationofboateffort instandardizedunitsofefforthoursplusmnSEwhichcouldthenbeadjustedtofishingeffortviathepro-portionofintervieweesactivities(Pollocketal1994RobsonampJones1989)(SupportingInformationAppendixS3)PartysizebetweenrampswastestedforanydifferenceusingaonefactorANOVA

Thebus-route surveyhenceprovidesanestimationofall fish-ing effort from trailer boats around this isolated peninsular TheCRAGSdataarethusahigh-frequencyspatialsubsetoftheentiretrailer boat fishing effort for the period thatwas extrapolated bytheregionalsurveyThisallowedustobothtesttherelativeuseoftheHRMCAcomparedtowiderpeninsularuseandtheabilityofourremoteobservationswithourCRAGsunitofanactualsubsetofthefisherytotracklargertemporalpatternsofpeninsularwideeffort

TovalidatetherepresentativenessoftheCRAGShigh-frequencytrackingofeffortmetricsover timeweundertookaSpearmanrankcorrelationbetweentime-matchedeffortestimationsbyCRAGSandthe regional bus-route survey For graphing bus-routeextrapolationestimates were overlaid onto extrapolations from daily averages ofboatfishingeffortfromCRAGSWealsocarefullyloggedalltimespentontheprojecttocomparetotallaborcostsbetweenCRAGSandthebusrouteforbothdatacollectionandprocessingtodetermineeffortacrossthecomparativemonthaswellasforcostpersample

3emsp |emspRESULTS

The CRAGS operated successfully and continuously throughoutthestudycapturing545plusmn198SE(May)and483plusmn088SE(June)panoramasperdaymakinga totalof314 samplesWemade895observationsofboatsbut51samplesacross21daysreturnedzerocountsofboats(17oftotalsamples)Thesewereconcentratedonweekdaysmdashwith 44 zero-count samples across 18daysmdashwhile onweekendsandpublicholidaytherewereonlysevensamplesacross3dayswithnoactivityInclementweatherrendered27samplesun-usableTheimagesandbatch-processedTimeMachinemoviescon-sumed4274GBofmemory

(1)ei=IitimesT

(2)Ejk=

nsum

i=1

(

ei

120587k

)

(3)SEjk=

1

njminus1

sumn

i=1(eiminus ei)

2

njtimes (Njk)

2

(4)SEk=

radic

SE21k+SE2

2khellip+SE2

jk

(5)smt=etminus1+ et+ et+1

3

6emsp |emsp emspensp FLYNN et aL

Based on boat ramp interviews the average trailer boat partysize (P) was 287 people per vessel throughout May (plusmn0133 SEn=84)andpartysizebetweensitesshowednosignificantdiffer-ence (df=2F = 302p = 068) The averagemonthly boat fishingeffort(hours)extrapolatedforourCRAGSobservationsofHRMCAwas5629hr(plusmn711SE)with4096hr(plusmn607SE)inMayand1534hr(plusmn370 SE) in June (Figure4)mdashthis could be extrapolated to fisherhoursbymultiplyingbytheaveragepartysizebutasnointerviewswereconductedinJuneweleftboththeCRAGSandbusrouteex-trapolationsasboatfishingeffortonly

The total subset area observed by CRAGSwas 96km2 which comparedto318km2thatwaseasilyavailabletotrailerboatsaroundtheTasmanPeninsularwhichcorrespondstoaround3ofthetotalareaComparedtothetotalfishingeffortforMayextrapolatedfromtheregionalbus-routesurvey therelativelysmallareaaroundtheHRM(~3)receivedalargeamountofthefishingeffort(~23)

ThehighfrequencyofCRAGSsamplingpermittedtheexamina-tionoffine-scaleinter-dailytemporalvariationwhichdisplayedarag-gedsinusoidoscillation(Figure5)Effortwasgenerallylowwithinthe

weekdaystrataandthen increasedrapidly to largepeaksonweek-ends (Figure5) One exception to this was between the 18th and22ndMaywhichhadmoreeffortonweekdays thanotherperiods(Figure5)Bracketingthisperiodweretwoweekendsoffishingcom-petitions theldquoTunaClubofTasmaniarsquosrsquoFarSouthClassicrdquo (16ndash17thMay)andRally4Northerninvitationalweekendrally(23rdMay)

A total of 16 bus-route samples were conducted logistic fail-uresledtotheabandonmentoffour(20)oftheplannedsamplesRegionalTrailerboateffortfromaroundtheTasmanPeninsularwasestimatedtobe19650hr (plusmn2858SE) inMay (Figure4)Notrailersat individual rampswere recorded four timeswith all of theseoc-curringonweekdaysThetotalnumberoftrailerssightedperramprangedfrom0to16duringweekdaysand1ndash54forweekendswiththehighestnumberrecordedon16May2015atPiratesBayDuringhigh-intensitydays(particularlyweekendsholidaysmornings)therewereoftenlargeoverflowsfromrampcarparkswithparkedcarsandboattrailersextendingasmuchasonekilometerfromtheboatramp

During thebus-route survey 84 interviewswere conductedThemajorityofmariners(905n=96)indicatedfishingwastheir

F IGURE 4emspExtrapolatedmonthlytrailerboateffort(hoursplusmnSE)fortheentireTasmanPeninsulaassessedbyabus-routesurvey(May)andforthesubsetoftheareaaroundtheHRMCAsampledwithCRAGS(MayandJune)

F IGURE 5emspHigh-frequencyinterdailyextrapolatedCRAGSestimationsofboatefforthoursaroundthe(HRMCA)

0

100

200

300

400

500

600

Rolli

ng m

ean

daily

effo

rt in

hou

rs

DayWeekdays Weekends + Public Holidays

lyn088
Inserted Text
CA
lyn088
Cross-Out
lyn088
Cross-Out
lyn088
Inserted Text
t

emspensp emsp | emsp7FLYNN et aL

primaryactivity (Table1)Overall643 (n=54) indicated theirprimary target were tuna with 179 (n=15) specifically tar-geting southern bluefin tuna (Thunnus maccoyii)Other commonrecreationaltargetsincludedflathead(Platycephalusspp595)Southernrocklobster(Jasus edwardsii107)andsquidcalamari(Sepioteuthis australisandNototodarus gouldi476)(Table1)

Basedon the responsesofactivity type from interviews totalboatfishingeffortinMaywasestimatedtobe17783hr(plusmn2586SE)Asmostnonfishingactivitieswerenear shoreweassumed trailerboatingactivityatHMRCAobservedbyCRAGSwasallfishing

Therewere16directcomparisonsamplesbetweenthebusrouteandCRAGSmethodsbetweenthe2ndandthe29thofMaySamplesconsisted of 7 weekdays and 9 weekendspublic holiday samples

(Figure6)Infourcaseswheretwobus-routesamplesweretakenonthe same day (Supporting Information Appendix S2) they are com-bined toadailyestimation for tabulation (Table2)Theproportionaldifferencebetweenestimatedeffortsusingthetwomethodsrangedfrom078-to418-folddifferencehoweverranksestimatesbetweenCRAGS and bus-route samples were strongly associated (n=16ρ(12)=087p=lt001)Interdailysamplingstrata(ampm)werealsoexaminedseparatelyforcorrelationwhichremainedstrongforbotham(n=9ρ(7)=080p=lt001)andpm(n=7ρ(5)=089p=lt001)

ForthecomparativemonthCRAGStook169samplescomparedtothebusroutesrsquo16(Table3)WehadtwofieldtripdaysforCRAGSwith four people on the setup and three on the breakdown daywhichresultedinsevenfull-timeequivalent(FTE)daysofworkThiscomparedto16fielddaysforthebus-routemethodwhichincludedtraveltothefieldsiteforbetweentwoandthreestaffwhichaccu-mulatedto40FTEdaysofworkSettingupourCRAGSautomatedstitching took one FTE day (though this is faster for experiencedofficers)whiledataextractionperimagewasestimatedtotakeon

TABLE 1emsp Intervieweesreportedprimarytargettaxaoractivity

Primary target taxaspeciesactivity Interview responses

Tuna(unspecified) 37 440

SouthernBluefinTuna 15 179

AlbacoreTuna 2 238

AllTuna 54 643

Flathead 5 595

Southernrocklobster 9 107

Squidcalamari 4 476

Abalone 1 119

SmallPelagics 1 119

SnottyTrevalla 2 238

Allnearshorespecies 22 262

Surfing 1 119

SCUBA 3 357

DemonCavevisitors 3 357

PleasureCruise 1 119

Allnonextractive 8 952

Note ldquoTunardquo responsesdenote anglers targeting all specieswithin thefamilyThunnini

F IGURE 6emspDailyboatingeffort(hours)extrapolatedusingbus-routeaccesspointsurvey(bar)andCRAGS(line)Effortestimatefrombus-routesurveywascalculatedfrommorning(amdarkgray)andafternoon(pmlightgray)surveyCRAGSsurveywasconductedbetweenMayandJunewhilethebus-routesurveywasonlyconductedinMay

TABLE 2emspRankingofeffortforpairedsamplesbetweenCRAGSandthebusroute

DateCRAGS hours (rank)

Bus- route hours (rank) Δ Rank

2052015 330(9) 1208(10) minus1

3052015 303(8) 1471(11) minus3

12052015 0(1) 48(2) minus1

14052015 0(1) 24(1) 0

16052015 387(11) 1794(12) minus1

19052015 93(4) 89(4) 0

20052015 57(3) 117(5) minus2

22052015 228(7) 283(6) 1

23052015 513(12) 414(8) 4

24052015 345(10) 1155(9) 1

25052015 122(6) 323(7) minus1

29052015 102(5) 79(3) 1

8emsp |emsp emspensp FLYNN et aL

average75mincomparedto1minforenteringthebus-routedatasheetWhiledataextraction forCRAGS took longer compared tothe bus routemdashat 381 FTE daysmdashtotal monthly labor for CRAGStookonlyaquarterofthetimeandonaper-samplecomparisonwasonly25ofthebus-routelaborcost

4emsp |emspDISCUSSION

Over our autumn samplingmost trailer boat owners accessing thewaters around theTasmanPeninsula via the regional boating infra-structurewererecreationallyfishingwithfisherspredominatelytar-getingtunaTrailerboatrecreationalfishersconstitutealargetrancheof coastal users in Australia (McPhee etal 2002) and our resultssuggestedthatthisregionremainsonewhererecreationalfishing isconcentrated(MortonampLyle2004)EffortobservedbyCRAGSwasa spatial subsetof thegeneral areaeasily accessedby trailer boatsaroundtheTasmanPeninsularwhichweregionallyassessedwithourbus-routerovingsurveyAsCRAGSonlyobserved~3of thetotalarea but corresponded to ~23 of themonthly bus-route boat ef-fort theHippolyteRocksMarineConservationArea (HRMCA) is afurtherconcentrationpointwithintheregionforrecreationalfishingAsthisoffshorefishingeffortaroundtheHRMCAwasmostprobablyfocusedontotunamdashwhichaccountedfor634ofallinterviewedfish-ers activitiesmdashthe actual proportionofpeninsularwide tuna fishingthatwasobservedbyCRAGSwaspotentiallymuchhigherthan23

For developing effort metrics finding a representative site toobservemaybe important forprecise trackingof trendsThetightrankcorrelationbetweenpairedregionalbus-routeandCRAGScam-era samples suggest that effort atHRMCAwas representative ofregionaltemporaltrendsOurresultsarealsosimilartootherstud-ieswheresamplingmethodsforrecreationalfisheriesoverbroaderscaleswhencomparedtoindextrendsofeffortcollectedfrompointsourcesshowstrongcorrelations(Hartilletal2016)

CRAGSwithitsseascapescaleofdatacaptureobservesactualeffortonfishinggroundsratherthan indirectmetricsfrommove-ment past access points (Hartill etal 2016 Smallwood PollockWise Hall amp Gaughan 2012 van Poorten amp Brydle 2018) This

makesthechoiceofaccesspointstomonitorimmaterialfortrendcol-lectionandmaybeofparticularinterestforpelagicfisheriesWhilenonintuitiverecreationalfishingforwide-rangingmigratorypelagicspeciesisoftenspatiallyconcentratedintosmallareas(Lynch2006)duetotightoverlapsbetweeneaseofaccessbyfishersandfishbe-haviorrelatedtobathymetrymigrationhabitatandpreyavailability(Lynchetal2004PattersonEvansCarterampGunn2008)

Unlikespatialpatternstheintensityofcoastalrecreationaltemporaleffortcanbehighlyvariableovertime(Lynch20082014WiseTelferLaiHallampJackson2012)thoughitisgenerallythoughttofollowpre-dictablepatternsrelativetoholidayandnonholidayperiods(JonesampPollock2012)Ourresultsdemonstratedtheselargefluctuationsrang-ingfromzerouptogt400hroftrailerboateffortforadjacentdaysIncombinationwithholidayperiodsothersourcesofvariabilitymayalsooccurduetoindividualorcombinationsoffactorssuchasfishingcluborcompetitionactivitiesandweatherconditionsHigh-frequencysam-plingcanovercomethesecommontemporaldisjunctionsinobservedfishingeffortwherebychanceduetolownumbersofsampleslogis-ticallypermissiblewithtraditionalrovingoraccesspointsurveyslargeerrorsintheestimationofeffortcanbeintroduced(Hartilletal2016vanPoortenampBrydle2018vanPoortenetal2015)

With multiple daily observations abnormal episodes are morelikelytobeobservedForinstanceaweek-longperiodofintenseef-fortwasrecordedbetween15May2015and27May2015whichwasbracketedbytwoconsecutiveweekendswherefishingcompetitionswereheldontheTasmanPeninsularThenormalsinusoidpatternoflowweekdayandhighweekendeffortwasmuchlesspronouncedastheweekdaylullsineffortwerepartiallybridgedbyanglerscontinuingtofishAsbus-routedesignsusedaytypeasstratawithlowerprob-abilitiesforsamplingweekdaysandmuchfewersamplesoverallthistypeofeffectcouldeasilybemissedWhileourbus-routesamplesdidoverlapwiththetunafishingcompetitionsthiswaspurelybychanceSucheventswhichresultinlargespikesofeffortcanhavemarkedim-pactsonlocalecosystemsandharvestestimates(McPheeetal2002MonzPickeringampHadwen2013)andwithoutpriorknowledgearemorelikelytobecapturedwithmonitoringathigherfrequencies

Methodsforgatheringdataoncoastalusesuchasrecreationalfishing moved away from direct approaches and toward off-sitemethodssuchastelephoneinterviews(McCluskeyampLewison2008Pollock etal 1994) due to unsustainable costs from staffing andoperationsparticularlyduringperiodsof intenseusesuchasearlymornings weekends and public holidays which require overtimepaymentsHoweversamplingissueswithoff-sitemethodsareofpar-ticularconcernforopen-accessactivitiessuchasunlicensedfisheriesasthereisnolicensedatabaseofcontactphonenumbersonwhichtobaseasampleframeThisisparticularlysofornicherecreationalfisheriessuchaspelagicgamefishingasthefishersbecomeincreas-inglydilutewithinthegeneralpopulationandhencearehardtoac-cessparticularlyviaoff-sitemethodssuchastelephone interviews(Griffithsetal2010)

Remoteandautonomousdeploymentofsensorsmaythereforeprovideanalternativeandcost-effectivemethodforlong-termmon-itoring particularly for effort across a range of applicationsOur

TABLE 3emspFulltimeequivalent(FTE)labordaysforCRAGSandbusroutesurveystoestimatepatternsofeffort

CRAGS Bus route

Numberofsamples 169 16

Fielddays 2 16

Averagepeopleperfieldday 35 25

Field FTE days subtotals 7 40

StitchingsetupFTE 1 0

DataextractionFTE(persample) 0017 0002

Subtotal data extraction FTE 381 004

FTEdayspersample 006 250

Total FTE days 108 400

emspensp emsp | emsp9FLYNN et aL

comparisonsofmatchedpairsofdatafromtwomethodssuggestedthat theCRAGSoutputswerewell correlatedwith regionalefforttrendsOuranalysisoflabordemonstratesthattryingtounderstandthistemporalvariabilitywithsamplingviaboatrampsurveyswouldbeprohibitivelyexpensiveOurCRAGSallowsforatemporaleffortmetric derived fromactual observationsof fishing to be cheaplydeveloped with sampling frequency at subdaily scales This high-frequencysamplingapproachwasvalidatedagainstour largerbutmuchmorecostlybus-routesurveyOuranalysisoflaborrequiredtobothcollectandprocessdatashowedthatCRAGSrequiredconsid-erablylessresourcestocollectapproximatelyninetimesmorefre-quenttemporaldatathanthebus-routemethodMajorlaborsavingswereduetotheruggedizedandautonomouscapabilityofCRAGSasonlytwofieldtripswererequired(deploymentandretrievaltook7FTEdays)comparedtothebus-routersquos16fieldtrips inamonthwhichconsumed40FTEdaysandincludedanadditional780kmofinter-ramproadtravel(SupportingInformationAppendixS3)AsitisweatherproofautonomousandabletobeprogrammedwithatimedelaysetupCRAGSldquofireandforgetrdquonaturebothremovestheneedforobservertobephysicallylocatedattheregiontocountactivity(EdwardsampSchindler2017)andworkduringovertimeperiodsTheldquoblankingperiodrdquowhichstopsandstartssamplingmdashinthiscaseover-nightmdashalso reduces battery and memory use In combined thesetechnological advances have allowed long-term CRAGS deploy-mentsacross4yearsof4ndash6monthrotationsontooffshoreislandsand for several seasons in Antarctica to monitor seabirds (Lynchetal2017)Thelaborestimateforthebusroutewasconservativeasitdidnotincludeovertimeloadingforthe6weekenddaysofsam-plingorearlymorningcommencementofamsamples

Theadditional381FTEprocessingtimerequiredbythecameraapproach did not impact greatly on the overall labor budgetwhenconsideredagainstfieldworkTheuseoftheTimeMachinebatchpro-cessingsoftwaretoautomaticallyproducetheldquobigdatardquointeractivemoviewasalsoatechnologicalinnovationthatsignificantlyreducedthelaborofdatahandlingcomparedtothemanualopeningofindivid-ualGigaPansusedinpreviousstudies(Lynchetal2015Woodetal2016)IncomparativetermsattheindividualsampleleveltotracktheeffortmetriceachCRAGSsamplerequired24ofthelaborofthebus-routesurvey

Thedevelopmentandapplicationofimagerecognitionsoftware(machine learning) to detect classify and count boats automati-cally (Bousetouane amp Morris 2015) would further reduce post-processingcostsTherequiredfrequencyofsamplingshouldalsobeconsideredonacase-by-casebasisdependentontheresearchquestion as image collection can be somewhat open-ended andresult inunwieldydata sets that require subsampling tobe cost-effective(Parnelletal2010)Inourcasethesettingof~5imagesperdayappearedtoadequatelydescribetheinterdailyvariation

Whileouroneautonomouscameraprovidedastrongcorrelationwithtemporaltrendsineffortcomparedtotheregionalsurveyitdidnotprovide relativespatialdistributionsofeffortacross the fisheryThesedistributionshowevercanbepredictableandhighlyconcen-trated(Lynch20062014Parnelletal2010)anobservationthatwas

alsoshownbyourresultsandmuchsmallerlevelsofsamplingeffortwouldprobablyberequiredtoresolvevariationinspatialdistributionscomparedtowhatisrequiredtoresolvethehightemporalvariationsineffortUnderstandingfine-scalespatialdistributionsofrecreationalfishingeffortiscommonlyachievedusingaerialcounton-watersur-veysorvantagepointsurveys(Lynch2006Smallwoodetal2012)thoughotherremotemethodssuchashigh-resolutionsatelliteimag-ery(FretwellScofieldampPhillips2017)mayprovideacheapersolu-tionThesetypesofwidersurveyshavealsobeensuggestedashighlycompatiblewithpointsourcemetricssuchasremotecamerasystemstoallowforcalibrationorldquoup-ratingrdquoforeffortexpansionstoestimateoveralleffortwithinthefishery(Hartilletal2016)

Thelongdistance(~6km)betweentheHMRCAandthedeploy-ment location stretched the resolution limit of the current CRAGSsetup aswewere unable to distinguish party size or activity typepurelyusing thecamerasystemThis isunlikepreviousCRAGSde-ploymentwhichhadahighsuccessrateofidentifyingpartysizeac-tivity typeata shorter rangeofapproximately19km (Woodetal2016) Thus ground-truthing information about the fisherywas re-quiredforthesystemtoworkeffectivelyAutonomouscamerasystemalsodonotcollectcreel(catch)databutbyallowingforcost-effectivecollectionofthehighlyvariabletemporaleffortdatatheymayallowforhumanresourcestobespentelsewhereduringsurveyperiods(egtoundertakeboatrampinterviews)(vanPoortenampBrydle2018)

Our studywas a small-scale trial of new technology andwhilepreliminary results are encouraging validated seasonal effort esti-mationsobservedviaCRAGSwereoutsidethescopeofthisprojectOur comparisons would hence have been improved by extendingCRAGSdeploymentsandwithmorecomparisonstoregionalsurveysSimilarly usingmultiple CRAGS simultaneously would have bettertested for differences in subregional patterns of temporal trendsorconcentrationof infishingeffortfor instanceboatsaroundthenearbyTasmanIsland

Insummarytheprogrammablesamplinganddataextractionof-feredbyhigh-resolutionautonomouscamerasystemscanallowforfine-scalelong-termmonitoringoffishingefforttrendsorpotentiallymanyothertypesofactivitiesatseascapescalesMorewidespreadadoptionofhigh-frequencysamplingapproachesforeffortestima-tionwouldalsohelpavoidcollectionofmisrepresentativedatabyidentifyingeffortanomalies(McCluskeyampLewison2008)suchastheweekdaycontinuationeffectofraisedeffortbetweenadjacentweekendfishingcompetitionByimprovingtheinformationdensityovertraditionalsurveymethodsautonomouscamerasystemsandotherremotesystemsmayprovideanewwaveofoptimizationfordirectmeasurementofcoastalhumanusesuchasrecreationalfish-eriesalthoughcomplimentarymethodsarestillrequiredtodeter-minespatialdistributionstargetspeciesandharvest

ACKNOWLEDG MENTS

We thankMsGeorginaWoodMs SaraAdkinsMsBelleMonkMrRSherringtonandMsPaigeKellyforconstructiveinsighten-thusiasmandassistanceduringfieldworkWealsothankMrPhillip

10emsp |emsp emspensp FLYNN et aL

CulversonMrStuartDudgeonandMrMattStapenellKarenEvensprovidedhelpfulcommentsonaninternaldraftGreatestthankstothemany recreational anglerswhowillingly shared information tosurveyclerkswithouttheirinvolvementthisprojectwouldnothavecometofruitionThreeanonymousreviewersprovidedcommentsthatimprovedthemanuscript

CONFLIC T OF INTERE S TS

Theauthorsdeclarenoconflictofinterests

AUTHOR CONTRIBUTIONS

MrFlynnhelpeddesignthestudyledthefieldworkundertookmostoftheanalysisandhelpwritethemanuscriptDrLynchhelpdesignthestudyassisted inthefieldworkprovidedadviceontheanaly-sisanddidsomeanalysisconstructedfiguresandafterMrFlynncontributedthemosttothedraftingofthemanuscriptDrBarretthelpeddesign the study assisted in some fieldwork provided ad-viceonanalysisandeditedthemanuscriptMrWonghelpedexten-sivelywithfieldworkassistedwithanalysisconstructedfiguresandhelpedwritethemanuscriptMsDevineassistedwithfieldworkandconfigurationoftheequipmentincludingtheapplicationofthebigdatamoviesoftwareandhandlingofphotographsandalsohelpedwritethemanuscriptMrHughesdevelopedtheelectronicsfortheequipmentoversaw thebuildofgearwrote the software topro-gramtherobotandreviewedandeditedthemanuscript

DATA ACCE SSIBILIT Y

Survey sampling schedules data collection sheets extrapolationproceduresandtechnicalCRAGSspecificationsarealluploadedasonlinesupportinginformationappendixRawdatafromsurveysandCRAGSDOIhttpdoiorg105061dryadv10d218

RE SE ARCH E THIC S COMPLIANCE AND FUNDERS

ResearchabidesbytheAustraliancodeofhumanresearchandex-perimentation(NationalStatementonEthicalConductinHumanResearch of 2007) Permission to conduct research on humanparticipants was granted by the University of Tasmania SocialScience under reference H0014772mdashldquoRemote investigation ofcoastal area user group quantification and variationrdquo aswell asfromtheCSIROSocialScienceHumanResearchEthicsCommitteeunder reference 08115mdashldquoHawkesbury Region Project HumanUsePatternsrdquoFundingwasbyUTASasPartoftheIMASHonoursProject funding and through internal support from the CoastsProgram

ORCID

Tim P Lynch httporcidorg0000-0002-5346-8454

R E FE R E N C E S

Alessa L Kliskey A amp Brown G (2008) Socialndashecological hotspotsmapping A spatial approach for identifying coupled socialndasheco-logicalspaceLandscape and Urban Planning8527ndash39httpsdoiorg101016jlandurbplan200709007

ArlinghausR(2006)Overcominghumanobstaclestoconservationofrecreational fishery resources with emphasis on central EuropeEnvironmental Conservation 33 46ndash59 httpsdoiorg101017S0376892906002700

Arlinghaus R Tillner R amp Bork M (2015) Explaining participationratesinrecreationalfishingacrossindustrialisedcountriesFisheries Management and Ecology 22 45ndash55 httpsdoiorg101111fme12075

BadcockPBPatrickKSmithAMASimpsonJMPennayDRisselCEhellipRichtersJ(2016)Differencesbetweenlandlineandmobilephoneusers in sexualbehavior researchArchives of Sexual Behavior46(6)1711ndash1721

Blumberg S J amp Luke J V (2009) Reevaluating the need for con-cern regarding noncoverage bias in landline surveys American Journal of Public Health 99 1806ndash1810 httpsdoiorg102105AJPH2008152835

Bousetouane F ampMorris B (2015) Off-the-shelf CNN features forfine-grainedclassificationofvesselsinamaritimeenvironmentInGBebisRBoyleBParvinDKoracinIPavlidisRFerisTMcGrawMElendtRKopperERaganZYeampGWeber(Eds)Advances in visual computing 11th International symposium ISVC 2015 Las Vegas NV USA December 14ndash16 2015 proceedings Part II (pp379ndash388)Cham Switzerland Springer International Publishing httpsdoiorg101007978-3-319-27863-6

Cooke S J amp Cowx I G (2004) The role of recreational fish-ing in global fish crises BioScience 54 857ndash859 httpsdoiorg1016410006-3568(2004)054[0857TRORFI]20CO2

DiggleP J (1995)Time-series a biostatistical introductionOxfordUKClarendonPress

EdwardsJampSchindlerE (2017)Avideomonitoringsystemtoeval-uate ocean recreational fishing effort in Astoria OregonMarine recreational information program (pp 31) Newport OR OregonDepartmentofFishandWildlife

FarrMStoecklNampSuttonS(2014)RecreationalfishingandboatingArethedeterminantsthesameMarine Policy47126ndash137httpsdoiorg101016jmarpol201402014

ForbesETraceySampLyle JM (2009)Assessment of the 2008 rec-reational gamefish fishery of Southeast Tasmania with particular refer-ence to Southern Bluefin TunaHobartTASTasmanianAquacultureandFisheriesInstituteUniversityofTasmania

FretwellPTScofieldPampPhillipsRA(2017)Usingsuper-highres-olutionsatelliteimagerytocensusthreatenedalbatrossesIbis159481ndash490httpsdoiorg101111ibi12482

GiriKampHallK (2015)SouthAustralian recreational fishingsurveyFisheries Victoria internal report series (pp 63) Queenscliff VicFisheriesVictoria

Griffiths S P Pollock K H Lyle J M Pepperell J G TonksM L amp Sawynok W (2010) Following the chain to elu-sive anglers Fish and Fisheries 11 220ndash228 httpsdoiorg101111j1467-2979201000354x

Halpern B SWalbridge S Selkoe K A Kappel C V Micheli FDrsquoAgrosaChellipWatsonR(2008)AglobalmapofhumanimpactonmarineecosystemsScience319948ndash952httpsdoiorg101126science1149345

Hartill BW Payne GW Rush N amp Bian R (2016) Bridging thetemporal gap Continuous and cost-effective monitoring of dy-namic recreational fisheries by web cameras and creel surveysFisheries Research 183 488ndash497 httpsdoiorg101016jfishres201606002

emspensp emsp | emsp11FLYNN et aL

HenryGWampLyleJM(2003)NationalrecreationalandindigenousfishingsurveyFinal report to the fisheries research amp development cor-poration and the fisheries action program (pp 188) Canberra ACTFRDC

JonesCMampPollockKH(2012)Recreationalanglersurveymeth-odsEstimationofeffortharvestandreleasedcatchInAZaleDLParrishampTMSutton(Eds)Fisheries techniquesBethesdaMDAmericanFisheriesSociety

Kearney R E (2002) Co-management The resolution of conflict be-tween commercial and recreational fishers in Victoria AustraliaOcean amp Coastal Management45201ndash214httpsdoiorg101016S0964-5691(02)00055-8

KellerKSteffeASLowryMMurphyJJampSuthersIM(2016)Monitoringboat-basedrecreationalfishingeffortatanearshorearti-ficialreefwithashore-basedcameraFisheries Research18184ndash92httpsdoiorg101016jfishres201603025

KinlochMAMcGlennonDNicollGampPikePG(1997)Evaluationof the bus-route creel surveymethod in a largeAustralianmarinerecreationalfisheryISurveydesignFisheries Research33101ndash121httpsdoiorg101016S0165-7836(97)00068-4

LewinWCArlinghausRampMehnerT(2006)Documentedandpo-tential biological impacts of recreational fishing Insights forman-agementandconservationReviews in Fisheries Science14305ndash367httpsdoiorg10108010641260600886455

LowryMampMurphy J (2003)Monitoring the recreational gamefishfisheryoffsouth-easternAustraliaMarine and Freshwater Research54425ndash434httpsdoiorg101071MF01269

LyleJMStarkKEampTraceySR(2014)2012ndash2013 Survey of rec-reational fishing in TasmaniaHobart TAS Institute forMarine andAntarcticStudies

Lynch T P (2006) Incorporation of recreational fishing ef-fort into design of marine protected areas Incorporacioacuten delEsfuerzo de Pesca Recreativa en el Disentildeo de Aacutereas MarinasProtegidas Conservation Biology 20 1466ndash1476 httpsdoiorg101111j1523-1739200600509x

LynchTP(2008)Thedifferencebetweenspatialandtemporalvaria-tioninrecreationalfisheriesforplanningofmarineprotectedareasResponse toSteffeConservation Biology22486ndash491httpsdoiorg101111j1523-1739200800888x

LynchTP (2014)Adecadal time-seriesof recreational fishingeffortcollectedduringandafterimplementationofamultipleusemarinepark shows high inter-annual but low spatial variability Fisheries Research15185ndash90httpsdoiorg101016jfishres201309014

LynchTPAldermanRampHobdayAJ(2015)Ahigh-resolutionpan-orama camera system formonitoring colony-wide seabird nestingbehaviourMethods in Ecology and Evolution6491ndash499httpsdoiorg1011112041-210X12339

LynchTFlynnDWoodGKimJ-HParkJampHobdayAJ(2017)Metrics parameters and results from fisheries and wildlife studies with the CSIRO Ruggedized Autonomous Gigapixel Systems (CRAGS)DarwinNTAustralianMarineScienceAssociation

LynchTPWilkinsonEMellingLHamiltonRMacreadyAampFearyS(2004)ConflictandimpactsofdiversandanglersinamarineparkEnvironmental Management 33 196ndash211 httpsdoiorg101007s00267-003-3014-6

MaHOgawaTKSminkeyTRBreidtFJLesserVMOpsomerJDhellipVanVoorheesDA(2018)Pilotsurveystoimprovemonitoringofmarine recreational fisheries inHawaiʻiFisheries Research204197ndash208httpsdoiorg101016jfishres201802010

McCluskey S M amp Lewison R L (2008) Quantifying fish-ing effort A synthesis of current methods and their ap-plications Fish and Fisheries 9 188ndash200 httpsdoiorg101111j1467-2979200800283x

McGlennonDampKinlochMA(1997)Evaluationofthebus-routecreelsurveymethod in a largeAustralianmarine recreational fishery II

PilotsurveysandoptimalsamplingallocationFisheries Research3389ndash99httpsdoiorg101016S0165-7836(97)00067-2

McPheeDLeadbitterDampSkilleterGA(2002)SwallowingthebaitIs recreational fishing in Australia ecologically sustainable Pacific Conservation Biology840httpsdoiorg101071PC020040

Monz C A Pickering C M amp HadwenW L (2013) Recent ad-vances in recreation ecology and the implications of differentrelationships between recreation use and ecological impactsFrontiers in Ecology and the Environment11441ndash446httpsdoiorg101890120358

MooreAHallKGiriKTraceySPenroseLHansenShellipBrownP(2015)Developingrobustandcost-effectivemethodsforestimatingthenationalrecreationalcatchofSouthernBluefinTunainAustraliaFRDC Projectpp123

Morton A J amp Lyle J M (2004) Preliminary assessment of the rec-reational gamefish fishery in Tasmania with particular reference to Southern Bluefin Tuna Taroona TAS Tasmanian Aquaculture andFisheriesInstitute

ParnellPEDaytonPKFisherRALoarieCCampDarrowRD(2010)SpatialpatternsoffishingeffortoffSanDiegoImplicationsfor zonal management and ecosystem function Ecological Applications202203ndash2222httpsdoiorg10189009-15431

PattersonTAEvansKCarterTLampGunnJS(2008)Movementand behaviour of large southern bluefin tuna (Thunnus maccoyii)in the Australian region determined using pop-up satellite ar-chival tags Fisheries Oceanography 17 352ndash367 httpsdoiorg101111j1365-2419200800483x

PollockKH JonesCMampBrownTL (1994)Angler survey meth-ods and their applications in fisheries management Bethesda MDAmericanFisheriesSociety

PonsM Branch T AMelnychukM C JensenO P Brodziak JFromentinJMhellipHilbornR(2017)EffectsofbiologicaleconomicandmanagementfactorsontunaandbillfishstockstatusFish and Fisheries181ndash21httpsdoiorg101111faf12163

PowersSPampAnsonK (2016)Estimating recreationaleffort in theGulf of Mexico Red Snapper Fishery using boat ramp camerasReduction in federalseason lengthdoesnotproportionally reducecatchNorth American Journal of Fisheries Management 36 1156ndash1166httpsdoiorg1010800275594720161198284

Robson D amp Jones C M (1989) The theoretical basis of an ac-cess site angler survey design Biometrics 45 83ndash98 httpsdoiorg1023072532036

Rocklin D Levrel H Drogou M Herfaut J amp Veron G (2014)Combining telephone surveys and fishing catches self-reportTheFrenchseabass recreational fisheryassessmentPLoS ONE9e87271httpsdoiorg101371journalpone0087271

Smallwood C B Pollock K HWise B S Hall N G amp GaughanD J (2012) Expanding aerial-roving surveys to include counts ofshore-based recreational fishers from remotely operated camerasBenefitslimitationsandcosteffectivenessNorth American Journal of Fisheries Management321265ndash1276httpsdoiorg101080027559472012728181

Teixeira D ZischkeM T ampWebley J A C (2016) Investigatingbias in recreational fishing surveys Fishers listed in public tele-phone directories fish similarly to their unlisted counterpartsFisheries Research 181 127ndash136 httpsdoiorg101016jfishres201604012

van Poorten B T amp Brydle S (2018) Estimating fishing effortfrom remote traffic counters Opportunities and challengesFisheries Research 204 231ndash238 httpsdoiorg101016jfishres201802024

van Poorten B T Carruthers T RWardHGM ampVarkeyD A(2015)Imputingrecreationalanglingeffortfromtime-lapsecamerasusinganhierarchicalBayesianmodelFisheries Research172265ndash273httpsdoiorg101016jfishres201507032

12emsp |emsp emspensp FLYNN et aL

VenturelliPAHyderKampSkovC(2017)AnglerappsasasourceofrecreationalfisheriesdataOpportunitieschallengesandproposedstandardsFish and Fisheries18578ndash595httpsdoiorg101111faf12189

WiseBSTelferCFLaiEKMHallNGampJacksonG(2012)Long-termmonitoringofboat-basedrecreational fishing inSharkBayWesternAustraliaProvidingscientificadviceforsustainablemanagement in a World Heritage Area Marine and Freshwater Research631129ndash1141httpsdoiorg101071MF12054

WoodGLynchTPDevineCKellerKampFigueiraW(2016)High-resolutionphoto-mosaictime-seriesimageryformonitoringhumanuseofanartificialreefEcology and Evolution66963ndash6968httpsdoiorg101002ece32342

YuFRupertACCDiTizianaMNishikantaKRandySIllahNhellipJeffreyG(2011)TerapixelimagingofcosmologicalsimulationsThe Astrophysical Journal Supplement Series19718

Zischke M T Griffiths S P amp Tibbetts I R (2012) Catch and ef-fort from a specialised recreational pelagic sport fishery off

eastern Australia Fisheries Research 127ndash128 61ndash72 httpsdoiorg101016jfishres201204011

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle

How to cite this articleFlynnDJHLynchTPBarrettNSWongLSCDevineCHughesDGigapixelbigdatamoviesprovidecost-effectiveseascapescaledirectmeasurementsofopen-accesscoastalhumanusesuchasrecreationalfisheriesEcol Evol 2018001ndash12 httpsdoiorg101002ece34301

Graphical AbstractThecontentsofthispagewillbeusedaspartofthegraphicalabstractofhtmlonly

Itwillnotbepublishedaspartofmainarticle

Wetrailedaremoteautonomousultra-high-resolutionphotosamplingmethodasacosteffectsolutionfordirectseascape-scaledmeasure-mentsOursequentialphotosamplingwasbatchedprocessesusingnovelTimeMachinedatahandlingsoftwaretoproduceldquobigdatardquotimeseriesmoviesfromaspatialsubsetofanoffshorefisherywhichwecomparedtoaregionalbus-routesurveyofboattrailersandinterviewswithparticipantsOurcamerasamplescloselytrackedlargerscaleregionaltrendsbutwithlaborcostsaquarterofthebus-routesurveycostsforanindividualsample25ofthebusroutes

Page 5: Gigapixel big data movies provide cost-effective seascape ...

emspensp emsp | emsp5FLYNN et aL

Thecountofboatsforeachsamplewasthenextrapolatedintoanestimateofdailyaverageboatingeffort(hoursplusmnSE)usingthein-stantaneouscountmethod(Equation1)

where ei is theextrapolatedboatinghours for the ithday Ii is theaveragenumberoftrailerboatsobservedacrosstheinstantaneoussamplesfordayiandTisthedailysamplingperiod(daylighthours)Asbadweathercanbeamajorfactoraffectingthedecisiontoboatorfish(ForbesTraceyampLyle2009)boatingeffortwasassumedtobe0whenadverseweathermadeobservationsofboatsimpossible

Next total effort for each day-type strata (Ejk) within sam-pling months (k) was calculated to estimate the monthly effort(Equation2)AsCRAGSallowedforcontinuoussamplingthroughoutthesurveyperiodthesamplingprobability(πk)wassetto1

Standarderrorandeffortvarianceformonthlyestimateswerecalculated(Equation3)accordingtoPollocketal(1994)forstrata

where nj is thenumberofsampleddaysofstrata j Njk is thetotalnumberofdaysofstratajinmonthk

Asvariationforeachstratawascalculatedseparatelyweusedasumofsquaredstandarderrorsapproach(Equation4)toestimatethetotalmonthlyvariation

Assampleswereobtainedinaserialandcontinuousfashionatimeseriesmodelusingrollingaverageswasalsoappliedtothedata(Diggle1995)(Equation5)

where smt is the smoothed average of extrapolated effort e persampletwhichisweightedacrossthreesampleseachseparatedby93minThisprovidedasmoothedaveragewithindays

Wealsoconductedabus-routestylesurveytoestimatefishingeffortfromtrailerboatsfortheregion(Pollocketal1994Robsonamp Jones1989)WhileCRAGSsampleswerecollected throughoutMayandJunethecomparablebus-routesurveywasonlyconductedinMaydue to logistical constraintsWesurveyed the threemajorboatrampsintheregionatPiratesBayFortescueBayandStewartsBaybetween3May2015and30May2015(Figure1)

Atotalof20bus-routesampleswerescheduledWeundertookrandomstratifiedsamplingwithdaytypedividedintoweekdaysorweekendpublic holidays To reflect expected higher recreationaleffortduringweekendsandpublicholidays(McCluskeyampLewison2008)thesamplingprobability(πk)wasweightedtowardthisstrata

over weekdays at 12 to eight samples (Supporting InformationAppendix S2) We stratified the sample time into morning (am0600ndash1159)andafternoon(pm1200ndash1800)withequalproba-bilitiesofsamplingTominimizetemporalautocorrelationthestart-ing location and travel direction of the routewere also randomlyselectedwithoutreplacementEqualsamplingweightwasprovidedtoeachrampduetolackofpriorknowledgeofuserates

At each boat ramp surveys were conducted by first countingparkedboattrailersthenbymonitoringvesselentryandexitsduringa1-hrsamplingperiod(KinlochMcGlennonNicollampPike1997Pollocketal1994)The1-hrperiodwaschosendueto travel timeanddis-tancebetweensitesallowingforabus-routesampletobecompletedforallrampswithinthetemporalstrata(AMorPM)ofthedailysam-plingframeInterviewswereconductedwithallpartieslaunchingandretrievingvesselsduringtheclerkrsquoswaittimedeterminingpartysizetargetspeciesgroupandactivity(iefishingornot)forestimatesoffishing effort This well-established procedure produced a monthlyextrapolatedestimationofboateffort instandardizedunitsofefforthoursplusmnSEwhichcouldthenbeadjustedtofishingeffortviathepro-portionofintervieweesactivities(Pollocketal1994RobsonampJones1989)(SupportingInformationAppendixS3)PartysizebetweenrampswastestedforanydifferenceusingaonefactorANOVA

Thebus-route surveyhenceprovidesanestimationofall fish-ing effort from trailer boats around this isolated peninsular TheCRAGSdataarethusahigh-frequencyspatialsubsetoftheentiretrailer boat fishing effort for the period thatwas extrapolated bytheregionalsurveyThisallowedustobothtesttherelativeuseoftheHRMCAcomparedtowiderpeninsularuseandtheabilityofourremoteobservationswithourCRAGsunitofanactualsubsetofthefisherytotracklargertemporalpatternsofpeninsularwideeffort

TovalidatetherepresentativenessoftheCRAGShigh-frequencytrackingofeffortmetricsover timeweundertookaSpearmanrankcorrelationbetweentime-matchedeffortestimationsbyCRAGSandthe regional bus-route survey For graphing bus-routeextrapolationestimates were overlaid onto extrapolations from daily averages ofboatfishingeffortfromCRAGSWealsocarefullyloggedalltimespentontheprojecttocomparetotallaborcostsbetweenCRAGSandthebusrouteforbothdatacollectionandprocessingtodetermineeffortacrossthecomparativemonthaswellasforcostpersample

3emsp |emspRESULTS

The CRAGS operated successfully and continuously throughoutthestudycapturing545plusmn198SE(May)and483plusmn088SE(June)panoramasperdaymakinga totalof314 samplesWemade895observationsofboatsbut51samplesacross21daysreturnedzerocountsofboats(17oftotalsamples)Thesewereconcentratedonweekdaysmdashwith 44 zero-count samples across 18daysmdashwhile onweekendsandpublicholidaytherewereonlysevensamplesacross3dayswithnoactivityInclementweatherrendered27samplesun-usableTheimagesandbatch-processedTimeMachinemoviescon-sumed4274GBofmemory

(1)ei=IitimesT

(2)Ejk=

nsum

i=1

(

ei

120587k

)

(3)SEjk=

1

njminus1

sumn

i=1(eiminus ei)

2

njtimes (Njk)

2

(4)SEk=

radic

SE21k+SE2

2khellip+SE2

jk

(5)smt=etminus1+ et+ et+1

3

6emsp |emsp emspensp FLYNN et aL

Based on boat ramp interviews the average trailer boat partysize (P) was 287 people per vessel throughout May (plusmn0133 SEn=84)andpartysizebetweensitesshowednosignificantdiffer-ence (df=2F = 302p = 068) The averagemonthly boat fishingeffort(hours)extrapolatedforourCRAGSobservationsofHRMCAwas5629hr(plusmn711SE)with4096hr(plusmn607SE)inMayand1534hr(plusmn370 SE) in June (Figure4)mdashthis could be extrapolated to fisherhoursbymultiplyingbytheaveragepartysizebutasnointerviewswereconductedinJuneweleftboththeCRAGSandbusrouteex-trapolationsasboatfishingeffortonly

The total subset area observed by CRAGSwas 96km2 which comparedto318km2thatwaseasilyavailabletotrailerboatsaroundtheTasmanPeninsularwhichcorrespondstoaround3ofthetotalareaComparedtothetotalfishingeffortforMayextrapolatedfromtheregionalbus-routesurvey therelativelysmallareaaroundtheHRM(~3)receivedalargeamountofthefishingeffort(~23)

ThehighfrequencyofCRAGSsamplingpermittedtheexamina-tionoffine-scaleinter-dailytemporalvariationwhichdisplayedarag-gedsinusoidoscillation(Figure5)Effortwasgenerallylowwithinthe

weekdaystrataandthen increasedrapidly to largepeaksonweek-ends (Figure5) One exception to this was between the 18th and22ndMaywhichhadmoreeffortonweekdays thanotherperiods(Figure5)Bracketingthisperiodweretwoweekendsoffishingcom-petitions theldquoTunaClubofTasmaniarsquosrsquoFarSouthClassicrdquo (16ndash17thMay)andRally4Northerninvitationalweekendrally(23rdMay)

A total of 16 bus-route samples were conducted logistic fail-uresledtotheabandonmentoffour(20)oftheplannedsamplesRegionalTrailerboateffortfromaroundtheTasmanPeninsularwasestimatedtobe19650hr (plusmn2858SE) inMay (Figure4)Notrailersat individual rampswere recorded four timeswith all of theseoc-curringonweekdaysThetotalnumberoftrailerssightedperramprangedfrom0to16duringweekdaysand1ndash54forweekendswiththehighestnumberrecordedon16May2015atPiratesBayDuringhigh-intensitydays(particularlyweekendsholidaysmornings)therewereoftenlargeoverflowsfromrampcarparkswithparkedcarsandboattrailersextendingasmuchasonekilometerfromtheboatramp

During thebus-route survey 84 interviewswere conductedThemajorityofmariners(905n=96)indicatedfishingwastheir

F IGURE 4emspExtrapolatedmonthlytrailerboateffort(hoursplusmnSE)fortheentireTasmanPeninsulaassessedbyabus-routesurvey(May)andforthesubsetoftheareaaroundtheHRMCAsampledwithCRAGS(MayandJune)

F IGURE 5emspHigh-frequencyinterdailyextrapolatedCRAGSestimationsofboatefforthoursaroundthe(HRMCA)

0

100

200

300

400

500

600

Rolli

ng m

ean

daily

effo

rt in

hou

rs

DayWeekdays Weekends + Public Holidays

lyn088
Inserted Text
CA
lyn088
Cross-Out
lyn088
Cross-Out
lyn088
Inserted Text
t

emspensp emsp | emsp7FLYNN et aL

primaryactivity (Table1)Overall643 (n=54) indicated theirprimary target were tuna with 179 (n=15) specifically tar-geting southern bluefin tuna (Thunnus maccoyii)Other commonrecreationaltargetsincludedflathead(Platycephalusspp595)Southernrocklobster(Jasus edwardsii107)andsquidcalamari(Sepioteuthis australisandNototodarus gouldi476)(Table1)

Basedon the responsesofactivity type from interviews totalboatfishingeffortinMaywasestimatedtobe17783hr(plusmn2586SE)Asmostnonfishingactivitieswerenear shoreweassumed trailerboatingactivityatHMRCAobservedbyCRAGSwasallfishing

Therewere16directcomparisonsamplesbetweenthebusrouteandCRAGSmethodsbetweenthe2ndandthe29thofMaySamplesconsisted of 7 weekdays and 9 weekendspublic holiday samples

(Figure6)Infourcaseswheretwobus-routesamplesweretakenonthe same day (Supporting Information Appendix S2) they are com-bined toadailyestimation for tabulation (Table2)Theproportionaldifferencebetweenestimatedeffortsusingthetwomethodsrangedfrom078-to418-folddifferencehoweverranksestimatesbetweenCRAGS and bus-route samples were strongly associated (n=16ρ(12)=087p=lt001)Interdailysamplingstrata(ampm)werealsoexaminedseparatelyforcorrelationwhichremainedstrongforbotham(n=9ρ(7)=080p=lt001)andpm(n=7ρ(5)=089p=lt001)

ForthecomparativemonthCRAGStook169samplescomparedtothebusroutesrsquo16(Table3)WehadtwofieldtripdaysforCRAGSwith four people on the setup and three on the breakdown daywhichresultedinsevenfull-timeequivalent(FTE)daysofworkThiscomparedto16fielddaysforthebus-routemethodwhichincludedtraveltothefieldsiteforbetweentwoandthreestaffwhichaccu-mulatedto40FTEdaysofworkSettingupourCRAGSautomatedstitching took one FTE day (though this is faster for experiencedofficers)whiledataextractionperimagewasestimatedtotakeon

TABLE 1emsp Intervieweesreportedprimarytargettaxaoractivity

Primary target taxaspeciesactivity Interview responses

Tuna(unspecified) 37 440

SouthernBluefinTuna 15 179

AlbacoreTuna 2 238

AllTuna 54 643

Flathead 5 595

Southernrocklobster 9 107

Squidcalamari 4 476

Abalone 1 119

SmallPelagics 1 119

SnottyTrevalla 2 238

Allnearshorespecies 22 262

Surfing 1 119

SCUBA 3 357

DemonCavevisitors 3 357

PleasureCruise 1 119

Allnonextractive 8 952

Note ldquoTunardquo responsesdenote anglers targeting all specieswithin thefamilyThunnini

F IGURE 6emspDailyboatingeffort(hours)extrapolatedusingbus-routeaccesspointsurvey(bar)andCRAGS(line)Effortestimatefrombus-routesurveywascalculatedfrommorning(amdarkgray)andafternoon(pmlightgray)surveyCRAGSsurveywasconductedbetweenMayandJunewhilethebus-routesurveywasonlyconductedinMay

TABLE 2emspRankingofeffortforpairedsamplesbetweenCRAGSandthebusroute

DateCRAGS hours (rank)

Bus- route hours (rank) Δ Rank

2052015 330(9) 1208(10) minus1

3052015 303(8) 1471(11) minus3

12052015 0(1) 48(2) minus1

14052015 0(1) 24(1) 0

16052015 387(11) 1794(12) minus1

19052015 93(4) 89(4) 0

20052015 57(3) 117(5) minus2

22052015 228(7) 283(6) 1

23052015 513(12) 414(8) 4

24052015 345(10) 1155(9) 1

25052015 122(6) 323(7) minus1

29052015 102(5) 79(3) 1

8emsp |emsp emspensp FLYNN et aL

average75mincomparedto1minforenteringthebus-routedatasheetWhiledataextraction forCRAGS took longer compared tothe bus routemdashat 381 FTE daysmdashtotal monthly labor for CRAGStookonlyaquarterofthetimeandonaper-samplecomparisonwasonly25ofthebus-routelaborcost

4emsp |emspDISCUSSION

Over our autumn samplingmost trailer boat owners accessing thewaters around theTasmanPeninsula via the regional boating infra-structurewererecreationallyfishingwithfisherspredominatelytar-getingtunaTrailerboatrecreationalfishersconstitutealargetrancheof coastal users in Australia (McPhee etal 2002) and our resultssuggestedthatthisregionremainsonewhererecreationalfishing isconcentrated(MortonampLyle2004)EffortobservedbyCRAGSwasa spatial subsetof thegeneral areaeasily accessedby trailer boatsaroundtheTasmanPeninsularwhichweregionallyassessedwithourbus-routerovingsurveyAsCRAGSonlyobserved~3of thetotalarea but corresponded to ~23 of themonthly bus-route boat ef-fort theHippolyteRocksMarineConservationArea (HRMCA) is afurtherconcentrationpointwithintheregionforrecreationalfishingAsthisoffshorefishingeffortaroundtheHRMCAwasmostprobablyfocusedontotunamdashwhichaccountedfor634ofallinterviewedfish-ers activitiesmdashthe actual proportionofpeninsularwide tuna fishingthatwasobservedbyCRAGSwaspotentiallymuchhigherthan23

For developing effort metrics finding a representative site toobservemaybe important forprecise trackingof trendsThetightrankcorrelationbetweenpairedregionalbus-routeandCRAGScam-era samples suggest that effort atHRMCAwas representative ofregionaltemporaltrendsOurresultsarealsosimilartootherstud-ieswheresamplingmethodsforrecreationalfisheriesoverbroaderscaleswhencomparedtoindextrendsofeffortcollectedfrompointsourcesshowstrongcorrelations(Hartilletal2016)

CRAGSwithitsseascapescaleofdatacaptureobservesactualeffortonfishinggroundsratherthan indirectmetricsfrommove-ment past access points (Hartill etal 2016 Smallwood PollockWise Hall amp Gaughan 2012 van Poorten amp Brydle 2018) This

makesthechoiceofaccesspointstomonitorimmaterialfortrendcol-lectionandmaybeofparticularinterestforpelagicfisheriesWhilenonintuitiverecreationalfishingforwide-rangingmigratorypelagicspeciesisoftenspatiallyconcentratedintosmallareas(Lynch2006)duetotightoverlapsbetweeneaseofaccessbyfishersandfishbe-haviorrelatedtobathymetrymigrationhabitatandpreyavailability(Lynchetal2004PattersonEvansCarterampGunn2008)

Unlikespatialpatternstheintensityofcoastalrecreationaltemporaleffortcanbehighlyvariableovertime(Lynch20082014WiseTelferLaiHallampJackson2012)thoughitisgenerallythoughttofollowpre-dictablepatternsrelativetoholidayandnonholidayperiods(JonesampPollock2012)Ourresultsdemonstratedtheselargefluctuationsrang-ingfromzerouptogt400hroftrailerboateffortforadjacentdaysIncombinationwithholidayperiodsothersourcesofvariabilitymayalsooccurduetoindividualorcombinationsoffactorssuchasfishingcluborcompetitionactivitiesandweatherconditionsHigh-frequencysam-plingcanovercomethesecommontemporaldisjunctionsinobservedfishingeffortwherebychanceduetolownumbersofsampleslogis-ticallypermissiblewithtraditionalrovingoraccesspointsurveyslargeerrorsintheestimationofeffortcanbeintroduced(Hartilletal2016vanPoortenampBrydle2018vanPoortenetal2015)

With multiple daily observations abnormal episodes are morelikelytobeobservedForinstanceaweek-longperiodofintenseef-fortwasrecordedbetween15May2015and27May2015whichwasbracketedbytwoconsecutiveweekendswherefishingcompetitionswereheldontheTasmanPeninsularThenormalsinusoidpatternoflowweekdayandhighweekendeffortwasmuchlesspronouncedastheweekdaylullsineffortwerepartiallybridgedbyanglerscontinuingtofishAsbus-routedesignsusedaytypeasstratawithlowerprob-abilitiesforsamplingweekdaysandmuchfewersamplesoverallthistypeofeffectcouldeasilybemissedWhileourbus-routesamplesdidoverlapwiththetunafishingcompetitionsthiswaspurelybychanceSucheventswhichresultinlargespikesofeffortcanhavemarkedim-pactsonlocalecosystemsandharvestestimates(McPheeetal2002MonzPickeringampHadwen2013)andwithoutpriorknowledgearemorelikelytobecapturedwithmonitoringathigherfrequencies

Methodsforgatheringdataoncoastalusesuchasrecreationalfishing moved away from direct approaches and toward off-sitemethodssuchastelephoneinterviews(McCluskeyampLewison2008Pollock etal 1994) due to unsustainable costs from staffing andoperationsparticularlyduringperiodsof intenseusesuchasearlymornings weekends and public holidays which require overtimepaymentsHoweversamplingissueswithoff-sitemethodsareofpar-ticularconcernforopen-accessactivitiessuchasunlicensedfisheriesasthereisnolicensedatabaseofcontactphonenumbersonwhichtobaseasampleframeThisisparticularlysofornicherecreationalfisheriessuchaspelagicgamefishingasthefishersbecomeincreas-inglydilutewithinthegeneralpopulationandhencearehardtoac-cessparticularlyviaoff-sitemethodssuchastelephone interviews(Griffithsetal2010)

Remoteandautonomousdeploymentofsensorsmaythereforeprovideanalternativeandcost-effectivemethodforlong-termmon-itoring particularly for effort across a range of applicationsOur

TABLE 3emspFulltimeequivalent(FTE)labordaysforCRAGSandbusroutesurveystoestimatepatternsofeffort

CRAGS Bus route

Numberofsamples 169 16

Fielddays 2 16

Averagepeopleperfieldday 35 25

Field FTE days subtotals 7 40

StitchingsetupFTE 1 0

DataextractionFTE(persample) 0017 0002

Subtotal data extraction FTE 381 004

FTEdayspersample 006 250

Total FTE days 108 400

emspensp emsp | emsp9FLYNN et aL

comparisonsofmatchedpairsofdatafromtwomethodssuggestedthat theCRAGSoutputswerewell correlatedwith regionalefforttrendsOuranalysisoflabordemonstratesthattryingtounderstandthistemporalvariabilitywithsamplingviaboatrampsurveyswouldbeprohibitivelyexpensiveOurCRAGSallowsforatemporaleffortmetric derived fromactual observationsof fishing to be cheaplydeveloped with sampling frequency at subdaily scales This high-frequencysamplingapproachwasvalidatedagainstour largerbutmuchmorecostlybus-routesurveyOuranalysisoflaborrequiredtobothcollectandprocessdatashowedthatCRAGSrequiredconsid-erablylessresourcestocollectapproximatelyninetimesmorefre-quenttemporaldatathanthebus-routemethodMajorlaborsavingswereduetotheruggedizedandautonomouscapabilityofCRAGSasonlytwofieldtripswererequired(deploymentandretrievaltook7FTEdays)comparedtothebus-routersquos16fieldtrips inamonthwhichconsumed40FTEdaysandincludedanadditional780kmofinter-ramproadtravel(SupportingInformationAppendixS3)AsitisweatherproofautonomousandabletobeprogrammedwithatimedelaysetupCRAGSldquofireandforgetrdquonaturebothremovestheneedforobservertobephysicallylocatedattheregiontocountactivity(EdwardsampSchindler2017)andworkduringovertimeperiodsTheldquoblankingperiodrdquowhichstopsandstartssamplingmdashinthiscaseover-nightmdashalso reduces battery and memory use In combined thesetechnological advances have allowed long-term CRAGS deploy-mentsacross4yearsof4ndash6monthrotationsontooffshoreislandsand for several seasons in Antarctica to monitor seabirds (Lynchetal2017)Thelaborestimateforthebusroutewasconservativeasitdidnotincludeovertimeloadingforthe6weekenddaysofsam-plingorearlymorningcommencementofamsamples

Theadditional381FTEprocessingtimerequiredbythecameraapproach did not impact greatly on the overall labor budgetwhenconsideredagainstfieldworkTheuseoftheTimeMachinebatchpro-cessingsoftwaretoautomaticallyproducetheldquobigdatardquointeractivemoviewasalsoatechnologicalinnovationthatsignificantlyreducedthelaborofdatahandlingcomparedtothemanualopeningofindivid-ualGigaPansusedinpreviousstudies(Lynchetal2015Woodetal2016)IncomparativetermsattheindividualsampleleveltotracktheeffortmetriceachCRAGSsamplerequired24ofthelaborofthebus-routesurvey

Thedevelopmentandapplicationofimagerecognitionsoftware(machine learning) to detect classify and count boats automati-cally (Bousetouane amp Morris 2015) would further reduce post-processingcostsTherequiredfrequencyofsamplingshouldalsobeconsideredonacase-by-casebasisdependentontheresearchquestion as image collection can be somewhat open-ended andresult inunwieldydata sets that require subsampling tobe cost-effective(Parnelletal2010)Inourcasethesettingof~5imagesperdayappearedtoadequatelydescribetheinterdailyvariation

Whileouroneautonomouscameraprovidedastrongcorrelationwithtemporaltrendsineffortcomparedtotheregionalsurveyitdidnotprovide relativespatialdistributionsofeffortacross the fisheryThesedistributionshowevercanbepredictableandhighlyconcen-trated(Lynch20062014Parnelletal2010)anobservationthatwas

alsoshownbyourresultsandmuchsmallerlevelsofsamplingeffortwouldprobablyberequiredtoresolvevariationinspatialdistributionscomparedtowhatisrequiredtoresolvethehightemporalvariationsineffortUnderstandingfine-scalespatialdistributionsofrecreationalfishingeffortiscommonlyachievedusingaerialcounton-watersur-veysorvantagepointsurveys(Lynch2006Smallwoodetal2012)thoughotherremotemethodssuchashigh-resolutionsatelliteimag-ery(FretwellScofieldampPhillips2017)mayprovideacheapersolu-tionThesetypesofwidersurveyshavealsobeensuggestedashighlycompatiblewithpointsourcemetricssuchasremotecamerasystemstoallowforcalibrationorldquoup-ratingrdquoforeffortexpansionstoestimateoveralleffortwithinthefishery(Hartilletal2016)

Thelongdistance(~6km)betweentheHMRCAandthedeploy-ment location stretched the resolution limit of the current CRAGSsetup aswewere unable to distinguish party size or activity typepurelyusing thecamerasystemThis isunlikepreviousCRAGSde-ploymentwhichhadahighsuccessrateofidentifyingpartysizeac-tivity typeata shorter rangeofapproximately19km (Woodetal2016) Thus ground-truthing information about the fisherywas re-quiredforthesystemtoworkeffectivelyAutonomouscamerasystemalsodonotcollectcreel(catch)databutbyallowingforcost-effectivecollectionofthehighlyvariabletemporaleffortdatatheymayallowforhumanresourcestobespentelsewhereduringsurveyperiods(egtoundertakeboatrampinterviews)(vanPoortenampBrydle2018)

Our studywas a small-scale trial of new technology andwhilepreliminary results are encouraging validated seasonal effort esti-mationsobservedviaCRAGSwereoutsidethescopeofthisprojectOur comparisons would hence have been improved by extendingCRAGSdeploymentsandwithmorecomparisonstoregionalsurveysSimilarly usingmultiple CRAGS simultaneously would have bettertested for differences in subregional patterns of temporal trendsorconcentrationof infishingeffortfor instanceboatsaroundthenearbyTasmanIsland

Insummarytheprogrammablesamplinganddataextractionof-feredbyhigh-resolutionautonomouscamerasystemscanallowforfine-scalelong-termmonitoringoffishingefforttrendsorpotentiallymanyothertypesofactivitiesatseascapescalesMorewidespreadadoptionofhigh-frequencysamplingapproachesforeffortestima-tionwouldalsohelpavoidcollectionofmisrepresentativedatabyidentifyingeffortanomalies(McCluskeyampLewison2008)suchastheweekdaycontinuationeffectofraisedeffortbetweenadjacentweekendfishingcompetitionByimprovingtheinformationdensityovertraditionalsurveymethodsautonomouscamerasystemsandotherremotesystemsmayprovideanewwaveofoptimizationfordirectmeasurementofcoastalhumanusesuchasrecreationalfish-eriesalthoughcomplimentarymethodsarestillrequiredtodeter-minespatialdistributionstargetspeciesandharvest

ACKNOWLEDG MENTS

We thankMsGeorginaWoodMs SaraAdkinsMsBelleMonkMrRSherringtonandMsPaigeKellyforconstructiveinsighten-thusiasmandassistanceduringfieldworkWealsothankMrPhillip

10emsp |emsp emspensp FLYNN et aL

CulversonMrStuartDudgeonandMrMattStapenellKarenEvensprovidedhelpfulcommentsonaninternaldraftGreatestthankstothemany recreational anglerswhowillingly shared information tosurveyclerkswithouttheirinvolvementthisprojectwouldnothavecometofruitionThreeanonymousreviewersprovidedcommentsthatimprovedthemanuscript

CONFLIC T OF INTERE S TS

Theauthorsdeclarenoconflictofinterests

AUTHOR CONTRIBUTIONS

MrFlynnhelpeddesignthestudyledthefieldworkundertookmostoftheanalysisandhelpwritethemanuscriptDrLynchhelpdesignthestudyassisted inthefieldworkprovidedadviceontheanaly-sisanddidsomeanalysisconstructedfiguresandafterMrFlynncontributedthemosttothedraftingofthemanuscriptDrBarretthelpeddesign the study assisted in some fieldwork provided ad-viceonanalysisandeditedthemanuscriptMrWonghelpedexten-sivelywithfieldworkassistedwithanalysisconstructedfiguresandhelpedwritethemanuscriptMsDevineassistedwithfieldworkandconfigurationoftheequipmentincludingtheapplicationofthebigdatamoviesoftwareandhandlingofphotographsandalsohelpedwritethemanuscriptMrHughesdevelopedtheelectronicsfortheequipmentoversaw thebuildofgearwrote the software topro-gramtherobotandreviewedandeditedthemanuscript

DATA ACCE SSIBILIT Y

Survey sampling schedules data collection sheets extrapolationproceduresandtechnicalCRAGSspecificationsarealluploadedasonlinesupportinginformationappendixRawdatafromsurveysandCRAGSDOIhttpdoiorg105061dryadv10d218

RE SE ARCH E THIC S COMPLIANCE AND FUNDERS

ResearchabidesbytheAustraliancodeofhumanresearchandex-perimentation(NationalStatementonEthicalConductinHumanResearch of 2007) Permission to conduct research on humanparticipants was granted by the University of Tasmania SocialScience under reference H0014772mdashldquoRemote investigation ofcoastal area user group quantification and variationrdquo aswell asfromtheCSIROSocialScienceHumanResearchEthicsCommitteeunder reference 08115mdashldquoHawkesbury Region Project HumanUsePatternsrdquoFundingwasbyUTASasPartoftheIMASHonoursProject funding and through internal support from the CoastsProgram

ORCID

Tim P Lynch httporcidorg0000-0002-5346-8454

R E FE R E N C E S

Alessa L Kliskey A amp Brown G (2008) Socialndashecological hotspotsmapping A spatial approach for identifying coupled socialndasheco-logicalspaceLandscape and Urban Planning8527ndash39httpsdoiorg101016jlandurbplan200709007

ArlinghausR(2006)Overcominghumanobstaclestoconservationofrecreational fishery resources with emphasis on central EuropeEnvironmental Conservation 33 46ndash59 httpsdoiorg101017S0376892906002700

Arlinghaus R Tillner R amp Bork M (2015) Explaining participationratesinrecreationalfishingacrossindustrialisedcountriesFisheries Management and Ecology 22 45ndash55 httpsdoiorg101111fme12075

BadcockPBPatrickKSmithAMASimpsonJMPennayDRisselCEhellipRichtersJ(2016)Differencesbetweenlandlineandmobilephoneusers in sexualbehavior researchArchives of Sexual Behavior46(6)1711ndash1721

Blumberg S J amp Luke J V (2009) Reevaluating the need for con-cern regarding noncoverage bias in landline surveys American Journal of Public Health 99 1806ndash1810 httpsdoiorg102105AJPH2008152835

Bousetouane F ampMorris B (2015) Off-the-shelf CNN features forfine-grainedclassificationofvesselsinamaritimeenvironmentInGBebisRBoyleBParvinDKoracinIPavlidisRFerisTMcGrawMElendtRKopperERaganZYeampGWeber(Eds)Advances in visual computing 11th International symposium ISVC 2015 Las Vegas NV USA December 14ndash16 2015 proceedings Part II (pp379ndash388)Cham Switzerland Springer International Publishing httpsdoiorg101007978-3-319-27863-6

Cooke S J amp Cowx I G (2004) The role of recreational fish-ing in global fish crises BioScience 54 857ndash859 httpsdoiorg1016410006-3568(2004)054[0857TRORFI]20CO2

DiggleP J (1995)Time-series a biostatistical introductionOxfordUKClarendonPress

EdwardsJampSchindlerE (2017)Avideomonitoringsystemtoeval-uate ocean recreational fishing effort in Astoria OregonMarine recreational information program (pp 31) Newport OR OregonDepartmentofFishandWildlife

FarrMStoecklNampSuttonS(2014)RecreationalfishingandboatingArethedeterminantsthesameMarine Policy47126ndash137httpsdoiorg101016jmarpol201402014

ForbesETraceySampLyle JM (2009)Assessment of the 2008 rec-reational gamefish fishery of Southeast Tasmania with particular refer-ence to Southern Bluefin TunaHobartTASTasmanianAquacultureandFisheriesInstituteUniversityofTasmania

FretwellPTScofieldPampPhillipsRA(2017)Usingsuper-highres-olutionsatelliteimagerytocensusthreatenedalbatrossesIbis159481ndash490httpsdoiorg101111ibi12482

GiriKampHallK (2015)SouthAustralian recreational fishingsurveyFisheries Victoria internal report series (pp 63) Queenscliff VicFisheriesVictoria

Griffiths S P Pollock K H Lyle J M Pepperell J G TonksM L amp Sawynok W (2010) Following the chain to elu-sive anglers Fish and Fisheries 11 220ndash228 httpsdoiorg101111j1467-2979201000354x

Halpern B SWalbridge S Selkoe K A Kappel C V Micheli FDrsquoAgrosaChellipWatsonR(2008)AglobalmapofhumanimpactonmarineecosystemsScience319948ndash952httpsdoiorg101126science1149345

Hartill BW Payne GW Rush N amp Bian R (2016) Bridging thetemporal gap Continuous and cost-effective monitoring of dy-namic recreational fisheries by web cameras and creel surveysFisheries Research 183 488ndash497 httpsdoiorg101016jfishres201606002

emspensp emsp | emsp11FLYNN et aL

HenryGWampLyleJM(2003)NationalrecreationalandindigenousfishingsurveyFinal report to the fisheries research amp development cor-poration and the fisheries action program (pp 188) Canberra ACTFRDC

JonesCMampPollockKH(2012)Recreationalanglersurveymeth-odsEstimationofeffortharvestandreleasedcatchInAZaleDLParrishampTMSutton(Eds)Fisheries techniquesBethesdaMDAmericanFisheriesSociety

Kearney R E (2002) Co-management The resolution of conflict be-tween commercial and recreational fishers in Victoria AustraliaOcean amp Coastal Management45201ndash214httpsdoiorg101016S0964-5691(02)00055-8

KellerKSteffeASLowryMMurphyJJampSuthersIM(2016)Monitoringboat-basedrecreationalfishingeffortatanearshorearti-ficialreefwithashore-basedcameraFisheries Research18184ndash92httpsdoiorg101016jfishres201603025

KinlochMAMcGlennonDNicollGampPikePG(1997)Evaluationof the bus-route creel surveymethod in a largeAustralianmarinerecreationalfisheryISurveydesignFisheries Research33101ndash121httpsdoiorg101016S0165-7836(97)00068-4

LewinWCArlinghausRampMehnerT(2006)Documentedandpo-tential biological impacts of recreational fishing Insights forman-agementandconservationReviews in Fisheries Science14305ndash367httpsdoiorg10108010641260600886455

LowryMampMurphy J (2003)Monitoring the recreational gamefishfisheryoffsouth-easternAustraliaMarine and Freshwater Research54425ndash434httpsdoiorg101071MF01269

LyleJMStarkKEampTraceySR(2014)2012ndash2013 Survey of rec-reational fishing in TasmaniaHobart TAS Institute forMarine andAntarcticStudies

Lynch T P (2006) Incorporation of recreational fishing ef-fort into design of marine protected areas Incorporacioacuten delEsfuerzo de Pesca Recreativa en el Disentildeo de Aacutereas MarinasProtegidas Conservation Biology 20 1466ndash1476 httpsdoiorg101111j1523-1739200600509x

LynchTP(2008)Thedifferencebetweenspatialandtemporalvaria-tioninrecreationalfisheriesforplanningofmarineprotectedareasResponse toSteffeConservation Biology22486ndash491httpsdoiorg101111j1523-1739200800888x

LynchTP (2014)Adecadal time-seriesof recreational fishingeffortcollectedduringandafterimplementationofamultipleusemarinepark shows high inter-annual but low spatial variability Fisheries Research15185ndash90httpsdoiorg101016jfishres201309014

LynchTPAldermanRampHobdayAJ(2015)Ahigh-resolutionpan-orama camera system formonitoring colony-wide seabird nestingbehaviourMethods in Ecology and Evolution6491ndash499httpsdoiorg1011112041-210X12339

LynchTFlynnDWoodGKimJ-HParkJampHobdayAJ(2017)Metrics parameters and results from fisheries and wildlife studies with the CSIRO Ruggedized Autonomous Gigapixel Systems (CRAGS)DarwinNTAustralianMarineScienceAssociation

LynchTPWilkinsonEMellingLHamiltonRMacreadyAampFearyS(2004)ConflictandimpactsofdiversandanglersinamarineparkEnvironmental Management 33 196ndash211 httpsdoiorg101007s00267-003-3014-6

MaHOgawaTKSminkeyTRBreidtFJLesserVMOpsomerJDhellipVanVoorheesDA(2018)Pilotsurveystoimprovemonitoringofmarine recreational fisheries inHawaiʻiFisheries Research204197ndash208httpsdoiorg101016jfishres201802010

McCluskey S M amp Lewison R L (2008) Quantifying fish-ing effort A synthesis of current methods and their ap-plications Fish and Fisheries 9 188ndash200 httpsdoiorg101111j1467-2979200800283x

McGlennonDampKinlochMA(1997)Evaluationofthebus-routecreelsurveymethod in a largeAustralianmarine recreational fishery II

PilotsurveysandoptimalsamplingallocationFisheries Research3389ndash99httpsdoiorg101016S0165-7836(97)00067-2

McPheeDLeadbitterDampSkilleterGA(2002)SwallowingthebaitIs recreational fishing in Australia ecologically sustainable Pacific Conservation Biology840httpsdoiorg101071PC020040

Monz C A Pickering C M amp HadwenW L (2013) Recent ad-vances in recreation ecology and the implications of differentrelationships between recreation use and ecological impactsFrontiers in Ecology and the Environment11441ndash446httpsdoiorg101890120358

MooreAHallKGiriKTraceySPenroseLHansenShellipBrownP(2015)Developingrobustandcost-effectivemethodsforestimatingthenationalrecreationalcatchofSouthernBluefinTunainAustraliaFRDC Projectpp123

Morton A J amp Lyle J M (2004) Preliminary assessment of the rec-reational gamefish fishery in Tasmania with particular reference to Southern Bluefin Tuna Taroona TAS Tasmanian Aquaculture andFisheriesInstitute

ParnellPEDaytonPKFisherRALoarieCCampDarrowRD(2010)SpatialpatternsoffishingeffortoffSanDiegoImplicationsfor zonal management and ecosystem function Ecological Applications202203ndash2222httpsdoiorg10189009-15431

PattersonTAEvansKCarterTLampGunnJS(2008)Movementand behaviour of large southern bluefin tuna (Thunnus maccoyii)in the Australian region determined using pop-up satellite ar-chival tags Fisheries Oceanography 17 352ndash367 httpsdoiorg101111j1365-2419200800483x

PollockKH JonesCMampBrownTL (1994)Angler survey meth-ods and their applications in fisheries management Bethesda MDAmericanFisheriesSociety

PonsM Branch T AMelnychukM C JensenO P Brodziak JFromentinJMhellipHilbornR(2017)EffectsofbiologicaleconomicandmanagementfactorsontunaandbillfishstockstatusFish and Fisheries181ndash21httpsdoiorg101111faf12163

PowersSPampAnsonK (2016)Estimating recreationaleffort in theGulf of Mexico Red Snapper Fishery using boat ramp camerasReduction in federalseason lengthdoesnotproportionally reducecatchNorth American Journal of Fisheries Management 36 1156ndash1166httpsdoiorg1010800275594720161198284

Robson D amp Jones C M (1989) The theoretical basis of an ac-cess site angler survey design Biometrics 45 83ndash98 httpsdoiorg1023072532036

Rocklin D Levrel H Drogou M Herfaut J amp Veron G (2014)Combining telephone surveys and fishing catches self-reportTheFrenchseabass recreational fisheryassessmentPLoS ONE9e87271httpsdoiorg101371journalpone0087271

Smallwood C B Pollock K HWise B S Hall N G amp GaughanD J (2012) Expanding aerial-roving surveys to include counts ofshore-based recreational fishers from remotely operated camerasBenefitslimitationsandcosteffectivenessNorth American Journal of Fisheries Management321265ndash1276httpsdoiorg101080027559472012728181

Teixeira D ZischkeM T ampWebley J A C (2016) Investigatingbias in recreational fishing surveys Fishers listed in public tele-phone directories fish similarly to their unlisted counterpartsFisheries Research 181 127ndash136 httpsdoiorg101016jfishres201604012

van Poorten B T amp Brydle S (2018) Estimating fishing effortfrom remote traffic counters Opportunities and challengesFisheries Research 204 231ndash238 httpsdoiorg101016jfishres201802024

van Poorten B T Carruthers T RWardHGM ampVarkeyD A(2015)Imputingrecreationalanglingeffortfromtime-lapsecamerasusinganhierarchicalBayesianmodelFisheries Research172265ndash273httpsdoiorg101016jfishres201507032

12emsp |emsp emspensp FLYNN et aL

VenturelliPAHyderKampSkovC(2017)AnglerappsasasourceofrecreationalfisheriesdataOpportunitieschallengesandproposedstandardsFish and Fisheries18578ndash595httpsdoiorg101111faf12189

WiseBSTelferCFLaiEKMHallNGampJacksonG(2012)Long-termmonitoringofboat-basedrecreational fishing inSharkBayWesternAustraliaProvidingscientificadviceforsustainablemanagement in a World Heritage Area Marine and Freshwater Research631129ndash1141httpsdoiorg101071MF12054

WoodGLynchTPDevineCKellerKampFigueiraW(2016)High-resolutionphoto-mosaictime-seriesimageryformonitoringhumanuseofanartificialreefEcology and Evolution66963ndash6968httpsdoiorg101002ece32342

YuFRupertACCDiTizianaMNishikantaKRandySIllahNhellipJeffreyG(2011)TerapixelimagingofcosmologicalsimulationsThe Astrophysical Journal Supplement Series19718

Zischke M T Griffiths S P amp Tibbetts I R (2012) Catch and ef-fort from a specialised recreational pelagic sport fishery off

eastern Australia Fisheries Research 127ndash128 61ndash72 httpsdoiorg101016jfishres201204011

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle

How to cite this articleFlynnDJHLynchTPBarrettNSWongLSCDevineCHughesDGigapixelbigdatamoviesprovidecost-effectiveseascapescaledirectmeasurementsofopen-accesscoastalhumanusesuchasrecreationalfisheriesEcol Evol 2018001ndash12 httpsdoiorg101002ece34301

Graphical AbstractThecontentsofthispagewillbeusedaspartofthegraphicalabstractofhtmlonly

Itwillnotbepublishedaspartofmainarticle

Wetrailedaremoteautonomousultra-high-resolutionphotosamplingmethodasacosteffectsolutionfordirectseascape-scaledmeasure-mentsOursequentialphotosamplingwasbatchedprocessesusingnovelTimeMachinedatahandlingsoftwaretoproduceldquobigdatardquotimeseriesmoviesfromaspatialsubsetofanoffshorefisherywhichwecomparedtoaregionalbus-routesurveyofboattrailersandinterviewswithparticipantsOurcamerasamplescloselytrackedlargerscaleregionaltrendsbutwithlaborcostsaquarterofthebus-routesurveycostsforanindividualsample25ofthebusroutes

Page 6: Gigapixel big data movies provide cost-effective seascape ...

6emsp |emsp emspensp FLYNN et aL

Based on boat ramp interviews the average trailer boat partysize (P) was 287 people per vessel throughout May (plusmn0133 SEn=84)andpartysizebetweensitesshowednosignificantdiffer-ence (df=2F = 302p = 068) The averagemonthly boat fishingeffort(hours)extrapolatedforourCRAGSobservationsofHRMCAwas5629hr(plusmn711SE)with4096hr(plusmn607SE)inMayand1534hr(plusmn370 SE) in June (Figure4)mdashthis could be extrapolated to fisherhoursbymultiplyingbytheaveragepartysizebutasnointerviewswereconductedinJuneweleftboththeCRAGSandbusrouteex-trapolationsasboatfishingeffortonly

The total subset area observed by CRAGSwas 96km2 which comparedto318km2thatwaseasilyavailabletotrailerboatsaroundtheTasmanPeninsularwhichcorrespondstoaround3ofthetotalareaComparedtothetotalfishingeffortforMayextrapolatedfromtheregionalbus-routesurvey therelativelysmallareaaroundtheHRM(~3)receivedalargeamountofthefishingeffort(~23)

ThehighfrequencyofCRAGSsamplingpermittedtheexamina-tionoffine-scaleinter-dailytemporalvariationwhichdisplayedarag-gedsinusoidoscillation(Figure5)Effortwasgenerallylowwithinthe

weekdaystrataandthen increasedrapidly to largepeaksonweek-ends (Figure5) One exception to this was between the 18th and22ndMaywhichhadmoreeffortonweekdays thanotherperiods(Figure5)Bracketingthisperiodweretwoweekendsoffishingcom-petitions theldquoTunaClubofTasmaniarsquosrsquoFarSouthClassicrdquo (16ndash17thMay)andRally4Northerninvitationalweekendrally(23rdMay)

A total of 16 bus-route samples were conducted logistic fail-uresledtotheabandonmentoffour(20)oftheplannedsamplesRegionalTrailerboateffortfromaroundtheTasmanPeninsularwasestimatedtobe19650hr (plusmn2858SE) inMay (Figure4)Notrailersat individual rampswere recorded four timeswith all of theseoc-curringonweekdaysThetotalnumberoftrailerssightedperramprangedfrom0to16duringweekdaysand1ndash54forweekendswiththehighestnumberrecordedon16May2015atPiratesBayDuringhigh-intensitydays(particularlyweekendsholidaysmornings)therewereoftenlargeoverflowsfromrampcarparkswithparkedcarsandboattrailersextendingasmuchasonekilometerfromtheboatramp

During thebus-route survey 84 interviewswere conductedThemajorityofmariners(905n=96)indicatedfishingwastheir

F IGURE 4emspExtrapolatedmonthlytrailerboateffort(hoursplusmnSE)fortheentireTasmanPeninsulaassessedbyabus-routesurvey(May)andforthesubsetoftheareaaroundtheHRMCAsampledwithCRAGS(MayandJune)

F IGURE 5emspHigh-frequencyinterdailyextrapolatedCRAGSestimationsofboatefforthoursaroundthe(HRMCA)

0

100

200

300

400

500

600

Rolli

ng m

ean

daily

effo

rt in

hou

rs

DayWeekdays Weekends + Public Holidays

lyn088
Inserted Text
CA
lyn088
Cross-Out
lyn088
Cross-Out
lyn088
Inserted Text
t

emspensp emsp | emsp7FLYNN et aL

primaryactivity (Table1)Overall643 (n=54) indicated theirprimary target were tuna with 179 (n=15) specifically tar-geting southern bluefin tuna (Thunnus maccoyii)Other commonrecreationaltargetsincludedflathead(Platycephalusspp595)Southernrocklobster(Jasus edwardsii107)andsquidcalamari(Sepioteuthis australisandNototodarus gouldi476)(Table1)

Basedon the responsesofactivity type from interviews totalboatfishingeffortinMaywasestimatedtobe17783hr(plusmn2586SE)Asmostnonfishingactivitieswerenear shoreweassumed trailerboatingactivityatHMRCAobservedbyCRAGSwasallfishing

Therewere16directcomparisonsamplesbetweenthebusrouteandCRAGSmethodsbetweenthe2ndandthe29thofMaySamplesconsisted of 7 weekdays and 9 weekendspublic holiday samples

(Figure6)Infourcaseswheretwobus-routesamplesweretakenonthe same day (Supporting Information Appendix S2) they are com-bined toadailyestimation for tabulation (Table2)Theproportionaldifferencebetweenestimatedeffortsusingthetwomethodsrangedfrom078-to418-folddifferencehoweverranksestimatesbetweenCRAGS and bus-route samples were strongly associated (n=16ρ(12)=087p=lt001)Interdailysamplingstrata(ampm)werealsoexaminedseparatelyforcorrelationwhichremainedstrongforbotham(n=9ρ(7)=080p=lt001)andpm(n=7ρ(5)=089p=lt001)

ForthecomparativemonthCRAGStook169samplescomparedtothebusroutesrsquo16(Table3)WehadtwofieldtripdaysforCRAGSwith four people on the setup and three on the breakdown daywhichresultedinsevenfull-timeequivalent(FTE)daysofworkThiscomparedto16fielddaysforthebus-routemethodwhichincludedtraveltothefieldsiteforbetweentwoandthreestaffwhichaccu-mulatedto40FTEdaysofworkSettingupourCRAGSautomatedstitching took one FTE day (though this is faster for experiencedofficers)whiledataextractionperimagewasestimatedtotakeon

TABLE 1emsp Intervieweesreportedprimarytargettaxaoractivity

Primary target taxaspeciesactivity Interview responses

Tuna(unspecified) 37 440

SouthernBluefinTuna 15 179

AlbacoreTuna 2 238

AllTuna 54 643

Flathead 5 595

Southernrocklobster 9 107

Squidcalamari 4 476

Abalone 1 119

SmallPelagics 1 119

SnottyTrevalla 2 238

Allnearshorespecies 22 262

Surfing 1 119

SCUBA 3 357

DemonCavevisitors 3 357

PleasureCruise 1 119

Allnonextractive 8 952

Note ldquoTunardquo responsesdenote anglers targeting all specieswithin thefamilyThunnini

F IGURE 6emspDailyboatingeffort(hours)extrapolatedusingbus-routeaccesspointsurvey(bar)andCRAGS(line)Effortestimatefrombus-routesurveywascalculatedfrommorning(amdarkgray)andafternoon(pmlightgray)surveyCRAGSsurveywasconductedbetweenMayandJunewhilethebus-routesurveywasonlyconductedinMay

TABLE 2emspRankingofeffortforpairedsamplesbetweenCRAGSandthebusroute

DateCRAGS hours (rank)

Bus- route hours (rank) Δ Rank

2052015 330(9) 1208(10) minus1

3052015 303(8) 1471(11) minus3

12052015 0(1) 48(2) minus1

14052015 0(1) 24(1) 0

16052015 387(11) 1794(12) minus1

19052015 93(4) 89(4) 0

20052015 57(3) 117(5) minus2

22052015 228(7) 283(6) 1

23052015 513(12) 414(8) 4

24052015 345(10) 1155(9) 1

25052015 122(6) 323(7) minus1

29052015 102(5) 79(3) 1

8emsp |emsp emspensp FLYNN et aL

average75mincomparedto1minforenteringthebus-routedatasheetWhiledataextraction forCRAGS took longer compared tothe bus routemdashat 381 FTE daysmdashtotal monthly labor for CRAGStookonlyaquarterofthetimeandonaper-samplecomparisonwasonly25ofthebus-routelaborcost

4emsp |emspDISCUSSION

Over our autumn samplingmost trailer boat owners accessing thewaters around theTasmanPeninsula via the regional boating infra-structurewererecreationallyfishingwithfisherspredominatelytar-getingtunaTrailerboatrecreationalfishersconstitutealargetrancheof coastal users in Australia (McPhee etal 2002) and our resultssuggestedthatthisregionremainsonewhererecreationalfishing isconcentrated(MortonampLyle2004)EffortobservedbyCRAGSwasa spatial subsetof thegeneral areaeasily accessedby trailer boatsaroundtheTasmanPeninsularwhichweregionallyassessedwithourbus-routerovingsurveyAsCRAGSonlyobserved~3of thetotalarea but corresponded to ~23 of themonthly bus-route boat ef-fort theHippolyteRocksMarineConservationArea (HRMCA) is afurtherconcentrationpointwithintheregionforrecreationalfishingAsthisoffshorefishingeffortaroundtheHRMCAwasmostprobablyfocusedontotunamdashwhichaccountedfor634ofallinterviewedfish-ers activitiesmdashthe actual proportionofpeninsularwide tuna fishingthatwasobservedbyCRAGSwaspotentiallymuchhigherthan23

For developing effort metrics finding a representative site toobservemaybe important forprecise trackingof trendsThetightrankcorrelationbetweenpairedregionalbus-routeandCRAGScam-era samples suggest that effort atHRMCAwas representative ofregionaltemporaltrendsOurresultsarealsosimilartootherstud-ieswheresamplingmethodsforrecreationalfisheriesoverbroaderscaleswhencomparedtoindextrendsofeffortcollectedfrompointsourcesshowstrongcorrelations(Hartilletal2016)

CRAGSwithitsseascapescaleofdatacaptureobservesactualeffortonfishinggroundsratherthan indirectmetricsfrommove-ment past access points (Hartill etal 2016 Smallwood PollockWise Hall amp Gaughan 2012 van Poorten amp Brydle 2018) This

makesthechoiceofaccesspointstomonitorimmaterialfortrendcol-lectionandmaybeofparticularinterestforpelagicfisheriesWhilenonintuitiverecreationalfishingforwide-rangingmigratorypelagicspeciesisoftenspatiallyconcentratedintosmallareas(Lynch2006)duetotightoverlapsbetweeneaseofaccessbyfishersandfishbe-haviorrelatedtobathymetrymigrationhabitatandpreyavailability(Lynchetal2004PattersonEvansCarterampGunn2008)

Unlikespatialpatternstheintensityofcoastalrecreationaltemporaleffortcanbehighlyvariableovertime(Lynch20082014WiseTelferLaiHallampJackson2012)thoughitisgenerallythoughttofollowpre-dictablepatternsrelativetoholidayandnonholidayperiods(JonesampPollock2012)Ourresultsdemonstratedtheselargefluctuationsrang-ingfromzerouptogt400hroftrailerboateffortforadjacentdaysIncombinationwithholidayperiodsothersourcesofvariabilitymayalsooccurduetoindividualorcombinationsoffactorssuchasfishingcluborcompetitionactivitiesandweatherconditionsHigh-frequencysam-plingcanovercomethesecommontemporaldisjunctionsinobservedfishingeffortwherebychanceduetolownumbersofsampleslogis-ticallypermissiblewithtraditionalrovingoraccesspointsurveyslargeerrorsintheestimationofeffortcanbeintroduced(Hartilletal2016vanPoortenampBrydle2018vanPoortenetal2015)

With multiple daily observations abnormal episodes are morelikelytobeobservedForinstanceaweek-longperiodofintenseef-fortwasrecordedbetween15May2015and27May2015whichwasbracketedbytwoconsecutiveweekendswherefishingcompetitionswereheldontheTasmanPeninsularThenormalsinusoidpatternoflowweekdayandhighweekendeffortwasmuchlesspronouncedastheweekdaylullsineffortwerepartiallybridgedbyanglerscontinuingtofishAsbus-routedesignsusedaytypeasstratawithlowerprob-abilitiesforsamplingweekdaysandmuchfewersamplesoverallthistypeofeffectcouldeasilybemissedWhileourbus-routesamplesdidoverlapwiththetunafishingcompetitionsthiswaspurelybychanceSucheventswhichresultinlargespikesofeffortcanhavemarkedim-pactsonlocalecosystemsandharvestestimates(McPheeetal2002MonzPickeringampHadwen2013)andwithoutpriorknowledgearemorelikelytobecapturedwithmonitoringathigherfrequencies

Methodsforgatheringdataoncoastalusesuchasrecreationalfishing moved away from direct approaches and toward off-sitemethodssuchastelephoneinterviews(McCluskeyampLewison2008Pollock etal 1994) due to unsustainable costs from staffing andoperationsparticularlyduringperiodsof intenseusesuchasearlymornings weekends and public holidays which require overtimepaymentsHoweversamplingissueswithoff-sitemethodsareofpar-ticularconcernforopen-accessactivitiessuchasunlicensedfisheriesasthereisnolicensedatabaseofcontactphonenumbersonwhichtobaseasampleframeThisisparticularlysofornicherecreationalfisheriessuchaspelagicgamefishingasthefishersbecomeincreas-inglydilutewithinthegeneralpopulationandhencearehardtoac-cessparticularlyviaoff-sitemethodssuchastelephone interviews(Griffithsetal2010)

Remoteandautonomousdeploymentofsensorsmaythereforeprovideanalternativeandcost-effectivemethodforlong-termmon-itoring particularly for effort across a range of applicationsOur

TABLE 3emspFulltimeequivalent(FTE)labordaysforCRAGSandbusroutesurveystoestimatepatternsofeffort

CRAGS Bus route

Numberofsamples 169 16

Fielddays 2 16

Averagepeopleperfieldday 35 25

Field FTE days subtotals 7 40

StitchingsetupFTE 1 0

DataextractionFTE(persample) 0017 0002

Subtotal data extraction FTE 381 004

FTEdayspersample 006 250

Total FTE days 108 400

emspensp emsp | emsp9FLYNN et aL

comparisonsofmatchedpairsofdatafromtwomethodssuggestedthat theCRAGSoutputswerewell correlatedwith regionalefforttrendsOuranalysisoflabordemonstratesthattryingtounderstandthistemporalvariabilitywithsamplingviaboatrampsurveyswouldbeprohibitivelyexpensiveOurCRAGSallowsforatemporaleffortmetric derived fromactual observationsof fishing to be cheaplydeveloped with sampling frequency at subdaily scales This high-frequencysamplingapproachwasvalidatedagainstour largerbutmuchmorecostlybus-routesurveyOuranalysisoflaborrequiredtobothcollectandprocessdatashowedthatCRAGSrequiredconsid-erablylessresourcestocollectapproximatelyninetimesmorefre-quenttemporaldatathanthebus-routemethodMajorlaborsavingswereduetotheruggedizedandautonomouscapabilityofCRAGSasonlytwofieldtripswererequired(deploymentandretrievaltook7FTEdays)comparedtothebus-routersquos16fieldtrips inamonthwhichconsumed40FTEdaysandincludedanadditional780kmofinter-ramproadtravel(SupportingInformationAppendixS3)AsitisweatherproofautonomousandabletobeprogrammedwithatimedelaysetupCRAGSldquofireandforgetrdquonaturebothremovestheneedforobservertobephysicallylocatedattheregiontocountactivity(EdwardsampSchindler2017)andworkduringovertimeperiodsTheldquoblankingperiodrdquowhichstopsandstartssamplingmdashinthiscaseover-nightmdashalso reduces battery and memory use In combined thesetechnological advances have allowed long-term CRAGS deploy-mentsacross4yearsof4ndash6monthrotationsontooffshoreislandsand for several seasons in Antarctica to monitor seabirds (Lynchetal2017)Thelaborestimateforthebusroutewasconservativeasitdidnotincludeovertimeloadingforthe6weekenddaysofsam-plingorearlymorningcommencementofamsamples

Theadditional381FTEprocessingtimerequiredbythecameraapproach did not impact greatly on the overall labor budgetwhenconsideredagainstfieldworkTheuseoftheTimeMachinebatchpro-cessingsoftwaretoautomaticallyproducetheldquobigdatardquointeractivemoviewasalsoatechnologicalinnovationthatsignificantlyreducedthelaborofdatahandlingcomparedtothemanualopeningofindivid-ualGigaPansusedinpreviousstudies(Lynchetal2015Woodetal2016)IncomparativetermsattheindividualsampleleveltotracktheeffortmetriceachCRAGSsamplerequired24ofthelaborofthebus-routesurvey

Thedevelopmentandapplicationofimagerecognitionsoftware(machine learning) to detect classify and count boats automati-cally (Bousetouane amp Morris 2015) would further reduce post-processingcostsTherequiredfrequencyofsamplingshouldalsobeconsideredonacase-by-casebasisdependentontheresearchquestion as image collection can be somewhat open-ended andresult inunwieldydata sets that require subsampling tobe cost-effective(Parnelletal2010)Inourcasethesettingof~5imagesperdayappearedtoadequatelydescribetheinterdailyvariation

Whileouroneautonomouscameraprovidedastrongcorrelationwithtemporaltrendsineffortcomparedtotheregionalsurveyitdidnotprovide relativespatialdistributionsofeffortacross the fisheryThesedistributionshowevercanbepredictableandhighlyconcen-trated(Lynch20062014Parnelletal2010)anobservationthatwas

alsoshownbyourresultsandmuchsmallerlevelsofsamplingeffortwouldprobablyberequiredtoresolvevariationinspatialdistributionscomparedtowhatisrequiredtoresolvethehightemporalvariationsineffortUnderstandingfine-scalespatialdistributionsofrecreationalfishingeffortiscommonlyachievedusingaerialcounton-watersur-veysorvantagepointsurveys(Lynch2006Smallwoodetal2012)thoughotherremotemethodssuchashigh-resolutionsatelliteimag-ery(FretwellScofieldampPhillips2017)mayprovideacheapersolu-tionThesetypesofwidersurveyshavealsobeensuggestedashighlycompatiblewithpointsourcemetricssuchasremotecamerasystemstoallowforcalibrationorldquoup-ratingrdquoforeffortexpansionstoestimateoveralleffortwithinthefishery(Hartilletal2016)

Thelongdistance(~6km)betweentheHMRCAandthedeploy-ment location stretched the resolution limit of the current CRAGSsetup aswewere unable to distinguish party size or activity typepurelyusing thecamerasystemThis isunlikepreviousCRAGSde-ploymentwhichhadahighsuccessrateofidentifyingpartysizeac-tivity typeata shorter rangeofapproximately19km (Woodetal2016) Thus ground-truthing information about the fisherywas re-quiredforthesystemtoworkeffectivelyAutonomouscamerasystemalsodonotcollectcreel(catch)databutbyallowingforcost-effectivecollectionofthehighlyvariabletemporaleffortdatatheymayallowforhumanresourcestobespentelsewhereduringsurveyperiods(egtoundertakeboatrampinterviews)(vanPoortenampBrydle2018)

Our studywas a small-scale trial of new technology andwhilepreliminary results are encouraging validated seasonal effort esti-mationsobservedviaCRAGSwereoutsidethescopeofthisprojectOur comparisons would hence have been improved by extendingCRAGSdeploymentsandwithmorecomparisonstoregionalsurveysSimilarly usingmultiple CRAGS simultaneously would have bettertested for differences in subregional patterns of temporal trendsorconcentrationof infishingeffortfor instanceboatsaroundthenearbyTasmanIsland

Insummarytheprogrammablesamplinganddataextractionof-feredbyhigh-resolutionautonomouscamerasystemscanallowforfine-scalelong-termmonitoringoffishingefforttrendsorpotentiallymanyothertypesofactivitiesatseascapescalesMorewidespreadadoptionofhigh-frequencysamplingapproachesforeffortestima-tionwouldalsohelpavoidcollectionofmisrepresentativedatabyidentifyingeffortanomalies(McCluskeyampLewison2008)suchastheweekdaycontinuationeffectofraisedeffortbetweenadjacentweekendfishingcompetitionByimprovingtheinformationdensityovertraditionalsurveymethodsautonomouscamerasystemsandotherremotesystemsmayprovideanewwaveofoptimizationfordirectmeasurementofcoastalhumanusesuchasrecreationalfish-eriesalthoughcomplimentarymethodsarestillrequiredtodeter-minespatialdistributionstargetspeciesandharvest

ACKNOWLEDG MENTS

We thankMsGeorginaWoodMs SaraAdkinsMsBelleMonkMrRSherringtonandMsPaigeKellyforconstructiveinsighten-thusiasmandassistanceduringfieldworkWealsothankMrPhillip

10emsp |emsp emspensp FLYNN et aL

CulversonMrStuartDudgeonandMrMattStapenellKarenEvensprovidedhelpfulcommentsonaninternaldraftGreatestthankstothemany recreational anglerswhowillingly shared information tosurveyclerkswithouttheirinvolvementthisprojectwouldnothavecometofruitionThreeanonymousreviewersprovidedcommentsthatimprovedthemanuscript

CONFLIC T OF INTERE S TS

Theauthorsdeclarenoconflictofinterests

AUTHOR CONTRIBUTIONS

MrFlynnhelpeddesignthestudyledthefieldworkundertookmostoftheanalysisandhelpwritethemanuscriptDrLynchhelpdesignthestudyassisted inthefieldworkprovidedadviceontheanaly-sisanddidsomeanalysisconstructedfiguresandafterMrFlynncontributedthemosttothedraftingofthemanuscriptDrBarretthelpeddesign the study assisted in some fieldwork provided ad-viceonanalysisandeditedthemanuscriptMrWonghelpedexten-sivelywithfieldworkassistedwithanalysisconstructedfiguresandhelpedwritethemanuscriptMsDevineassistedwithfieldworkandconfigurationoftheequipmentincludingtheapplicationofthebigdatamoviesoftwareandhandlingofphotographsandalsohelpedwritethemanuscriptMrHughesdevelopedtheelectronicsfortheequipmentoversaw thebuildofgearwrote the software topro-gramtherobotandreviewedandeditedthemanuscript

DATA ACCE SSIBILIT Y

Survey sampling schedules data collection sheets extrapolationproceduresandtechnicalCRAGSspecificationsarealluploadedasonlinesupportinginformationappendixRawdatafromsurveysandCRAGSDOIhttpdoiorg105061dryadv10d218

RE SE ARCH E THIC S COMPLIANCE AND FUNDERS

ResearchabidesbytheAustraliancodeofhumanresearchandex-perimentation(NationalStatementonEthicalConductinHumanResearch of 2007) Permission to conduct research on humanparticipants was granted by the University of Tasmania SocialScience under reference H0014772mdashldquoRemote investigation ofcoastal area user group quantification and variationrdquo aswell asfromtheCSIROSocialScienceHumanResearchEthicsCommitteeunder reference 08115mdashldquoHawkesbury Region Project HumanUsePatternsrdquoFundingwasbyUTASasPartoftheIMASHonoursProject funding and through internal support from the CoastsProgram

ORCID

Tim P Lynch httporcidorg0000-0002-5346-8454

R E FE R E N C E S

Alessa L Kliskey A amp Brown G (2008) Socialndashecological hotspotsmapping A spatial approach for identifying coupled socialndasheco-logicalspaceLandscape and Urban Planning8527ndash39httpsdoiorg101016jlandurbplan200709007

ArlinghausR(2006)Overcominghumanobstaclestoconservationofrecreational fishery resources with emphasis on central EuropeEnvironmental Conservation 33 46ndash59 httpsdoiorg101017S0376892906002700

Arlinghaus R Tillner R amp Bork M (2015) Explaining participationratesinrecreationalfishingacrossindustrialisedcountriesFisheries Management and Ecology 22 45ndash55 httpsdoiorg101111fme12075

BadcockPBPatrickKSmithAMASimpsonJMPennayDRisselCEhellipRichtersJ(2016)Differencesbetweenlandlineandmobilephoneusers in sexualbehavior researchArchives of Sexual Behavior46(6)1711ndash1721

Blumberg S J amp Luke J V (2009) Reevaluating the need for con-cern regarding noncoverage bias in landline surveys American Journal of Public Health 99 1806ndash1810 httpsdoiorg102105AJPH2008152835

Bousetouane F ampMorris B (2015) Off-the-shelf CNN features forfine-grainedclassificationofvesselsinamaritimeenvironmentInGBebisRBoyleBParvinDKoracinIPavlidisRFerisTMcGrawMElendtRKopperERaganZYeampGWeber(Eds)Advances in visual computing 11th International symposium ISVC 2015 Las Vegas NV USA December 14ndash16 2015 proceedings Part II (pp379ndash388)Cham Switzerland Springer International Publishing httpsdoiorg101007978-3-319-27863-6

Cooke S J amp Cowx I G (2004) The role of recreational fish-ing in global fish crises BioScience 54 857ndash859 httpsdoiorg1016410006-3568(2004)054[0857TRORFI]20CO2

DiggleP J (1995)Time-series a biostatistical introductionOxfordUKClarendonPress

EdwardsJampSchindlerE (2017)Avideomonitoringsystemtoeval-uate ocean recreational fishing effort in Astoria OregonMarine recreational information program (pp 31) Newport OR OregonDepartmentofFishandWildlife

FarrMStoecklNampSuttonS(2014)RecreationalfishingandboatingArethedeterminantsthesameMarine Policy47126ndash137httpsdoiorg101016jmarpol201402014

ForbesETraceySampLyle JM (2009)Assessment of the 2008 rec-reational gamefish fishery of Southeast Tasmania with particular refer-ence to Southern Bluefin TunaHobartTASTasmanianAquacultureandFisheriesInstituteUniversityofTasmania

FretwellPTScofieldPampPhillipsRA(2017)Usingsuper-highres-olutionsatelliteimagerytocensusthreatenedalbatrossesIbis159481ndash490httpsdoiorg101111ibi12482

GiriKampHallK (2015)SouthAustralian recreational fishingsurveyFisheries Victoria internal report series (pp 63) Queenscliff VicFisheriesVictoria

Griffiths S P Pollock K H Lyle J M Pepperell J G TonksM L amp Sawynok W (2010) Following the chain to elu-sive anglers Fish and Fisheries 11 220ndash228 httpsdoiorg101111j1467-2979201000354x

Halpern B SWalbridge S Selkoe K A Kappel C V Micheli FDrsquoAgrosaChellipWatsonR(2008)AglobalmapofhumanimpactonmarineecosystemsScience319948ndash952httpsdoiorg101126science1149345

Hartill BW Payne GW Rush N amp Bian R (2016) Bridging thetemporal gap Continuous and cost-effective monitoring of dy-namic recreational fisheries by web cameras and creel surveysFisheries Research 183 488ndash497 httpsdoiorg101016jfishres201606002

emspensp emsp | emsp11FLYNN et aL

HenryGWampLyleJM(2003)NationalrecreationalandindigenousfishingsurveyFinal report to the fisheries research amp development cor-poration and the fisheries action program (pp 188) Canberra ACTFRDC

JonesCMampPollockKH(2012)Recreationalanglersurveymeth-odsEstimationofeffortharvestandreleasedcatchInAZaleDLParrishampTMSutton(Eds)Fisheries techniquesBethesdaMDAmericanFisheriesSociety

Kearney R E (2002) Co-management The resolution of conflict be-tween commercial and recreational fishers in Victoria AustraliaOcean amp Coastal Management45201ndash214httpsdoiorg101016S0964-5691(02)00055-8

KellerKSteffeASLowryMMurphyJJampSuthersIM(2016)Monitoringboat-basedrecreationalfishingeffortatanearshorearti-ficialreefwithashore-basedcameraFisheries Research18184ndash92httpsdoiorg101016jfishres201603025

KinlochMAMcGlennonDNicollGampPikePG(1997)Evaluationof the bus-route creel surveymethod in a largeAustralianmarinerecreationalfisheryISurveydesignFisheries Research33101ndash121httpsdoiorg101016S0165-7836(97)00068-4

LewinWCArlinghausRampMehnerT(2006)Documentedandpo-tential biological impacts of recreational fishing Insights forman-agementandconservationReviews in Fisheries Science14305ndash367httpsdoiorg10108010641260600886455

LowryMampMurphy J (2003)Monitoring the recreational gamefishfisheryoffsouth-easternAustraliaMarine and Freshwater Research54425ndash434httpsdoiorg101071MF01269

LyleJMStarkKEampTraceySR(2014)2012ndash2013 Survey of rec-reational fishing in TasmaniaHobart TAS Institute forMarine andAntarcticStudies

Lynch T P (2006) Incorporation of recreational fishing ef-fort into design of marine protected areas Incorporacioacuten delEsfuerzo de Pesca Recreativa en el Disentildeo de Aacutereas MarinasProtegidas Conservation Biology 20 1466ndash1476 httpsdoiorg101111j1523-1739200600509x

LynchTP(2008)Thedifferencebetweenspatialandtemporalvaria-tioninrecreationalfisheriesforplanningofmarineprotectedareasResponse toSteffeConservation Biology22486ndash491httpsdoiorg101111j1523-1739200800888x

LynchTP (2014)Adecadal time-seriesof recreational fishingeffortcollectedduringandafterimplementationofamultipleusemarinepark shows high inter-annual but low spatial variability Fisheries Research15185ndash90httpsdoiorg101016jfishres201309014

LynchTPAldermanRampHobdayAJ(2015)Ahigh-resolutionpan-orama camera system formonitoring colony-wide seabird nestingbehaviourMethods in Ecology and Evolution6491ndash499httpsdoiorg1011112041-210X12339

LynchTFlynnDWoodGKimJ-HParkJampHobdayAJ(2017)Metrics parameters and results from fisheries and wildlife studies with the CSIRO Ruggedized Autonomous Gigapixel Systems (CRAGS)DarwinNTAustralianMarineScienceAssociation

LynchTPWilkinsonEMellingLHamiltonRMacreadyAampFearyS(2004)ConflictandimpactsofdiversandanglersinamarineparkEnvironmental Management 33 196ndash211 httpsdoiorg101007s00267-003-3014-6

MaHOgawaTKSminkeyTRBreidtFJLesserVMOpsomerJDhellipVanVoorheesDA(2018)Pilotsurveystoimprovemonitoringofmarine recreational fisheries inHawaiʻiFisheries Research204197ndash208httpsdoiorg101016jfishres201802010

McCluskey S M amp Lewison R L (2008) Quantifying fish-ing effort A synthesis of current methods and their ap-plications Fish and Fisheries 9 188ndash200 httpsdoiorg101111j1467-2979200800283x

McGlennonDampKinlochMA(1997)Evaluationofthebus-routecreelsurveymethod in a largeAustralianmarine recreational fishery II

PilotsurveysandoptimalsamplingallocationFisheries Research3389ndash99httpsdoiorg101016S0165-7836(97)00067-2

McPheeDLeadbitterDampSkilleterGA(2002)SwallowingthebaitIs recreational fishing in Australia ecologically sustainable Pacific Conservation Biology840httpsdoiorg101071PC020040

Monz C A Pickering C M amp HadwenW L (2013) Recent ad-vances in recreation ecology and the implications of differentrelationships between recreation use and ecological impactsFrontiers in Ecology and the Environment11441ndash446httpsdoiorg101890120358

MooreAHallKGiriKTraceySPenroseLHansenShellipBrownP(2015)Developingrobustandcost-effectivemethodsforestimatingthenationalrecreationalcatchofSouthernBluefinTunainAustraliaFRDC Projectpp123

Morton A J amp Lyle J M (2004) Preliminary assessment of the rec-reational gamefish fishery in Tasmania with particular reference to Southern Bluefin Tuna Taroona TAS Tasmanian Aquaculture andFisheriesInstitute

ParnellPEDaytonPKFisherRALoarieCCampDarrowRD(2010)SpatialpatternsoffishingeffortoffSanDiegoImplicationsfor zonal management and ecosystem function Ecological Applications202203ndash2222httpsdoiorg10189009-15431

PattersonTAEvansKCarterTLampGunnJS(2008)Movementand behaviour of large southern bluefin tuna (Thunnus maccoyii)in the Australian region determined using pop-up satellite ar-chival tags Fisheries Oceanography 17 352ndash367 httpsdoiorg101111j1365-2419200800483x

PollockKH JonesCMampBrownTL (1994)Angler survey meth-ods and their applications in fisheries management Bethesda MDAmericanFisheriesSociety

PonsM Branch T AMelnychukM C JensenO P Brodziak JFromentinJMhellipHilbornR(2017)EffectsofbiologicaleconomicandmanagementfactorsontunaandbillfishstockstatusFish and Fisheries181ndash21httpsdoiorg101111faf12163

PowersSPampAnsonK (2016)Estimating recreationaleffort in theGulf of Mexico Red Snapper Fishery using boat ramp camerasReduction in federalseason lengthdoesnotproportionally reducecatchNorth American Journal of Fisheries Management 36 1156ndash1166httpsdoiorg1010800275594720161198284

Robson D amp Jones C M (1989) The theoretical basis of an ac-cess site angler survey design Biometrics 45 83ndash98 httpsdoiorg1023072532036

Rocklin D Levrel H Drogou M Herfaut J amp Veron G (2014)Combining telephone surveys and fishing catches self-reportTheFrenchseabass recreational fisheryassessmentPLoS ONE9e87271httpsdoiorg101371journalpone0087271

Smallwood C B Pollock K HWise B S Hall N G amp GaughanD J (2012) Expanding aerial-roving surveys to include counts ofshore-based recreational fishers from remotely operated camerasBenefitslimitationsandcosteffectivenessNorth American Journal of Fisheries Management321265ndash1276httpsdoiorg101080027559472012728181

Teixeira D ZischkeM T ampWebley J A C (2016) Investigatingbias in recreational fishing surveys Fishers listed in public tele-phone directories fish similarly to their unlisted counterpartsFisheries Research 181 127ndash136 httpsdoiorg101016jfishres201604012

van Poorten B T amp Brydle S (2018) Estimating fishing effortfrom remote traffic counters Opportunities and challengesFisheries Research 204 231ndash238 httpsdoiorg101016jfishres201802024

van Poorten B T Carruthers T RWardHGM ampVarkeyD A(2015)Imputingrecreationalanglingeffortfromtime-lapsecamerasusinganhierarchicalBayesianmodelFisheries Research172265ndash273httpsdoiorg101016jfishres201507032

12emsp |emsp emspensp FLYNN et aL

VenturelliPAHyderKampSkovC(2017)AnglerappsasasourceofrecreationalfisheriesdataOpportunitieschallengesandproposedstandardsFish and Fisheries18578ndash595httpsdoiorg101111faf12189

WiseBSTelferCFLaiEKMHallNGampJacksonG(2012)Long-termmonitoringofboat-basedrecreational fishing inSharkBayWesternAustraliaProvidingscientificadviceforsustainablemanagement in a World Heritage Area Marine and Freshwater Research631129ndash1141httpsdoiorg101071MF12054

WoodGLynchTPDevineCKellerKampFigueiraW(2016)High-resolutionphoto-mosaictime-seriesimageryformonitoringhumanuseofanartificialreefEcology and Evolution66963ndash6968httpsdoiorg101002ece32342

YuFRupertACCDiTizianaMNishikantaKRandySIllahNhellipJeffreyG(2011)TerapixelimagingofcosmologicalsimulationsThe Astrophysical Journal Supplement Series19718

Zischke M T Griffiths S P amp Tibbetts I R (2012) Catch and ef-fort from a specialised recreational pelagic sport fishery off

eastern Australia Fisheries Research 127ndash128 61ndash72 httpsdoiorg101016jfishres201204011

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle

How to cite this articleFlynnDJHLynchTPBarrettNSWongLSCDevineCHughesDGigapixelbigdatamoviesprovidecost-effectiveseascapescaledirectmeasurementsofopen-accesscoastalhumanusesuchasrecreationalfisheriesEcol Evol 2018001ndash12 httpsdoiorg101002ece34301

Graphical AbstractThecontentsofthispagewillbeusedaspartofthegraphicalabstractofhtmlonly

Itwillnotbepublishedaspartofmainarticle

Wetrailedaremoteautonomousultra-high-resolutionphotosamplingmethodasacosteffectsolutionfordirectseascape-scaledmeasure-mentsOursequentialphotosamplingwasbatchedprocessesusingnovelTimeMachinedatahandlingsoftwaretoproduceldquobigdatardquotimeseriesmoviesfromaspatialsubsetofanoffshorefisherywhichwecomparedtoaregionalbus-routesurveyofboattrailersandinterviewswithparticipantsOurcamerasamplescloselytrackedlargerscaleregionaltrendsbutwithlaborcostsaquarterofthebus-routesurveycostsforanindividualsample25ofthebusroutes

Page 7: Gigapixel big data movies provide cost-effective seascape ...

emspensp emsp | emsp7FLYNN et aL

primaryactivity (Table1)Overall643 (n=54) indicated theirprimary target were tuna with 179 (n=15) specifically tar-geting southern bluefin tuna (Thunnus maccoyii)Other commonrecreationaltargetsincludedflathead(Platycephalusspp595)Southernrocklobster(Jasus edwardsii107)andsquidcalamari(Sepioteuthis australisandNototodarus gouldi476)(Table1)

Basedon the responsesofactivity type from interviews totalboatfishingeffortinMaywasestimatedtobe17783hr(plusmn2586SE)Asmostnonfishingactivitieswerenear shoreweassumed trailerboatingactivityatHMRCAobservedbyCRAGSwasallfishing

Therewere16directcomparisonsamplesbetweenthebusrouteandCRAGSmethodsbetweenthe2ndandthe29thofMaySamplesconsisted of 7 weekdays and 9 weekendspublic holiday samples

(Figure6)Infourcaseswheretwobus-routesamplesweretakenonthe same day (Supporting Information Appendix S2) they are com-bined toadailyestimation for tabulation (Table2)Theproportionaldifferencebetweenestimatedeffortsusingthetwomethodsrangedfrom078-to418-folddifferencehoweverranksestimatesbetweenCRAGS and bus-route samples were strongly associated (n=16ρ(12)=087p=lt001)Interdailysamplingstrata(ampm)werealsoexaminedseparatelyforcorrelationwhichremainedstrongforbotham(n=9ρ(7)=080p=lt001)andpm(n=7ρ(5)=089p=lt001)

ForthecomparativemonthCRAGStook169samplescomparedtothebusroutesrsquo16(Table3)WehadtwofieldtripdaysforCRAGSwith four people on the setup and three on the breakdown daywhichresultedinsevenfull-timeequivalent(FTE)daysofworkThiscomparedto16fielddaysforthebus-routemethodwhichincludedtraveltothefieldsiteforbetweentwoandthreestaffwhichaccu-mulatedto40FTEdaysofworkSettingupourCRAGSautomatedstitching took one FTE day (though this is faster for experiencedofficers)whiledataextractionperimagewasestimatedtotakeon

TABLE 1emsp Intervieweesreportedprimarytargettaxaoractivity

Primary target taxaspeciesactivity Interview responses

Tuna(unspecified) 37 440

SouthernBluefinTuna 15 179

AlbacoreTuna 2 238

AllTuna 54 643

Flathead 5 595

Southernrocklobster 9 107

Squidcalamari 4 476

Abalone 1 119

SmallPelagics 1 119

SnottyTrevalla 2 238

Allnearshorespecies 22 262

Surfing 1 119

SCUBA 3 357

DemonCavevisitors 3 357

PleasureCruise 1 119

Allnonextractive 8 952

Note ldquoTunardquo responsesdenote anglers targeting all specieswithin thefamilyThunnini

F IGURE 6emspDailyboatingeffort(hours)extrapolatedusingbus-routeaccesspointsurvey(bar)andCRAGS(line)Effortestimatefrombus-routesurveywascalculatedfrommorning(amdarkgray)andafternoon(pmlightgray)surveyCRAGSsurveywasconductedbetweenMayandJunewhilethebus-routesurveywasonlyconductedinMay

TABLE 2emspRankingofeffortforpairedsamplesbetweenCRAGSandthebusroute

DateCRAGS hours (rank)

Bus- route hours (rank) Δ Rank

2052015 330(9) 1208(10) minus1

3052015 303(8) 1471(11) minus3

12052015 0(1) 48(2) minus1

14052015 0(1) 24(1) 0

16052015 387(11) 1794(12) minus1

19052015 93(4) 89(4) 0

20052015 57(3) 117(5) minus2

22052015 228(7) 283(6) 1

23052015 513(12) 414(8) 4

24052015 345(10) 1155(9) 1

25052015 122(6) 323(7) minus1

29052015 102(5) 79(3) 1

8emsp |emsp emspensp FLYNN et aL

average75mincomparedto1minforenteringthebus-routedatasheetWhiledataextraction forCRAGS took longer compared tothe bus routemdashat 381 FTE daysmdashtotal monthly labor for CRAGStookonlyaquarterofthetimeandonaper-samplecomparisonwasonly25ofthebus-routelaborcost

4emsp |emspDISCUSSION

Over our autumn samplingmost trailer boat owners accessing thewaters around theTasmanPeninsula via the regional boating infra-structurewererecreationallyfishingwithfisherspredominatelytar-getingtunaTrailerboatrecreationalfishersconstitutealargetrancheof coastal users in Australia (McPhee etal 2002) and our resultssuggestedthatthisregionremainsonewhererecreationalfishing isconcentrated(MortonampLyle2004)EffortobservedbyCRAGSwasa spatial subsetof thegeneral areaeasily accessedby trailer boatsaroundtheTasmanPeninsularwhichweregionallyassessedwithourbus-routerovingsurveyAsCRAGSonlyobserved~3of thetotalarea but corresponded to ~23 of themonthly bus-route boat ef-fort theHippolyteRocksMarineConservationArea (HRMCA) is afurtherconcentrationpointwithintheregionforrecreationalfishingAsthisoffshorefishingeffortaroundtheHRMCAwasmostprobablyfocusedontotunamdashwhichaccountedfor634ofallinterviewedfish-ers activitiesmdashthe actual proportionofpeninsularwide tuna fishingthatwasobservedbyCRAGSwaspotentiallymuchhigherthan23

For developing effort metrics finding a representative site toobservemaybe important forprecise trackingof trendsThetightrankcorrelationbetweenpairedregionalbus-routeandCRAGScam-era samples suggest that effort atHRMCAwas representative ofregionaltemporaltrendsOurresultsarealsosimilartootherstud-ieswheresamplingmethodsforrecreationalfisheriesoverbroaderscaleswhencomparedtoindextrendsofeffortcollectedfrompointsourcesshowstrongcorrelations(Hartilletal2016)

CRAGSwithitsseascapescaleofdatacaptureobservesactualeffortonfishinggroundsratherthan indirectmetricsfrommove-ment past access points (Hartill etal 2016 Smallwood PollockWise Hall amp Gaughan 2012 van Poorten amp Brydle 2018) This

makesthechoiceofaccesspointstomonitorimmaterialfortrendcol-lectionandmaybeofparticularinterestforpelagicfisheriesWhilenonintuitiverecreationalfishingforwide-rangingmigratorypelagicspeciesisoftenspatiallyconcentratedintosmallareas(Lynch2006)duetotightoverlapsbetweeneaseofaccessbyfishersandfishbe-haviorrelatedtobathymetrymigrationhabitatandpreyavailability(Lynchetal2004PattersonEvansCarterampGunn2008)

Unlikespatialpatternstheintensityofcoastalrecreationaltemporaleffortcanbehighlyvariableovertime(Lynch20082014WiseTelferLaiHallampJackson2012)thoughitisgenerallythoughttofollowpre-dictablepatternsrelativetoholidayandnonholidayperiods(JonesampPollock2012)Ourresultsdemonstratedtheselargefluctuationsrang-ingfromzerouptogt400hroftrailerboateffortforadjacentdaysIncombinationwithholidayperiodsothersourcesofvariabilitymayalsooccurduetoindividualorcombinationsoffactorssuchasfishingcluborcompetitionactivitiesandweatherconditionsHigh-frequencysam-plingcanovercomethesecommontemporaldisjunctionsinobservedfishingeffortwherebychanceduetolownumbersofsampleslogis-ticallypermissiblewithtraditionalrovingoraccesspointsurveyslargeerrorsintheestimationofeffortcanbeintroduced(Hartilletal2016vanPoortenampBrydle2018vanPoortenetal2015)

With multiple daily observations abnormal episodes are morelikelytobeobservedForinstanceaweek-longperiodofintenseef-fortwasrecordedbetween15May2015and27May2015whichwasbracketedbytwoconsecutiveweekendswherefishingcompetitionswereheldontheTasmanPeninsularThenormalsinusoidpatternoflowweekdayandhighweekendeffortwasmuchlesspronouncedastheweekdaylullsineffortwerepartiallybridgedbyanglerscontinuingtofishAsbus-routedesignsusedaytypeasstratawithlowerprob-abilitiesforsamplingweekdaysandmuchfewersamplesoverallthistypeofeffectcouldeasilybemissedWhileourbus-routesamplesdidoverlapwiththetunafishingcompetitionsthiswaspurelybychanceSucheventswhichresultinlargespikesofeffortcanhavemarkedim-pactsonlocalecosystemsandharvestestimates(McPheeetal2002MonzPickeringampHadwen2013)andwithoutpriorknowledgearemorelikelytobecapturedwithmonitoringathigherfrequencies

Methodsforgatheringdataoncoastalusesuchasrecreationalfishing moved away from direct approaches and toward off-sitemethodssuchastelephoneinterviews(McCluskeyampLewison2008Pollock etal 1994) due to unsustainable costs from staffing andoperationsparticularlyduringperiodsof intenseusesuchasearlymornings weekends and public holidays which require overtimepaymentsHoweversamplingissueswithoff-sitemethodsareofpar-ticularconcernforopen-accessactivitiessuchasunlicensedfisheriesasthereisnolicensedatabaseofcontactphonenumbersonwhichtobaseasampleframeThisisparticularlysofornicherecreationalfisheriessuchaspelagicgamefishingasthefishersbecomeincreas-inglydilutewithinthegeneralpopulationandhencearehardtoac-cessparticularlyviaoff-sitemethodssuchastelephone interviews(Griffithsetal2010)

Remoteandautonomousdeploymentofsensorsmaythereforeprovideanalternativeandcost-effectivemethodforlong-termmon-itoring particularly for effort across a range of applicationsOur

TABLE 3emspFulltimeequivalent(FTE)labordaysforCRAGSandbusroutesurveystoestimatepatternsofeffort

CRAGS Bus route

Numberofsamples 169 16

Fielddays 2 16

Averagepeopleperfieldday 35 25

Field FTE days subtotals 7 40

StitchingsetupFTE 1 0

DataextractionFTE(persample) 0017 0002

Subtotal data extraction FTE 381 004

FTEdayspersample 006 250

Total FTE days 108 400

emspensp emsp | emsp9FLYNN et aL

comparisonsofmatchedpairsofdatafromtwomethodssuggestedthat theCRAGSoutputswerewell correlatedwith regionalefforttrendsOuranalysisoflabordemonstratesthattryingtounderstandthistemporalvariabilitywithsamplingviaboatrampsurveyswouldbeprohibitivelyexpensiveOurCRAGSallowsforatemporaleffortmetric derived fromactual observationsof fishing to be cheaplydeveloped with sampling frequency at subdaily scales This high-frequencysamplingapproachwasvalidatedagainstour largerbutmuchmorecostlybus-routesurveyOuranalysisoflaborrequiredtobothcollectandprocessdatashowedthatCRAGSrequiredconsid-erablylessresourcestocollectapproximatelyninetimesmorefre-quenttemporaldatathanthebus-routemethodMajorlaborsavingswereduetotheruggedizedandautonomouscapabilityofCRAGSasonlytwofieldtripswererequired(deploymentandretrievaltook7FTEdays)comparedtothebus-routersquos16fieldtrips inamonthwhichconsumed40FTEdaysandincludedanadditional780kmofinter-ramproadtravel(SupportingInformationAppendixS3)AsitisweatherproofautonomousandabletobeprogrammedwithatimedelaysetupCRAGSldquofireandforgetrdquonaturebothremovestheneedforobservertobephysicallylocatedattheregiontocountactivity(EdwardsampSchindler2017)andworkduringovertimeperiodsTheldquoblankingperiodrdquowhichstopsandstartssamplingmdashinthiscaseover-nightmdashalso reduces battery and memory use In combined thesetechnological advances have allowed long-term CRAGS deploy-mentsacross4yearsof4ndash6monthrotationsontooffshoreislandsand for several seasons in Antarctica to monitor seabirds (Lynchetal2017)Thelaborestimateforthebusroutewasconservativeasitdidnotincludeovertimeloadingforthe6weekenddaysofsam-plingorearlymorningcommencementofamsamples

Theadditional381FTEprocessingtimerequiredbythecameraapproach did not impact greatly on the overall labor budgetwhenconsideredagainstfieldworkTheuseoftheTimeMachinebatchpro-cessingsoftwaretoautomaticallyproducetheldquobigdatardquointeractivemoviewasalsoatechnologicalinnovationthatsignificantlyreducedthelaborofdatahandlingcomparedtothemanualopeningofindivid-ualGigaPansusedinpreviousstudies(Lynchetal2015Woodetal2016)IncomparativetermsattheindividualsampleleveltotracktheeffortmetriceachCRAGSsamplerequired24ofthelaborofthebus-routesurvey

Thedevelopmentandapplicationofimagerecognitionsoftware(machine learning) to detect classify and count boats automati-cally (Bousetouane amp Morris 2015) would further reduce post-processingcostsTherequiredfrequencyofsamplingshouldalsobeconsideredonacase-by-casebasisdependentontheresearchquestion as image collection can be somewhat open-ended andresult inunwieldydata sets that require subsampling tobe cost-effective(Parnelletal2010)Inourcasethesettingof~5imagesperdayappearedtoadequatelydescribetheinterdailyvariation

Whileouroneautonomouscameraprovidedastrongcorrelationwithtemporaltrendsineffortcomparedtotheregionalsurveyitdidnotprovide relativespatialdistributionsofeffortacross the fisheryThesedistributionshowevercanbepredictableandhighlyconcen-trated(Lynch20062014Parnelletal2010)anobservationthatwas

alsoshownbyourresultsandmuchsmallerlevelsofsamplingeffortwouldprobablyberequiredtoresolvevariationinspatialdistributionscomparedtowhatisrequiredtoresolvethehightemporalvariationsineffortUnderstandingfine-scalespatialdistributionsofrecreationalfishingeffortiscommonlyachievedusingaerialcounton-watersur-veysorvantagepointsurveys(Lynch2006Smallwoodetal2012)thoughotherremotemethodssuchashigh-resolutionsatelliteimag-ery(FretwellScofieldampPhillips2017)mayprovideacheapersolu-tionThesetypesofwidersurveyshavealsobeensuggestedashighlycompatiblewithpointsourcemetricssuchasremotecamerasystemstoallowforcalibrationorldquoup-ratingrdquoforeffortexpansionstoestimateoveralleffortwithinthefishery(Hartilletal2016)

Thelongdistance(~6km)betweentheHMRCAandthedeploy-ment location stretched the resolution limit of the current CRAGSsetup aswewere unable to distinguish party size or activity typepurelyusing thecamerasystemThis isunlikepreviousCRAGSde-ploymentwhichhadahighsuccessrateofidentifyingpartysizeac-tivity typeata shorter rangeofapproximately19km (Woodetal2016) Thus ground-truthing information about the fisherywas re-quiredforthesystemtoworkeffectivelyAutonomouscamerasystemalsodonotcollectcreel(catch)databutbyallowingforcost-effectivecollectionofthehighlyvariabletemporaleffortdatatheymayallowforhumanresourcestobespentelsewhereduringsurveyperiods(egtoundertakeboatrampinterviews)(vanPoortenampBrydle2018)

Our studywas a small-scale trial of new technology andwhilepreliminary results are encouraging validated seasonal effort esti-mationsobservedviaCRAGSwereoutsidethescopeofthisprojectOur comparisons would hence have been improved by extendingCRAGSdeploymentsandwithmorecomparisonstoregionalsurveysSimilarly usingmultiple CRAGS simultaneously would have bettertested for differences in subregional patterns of temporal trendsorconcentrationof infishingeffortfor instanceboatsaroundthenearbyTasmanIsland

Insummarytheprogrammablesamplinganddataextractionof-feredbyhigh-resolutionautonomouscamerasystemscanallowforfine-scalelong-termmonitoringoffishingefforttrendsorpotentiallymanyothertypesofactivitiesatseascapescalesMorewidespreadadoptionofhigh-frequencysamplingapproachesforeffortestima-tionwouldalsohelpavoidcollectionofmisrepresentativedatabyidentifyingeffortanomalies(McCluskeyampLewison2008)suchastheweekdaycontinuationeffectofraisedeffortbetweenadjacentweekendfishingcompetitionByimprovingtheinformationdensityovertraditionalsurveymethodsautonomouscamerasystemsandotherremotesystemsmayprovideanewwaveofoptimizationfordirectmeasurementofcoastalhumanusesuchasrecreationalfish-eriesalthoughcomplimentarymethodsarestillrequiredtodeter-minespatialdistributionstargetspeciesandharvest

ACKNOWLEDG MENTS

We thankMsGeorginaWoodMs SaraAdkinsMsBelleMonkMrRSherringtonandMsPaigeKellyforconstructiveinsighten-thusiasmandassistanceduringfieldworkWealsothankMrPhillip

10emsp |emsp emspensp FLYNN et aL

CulversonMrStuartDudgeonandMrMattStapenellKarenEvensprovidedhelpfulcommentsonaninternaldraftGreatestthankstothemany recreational anglerswhowillingly shared information tosurveyclerkswithouttheirinvolvementthisprojectwouldnothavecometofruitionThreeanonymousreviewersprovidedcommentsthatimprovedthemanuscript

CONFLIC T OF INTERE S TS

Theauthorsdeclarenoconflictofinterests

AUTHOR CONTRIBUTIONS

MrFlynnhelpeddesignthestudyledthefieldworkundertookmostoftheanalysisandhelpwritethemanuscriptDrLynchhelpdesignthestudyassisted inthefieldworkprovidedadviceontheanaly-sisanddidsomeanalysisconstructedfiguresandafterMrFlynncontributedthemosttothedraftingofthemanuscriptDrBarretthelpeddesign the study assisted in some fieldwork provided ad-viceonanalysisandeditedthemanuscriptMrWonghelpedexten-sivelywithfieldworkassistedwithanalysisconstructedfiguresandhelpedwritethemanuscriptMsDevineassistedwithfieldworkandconfigurationoftheequipmentincludingtheapplicationofthebigdatamoviesoftwareandhandlingofphotographsandalsohelpedwritethemanuscriptMrHughesdevelopedtheelectronicsfortheequipmentoversaw thebuildofgearwrote the software topro-gramtherobotandreviewedandeditedthemanuscript

DATA ACCE SSIBILIT Y

Survey sampling schedules data collection sheets extrapolationproceduresandtechnicalCRAGSspecificationsarealluploadedasonlinesupportinginformationappendixRawdatafromsurveysandCRAGSDOIhttpdoiorg105061dryadv10d218

RE SE ARCH E THIC S COMPLIANCE AND FUNDERS

ResearchabidesbytheAustraliancodeofhumanresearchandex-perimentation(NationalStatementonEthicalConductinHumanResearch of 2007) Permission to conduct research on humanparticipants was granted by the University of Tasmania SocialScience under reference H0014772mdashldquoRemote investigation ofcoastal area user group quantification and variationrdquo aswell asfromtheCSIROSocialScienceHumanResearchEthicsCommitteeunder reference 08115mdashldquoHawkesbury Region Project HumanUsePatternsrdquoFundingwasbyUTASasPartoftheIMASHonoursProject funding and through internal support from the CoastsProgram

ORCID

Tim P Lynch httporcidorg0000-0002-5346-8454

R E FE R E N C E S

Alessa L Kliskey A amp Brown G (2008) Socialndashecological hotspotsmapping A spatial approach for identifying coupled socialndasheco-logicalspaceLandscape and Urban Planning8527ndash39httpsdoiorg101016jlandurbplan200709007

ArlinghausR(2006)Overcominghumanobstaclestoconservationofrecreational fishery resources with emphasis on central EuropeEnvironmental Conservation 33 46ndash59 httpsdoiorg101017S0376892906002700

Arlinghaus R Tillner R amp Bork M (2015) Explaining participationratesinrecreationalfishingacrossindustrialisedcountriesFisheries Management and Ecology 22 45ndash55 httpsdoiorg101111fme12075

BadcockPBPatrickKSmithAMASimpsonJMPennayDRisselCEhellipRichtersJ(2016)Differencesbetweenlandlineandmobilephoneusers in sexualbehavior researchArchives of Sexual Behavior46(6)1711ndash1721

Blumberg S J amp Luke J V (2009) Reevaluating the need for con-cern regarding noncoverage bias in landline surveys American Journal of Public Health 99 1806ndash1810 httpsdoiorg102105AJPH2008152835

Bousetouane F ampMorris B (2015) Off-the-shelf CNN features forfine-grainedclassificationofvesselsinamaritimeenvironmentInGBebisRBoyleBParvinDKoracinIPavlidisRFerisTMcGrawMElendtRKopperERaganZYeampGWeber(Eds)Advances in visual computing 11th International symposium ISVC 2015 Las Vegas NV USA December 14ndash16 2015 proceedings Part II (pp379ndash388)Cham Switzerland Springer International Publishing httpsdoiorg101007978-3-319-27863-6

Cooke S J amp Cowx I G (2004) The role of recreational fish-ing in global fish crises BioScience 54 857ndash859 httpsdoiorg1016410006-3568(2004)054[0857TRORFI]20CO2

DiggleP J (1995)Time-series a biostatistical introductionOxfordUKClarendonPress

EdwardsJampSchindlerE (2017)Avideomonitoringsystemtoeval-uate ocean recreational fishing effort in Astoria OregonMarine recreational information program (pp 31) Newport OR OregonDepartmentofFishandWildlife

FarrMStoecklNampSuttonS(2014)RecreationalfishingandboatingArethedeterminantsthesameMarine Policy47126ndash137httpsdoiorg101016jmarpol201402014

ForbesETraceySampLyle JM (2009)Assessment of the 2008 rec-reational gamefish fishery of Southeast Tasmania with particular refer-ence to Southern Bluefin TunaHobartTASTasmanianAquacultureandFisheriesInstituteUniversityofTasmania

FretwellPTScofieldPampPhillipsRA(2017)Usingsuper-highres-olutionsatelliteimagerytocensusthreatenedalbatrossesIbis159481ndash490httpsdoiorg101111ibi12482

GiriKampHallK (2015)SouthAustralian recreational fishingsurveyFisheries Victoria internal report series (pp 63) Queenscliff VicFisheriesVictoria

Griffiths S P Pollock K H Lyle J M Pepperell J G TonksM L amp Sawynok W (2010) Following the chain to elu-sive anglers Fish and Fisheries 11 220ndash228 httpsdoiorg101111j1467-2979201000354x

Halpern B SWalbridge S Selkoe K A Kappel C V Micheli FDrsquoAgrosaChellipWatsonR(2008)AglobalmapofhumanimpactonmarineecosystemsScience319948ndash952httpsdoiorg101126science1149345

Hartill BW Payne GW Rush N amp Bian R (2016) Bridging thetemporal gap Continuous and cost-effective monitoring of dy-namic recreational fisheries by web cameras and creel surveysFisheries Research 183 488ndash497 httpsdoiorg101016jfishres201606002

emspensp emsp | emsp11FLYNN et aL

HenryGWampLyleJM(2003)NationalrecreationalandindigenousfishingsurveyFinal report to the fisheries research amp development cor-poration and the fisheries action program (pp 188) Canberra ACTFRDC

JonesCMampPollockKH(2012)Recreationalanglersurveymeth-odsEstimationofeffortharvestandreleasedcatchInAZaleDLParrishampTMSutton(Eds)Fisheries techniquesBethesdaMDAmericanFisheriesSociety

Kearney R E (2002) Co-management The resolution of conflict be-tween commercial and recreational fishers in Victoria AustraliaOcean amp Coastal Management45201ndash214httpsdoiorg101016S0964-5691(02)00055-8

KellerKSteffeASLowryMMurphyJJampSuthersIM(2016)Monitoringboat-basedrecreationalfishingeffortatanearshorearti-ficialreefwithashore-basedcameraFisheries Research18184ndash92httpsdoiorg101016jfishres201603025

KinlochMAMcGlennonDNicollGampPikePG(1997)Evaluationof the bus-route creel surveymethod in a largeAustralianmarinerecreationalfisheryISurveydesignFisheries Research33101ndash121httpsdoiorg101016S0165-7836(97)00068-4

LewinWCArlinghausRampMehnerT(2006)Documentedandpo-tential biological impacts of recreational fishing Insights forman-agementandconservationReviews in Fisheries Science14305ndash367httpsdoiorg10108010641260600886455

LowryMampMurphy J (2003)Monitoring the recreational gamefishfisheryoffsouth-easternAustraliaMarine and Freshwater Research54425ndash434httpsdoiorg101071MF01269

LyleJMStarkKEampTraceySR(2014)2012ndash2013 Survey of rec-reational fishing in TasmaniaHobart TAS Institute forMarine andAntarcticStudies

Lynch T P (2006) Incorporation of recreational fishing ef-fort into design of marine protected areas Incorporacioacuten delEsfuerzo de Pesca Recreativa en el Disentildeo de Aacutereas MarinasProtegidas Conservation Biology 20 1466ndash1476 httpsdoiorg101111j1523-1739200600509x

LynchTP(2008)Thedifferencebetweenspatialandtemporalvaria-tioninrecreationalfisheriesforplanningofmarineprotectedareasResponse toSteffeConservation Biology22486ndash491httpsdoiorg101111j1523-1739200800888x

LynchTP (2014)Adecadal time-seriesof recreational fishingeffortcollectedduringandafterimplementationofamultipleusemarinepark shows high inter-annual but low spatial variability Fisheries Research15185ndash90httpsdoiorg101016jfishres201309014

LynchTPAldermanRampHobdayAJ(2015)Ahigh-resolutionpan-orama camera system formonitoring colony-wide seabird nestingbehaviourMethods in Ecology and Evolution6491ndash499httpsdoiorg1011112041-210X12339

LynchTFlynnDWoodGKimJ-HParkJampHobdayAJ(2017)Metrics parameters and results from fisheries and wildlife studies with the CSIRO Ruggedized Autonomous Gigapixel Systems (CRAGS)DarwinNTAustralianMarineScienceAssociation

LynchTPWilkinsonEMellingLHamiltonRMacreadyAampFearyS(2004)ConflictandimpactsofdiversandanglersinamarineparkEnvironmental Management 33 196ndash211 httpsdoiorg101007s00267-003-3014-6

MaHOgawaTKSminkeyTRBreidtFJLesserVMOpsomerJDhellipVanVoorheesDA(2018)Pilotsurveystoimprovemonitoringofmarine recreational fisheries inHawaiʻiFisheries Research204197ndash208httpsdoiorg101016jfishres201802010

McCluskey S M amp Lewison R L (2008) Quantifying fish-ing effort A synthesis of current methods and their ap-plications Fish and Fisheries 9 188ndash200 httpsdoiorg101111j1467-2979200800283x

McGlennonDampKinlochMA(1997)Evaluationofthebus-routecreelsurveymethod in a largeAustralianmarine recreational fishery II

PilotsurveysandoptimalsamplingallocationFisheries Research3389ndash99httpsdoiorg101016S0165-7836(97)00067-2

McPheeDLeadbitterDampSkilleterGA(2002)SwallowingthebaitIs recreational fishing in Australia ecologically sustainable Pacific Conservation Biology840httpsdoiorg101071PC020040

Monz C A Pickering C M amp HadwenW L (2013) Recent ad-vances in recreation ecology and the implications of differentrelationships between recreation use and ecological impactsFrontiers in Ecology and the Environment11441ndash446httpsdoiorg101890120358

MooreAHallKGiriKTraceySPenroseLHansenShellipBrownP(2015)Developingrobustandcost-effectivemethodsforestimatingthenationalrecreationalcatchofSouthernBluefinTunainAustraliaFRDC Projectpp123

Morton A J amp Lyle J M (2004) Preliminary assessment of the rec-reational gamefish fishery in Tasmania with particular reference to Southern Bluefin Tuna Taroona TAS Tasmanian Aquaculture andFisheriesInstitute

ParnellPEDaytonPKFisherRALoarieCCampDarrowRD(2010)SpatialpatternsoffishingeffortoffSanDiegoImplicationsfor zonal management and ecosystem function Ecological Applications202203ndash2222httpsdoiorg10189009-15431

PattersonTAEvansKCarterTLampGunnJS(2008)Movementand behaviour of large southern bluefin tuna (Thunnus maccoyii)in the Australian region determined using pop-up satellite ar-chival tags Fisheries Oceanography 17 352ndash367 httpsdoiorg101111j1365-2419200800483x

PollockKH JonesCMampBrownTL (1994)Angler survey meth-ods and their applications in fisheries management Bethesda MDAmericanFisheriesSociety

PonsM Branch T AMelnychukM C JensenO P Brodziak JFromentinJMhellipHilbornR(2017)EffectsofbiologicaleconomicandmanagementfactorsontunaandbillfishstockstatusFish and Fisheries181ndash21httpsdoiorg101111faf12163

PowersSPampAnsonK (2016)Estimating recreationaleffort in theGulf of Mexico Red Snapper Fishery using boat ramp camerasReduction in federalseason lengthdoesnotproportionally reducecatchNorth American Journal of Fisheries Management 36 1156ndash1166httpsdoiorg1010800275594720161198284

Robson D amp Jones C M (1989) The theoretical basis of an ac-cess site angler survey design Biometrics 45 83ndash98 httpsdoiorg1023072532036

Rocklin D Levrel H Drogou M Herfaut J amp Veron G (2014)Combining telephone surveys and fishing catches self-reportTheFrenchseabass recreational fisheryassessmentPLoS ONE9e87271httpsdoiorg101371journalpone0087271

Smallwood C B Pollock K HWise B S Hall N G amp GaughanD J (2012) Expanding aerial-roving surveys to include counts ofshore-based recreational fishers from remotely operated camerasBenefitslimitationsandcosteffectivenessNorth American Journal of Fisheries Management321265ndash1276httpsdoiorg101080027559472012728181

Teixeira D ZischkeM T ampWebley J A C (2016) Investigatingbias in recreational fishing surveys Fishers listed in public tele-phone directories fish similarly to their unlisted counterpartsFisheries Research 181 127ndash136 httpsdoiorg101016jfishres201604012

van Poorten B T amp Brydle S (2018) Estimating fishing effortfrom remote traffic counters Opportunities and challengesFisheries Research 204 231ndash238 httpsdoiorg101016jfishres201802024

van Poorten B T Carruthers T RWardHGM ampVarkeyD A(2015)Imputingrecreationalanglingeffortfromtime-lapsecamerasusinganhierarchicalBayesianmodelFisheries Research172265ndash273httpsdoiorg101016jfishres201507032

12emsp |emsp emspensp FLYNN et aL

VenturelliPAHyderKampSkovC(2017)AnglerappsasasourceofrecreationalfisheriesdataOpportunitieschallengesandproposedstandardsFish and Fisheries18578ndash595httpsdoiorg101111faf12189

WiseBSTelferCFLaiEKMHallNGampJacksonG(2012)Long-termmonitoringofboat-basedrecreational fishing inSharkBayWesternAustraliaProvidingscientificadviceforsustainablemanagement in a World Heritage Area Marine and Freshwater Research631129ndash1141httpsdoiorg101071MF12054

WoodGLynchTPDevineCKellerKampFigueiraW(2016)High-resolutionphoto-mosaictime-seriesimageryformonitoringhumanuseofanartificialreefEcology and Evolution66963ndash6968httpsdoiorg101002ece32342

YuFRupertACCDiTizianaMNishikantaKRandySIllahNhellipJeffreyG(2011)TerapixelimagingofcosmologicalsimulationsThe Astrophysical Journal Supplement Series19718

Zischke M T Griffiths S P amp Tibbetts I R (2012) Catch and ef-fort from a specialised recreational pelagic sport fishery off

eastern Australia Fisheries Research 127ndash128 61ndash72 httpsdoiorg101016jfishres201204011

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle

How to cite this articleFlynnDJHLynchTPBarrettNSWongLSCDevineCHughesDGigapixelbigdatamoviesprovidecost-effectiveseascapescaledirectmeasurementsofopen-accesscoastalhumanusesuchasrecreationalfisheriesEcol Evol 2018001ndash12 httpsdoiorg101002ece34301

Graphical AbstractThecontentsofthispagewillbeusedaspartofthegraphicalabstractofhtmlonly

Itwillnotbepublishedaspartofmainarticle

Wetrailedaremoteautonomousultra-high-resolutionphotosamplingmethodasacosteffectsolutionfordirectseascape-scaledmeasure-mentsOursequentialphotosamplingwasbatchedprocessesusingnovelTimeMachinedatahandlingsoftwaretoproduceldquobigdatardquotimeseriesmoviesfromaspatialsubsetofanoffshorefisherywhichwecomparedtoaregionalbus-routesurveyofboattrailersandinterviewswithparticipantsOurcamerasamplescloselytrackedlargerscaleregionaltrendsbutwithlaborcostsaquarterofthebus-routesurveycostsforanindividualsample25ofthebusroutes

Page 8: Gigapixel big data movies provide cost-effective seascape ...

8emsp |emsp emspensp FLYNN et aL

average75mincomparedto1minforenteringthebus-routedatasheetWhiledataextraction forCRAGS took longer compared tothe bus routemdashat 381 FTE daysmdashtotal monthly labor for CRAGStookonlyaquarterofthetimeandonaper-samplecomparisonwasonly25ofthebus-routelaborcost

4emsp |emspDISCUSSION

Over our autumn samplingmost trailer boat owners accessing thewaters around theTasmanPeninsula via the regional boating infra-structurewererecreationallyfishingwithfisherspredominatelytar-getingtunaTrailerboatrecreationalfishersconstitutealargetrancheof coastal users in Australia (McPhee etal 2002) and our resultssuggestedthatthisregionremainsonewhererecreationalfishing isconcentrated(MortonampLyle2004)EffortobservedbyCRAGSwasa spatial subsetof thegeneral areaeasily accessedby trailer boatsaroundtheTasmanPeninsularwhichweregionallyassessedwithourbus-routerovingsurveyAsCRAGSonlyobserved~3of thetotalarea but corresponded to ~23 of themonthly bus-route boat ef-fort theHippolyteRocksMarineConservationArea (HRMCA) is afurtherconcentrationpointwithintheregionforrecreationalfishingAsthisoffshorefishingeffortaroundtheHRMCAwasmostprobablyfocusedontotunamdashwhichaccountedfor634ofallinterviewedfish-ers activitiesmdashthe actual proportionofpeninsularwide tuna fishingthatwasobservedbyCRAGSwaspotentiallymuchhigherthan23

For developing effort metrics finding a representative site toobservemaybe important forprecise trackingof trendsThetightrankcorrelationbetweenpairedregionalbus-routeandCRAGScam-era samples suggest that effort atHRMCAwas representative ofregionaltemporaltrendsOurresultsarealsosimilartootherstud-ieswheresamplingmethodsforrecreationalfisheriesoverbroaderscaleswhencomparedtoindextrendsofeffortcollectedfrompointsourcesshowstrongcorrelations(Hartilletal2016)

CRAGSwithitsseascapescaleofdatacaptureobservesactualeffortonfishinggroundsratherthan indirectmetricsfrommove-ment past access points (Hartill etal 2016 Smallwood PollockWise Hall amp Gaughan 2012 van Poorten amp Brydle 2018) This

makesthechoiceofaccesspointstomonitorimmaterialfortrendcol-lectionandmaybeofparticularinterestforpelagicfisheriesWhilenonintuitiverecreationalfishingforwide-rangingmigratorypelagicspeciesisoftenspatiallyconcentratedintosmallareas(Lynch2006)duetotightoverlapsbetweeneaseofaccessbyfishersandfishbe-haviorrelatedtobathymetrymigrationhabitatandpreyavailability(Lynchetal2004PattersonEvansCarterampGunn2008)

Unlikespatialpatternstheintensityofcoastalrecreationaltemporaleffortcanbehighlyvariableovertime(Lynch20082014WiseTelferLaiHallampJackson2012)thoughitisgenerallythoughttofollowpre-dictablepatternsrelativetoholidayandnonholidayperiods(JonesampPollock2012)Ourresultsdemonstratedtheselargefluctuationsrang-ingfromzerouptogt400hroftrailerboateffortforadjacentdaysIncombinationwithholidayperiodsothersourcesofvariabilitymayalsooccurduetoindividualorcombinationsoffactorssuchasfishingcluborcompetitionactivitiesandweatherconditionsHigh-frequencysam-plingcanovercomethesecommontemporaldisjunctionsinobservedfishingeffortwherebychanceduetolownumbersofsampleslogis-ticallypermissiblewithtraditionalrovingoraccesspointsurveyslargeerrorsintheestimationofeffortcanbeintroduced(Hartilletal2016vanPoortenampBrydle2018vanPoortenetal2015)

With multiple daily observations abnormal episodes are morelikelytobeobservedForinstanceaweek-longperiodofintenseef-fortwasrecordedbetween15May2015and27May2015whichwasbracketedbytwoconsecutiveweekendswherefishingcompetitionswereheldontheTasmanPeninsularThenormalsinusoidpatternoflowweekdayandhighweekendeffortwasmuchlesspronouncedastheweekdaylullsineffortwerepartiallybridgedbyanglerscontinuingtofishAsbus-routedesignsusedaytypeasstratawithlowerprob-abilitiesforsamplingweekdaysandmuchfewersamplesoverallthistypeofeffectcouldeasilybemissedWhileourbus-routesamplesdidoverlapwiththetunafishingcompetitionsthiswaspurelybychanceSucheventswhichresultinlargespikesofeffortcanhavemarkedim-pactsonlocalecosystemsandharvestestimates(McPheeetal2002MonzPickeringampHadwen2013)andwithoutpriorknowledgearemorelikelytobecapturedwithmonitoringathigherfrequencies

Methodsforgatheringdataoncoastalusesuchasrecreationalfishing moved away from direct approaches and toward off-sitemethodssuchastelephoneinterviews(McCluskeyampLewison2008Pollock etal 1994) due to unsustainable costs from staffing andoperationsparticularlyduringperiodsof intenseusesuchasearlymornings weekends and public holidays which require overtimepaymentsHoweversamplingissueswithoff-sitemethodsareofpar-ticularconcernforopen-accessactivitiessuchasunlicensedfisheriesasthereisnolicensedatabaseofcontactphonenumbersonwhichtobaseasampleframeThisisparticularlysofornicherecreationalfisheriessuchaspelagicgamefishingasthefishersbecomeincreas-inglydilutewithinthegeneralpopulationandhencearehardtoac-cessparticularlyviaoff-sitemethodssuchastelephone interviews(Griffithsetal2010)

Remoteandautonomousdeploymentofsensorsmaythereforeprovideanalternativeandcost-effectivemethodforlong-termmon-itoring particularly for effort across a range of applicationsOur

TABLE 3emspFulltimeequivalent(FTE)labordaysforCRAGSandbusroutesurveystoestimatepatternsofeffort

CRAGS Bus route

Numberofsamples 169 16

Fielddays 2 16

Averagepeopleperfieldday 35 25

Field FTE days subtotals 7 40

StitchingsetupFTE 1 0

DataextractionFTE(persample) 0017 0002

Subtotal data extraction FTE 381 004

FTEdayspersample 006 250

Total FTE days 108 400

emspensp emsp | emsp9FLYNN et aL

comparisonsofmatchedpairsofdatafromtwomethodssuggestedthat theCRAGSoutputswerewell correlatedwith regionalefforttrendsOuranalysisoflabordemonstratesthattryingtounderstandthistemporalvariabilitywithsamplingviaboatrampsurveyswouldbeprohibitivelyexpensiveOurCRAGSallowsforatemporaleffortmetric derived fromactual observationsof fishing to be cheaplydeveloped with sampling frequency at subdaily scales This high-frequencysamplingapproachwasvalidatedagainstour largerbutmuchmorecostlybus-routesurveyOuranalysisoflaborrequiredtobothcollectandprocessdatashowedthatCRAGSrequiredconsid-erablylessresourcestocollectapproximatelyninetimesmorefre-quenttemporaldatathanthebus-routemethodMajorlaborsavingswereduetotheruggedizedandautonomouscapabilityofCRAGSasonlytwofieldtripswererequired(deploymentandretrievaltook7FTEdays)comparedtothebus-routersquos16fieldtrips inamonthwhichconsumed40FTEdaysandincludedanadditional780kmofinter-ramproadtravel(SupportingInformationAppendixS3)AsitisweatherproofautonomousandabletobeprogrammedwithatimedelaysetupCRAGSldquofireandforgetrdquonaturebothremovestheneedforobservertobephysicallylocatedattheregiontocountactivity(EdwardsampSchindler2017)andworkduringovertimeperiodsTheldquoblankingperiodrdquowhichstopsandstartssamplingmdashinthiscaseover-nightmdashalso reduces battery and memory use In combined thesetechnological advances have allowed long-term CRAGS deploy-mentsacross4yearsof4ndash6monthrotationsontooffshoreislandsand for several seasons in Antarctica to monitor seabirds (Lynchetal2017)Thelaborestimateforthebusroutewasconservativeasitdidnotincludeovertimeloadingforthe6weekenddaysofsam-plingorearlymorningcommencementofamsamples

Theadditional381FTEprocessingtimerequiredbythecameraapproach did not impact greatly on the overall labor budgetwhenconsideredagainstfieldworkTheuseoftheTimeMachinebatchpro-cessingsoftwaretoautomaticallyproducetheldquobigdatardquointeractivemoviewasalsoatechnologicalinnovationthatsignificantlyreducedthelaborofdatahandlingcomparedtothemanualopeningofindivid-ualGigaPansusedinpreviousstudies(Lynchetal2015Woodetal2016)IncomparativetermsattheindividualsampleleveltotracktheeffortmetriceachCRAGSsamplerequired24ofthelaborofthebus-routesurvey

Thedevelopmentandapplicationofimagerecognitionsoftware(machine learning) to detect classify and count boats automati-cally (Bousetouane amp Morris 2015) would further reduce post-processingcostsTherequiredfrequencyofsamplingshouldalsobeconsideredonacase-by-casebasisdependentontheresearchquestion as image collection can be somewhat open-ended andresult inunwieldydata sets that require subsampling tobe cost-effective(Parnelletal2010)Inourcasethesettingof~5imagesperdayappearedtoadequatelydescribetheinterdailyvariation

Whileouroneautonomouscameraprovidedastrongcorrelationwithtemporaltrendsineffortcomparedtotheregionalsurveyitdidnotprovide relativespatialdistributionsofeffortacross the fisheryThesedistributionshowevercanbepredictableandhighlyconcen-trated(Lynch20062014Parnelletal2010)anobservationthatwas

alsoshownbyourresultsandmuchsmallerlevelsofsamplingeffortwouldprobablyberequiredtoresolvevariationinspatialdistributionscomparedtowhatisrequiredtoresolvethehightemporalvariationsineffortUnderstandingfine-scalespatialdistributionsofrecreationalfishingeffortiscommonlyachievedusingaerialcounton-watersur-veysorvantagepointsurveys(Lynch2006Smallwoodetal2012)thoughotherremotemethodssuchashigh-resolutionsatelliteimag-ery(FretwellScofieldampPhillips2017)mayprovideacheapersolu-tionThesetypesofwidersurveyshavealsobeensuggestedashighlycompatiblewithpointsourcemetricssuchasremotecamerasystemstoallowforcalibrationorldquoup-ratingrdquoforeffortexpansionstoestimateoveralleffortwithinthefishery(Hartilletal2016)

Thelongdistance(~6km)betweentheHMRCAandthedeploy-ment location stretched the resolution limit of the current CRAGSsetup aswewere unable to distinguish party size or activity typepurelyusing thecamerasystemThis isunlikepreviousCRAGSde-ploymentwhichhadahighsuccessrateofidentifyingpartysizeac-tivity typeata shorter rangeofapproximately19km (Woodetal2016) Thus ground-truthing information about the fisherywas re-quiredforthesystemtoworkeffectivelyAutonomouscamerasystemalsodonotcollectcreel(catch)databutbyallowingforcost-effectivecollectionofthehighlyvariabletemporaleffortdatatheymayallowforhumanresourcestobespentelsewhereduringsurveyperiods(egtoundertakeboatrampinterviews)(vanPoortenampBrydle2018)

Our studywas a small-scale trial of new technology andwhilepreliminary results are encouraging validated seasonal effort esti-mationsobservedviaCRAGSwereoutsidethescopeofthisprojectOur comparisons would hence have been improved by extendingCRAGSdeploymentsandwithmorecomparisonstoregionalsurveysSimilarly usingmultiple CRAGS simultaneously would have bettertested for differences in subregional patterns of temporal trendsorconcentrationof infishingeffortfor instanceboatsaroundthenearbyTasmanIsland

Insummarytheprogrammablesamplinganddataextractionof-feredbyhigh-resolutionautonomouscamerasystemscanallowforfine-scalelong-termmonitoringoffishingefforttrendsorpotentiallymanyothertypesofactivitiesatseascapescalesMorewidespreadadoptionofhigh-frequencysamplingapproachesforeffortestima-tionwouldalsohelpavoidcollectionofmisrepresentativedatabyidentifyingeffortanomalies(McCluskeyampLewison2008)suchastheweekdaycontinuationeffectofraisedeffortbetweenadjacentweekendfishingcompetitionByimprovingtheinformationdensityovertraditionalsurveymethodsautonomouscamerasystemsandotherremotesystemsmayprovideanewwaveofoptimizationfordirectmeasurementofcoastalhumanusesuchasrecreationalfish-eriesalthoughcomplimentarymethodsarestillrequiredtodeter-minespatialdistributionstargetspeciesandharvest

ACKNOWLEDG MENTS

We thankMsGeorginaWoodMs SaraAdkinsMsBelleMonkMrRSherringtonandMsPaigeKellyforconstructiveinsighten-thusiasmandassistanceduringfieldworkWealsothankMrPhillip

10emsp |emsp emspensp FLYNN et aL

CulversonMrStuartDudgeonandMrMattStapenellKarenEvensprovidedhelpfulcommentsonaninternaldraftGreatestthankstothemany recreational anglerswhowillingly shared information tosurveyclerkswithouttheirinvolvementthisprojectwouldnothavecometofruitionThreeanonymousreviewersprovidedcommentsthatimprovedthemanuscript

CONFLIC T OF INTERE S TS

Theauthorsdeclarenoconflictofinterests

AUTHOR CONTRIBUTIONS

MrFlynnhelpeddesignthestudyledthefieldworkundertookmostoftheanalysisandhelpwritethemanuscriptDrLynchhelpdesignthestudyassisted inthefieldworkprovidedadviceontheanaly-sisanddidsomeanalysisconstructedfiguresandafterMrFlynncontributedthemosttothedraftingofthemanuscriptDrBarretthelpeddesign the study assisted in some fieldwork provided ad-viceonanalysisandeditedthemanuscriptMrWonghelpedexten-sivelywithfieldworkassistedwithanalysisconstructedfiguresandhelpedwritethemanuscriptMsDevineassistedwithfieldworkandconfigurationoftheequipmentincludingtheapplicationofthebigdatamoviesoftwareandhandlingofphotographsandalsohelpedwritethemanuscriptMrHughesdevelopedtheelectronicsfortheequipmentoversaw thebuildofgearwrote the software topro-gramtherobotandreviewedandeditedthemanuscript

DATA ACCE SSIBILIT Y

Survey sampling schedules data collection sheets extrapolationproceduresandtechnicalCRAGSspecificationsarealluploadedasonlinesupportinginformationappendixRawdatafromsurveysandCRAGSDOIhttpdoiorg105061dryadv10d218

RE SE ARCH E THIC S COMPLIANCE AND FUNDERS

ResearchabidesbytheAustraliancodeofhumanresearchandex-perimentation(NationalStatementonEthicalConductinHumanResearch of 2007) Permission to conduct research on humanparticipants was granted by the University of Tasmania SocialScience under reference H0014772mdashldquoRemote investigation ofcoastal area user group quantification and variationrdquo aswell asfromtheCSIROSocialScienceHumanResearchEthicsCommitteeunder reference 08115mdashldquoHawkesbury Region Project HumanUsePatternsrdquoFundingwasbyUTASasPartoftheIMASHonoursProject funding and through internal support from the CoastsProgram

ORCID

Tim P Lynch httporcidorg0000-0002-5346-8454

R E FE R E N C E S

Alessa L Kliskey A amp Brown G (2008) Socialndashecological hotspotsmapping A spatial approach for identifying coupled socialndasheco-logicalspaceLandscape and Urban Planning8527ndash39httpsdoiorg101016jlandurbplan200709007

ArlinghausR(2006)Overcominghumanobstaclestoconservationofrecreational fishery resources with emphasis on central EuropeEnvironmental Conservation 33 46ndash59 httpsdoiorg101017S0376892906002700

Arlinghaus R Tillner R amp Bork M (2015) Explaining participationratesinrecreationalfishingacrossindustrialisedcountriesFisheries Management and Ecology 22 45ndash55 httpsdoiorg101111fme12075

BadcockPBPatrickKSmithAMASimpsonJMPennayDRisselCEhellipRichtersJ(2016)Differencesbetweenlandlineandmobilephoneusers in sexualbehavior researchArchives of Sexual Behavior46(6)1711ndash1721

Blumberg S J amp Luke J V (2009) Reevaluating the need for con-cern regarding noncoverage bias in landline surveys American Journal of Public Health 99 1806ndash1810 httpsdoiorg102105AJPH2008152835

Bousetouane F ampMorris B (2015) Off-the-shelf CNN features forfine-grainedclassificationofvesselsinamaritimeenvironmentInGBebisRBoyleBParvinDKoracinIPavlidisRFerisTMcGrawMElendtRKopperERaganZYeampGWeber(Eds)Advances in visual computing 11th International symposium ISVC 2015 Las Vegas NV USA December 14ndash16 2015 proceedings Part II (pp379ndash388)Cham Switzerland Springer International Publishing httpsdoiorg101007978-3-319-27863-6

Cooke S J amp Cowx I G (2004) The role of recreational fish-ing in global fish crises BioScience 54 857ndash859 httpsdoiorg1016410006-3568(2004)054[0857TRORFI]20CO2

DiggleP J (1995)Time-series a biostatistical introductionOxfordUKClarendonPress

EdwardsJampSchindlerE (2017)Avideomonitoringsystemtoeval-uate ocean recreational fishing effort in Astoria OregonMarine recreational information program (pp 31) Newport OR OregonDepartmentofFishandWildlife

FarrMStoecklNampSuttonS(2014)RecreationalfishingandboatingArethedeterminantsthesameMarine Policy47126ndash137httpsdoiorg101016jmarpol201402014

ForbesETraceySampLyle JM (2009)Assessment of the 2008 rec-reational gamefish fishery of Southeast Tasmania with particular refer-ence to Southern Bluefin TunaHobartTASTasmanianAquacultureandFisheriesInstituteUniversityofTasmania

FretwellPTScofieldPampPhillipsRA(2017)Usingsuper-highres-olutionsatelliteimagerytocensusthreatenedalbatrossesIbis159481ndash490httpsdoiorg101111ibi12482

GiriKampHallK (2015)SouthAustralian recreational fishingsurveyFisheries Victoria internal report series (pp 63) Queenscliff VicFisheriesVictoria

Griffiths S P Pollock K H Lyle J M Pepperell J G TonksM L amp Sawynok W (2010) Following the chain to elu-sive anglers Fish and Fisheries 11 220ndash228 httpsdoiorg101111j1467-2979201000354x

Halpern B SWalbridge S Selkoe K A Kappel C V Micheli FDrsquoAgrosaChellipWatsonR(2008)AglobalmapofhumanimpactonmarineecosystemsScience319948ndash952httpsdoiorg101126science1149345

Hartill BW Payne GW Rush N amp Bian R (2016) Bridging thetemporal gap Continuous and cost-effective monitoring of dy-namic recreational fisheries by web cameras and creel surveysFisheries Research 183 488ndash497 httpsdoiorg101016jfishres201606002

emspensp emsp | emsp11FLYNN et aL

HenryGWampLyleJM(2003)NationalrecreationalandindigenousfishingsurveyFinal report to the fisheries research amp development cor-poration and the fisheries action program (pp 188) Canberra ACTFRDC

JonesCMampPollockKH(2012)Recreationalanglersurveymeth-odsEstimationofeffortharvestandreleasedcatchInAZaleDLParrishampTMSutton(Eds)Fisheries techniquesBethesdaMDAmericanFisheriesSociety

Kearney R E (2002) Co-management The resolution of conflict be-tween commercial and recreational fishers in Victoria AustraliaOcean amp Coastal Management45201ndash214httpsdoiorg101016S0964-5691(02)00055-8

KellerKSteffeASLowryMMurphyJJampSuthersIM(2016)Monitoringboat-basedrecreationalfishingeffortatanearshorearti-ficialreefwithashore-basedcameraFisheries Research18184ndash92httpsdoiorg101016jfishres201603025

KinlochMAMcGlennonDNicollGampPikePG(1997)Evaluationof the bus-route creel surveymethod in a largeAustralianmarinerecreationalfisheryISurveydesignFisheries Research33101ndash121httpsdoiorg101016S0165-7836(97)00068-4

LewinWCArlinghausRampMehnerT(2006)Documentedandpo-tential biological impacts of recreational fishing Insights forman-agementandconservationReviews in Fisheries Science14305ndash367httpsdoiorg10108010641260600886455

LowryMampMurphy J (2003)Monitoring the recreational gamefishfisheryoffsouth-easternAustraliaMarine and Freshwater Research54425ndash434httpsdoiorg101071MF01269

LyleJMStarkKEampTraceySR(2014)2012ndash2013 Survey of rec-reational fishing in TasmaniaHobart TAS Institute forMarine andAntarcticStudies

Lynch T P (2006) Incorporation of recreational fishing ef-fort into design of marine protected areas Incorporacioacuten delEsfuerzo de Pesca Recreativa en el Disentildeo de Aacutereas MarinasProtegidas Conservation Biology 20 1466ndash1476 httpsdoiorg101111j1523-1739200600509x

LynchTP(2008)Thedifferencebetweenspatialandtemporalvaria-tioninrecreationalfisheriesforplanningofmarineprotectedareasResponse toSteffeConservation Biology22486ndash491httpsdoiorg101111j1523-1739200800888x

LynchTP (2014)Adecadal time-seriesof recreational fishingeffortcollectedduringandafterimplementationofamultipleusemarinepark shows high inter-annual but low spatial variability Fisheries Research15185ndash90httpsdoiorg101016jfishres201309014

LynchTPAldermanRampHobdayAJ(2015)Ahigh-resolutionpan-orama camera system formonitoring colony-wide seabird nestingbehaviourMethods in Ecology and Evolution6491ndash499httpsdoiorg1011112041-210X12339

LynchTFlynnDWoodGKimJ-HParkJampHobdayAJ(2017)Metrics parameters and results from fisheries and wildlife studies with the CSIRO Ruggedized Autonomous Gigapixel Systems (CRAGS)DarwinNTAustralianMarineScienceAssociation

LynchTPWilkinsonEMellingLHamiltonRMacreadyAampFearyS(2004)ConflictandimpactsofdiversandanglersinamarineparkEnvironmental Management 33 196ndash211 httpsdoiorg101007s00267-003-3014-6

MaHOgawaTKSminkeyTRBreidtFJLesserVMOpsomerJDhellipVanVoorheesDA(2018)Pilotsurveystoimprovemonitoringofmarine recreational fisheries inHawaiʻiFisheries Research204197ndash208httpsdoiorg101016jfishres201802010

McCluskey S M amp Lewison R L (2008) Quantifying fish-ing effort A synthesis of current methods and their ap-plications Fish and Fisheries 9 188ndash200 httpsdoiorg101111j1467-2979200800283x

McGlennonDampKinlochMA(1997)Evaluationofthebus-routecreelsurveymethod in a largeAustralianmarine recreational fishery II

PilotsurveysandoptimalsamplingallocationFisheries Research3389ndash99httpsdoiorg101016S0165-7836(97)00067-2

McPheeDLeadbitterDampSkilleterGA(2002)SwallowingthebaitIs recreational fishing in Australia ecologically sustainable Pacific Conservation Biology840httpsdoiorg101071PC020040

Monz C A Pickering C M amp HadwenW L (2013) Recent ad-vances in recreation ecology and the implications of differentrelationships between recreation use and ecological impactsFrontiers in Ecology and the Environment11441ndash446httpsdoiorg101890120358

MooreAHallKGiriKTraceySPenroseLHansenShellipBrownP(2015)Developingrobustandcost-effectivemethodsforestimatingthenationalrecreationalcatchofSouthernBluefinTunainAustraliaFRDC Projectpp123

Morton A J amp Lyle J M (2004) Preliminary assessment of the rec-reational gamefish fishery in Tasmania with particular reference to Southern Bluefin Tuna Taroona TAS Tasmanian Aquaculture andFisheriesInstitute

ParnellPEDaytonPKFisherRALoarieCCampDarrowRD(2010)SpatialpatternsoffishingeffortoffSanDiegoImplicationsfor zonal management and ecosystem function Ecological Applications202203ndash2222httpsdoiorg10189009-15431

PattersonTAEvansKCarterTLampGunnJS(2008)Movementand behaviour of large southern bluefin tuna (Thunnus maccoyii)in the Australian region determined using pop-up satellite ar-chival tags Fisheries Oceanography 17 352ndash367 httpsdoiorg101111j1365-2419200800483x

PollockKH JonesCMampBrownTL (1994)Angler survey meth-ods and their applications in fisheries management Bethesda MDAmericanFisheriesSociety

PonsM Branch T AMelnychukM C JensenO P Brodziak JFromentinJMhellipHilbornR(2017)EffectsofbiologicaleconomicandmanagementfactorsontunaandbillfishstockstatusFish and Fisheries181ndash21httpsdoiorg101111faf12163

PowersSPampAnsonK (2016)Estimating recreationaleffort in theGulf of Mexico Red Snapper Fishery using boat ramp camerasReduction in federalseason lengthdoesnotproportionally reducecatchNorth American Journal of Fisheries Management 36 1156ndash1166httpsdoiorg1010800275594720161198284

Robson D amp Jones C M (1989) The theoretical basis of an ac-cess site angler survey design Biometrics 45 83ndash98 httpsdoiorg1023072532036

Rocklin D Levrel H Drogou M Herfaut J amp Veron G (2014)Combining telephone surveys and fishing catches self-reportTheFrenchseabass recreational fisheryassessmentPLoS ONE9e87271httpsdoiorg101371journalpone0087271

Smallwood C B Pollock K HWise B S Hall N G amp GaughanD J (2012) Expanding aerial-roving surveys to include counts ofshore-based recreational fishers from remotely operated camerasBenefitslimitationsandcosteffectivenessNorth American Journal of Fisheries Management321265ndash1276httpsdoiorg101080027559472012728181

Teixeira D ZischkeM T ampWebley J A C (2016) Investigatingbias in recreational fishing surveys Fishers listed in public tele-phone directories fish similarly to their unlisted counterpartsFisheries Research 181 127ndash136 httpsdoiorg101016jfishres201604012

van Poorten B T amp Brydle S (2018) Estimating fishing effortfrom remote traffic counters Opportunities and challengesFisheries Research 204 231ndash238 httpsdoiorg101016jfishres201802024

van Poorten B T Carruthers T RWardHGM ampVarkeyD A(2015)Imputingrecreationalanglingeffortfromtime-lapsecamerasusinganhierarchicalBayesianmodelFisheries Research172265ndash273httpsdoiorg101016jfishres201507032

12emsp |emsp emspensp FLYNN et aL

VenturelliPAHyderKampSkovC(2017)AnglerappsasasourceofrecreationalfisheriesdataOpportunitieschallengesandproposedstandardsFish and Fisheries18578ndash595httpsdoiorg101111faf12189

WiseBSTelferCFLaiEKMHallNGampJacksonG(2012)Long-termmonitoringofboat-basedrecreational fishing inSharkBayWesternAustraliaProvidingscientificadviceforsustainablemanagement in a World Heritage Area Marine and Freshwater Research631129ndash1141httpsdoiorg101071MF12054

WoodGLynchTPDevineCKellerKampFigueiraW(2016)High-resolutionphoto-mosaictime-seriesimageryformonitoringhumanuseofanartificialreefEcology and Evolution66963ndash6968httpsdoiorg101002ece32342

YuFRupertACCDiTizianaMNishikantaKRandySIllahNhellipJeffreyG(2011)TerapixelimagingofcosmologicalsimulationsThe Astrophysical Journal Supplement Series19718

Zischke M T Griffiths S P amp Tibbetts I R (2012) Catch and ef-fort from a specialised recreational pelagic sport fishery off

eastern Australia Fisheries Research 127ndash128 61ndash72 httpsdoiorg101016jfishres201204011

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle

How to cite this articleFlynnDJHLynchTPBarrettNSWongLSCDevineCHughesDGigapixelbigdatamoviesprovidecost-effectiveseascapescaledirectmeasurementsofopen-accesscoastalhumanusesuchasrecreationalfisheriesEcol Evol 2018001ndash12 httpsdoiorg101002ece34301

Graphical AbstractThecontentsofthispagewillbeusedaspartofthegraphicalabstractofhtmlonly

Itwillnotbepublishedaspartofmainarticle

Wetrailedaremoteautonomousultra-high-resolutionphotosamplingmethodasacosteffectsolutionfordirectseascape-scaledmeasure-mentsOursequentialphotosamplingwasbatchedprocessesusingnovelTimeMachinedatahandlingsoftwaretoproduceldquobigdatardquotimeseriesmoviesfromaspatialsubsetofanoffshorefisherywhichwecomparedtoaregionalbus-routesurveyofboattrailersandinterviewswithparticipantsOurcamerasamplescloselytrackedlargerscaleregionaltrendsbutwithlaborcostsaquarterofthebus-routesurveycostsforanindividualsample25ofthebusroutes

Page 9: Gigapixel big data movies provide cost-effective seascape ...

emspensp emsp | emsp9FLYNN et aL

comparisonsofmatchedpairsofdatafromtwomethodssuggestedthat theCRAGSoutputswerewell correlatedwith regionalefforttrendsOuranalysisoflabordemonstratesthattryingtounderstandthistemporalvariabilitywithsamplingviaboatrampsurveyswouldbeprohibitivelyexpensiveOurCRAGSallowsforatemporaleffortmetric derived fromactual observationsof fishing to be cheaplydeveloped with sampling frequency at subdaily scales This high-frequencysamplingapproachwasvalidatedagainstour largerbutmuchmorecostlybus-routesurveyOuranalysisoflaborrequiredtobothcollectandprocessdatashowedthatCRAGSrequiredconsid-erablylessresourcestocollectapproximatelyninetimesmorefre-quenttemporaldatathanthebus-routemethodMajorlaborsavingswereduetotheruggedizedandautonomouscapabilityofCRAGSasonlytwofieldtripswererequired(deploymentandretrievaltook7FTEdays)comparedtothebus-routersquos16fieldtrips inamonthwhichconsumed40FTEdaysandincludedanadditional780kmofinter-ramproadtravel(SupportingInformationAppendixS3)AsitisweatherproofautonomousandabletobeprogrammedwithatimedelaysetupCRAGSldquofireandforgetrdquonaturebothremovestheneedforobservertobephysicallylocatedattheregiontocountactivity(EdwardsampSchindler2017)andworkduringovertimeperiodsTheldquoblankingperiodrdquowhichstopsandstartssamplingmdashinthiscaseover-nightmdashalso reduces battery and memory use In combined thesetechnological advances have allowed long-term CRAGS deploy-mentsacross4yearsof4ndash6monthrotationsontooffshoreislandsand for several seasons in Antarctica to monitor seabirds (Lynchetal2017)Thelaborestimateforthebusroutewasconservativeasitdidnotincludeovertimeloadingforthe6weekenddaysofsam-plingorearlymorningcommencementofamsamples

Theadditional381FTEprocessingtimerequiredbythecameraapproach did not impact greatly on the overall labor budgetwhenconsideredagainstfieldworkTheuseoftheTimeMachinebatchpro-cessingsoftwaretoautomaticallyproducetheldquobigdatardquointeractivemoviewasalsoatechnologicalinnovationthatsignificantlyreducedthelaborofdatahandlingcomparedtothemanualopeningofindivid-ualGigaPansusedinpreviousstudies(Lynchetal2015Woodetal2016)IncomparativetermsattheindividualsampleleveltotracktheeffortmetriceachCRAGSsamplerequired24ofthelaborofthebus-routesurvey

Thedevelopmentandapplicationofimagerecognitionsoftware(machine learning) to detect classify and count boats automati-cally (Bousetouane amp Morris 2015) would further reduce post-processingcostsTherequiredfrequencyofsamplingshouldalsobeconsideredonacase-by-casebasisdependentontheresearchquestion as image collection can be somewhat open-ended andresult inunwieldydata sets that require subsampling tobe cost-effective(Parnelletal2010)Inourcasethesettingof~5imagesperdayappearedtoadequatelydescribetheinterdailyvariation

Whileouroneautonomouscameraprovidedastrongcorrelationwithtemporaltrendsineffortcomparedtotheregionalsurveyitdidnotprovide relativespatialdistributionsofeffortacross the fisheryThesedistributionshowevercanbepredictableandhighlyconcen-trated(Lynch20062014Parnelletal2010)anobservationthatwas

alsoshownbyourresultsandmuchsmallerlevelsofsamplingeffortwouldprobablyberequiredtoresolvevariationinspatialdistributionscomparedtowhatisrequiredtoresolvethehightemporalvariationsineffortUnderstandingfine-scalespatialdistributionsofrecreationalfishingeffortiscommonlyachievedusingaerialcounton-watersur-veysorvantagepointsurveys(Lynch2006Smallwoodetal2012)thoughotherremotemethodssuchashigh-resolutionsatelliteimag-ery(FretwellScofieldampPhillips2017)mayprovideacheapersolu-tionThesetypesofwidersurveyshavealsobeensuggestedashighlycompatiblewithpointsourcemetricssuchasremotecamerasystemstoallowforcalibrationorldquoup-ratingrdquoforeffortexpansionstoestimateoveralleffortwithinthefishery(Hartilletal2016)

Thelongdistance(~6km)betweentheHMRCAandthedeploy-ment location stretched the resolution limit of the current CRAGSsetup aswewere unable to distinguish party size or activity typepurelyusing thecamerasystemThis isunlikepreviousCRAGSde-ploymentwhichhadahighsuccessrateofidentifyingpartysizeac-tivity typeata shorter rangeofapproximately19km (Woodetal2016) Thus ground-truthing information about the fisherywas re-quiredforthesystemtoworkeffectivelyAutonomouscamerasystemalsodonotcollectcreel(catch)databutbyallowingforcost-effectivecollectionofthehighlyvariabletemporaleffortdatatheymayallowforhumanresourcestobespentelsewhereduringsurveyperiods(egtoundertakeboatrampinterviews)(vanPoortenampBrydle2018)

Our studywas a small-scale trial of new technology andwhilepreliminary results are encouraging validated seasonal effort esti-mationsobservedviaCRAGSwereoutsidethescopeofthisprojectOur comparisons would hence have been improved by extendingCRAGSdeploymentsandwithmorecomparisonstoregionalsurveysSimilarly usingmultiple CRAGS simultaneously would have bettertested for differences in subregional patterns of temporal trendsorconcentrationof infishingeffortfor instanceboatsaroundthenearbyTasmanIsland

Insummarytheprogrammablesamplinganddataextractionof-feredbyhigh-resolutionautonomouscamerasystemscanallowforfine-scalelong-termmonitoringoffishingefforttrendsorpotentiallymanyothertypesofactivitiesatseascapescalesMorewidespreadadoptionofhigh-frequencysamplingapproachesforeffortestima-tionwouldalsohelpavoidcollectionofmisrepresentativedatabyidentifyingeffortanomalies(McCluskeyampLewison2008)suchastheweekdaycontinuationeffectofraisedeffortbetweenadjacentweekendfishingcompetitionByimprovingtheinformationdensityovertraditionalsurveymethodsautonomouscamerasystemsandotherremotesystemsmayprovideanewwaveofoptimizationfordirectmeasurementofcoastalhumanusesuchasrecreationalfish-eriesalthoughcomplimentarymethodsarestillrequiredtodeter-minespatialdistributionstargetspeciesandharvest

ACKNOWLEDG MENTS

We thankMsGeorginaWoodMs SaraAdkinsMsBelleMonkMrRSherringtonandMsPaigeKellyforconstructiveinsighten-thusiasmandassistanceduringfieldworkWealsothankMrPhillip

10emsp |emsp emspensp FLYNN et aL

CulversonMrStuartDudgeonandMrMattStapenellKarenEvensprovidedhelpfulcommentsonaninternaldraftGreatestthankstothemany recreational anglerswhowillingly shared information tosurveyclerkswithouttheirinvolvementthisprojectwouldnothavecometofruitionThreeanonymousreviewersprovidedcommentsthatimprovedthemanuscript

CONFLIC T OF INTERE S TS

Theauthorsdeclarenoconflictofinterests

AUTHOR CONTRIBUTIONS

MrFlynnhelpeddesignthestudyledthefieldworkundertookmostoftheanalysisandhelpwritethemanuscriptDrLynchhelpdesignthestudyassisted inthefieldworkprovidedadviceontheanaly-sisanddidsomeanalysisconstructedfiguresandafterMrFlynncontributedthemosttothedraftingofthemanuscriptDrBarretthelpeddesign the study assisted in some fieldwork provided ad-viceonanalysisandeditedthemanuscriptMrWonghelpedexten-sivelywithfieldworkassistedwithanalysisconstructedfiguresandhelpedwritethemanuscriptMsDevineassistedwithfieldworkandconfigurationoftheequipmentincludingtheapplicationofthebigdatamoviesoftwareandhandlingofphotographsandalsohelpedwritethemanuscriptMrHughesdevelopedtheelectronicsfortheequipmentoversaw thebuildofgearwrote the software topro-gramtherobotandreviewedandeditedthemanuscript

DATA ACCE SSIBILIT Y

Survey sampling schedules data collection sheets extrapolationproceduresandtechnicalCRAGSspecificationsarealluploadedasonlinesupportinginformationappendixRawdatafromsurveysandCRAGSDOIhttpdoiorg105061dryadv10d218

RE SE ARCH E THIC S COMPLIANCE AND FUNDERS

ResearchabidesbytheAustraliancodeofhumanresearchandex-perimentation(NationalStatementonEthicalConductinHumanResearch of 2007) Permission to conduct research on humanparticipants was granted by the University of Tasmania SocialScience under reference H0014772mdashldquoRemote investigation ofcoastal area user group quantification and variationrdquo aswell asfromtheCSIROSocialScienceHumanResearchEthicsCommitteeunder reference 08115mdashldquoHawkesbury Region Project HumanUsePatternsrdquoFundingwasbyUTASasPartoftheIMASHonoursProject funding and through internal support from the CoastsProgram

ORCID

Tim P Lynch httporcidorg0000-0002-5346-8454

R E FE R E N C E S

Alessa L Kliskey A amp Brown G (2008) Socialndashecological hotspotsmapping A spatial approach for identifying coupled socialndasheco-logicalspaceLandscape and Urban Planning8527ndash39httpsdoiorg101016jlandurbplan200709007

ArlinghausR(2006)Overcominghumanobstaclestoconservationofrecreational fishery resources with emphasis on central EuropeEnvironmental Conservation 33 46ndash59 httpsdoiorg101017S0376892906002700

Arlinghaus R Tillner R amp Bork M (2015) Explaining participationratesinrecreationalfishingacrossindustrialisedcountriesFisheries Management and Ecology 22 45ndash55 httpsdoiorg101111fme12075

BadcockPBPatrickKSmithAMASimpsonJMPennayDRisselCEhellipRichtersJ(2016)Differencesbetweenlandlineandmobilephoneusers in sexualbehavior researchArchives of Sexual Behavior46(6)1711ndash1721

Blumberg S J amp Luke J V (2009) Reevaluating the need for con-cern regarding noncoverage bias in landline surveys American Journal of Public Health 99 1806ndash1810 httpsdoiorg102105AJPH2008152835

Bousetouane F ampMorris B (2015) Off-the-shelf CNN features forfine-grainedclassificationofvesselsinamaritimeenvironmentInGBebisRBoyleBParvinDKoracinIPavlidisRFerisTMcGrawMElendtRKopperERaganZYeampGWeber(Eds)Advances in visual computing 11th International symposium ISVC 2015 Las Vegas NV USA December 14ndash16 2015 proceedings Part II (pp379ndash388)Cham Switzerland Springer International Publishing httpsdoiorg101007978-3-319-27863-6

Cooke S J amp Cowx I G (2004) The role of recreational fish-ing in global fish crises BioScience 54 857ndash859 httpsdoiorg1016410006-3568(2004)054[0857TRORFI]20CO2

DiggleP J (1995)Time-series a biostatistical introductionOxfordUKClarendonPress

EdwardsJampSchindlerE (2017)Avideomonitoringsystemtoeval-uate ocean recreational fishing effort in Astoria OregonMarine recreational information program (pp 31) Newport OR OregonDepartmentofFishandWildlife

FarrMStoecklNampSuttonS(2014)RecreationalfishingandboatingArethedeterminantsthesameMarine Policy47126ndash137httpsdoiorg101016jmarpol201402014

ForbesETraceySampLyle JM (2009)Assessment of the 2008 rec-reational gamefish fishery of Southeast Tasmania with particular refer-ence to Southern Bluefin TunaHobartTASTasmanianAquacultureandFisheriesInstituteUniversityofTasmania

FretwellPTScofieldPampPhillipsRA(2017)Usingsuper-highres-olutionsatelliteimagerytocensusthreatenedalbatrossesIbis159481ndash490httpsdoiorg101111ibi12482

GiriKampHallK (2015)SouthAustralian recreational fishingsurveyFisheries Victoria internal report series (pp 63) Queenscliff VicFisheriesVictoria

Griffiths S P Pollock K H Lyle J M Pepperell J G TonksM L amp Sawynok W (2010) Following the chain to elu-sive anglers Fish and Fisheries 11 220ndash228 httpsdoiorg101111j1467-2979201000354x

Halpern B SWalbridge S Selkoe K A Kappel C V Micheli FDrsquoAgrosaChellipWatsonR(2008)AglobalmapofhumanimpactonmarineecosystemsScience319948ndash952httpsdoiorg101126science1149345

Hartill BW Payne GW Rush N amp Bian R (2016) Bridging thetemporal gap Continuous and cost-effective monitoring of dy-namic recreational fisheries by web cameras and creel surveysFisheries Research 183 488ndash497 httpsdoiorg101016jfishres201606002

emspensp emsp | emsp11FLYNN et aL

HenryGWampLyleJM(2003)NationalrecreationalandindigenousfishingsurveyFinal report to the fisheries research amp development cor-poration and the fisheries action program (pp 188) Canberra ACTFRDC

JonesCMampPollockKH(2012)Recreationalanglersurveymeth-odsEstimationofeffortharvestandreleasedcatchInAZaleDLParrishampTMSutton(Eds)Fisheries techniquesBethesdaMDAmericanFisheriesSociety

Kearney R E (2002) Co-management The resolution of conflict be-tween commercial and recreational fishers in Victoria AustraliaOcean amp Coastal Management45201ndash214httpsdoiorg101016S0964-5691(02)00055-8

KellerKSteffeASLowryMMurphyJJampSuthersIM(2016)Monitoringboat-basedrecreationalfishingeffortatanearshorearti-ficialreefwithashore-basedcameraFisheries Research18184ndash92httpsdoiorg101016jfishres201603025

KinlochMAMcGlennonDNicollGampPikePG(1997)Evaluationof the bus-route creel surveymethod in a largeAustralianmarinerecreationalfisheryISurveydesignFisheries Research33101ndash121httpsdoiorg101016S0165-7836(97)00068-4

LewinWCArlinghausRampMehnerT(2006)Documentedandpo-tential biological impacts of recreational fishing Insights forman-agementandconservationReviews in Fisheries Science14305ndash367httpsdoiorg10108010641260600886455

LowryMampMurphy J (2003)Monitoring the recreational gamefishfisheryoffsouth-easternAustraliaMarine and Freshwater Research54425ndash434httpsdoiorg101071MF01269

LyleJMStarkKEampTraceySR(2014)2012ndash2013 Survey of rec-reational fishing in TasmaniaHobart TAS Institute forMarine andAntarcticStudies

Lynch T P (2006) Incorporation of recreational fishing ef-fort into design of marine protected areas Incorporacioacuten delEsfuerzo de Pesca Recreativa en el Disentildeo de Aacutereas MarinasProtegidas Conservation Biology 20 1466ndash1476 httpsdoiorg101111j1523-1739200600509x

LynchTP(2008)Thedifferencebetweenspatialandtemporalvaria-tioninrecreationalfisheriesforplanningofmarineprotectedareasResponse toSteffeConservation Biology22486ndash491httpsdoiorg101111j1523-1739200800888x

LynchTP (2014)Adecadal time-seriesof recreational fishingeffortcollectedduringandafterimplementationofamultipleusemarinepark shows high inter-annual but low spatial variability Fisheries Research15185ndash90httpsdoiorg101016jfishres201309014

LynchTPAldermanRampHobdayAJ(2015)Ahigh-resolutionpan-orama camera system formonitoring colony-wide seabird nestingbehaviourMethods in Ecology and Evolution6491ndash499httpsdoiorg1011112041-210X12339

LynchTFlynnDWoodGKimJ-HParkJampHobdayAJ(2017)Metrics parameters and results from fisheries and wildlife studies with the CSIRO Ruggedized Autonomous Gigapixel Systems (CRAGS)DarwinNTAustralianMarineScienceAssociation

LynchTPWilkinsonEMellingLHamiltonRMacreadyAampFearyS(2004)ConflictandimpactsofdiversandanglersinamarineparkEnvironmental Management 33 196ndash211 httpsdoiorg101007s00267-003-3014-6

MaHOgawaTKSminkeyTRBreidtFJLesserVMOpsomerJDhellipVanVoorheesDA(2018)Pilotsurveystoimprovemonitoringofmarine recreational fisheries inHawaiʻiFisheries Research204197ndash208httpsdoiorg101016jfishres201802010

McCluskey S M amp Lewison R L (2008) Quantifying fish-ing effort A synthesis of current methods and their ap-plications Fish and Fisheries 9 188ndash200 httpsdoiorg101111j1467-2979200800283x

McGlennonDampKinlochMA(1997)Evaluationofthebus-routecreelsurveymethod in a largeAustralianmarine recreational fishery II

PilotsurveysandoptimalsamplingallocationFisheries Research3389ndash99httpsdoiorg101016S0165-7836(97)00067-2

McPheeDLeadbitterDampSkilleterGA(2002)SwallowingthebaitIs recreational fishing in Australia ecologically sustainable Pacific Conservation Biology840httpsdoiorg101071PC020040

Monz C A Pickering C M amp HadwenW L (2013) Recent ad-vances in recreation ecology and the implications of differentrelationships between recreation use and ecological impactsFrontiers in Ecology and the Environment11441ndash446httpsdoiorg101890120358

MooreAHallKGiriKTraceySPenroseLHansenShellipBrownP(2015)Developingrobustandcost-effectivemethodsforestimatingthenationalrecreationalcatchofSouthernBluefinTunainAustraliaFRDC Projectpp123

Morton A J amp Lyle J M (2004) Preliminary assessment of the rec-reational gamefish fishery in Tasmania with particular reference to Southern Bluefin Tuna Taroona TAS Tasmanian Aquaculture andFisheriesInstitute

ParnellPEDaytonPKFisherRALoarieCCampDarrowRD(2010)SpatialpatternsoffishingeffortoffSanDiegoImplicationsfor zonal management and ecosystem function Ecological Applications202203ndash2222httpsdoiorg10189009-15431

PattersonTAEvansKCarterTLampGunnJS(2008)Movementand behaviour of large southern bluefin tuna (Thunnus maccoyii)in the Australian region determined using pop-up satellite ar-chival tags Fisheries Oceanography 17 352ndash367 httpsdoiorg101111j1365-2419200800483x

PollockKH JonesCMampBrownTL (1994)Angler survey meth-ods and their applications in fisheries management Bethesda MDAmericanFisheriesSociety

PonsM Branch T AMelnychukM C JensenO P Brodziak JFromentinJMhellipHilbornR(2017)EffectsofbiologicaleconomicandmanagementfactorsontunaandbillfishstockstatusFish and Fisheries181ndash21httpsdoiorg101111faf12163

PowersSPampAnsonK (2016)Estimating recreationaleffort in theGulf of Mexico Red Snapper Fishery using boat ramp camerasReduction in federalseason lengthdoesnotproportionally reducecatchNorth American Journal of Fisheries Management 36 1156ndash1166httpsdoiorg1010800275594720161198284

Robson D amp Jones C M (1989) The theoretical basis of an ac-cess site angler survey design Biometrics 45 83ndash98 httpsdoiorg1023072532036

Rocklin D Levrel H Drogou M Herfaut J amp Veron G (2014)Combining telephone surveys and fishing catches self-reportTheFrenchseabass recreational fisheryassessmentPLoS ONE9e87271httpsdoiorg101371journalpone0087271

Smallwood C B Pollock K HWise B S Hall N G amp GaughanD J (2012) Expanding aerial-roving surveys to include counts ofshore-based recreational fishers from remotely operated camerasBenefitslimitationsandcosteffectivenessNorth American Journal of Fisheries Management321265ndash1276httpsdoiorg101080027559472012728181

Teixeira D ZischkeM T ampWebley J A C (2016) Investigatingbias in recreational fishing surveys Fishers listed in public tele-phone directories fish similarly to their unlisted counterpartsFisheries Research 181 127ndash136 httpsdoiorg101016jfishres201604012

van Poorten B T amp Brydle S (2018) Estimating fishing effortfrom remote traffic counters Opportunities and challengesFisheries Research 204 231ndash238 httpsdoiorg101016jfishres201802024

van Poorten B T Carruthers T RWardHGM ampVarkeyD A(2015)Imputingrecreationalanglingeffortfromtime-lapsecamerasusinganhierarchicalBayesianmodelFisheries Research172265ndash273httpsdoiorg101016jfishres201507032

12emsp |emsp emspensp FLYNN et aL

VenturelliPAHyderKampSkovC(2017)AnglerappsasasourceofrecreationalfisheriesdataOpportunitieschallengesandproposedstandardsFish and Fisheries18578ndash595httpsdoiorg101111faf12189

WiseBSTelferCFLaiEKMHallNGampJacksonG(2012)Long-termmonitoringofboat-basedrecreational fishing inSharkBayWesternAustraliaProvidingscientificadviceforsustainablemanagement in a World Heritage Area Marine and Freshwater Research631129ndash1141httpsdoiorg101071MF12054

WoodGLynchTPDevineCKellerKampFigueiraW(2016)High-resolutionphoto-mosaictime-seriesimageryformonitoringhumanuseofanartificialreefEcology and Evolution66963ndash6968httpsdoiorg101002ece32342

YuFRupertACCDiTizianaMNishikantaKRandySIllahNhellipJeffreyG(2011)TerapixelimagingofcosmologicalsimulationsThe Astrophysical Journal Supplement Series19718

Zischke M T Griffiths S P amp Tibbetts I R (2012) Catch and ef-fort from a specialised recreational pelagic sport fishery off

eastern Australia Fisheries Research 127ndash128 61ndash72 httpsdoiorg101016jfishres201204011

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle

How to cite this articleFlynnDJHLynchTPBarrettNSWongLSCDevineCHughesDGigapixelbigdatamoviesprovidecost-effectiveseascapescaledirectmeasurementsofopen-accesscoastalhumanusesuchasrecreationalfisheriesEcol Evol 2018001ndash12 httpsdoiorg101002ece34301

Graphical AbstractThecontentsofthispagewillbeusedaspartofthegraphicalabstractofhtmlonly

Itwillnotbepublishedaspartofmainarticle

Wetrailedaremoteautonomousultra-high-resolutionphotosamplingmethodasacosteffectsolutionfordirectseascape-scaledmeasure-mentsOursequentialphotosamplingwasbatchedprocessesusingnovelTimeMachinedatahandlingsoftwaretoproduceldquobigdatardquotimeseriesmoviesfromaspatialsubsetofanoffshorefisherywhichwecomparedtoaregionalbus-routesurveyofboattrailersandinterviewswithparticipantsOurcamerasamplescloselytrackedlargerscaleregionaltrendsbutwithlaborcostsaquarterofthebus-routesurveycostsforanindividualsample25ofthebusroutes

Page 10: Gigapixel big data movies provide cost-effective seascape ...

10emsp |emsp emspensp FLYNN et aL

CulversonMrStuartDudgeonandMrMattStapenellKarenEvensprovidedhelpfulcommentsonaninternaldraftGreatestthankstothemany recreational anglerswhowillingly shared information tosurveyclerkswithouttheirinvolvementthisprojectwouldnothavecometofruitionThreeanonymousreviewersprovidedcommentsthatimprovedthemanuscript

CONFLIC T OF INTERE S TS

Theauthorsdeclarenoconflictofinterests

AUTHOR CONTRIBUTIONS

MrFlynnhelpeddesignthestudyledthefieldworkundertookmostoftheanalysisandhelpwritethemanuscriptDrLynchhelpdesignthestudyassisted inthefieldworkprovidedadviceontheanaly-sisanddidsomeanalysisconstructedfiguresandafterMrFlynncontributedthemosttothedraftingofthemanuscriptDrBarretthelpeddesign the study assisted in some fieldwork provided ad-viceonanalysisandeditedthemanuscriptMrWonghelpedexten-sivelywithfieldworkassistedwithanalysisconstructedfiguresandhelpedwritethemanuscriptMsDevineassistedwithfieldworkandconfigurationoftheequipmentincludingtheapplicationofthebigdatamoviesoftwareandhandlingofphotographsandalsohelpedwritethemanuscriptMrHughesdevelopedtheelectronicsfortheequipmentoversaw thebuildofgearwrote the software topro-gramtherobotandreviewedandeditedthemanuscript

DATA ACCE SSIBILIT Y

Survey sampling schedules data collection sheets extrapolationproceduresandtechnicalCRAGSspecificationsarealluploadedasonlinesupportinginformationappendixRawdatafromsurveysandCRAGSDOIhttpdoiorg105061dryadv10d218

RE SE ARCH E THIC S COMPLIANCE AND FUNDERS

ResearchabidesbytheAustraliancodeofhumanresearchandex-perimentation(NationalStatementonEthicalConductinHumanResearch of 2007) Permission to conduct research on humanparticipants was granted by the University of Tasmania SocialScience under reference H0014772mdashldquoRemote investigation ofcoastal area user group quantification and variationrdquo aswell asfromtheCSIROSocialScienceHumanResearchEthicsCommitteeunder reference 08115mdashldquoHawkesbury Region Project HumanUsePatternsrdquoFundingwasbyUTASasPartoftheIMASHonoursProject funding and through internal support from the CoastsProgram

ORCID

Tim P Lynch httporcidorg0000-0002-5346-8454

R E FE R E N C E S

Alessa L Kliskey A amp Brown G (2008) Socialndashecological hotspotsmapping A spatial approach for identifying coupled socialndasheco-logicalspaceLandscape and Urban Planning8527ndash39httpsdoiorg101016jlandurbplan200709007

ArlinghausR(2006)Overcominghumanobstaclestoconservationofrecreational fishery resources with emphasis on central EuropeEnvironmental Conservation 33 46ndash59 httpsdoiorg101017S0376892906002700

Arlinghaus R Tillner R amp Bork M (2015) Explaining participationratesinrecreationalfishingacrossindustrialisedcountriesFisheries Management and Ecology 22 45ndash55 httpsdoiorg101111fme12075

BadcockPBPatrickKSmithAMASimpsonJMPennayDRisselCEhellipRichtersJ(2016)Differencesbetweenlandlineandmobilephoneusers in sexualbehavior researchArchives of Sexual Behavior46(6)1711ndash1721

Blumberg S J amp Luke J V (2009) Reevaluating the need for con-cern regarding noncoverage bias in landline surveys American Journal of Public Health 99 1806ndash1810 httpsdoiorg102105AJPH2008152835

Bousetouane F ampMorris B (2015) Off-the-shelf CNN features forfine-grainedclassificationofvesselsinamaritimeenvironmentInGBebisRBoyleBParvinDKoracinIPavlidisRFerisTMcGrawMElendtRKopperERaganZYeampGWeber(Eds)Advances in visual computing 11th International symposium ISVC 2015 Las Vegas NV USA December 14ndash16 2015 proceedings Part II (pp379ndash388)Cham Switzerland Springer International Publishing httpsdoiorg101007978-3-319-27863-6

Cooke S J amp Cowx I G (2004) The role of recreational fish-ing in global fish crises BioScience 54 857ndash859 httpsdoiorg1016410006-3568(2004)054[0857TRORFI]20CO2

DiggleP J (1995)Time-series a biostatistical introductionOxfordUKClarendonPress

EdwardsJampSchindlerE (2017)Avideomonitoringsystemtoeval-uate ocean recreational fishing effort in Astoria OregonMarine recreational information program (pp 31) Newport OR OregonDepartmentofFishandWildlife

FarrMStoecklNampSuttonS(2014)RecreationalfishingandboatingArethedeterminantsthesameMarine Policy47126ndash137httpsdoiorg101016jmarpol201402014

ForbesETraceySampLyle JM (2009)Assessment of the 2008 rec-reational gamefish fishery of Southeast Tasmania with particular refer-ence to Southern Bluefin TunaHobartTASTasmanianAquacultureandFisheriesInstituteUniversityofTasmania

FretwellPTScofieldPampPhillipsRA(2017)Usingsuper-highres-olutionsatelliteimagerytocensusthreatenedalbatrossesIbis159481ndash490httpsdoiorg101111ibi12482

GiriKampHallK (2015)SouthAustralian recreational fishingsurveyFisheries Victoria internal report series (pp 63) Queenscliff VicFisheriesVictoria

Griffiths S P Pollock K H Lyle J M Pepperell J G TonksM L amp Sawynok W (2010) Following the chain to elu-sive anglers Fish and Fisheries 11 220ndash228 httpsdoiorg101111j1467-2979201000354x

Halpern B SWalbridge S Selkoe K A Kappel C V Micheli FDrsquoAgrosaChellipWatsonR(2008)AglobalmapofhumanimpactonmarineecosystemsScience319948ndash952httpsdoiorg101126science1149345

Hartill BW Payne GW Rush N amp Bian R (2016) Bridging thetemporal gap Continuous and cost-effective monitoring of dy-namic recreational fisheries by web cameras and creel surveysFisheries Research 183 488ndash497 httpsdoiorg101016jfishres201606002

emspensp emsp | emsp11FLYNN et aL

HenryGWampLyleJM(2003)NationalrecreationalandindigenousfishingsurveyFinal report to the fisheries research amp development cor-poration and the fisheries action program (pp 188) Canberra ACTFRDC

JonesCMampPollockKH(2012)Recreationalanglersurveymeth-odsEstimationofeffortharvestandreleasedcatchInAZaleDLParrishampTMSutton(Eds)Fisheries techniquesBethesdaMDAmericanFisheriesSociety

Kearney R E (2002) Co-management The resolution of conflict be-tween commercial and recreational fishers in Victoria AustraliaOcean amp Coastal Management45201ndash214httpsdoiorg101016S0964-5691(02)00055-8

KellerKSteffeASLowryMMurphyJJampSuthersIM(2016)Monitoringboat-basedrecreationalfishingeffortatanearshorearti-ficialreefwithashore-basedcameraFisheries Research18184ndash92httpsdoiorg101016jfishres201603025

KinlochMAMcGlennonDNicollGampPikePG(1997)Evaluationof the bus-route creel surveymethod in a largeAustralianmarinerecreationalfisheryISurveydesignFisheries Research33101ndash121httpsdoiorg101016S0165-7836(97)00068-4

LewinWCArlinghausRampMehnerT(2006)Documentedandpo-tential biological impacts of recreational fishing Insights forman-agementandconservationReviews in Fisheries Science14305ndash367httpsdoiorg10108010641260600886455

LowryMampMurphy J (2003)Monitoring the recreational gamefishfisheryoffsouth-easternAustraliaMarine and Freshwater Research54425ndash434httpsdoiorg101071MF01269

LyleJMStarkKEampTraceySR(2014)2012ndash2013 Survey of rec-reational fishing in TasmaniaHobart TAS Institute forMarine andAntarcticStudies

Lynch T P (2006) Incorporation of recreational fishing ef-fort into design of marine protected areas Incorporacioacuten delEsfuerzo de Pesca Recreativa en el Disentildeo de Aacutereas MarinasProtegidas Conservation Biology 20 1466ndash1476 httpsdoiorg101111j1523-1739200600509x

LynchTP(2008)Thedifferencebetweenspatialandtemporalvaria-tioninrecreationalfisheriesforplanningofmarineprotectedareasResponse toSteffeConservation Biology22486ndash491httpsdoiorg101111j1523-1739200800888x

LynchTP (2014)Adecadal time-seriesof recreational fishingeffortcollectedduringandafterimplementationofamultipleusemarinepark shows high inter-annual but low spatial variability Fisheries Research15185ndash90httpsdoiorg101016jfishres201309014

LynchTPAldermanRampHobdayAJ(2015)Ahigh-resolutionpan-orama camera system formonitoring colony-wide seabird nestingbehaviourMethods in Ecology and Evolution6491ndash499httpsdoiorg1011112041-210X12339

LynchTFlynnDWoodGKimJ-HParkJampHobdayAJ(2017)Metrics parameters and results from fisheries and wildlife studies with the CSIRO Ruggedized Autonomous Gigapixel Systems (CRAGS)DarwinNTAustralianMarineScienceAssociation

LynchTPWilkinsonEMellingLHamiltonRMacreadyAampFearyS(2004)ConflictandimpactsofdiversandanglersinamarineparkEnvironmental Management 33 196ndash211 httpsdoiorg101007s00267-003-3014-6

MaHOgawaTKSminkeyTRBreidtFJLesserVMOpsomerJDhellipVanVoorheesDA(2018)Pilotsurveystoimprovemonitoringofmarine recreational fisheries inHawaiʻiFisheries Research204197ndash208httpsdoiorg101016jfishres201802010

McCluskey S M amp Lewison R L (2008) Quantifying fish-ing effort A synthesis of current methods and their ap-plications Fish and Fisheries 9 188ndash200 httpsdoiorg101111j1467-2979200800283x

McGlennonDampKinlochMA(1997)Evaluationofthebus-routecreelsurveymethod in a largeAustralianmarine recreational fishery II

PilotsurveysandoptimalsamplingallocationFisheries Research3389ndash99httpsdoiorg101016S0165-7836(97)00067-2

McPheeDLeadbitterDampSkilleterGA(2002)SwallowingthebaitIs recreational fishing in Australia ecologically sustainable Pacific Conservation Biology840httpsdoiorg101071PC020040

Monz C A Pickering C M amp HadwenW L (2013) Recent ad-vances in recreation ecology and the implications of differentrelationships between recreation use and ecological impactsFrontiers in Ecology and the Environment11441ndash446httpsdoiorg101890120358

MooreAHallKGiriKTraceySPenroseLHansenShellipBrownP(2015)Developingrobustandcost-effectivemethodsforestimatingthenationalrecreationalcatchofSouthernBluefinTunainAustraliaFRDC Projectpp123

Morton A J amp Lyle J M (2004) Preliminary assessment of the rec-reational gamefish fishery in Tasmania with particular reference to Southern Bluefin Tuna Taroona TAS Tasmanian Aquaculture andFisheriesInstitute

ParnellPEDaytonPKFisherRALoarieCCampDarrowRD(2010)SpatialpatternsoffishingeffortoffSanDiegoImplicationsfor zonal management and ecosystem function Ecological Applications202203ndash2222httpsdoiorg10189009-15431

PattersonTAEvansKCarterTLampGunnJS(2008)Movementand behaviour of large southern bluefin tuna (Thunnus maccoyii)in the Australian region determined using pop-up satellite ar-chival tags Fisheries Oceanography 17 352ndash367 httpsdoiorg101111j1365-2419200800483x

PollockKH JonesCMampBrownTL (1994)Angler survey meth-ods and their applications in fisheries management Bethesda MDAmericanFisheriesSociety

PonsM Branch T AMelnychukM C JensenO P Brodziak JFromentinJMhellipHilbornR(2017)EffectsofbiologicaleconomicandmanagementfactorsontunaandbillfishstockstatusFish and Fisheries181ndash21httpsdoiorg101111faf12163

PowersSPampAnsonK (2016)Estimating recreationaleffort in theGulf of Mexico Red Snapper Fishery using boat ramp camerasReduction in federalseason lengthdoesnotproportionally reducecatchNorth American Journal of Fisheries Management 36 1156ndash1166httpsdoiorg1010800275594720161198284

Robson D amp Jones C M (1989) The theoretical basis of an ac-cess site angler survey design Biometrics 45 83ndash98 httpsdoiorg1023072532036

Rocklin D Levrel H Drogou M Herfaut J amp Veron G (2014)Combining telephone surveys and fishing catches self-reportTheFrenchseabass recreational fisheryassessmentPLoS ONE9e87271httpsdoiorg101371journalpone0087271

Smallwood C B Pollock K HWise B S Hall N G amp GaughanD J (2012) Expanding aerial-roving surveys to include counts ofshore-based recreational fishers from remotely operated camerasBenefitslimitationsandcosteffectivenessNorth American Journal of Fisheries Management321265ndash1276httpsdoiorg101080027559472012728181

Teixeira D ZischkeM T ampWebley J A C (2016) Investigatingbias in recreational fishing surveys Fishers listed in public tele-phone directories fish similarly to their unlisted counterpartsFisheries Research 181 127ndash136 httpsdoiorg101016jfishres201604012

van Poorten B T amp Brydle S (2018) Estimating fishing effortfrom remote traffic counters Opportunities and challengesFisheries Research 204 231ndash238 httpsdoiorg101016jfishres201802024

van Poorten B T Carruthers T RWardHGM ampVarkeyD A(2015)Imputingrecreationalanglingeffortfromtime-lapsecamerasusinganhierarchicalBayesianmodelFisheries Research172265ndash273httpsdoiorg101016jfishres201507032

12emsp |emsp emspensp FLYNN et aL

VenturelliPAHyderKampSkovC(2017)AnglerappsasasourceofrecreationalfisheriesdataOpportunitieschallengesandproposedstandardsFish and Fisheries18578ndash595httpsdoiorg101111faf12189

WiseBSTelferCFLaiEKMHallNGampJacksonG(2012)Long-termmonitoringofboat-basedrecreational fishing inSharkBayWesternAustraliaProvidingscientificadviceforsustainablemanagement in a World Heritage Area Marine and Freshwater Research631129ndash1141httpsdoiorg101071MF12054

WoodGLynchTPDevineCKellerKampFigueiraW(2016)High-resolutionphoto-mosaictime-seriesimageryformonitoringhumanuseofanartificialreefEcology and Evolution66963ndash6968httpsdoiorg101002ece32342

YuFRupertACCDiTizianaMNishikantaKRandySIllahNhellipJeffreyG(2011)TerapixelimagingofcosmologicalsimulationsThe Astrophysical Journal Supplement Series19718

Zischke M T Griffiths S P amp Tibbetts I R (2012) Catch and ef-fort from a specialised recreational pelagic sport fishery off

eastern Australia Fisheries Research 127ndash128 61ndash72 httpsdoiorg101016jfishres201204011

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle

How to cite this articleFlynnDJHLynchTPBarrettNSWongLSCDevineCHughesDGigapixelbigdatamoviesprovidecost-effectiveseascapescaledirectmeasurementsofopen-accesscoastalhumanusesuchasrecreationalfisheriesEcol Evol 2018001ndash12 httpsdoiorg101002ece34301

Graphical AbstractThecontentsofthispagewillbeusedaspartofthegraphicalabstractofhtmlonly

Itwillnotbepublishedaspartofmainarticle

Wetrailedaremoteautonomousultra-high-resolutionphotosamplingmethodasacosteffectsolutionfordirectseascape-scaledmeasure-mentsOursequentialphotosamplingwasbatchedprocessesusingnovelTimeMachinedatahandlingsoftwaretoproduceldquobigdatardquotimeseriesmoviesfromaspatialsubsetofanoffshorefisherywhichwecomparedtoaregionalbus-routesurveyofboattrailersandinterviewswithparticipantsOurcamerasamplescloselytrackedlargerscaleregionaltrendsbutwithlaborcostsaquarterofthebus-routesurveycostsforanindividualsample25ofthebusroutes

Page 11: Gigapixel big data movies provide cost-effective seascape ...

emspensp emsp | emsp11FLYNN et aL

HenryGWampLyleJM(2003)NationalrecreationalandindigenousfishingsurveyFinal report to the fisheries research amp development cor-poration and the fisheries action program (pp 188) Canberra ACTFRDC

JonesCMampPollockKH(2012)Recreationalanglersurveymeth-odsEstimationofeffortharvestandreleasedcatchInAZaleDLParrishampTMSutton(Eds)Fisheries techniquesBethesdaMDAmericanFisheriesSociety

Kearney R E (2002) Co-management The resolution of conflict be-tween commercial and recreational fishers in Victoria AustraliaOcean amp Coastal Management45201ndash214httpsdoiorg101016S0964-5691(02)00055-8

KellerKSteffeASLowryMMurphyJJampSuthersIM(2016)Monitoringboat-basedrecreationalfishingeffortatanearshorearti-ficialreefwithashore-basedcameraFisheries Research18184ndash92httpsdoiorg101016jfishres201603025

KinlochMAMcGlennonDNicollGampPikePG(1997)Evaluationof the bus-route creel surveymethod in a largeAustralianmarinerecreationalfisheryISurveydesignFisheries Research33101ndash121httpsdoiorg101016S0165-7836(97)00068-4

LewinWCArlinghausRampMehnerT(2006)Documentedandpo-tential biological impacts of recreational fishing Insights forman-agementandconservationReviews in Fisheries Science14305ndash367httpsdoiorg10108010641260600886455

LowryMampMurphy J (2003)Monitoring the recreational gamefishfisheryoffsouth-easternAustraliaMarine and Freshwater Research54425ndash434httpsdoiorg101071MF01269

LyleJMStarkKEampTraceySR(2014)2012ndash2013 Survey of rec-reational fishing in TasmaniaHobart TAS Institute forMarine andAntarcticStudies

Lynch T P (2006) Incorporation of recreational fishing ef-fort into design of marine protected areas Incorporacioacuten delEsfuerzo de Pesca Recreativa en el Disentildeo de Aacutereas MarinasProtegidas Conservation Biology 20 1466ndash1476 httpsdoiorg101111j1523-1739200600509x

LynchTP(2008)Thedifferencebetweenspatialandtemporalvaria-tioninrecreationalfisheriesforplanningofmarineprotectedareasResponse toSteffeConservation Biology22486ndash491httpsdoiorg101111j1523-1739200800888x

LynchTP (2014)Adecadal time-seriesof recreational fishingeffortcollectedduringandafterimplementationofamultipleusemarinepark shows high inter-annual but low spatial variability Fisheries Research15185ndash90httpsdoiorg101016jfishres201309014

LynchTPAldermanRampHobdayAJ(2015)Ahigh-resolutionpan-orama camera system formonitoring colony-wide seabird nestingbehaviourMethods in Ecology and Evolution6491ndash499httpsdoiorg1011112041-210X12339

LynchTFlynnDWoodGKimJ-HParkJampHobdayAJ(2017)Metrics parameters and results from fisheries and wildlife studies with the CSIRO Ruggedized Autonomous Gigapixel Systems (CRAGS)DarwinNTAustralianMarineScienceAssociation

LynchTPWilkinsonEMellingLHamiltonRMacreadyAampFearyS(2004)ConflictandimpactsofdiversandanglersinamarineparkEnvironmental Management 33 196ndash211 httpsdoiorg101007s00267-003-3014-6

MaHOgawaTKSminkeyTRBreidtFJLesserVMOpsomerJDhellipVanVoorheesDA(2018)Pilotsurveystoimprovemonitoringofmarine recreational fisheries inHawaiʻiFisheries Research204197ndash208httpsdoiorg101016jfishres201802010

McCluskey S M amp Lewison R L (2008) Quantifying fish-ing effort A synthesis of current methods and their ap-plications Fish and Fisheries 9 188ndash200 httpsdoiorg101111j1467-2979200800283x

McGlennonDampKinlochMA(1997)Evaluationofthebus-routecreelsurveymethod in a largeAustralianmarine recreational fishery II

PilotsurveysandoptimalsamplingallocationFisheries Research3389ndash99httpsdoiorg101016S0165-7836(97)00067-2

McPheeDLeadbitterDampSkilleterGA(2002)SwallowingthebaitIs recreational fishing in Australia ecologically sustainable Pacific Conservation Biology840httpsdoiorg101071PC020040

Monz C A Pickering C M amp HadwenW L (2013) Recent ad-vances in recreation ecology and the implications of differentrelationships between recreation use and ecological impactsFrontiers in Ecology and the Environment11441ndash446httpsdoiorg101890120358

MooreAHallKGiriKTraceySPenroseLHansenShellipBrownP(2015)Developingrobustandcost-effectivemethodsforestimatingthenationalrecreationalcatchofSouthernBluefinTunainAustraliaFRDC Projectpp123

Morton A J amp Lyle J M (2004) Preliminary assessment of the rec-reational gamefish fishery in Tasmania with particular reference to Southern Bluefin Tuna Taroona TAS Tasmanian Aquaculture andFisheriesInstitute

ParnellPEDaytonPKFisherRALoarieCCampDarrowRD(2010)SpatialpatternsoffishingeffortoffSanDiegoImplicationsfor zonal management and ecosystem function Ecological Applications202203ndash2222httpsdoiorg10189009-15431

PattersonTAEvansKCarterTLampGunnJS(2008)Movementand behaviour of large southern bluefin tuna (Thunnus maccoyii)in the Australian region determined using pop-up satellite ar-chival tags Fisheries Oceanography 17 352ndash367 httpsdoiorg101111j1365-2419200800483x

PollockKH JonesCMampBrownTL (1994)Angler survey meth-ods and their applications in fisheries management Bethesda MDAmericanFisheriesSociety

PonsM Branch T AMelnychukM C JensenO P Brodziak JFromentinJMhellipHilbornR(2017)EffectsofbiologicaleconomicandmanagementfactorsontunaandbillfishstockstatusFish and Fisheries181ndash21httpsdoiorg101111faf12163

PowersSPampAnsonK (2016)Estimating recreationaleffort in theGulf of Mexico Red Snapper Fishery using boat ramp camerasReduction in federalseason lengthdoesnotproportionally reducecatchNorth American Journal of Fisheries Management 36 1156ndash1166httpsdoiorg1010800275594720161198284

Robson D amp Jones C M (1989) The theoretical basis of an ac-cess site angler survey design Biometrics 45 83ndash98 httpsdoiorg1023072532036

Rocklin D Levrel H Drogou M Herfaut J amp Veron G (2014)Combining telephone surveys and fishing catches self-reportTheFrenchseabass recreational fisheryassessmentPLoS ONE9e87271httpsdoiorg101371journalpone0087271

Smallwood C B Pollock K HWise B S Hall N G amp GaughanD J (2012) Expanding aerial-roving surveys to include counts ofshore-based recreational fishers from remotely operated camerasBenefitslimitationsandcosteffectivenessNorth American Journal of Fisheries Management321265ndash1276httpsdoiorg101080027559472012728181

Teixeira D ZischkeM T ampWebley J A C (2016) Investigatingbias in recreational fishing surveys Fishers listed in public tele-phone directories fish similarly to their unlisted counterpartsFisheries Research 181 127ndash136 httpsdoiorg101016jfishres201604012

van Poorten B T amp Brydle S (2018) Estimating fishing effortfrom remote traffic counters Opportunities and challengesFisheries Research 204 231ndash238 httpsdoiorg101016jfishres201802024

van Poorten B T Carruthers T RWardHGM ampVarkeyD A(2015)Imputingrecreationalanglingeffortfromtime-lapsecamerasusinganhierarchicalBayesianmodelFisheries Research172265ndash273httpsdoiorg101016jfishres201507032

12emsp |emsp emspensp FLYNN et aL

VenturelliPAHyderKampSkovC(2017)AnglerappsasasourceofrecreationalfisheriesdataOpportunitieschallengesandproposedstandardsFish and Fisheries18578ndash595httpsdoiorg101111faf12189

WiseBSTelferCFLaiEKMHallNGampJacksonG(2012)Long-termmonitoringofboat-basedrecreational fishing inSharkBayWesternAustraliaProvidingscientificadviceforsustainablemanagement in a World Heritage Area Marine and Freshwater Research631129ndash1141httpsdoiorg101071MF12054

WoodGLynchTPDevineCKellerKampFigueiraW(2016)High-resolutionphoto-mosaictime-seriesimageryformonitoringhumanuseofanartificialreefEcology and Evolution66963ndash6968httpsdoiorg101002ece32342

YuFRupertACCDiTizianaMNishikantaKRandySIllahNhellipJeffreyG(2011)TerapixelimagingofcosmologicalsimulationsThe Astrophysical Journal Supplement Series19718

Zischke M T Griffiths S P amp Tibbetts I R (2012) Catch and ef-fort from a specialised recreational pelagic sport fishery off

eastern Australia Fisheries Research 127ndash128 61ndash72 httpsdoiorg101016jfishres201204011

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle

How to cite this articleFlynnDJHLynchTPBarrettNSWongLSCDevineCHughesDGigapixelbigdatamoviesprovidecost-effectiveseascapescaledirectmeasurementsofopen-accesscoastalhumanusesuchasrecreationalfisheriesEcol Evol 2018001ndash12 httpsdoiorg101002ece34301

Graphical AbstractThecontentsofthispagewillbeusedaspartofthegraphicalabstractofhtmlonly

Itwillnotbepublishedaspartofmainarticle

Wetrailedaremoteautonomousultra-high-resolutionphotosamplingmethodasacosteffectsolutionfordirectseascape-scaledmeasure-mentsOursequentialphotosamplingwasbatchedprocessesusingnovelTimeMachinedatahandlingsoftwaretoproduceldquobigdatardquotimeseriesmoviesfromaspatialsubsetofanoffshorefisherywhichwecomparedtoaregionalbus-routesurveyofboattrailersandinterviewswithparticipantsOurcamerasamplescloselytrackedlargerscaleregionaltrendsbutwithlaborcostsaquarterofthebus-routesurveycostsforanindividualsample25ofthebusroutes

Page 12: Gigapixel big data movies provide cost-effective seascape ...

12emsp |emsp emspensp FLYNN et aL

VenturelliPAHyderKampSkovC(2017)AnglerappsasasourceofrecreationalfisheriesdataOpportunitieschallengesandproposedstandardsFish and Fisheries18578ndash595httpsdoiorg101111faf12189

WiseBSTelferCFLaiEKMHallNGampJacksonG(2012)Long-termmonitoringofboat-basedrecreational fishing inSharkBayWesternAustraliaProvidingscientificadviceforsustainablemanagement in a World Heritage Area Marine and Freshwater Research631129ndash1141httpsdoiorg101071MF12054

WoodGLynchTPDevineCKellerKampFigueiraW(2016)High-resolutionphoto-mosaictime-seriesimageryformonitoringhumanuseofanartificialreefEcology and Evolution66963ndash6968httpsdoiorg101002ece32342

YuFRupertACCDiTizianaMNishikantaKRandySIllahNhellipJeffreyG(2011)TerapixelimagingofcosmologicalsimulationsThe Astrophysical Journal Supplement Series19718

Zischke M T Griffiths S P amp Tibbetts I R (2012) Catch and ef-fort from a specialised recreational pelagic sport fishery off

eastern Australia Fisheries Research 127ndash128 61ndash72 httpsdoiorg101016jfishres201204011

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle

How to cite this articleFlynnDJHLynchTPBarrettNSWongLSCDevineCHughesDGigapixelbigdatamoviesprovidecost-effectiveseascapescaledirectmeasurementsofopen-accesscoastalhumanusesuchasrecreationalfisheriesEcol Evol 2018001ndash12 httpsdoiorg101002ece34301

Graphical AbstractThecontentsofthispagewillbeusedaspartofthegraphicalabstractofhtmlonly

Itwillnotbepublishedaspartofmainarticle

Wetrailedaremoteautonomousultra-high-resolutionphotosamplingmethodasacosteffectsolutionfordirectseascape-scaledmeasure-mentsOursequentialphotosamplingwasbatchedprocessesusingnovelTimeMachinedatahandlingsoftwaretoproduceldquobigdatardquotimeseriesmoviesfromaspatialsubsetofanoffshorefisherywhichwecomparedtoaregionalbus-routesurveyofboattrailersandinterviewswithparticipantsOurcamerasamplescloselytrackedlargerscaleregionaltrendsbutwithlaborcostsaquarterofthebus-routesurveycostsforanindividualsample25ofthebusroutes

Page 13: Gigapixel big data movies provide cost-effective seascape ...

Graphical AbstractThecontentsofthispagewillbeusedaspartofthegraphicalabstractofhtmlonly

Itwillnotbepublishedaspartofmainarticle

Wetrailedaremoteautonomousultra-high-resolutionphotosamplingmethodasacosteffectsolutionfordirectseascape-scaledmeasure-mentsOursequentialphotosamplingwasbatchedprocessesusingnovelTimeMachinedatahandlingsoftwaretoproduceldquobigdatardquotimeseriesmoviesfromaspatialsubsetofanoffshorefisherywhichwecomparedtoaregionalbus-routesurveyofboattrailersandinterviewswithparticipantsOurcamerasamplescloselytrackedlargerscaleregionaltrendsbutwithlaborcostsaquarterofthebus-routesurveycostsforanindividualsample25ofthebusroutes