Emergence of anyons and ground-state properties of the anyon gas

68
Emergence of anyons and ground-state properties of the anyon gas Douglas Lundholm KTH Stockholm based on work in collaborations with Michele Correggi, Romain Duboscq, Simon Larson, Viktor Qvarfordt, Nicolas Rougerie, Robert Seiringer, Jan Philip Solovej Oslo, January 2018 Emergence of anyons Lundholm Slide 1/37

Transcript of Emergence of anyons and ground-state properties of the anyon gas

Page 1: Emergence of anyons and ground-state properties of the anyon gas

Emergence of anyons and ground-state propertiesof the anyon gas

Douglas LundholmKTH Stockholm

based on work in collaborations withMichele Correggi, Romain Duboscq, Simon Larson,

Viktor Qvarfordt, Nicolas Rougerie, Robert Seiringer,Jan Philip Solovej

Oslo, January 2018

Emergence of anyons Lundholm Slide 1/37

Page 2: Emergence of anyons and ground-state properties of the anyon gas

Outline of Talk

1 Introduce 2D anyons — ideal or extended

2 Emergence of anyons in physics

3 The ideal anyon gas

4 Discussion

Emergence of anyons Lundholm Slide 2/37

Page 3: Emergence of anyons and ground-state properties of the anyon gas

Identical particles and statistics in 2D

Particle exchange in 2D: Ψ: (R2)N → C

Ψ(x1, . . . ,xj , . . . ,xk, . . . ,xN ) ∈ C

eiαπ ∈ U(1) any phase

α = 0: bosons

α = 1: fermions

xj xk

anyons: ‘fractional’-statistics quasiparticles in confined systems— expected to arise e.g. in fractional quantum Hall systems

∼1970 Souriau; Streater & Wilde . . . Leinaas & Myrheim ’77; Goldin, Menikoff & Sharp ’81; Wilczek ’82 . . .

Reviews by Frohlich ’90, Wilczek ’90, Lerda ’92, Myrheim ’99, Khare ’05, Ouvry ’07, Stern ’08, Hansson et al ’17...

Past rigorous QM studies by Baker, Canright & Mulay ’93, Dell’Antonio, Figari & Teta ’97

Emergence of anyons Lundholm Slide 3/37

Page 4: Emergence of anyons and ground-state properties of the anyon gas

Identical particles and statistics in 2D

Particle exchange in 2D: Ψ: (R2)N → C

|Ψ(x1, . . . ,xj , . . . ,xk, . . . ,xN )|2 = |Ψ(x1, . . . ,xk, . . . ,xj , . . . ,xN )|2

eiαπ ∈ U(1) any phase

α = 0: bosons

α = 1: fermions

xj xk

anyons: ‘fractional’-statistics quasiparticles in confined systems— expected to arise e.g. in fractional quantum Hall systems

∼1970 Souriau; Streater & Wilde . . . Leinaas & Myrheim ’77; Goldin, Menikoff & Sharp ’81; Wilczek ’82 . . .

Reviews by Frohlich ’90, Wilczek ’90, Lerda ’92, Myrheim ’99, Khare ’05, Ouvry ’07, Stern ’08, Hansson et al ’17...

Past rigorous QM studies by Baker, Canright & Mulay ’93, Dell’Antonio, Figari & Teta ’97

Emergence of anyons Lundholm Slide 3/37

Page 5: Emergence of anyons and ground-state properties of the anyon gas

Identical particles and statistics in 2D

Particle exchange in 2D: Ψ: (R2)N → C

Ψ(x1, . . . ,xj , . . . ,xk, . . . ,xN ) = eiθ Ψ(x1, . . . ,xk, . . . ,xj , . . . ,xN )

eiαπ ∈ U(1) any phase

α = 0: bosons

α = 1: fermions

xj xk

anyons: ‘fractional’-statistics quasiparticles in confined systems— expected to arise e.g. in fractional quantum Hall systems

∼1970 Souriau; Streater & Wilde . . . Leinaas & Myrheim ’77; Goldin, Menikoff & Sharp ’81; Wilczek ’82 . . .

Reviews by Frohlich ’90, Wilczek ’90, Lerda ’92, Myrheim ’99, Khare ’05, Ouvry ’07, Stern ’08, Hansson et al ’17...

Past rigorous QM studies by Baker, Canright & Mulay ’93, Dell’Antonio, Figari & Teta ’97

Emergence of anyons Lundholm Slide 3/37

Page 6: Emergence of anyons and ground-state properties of the anyon gas

Identical particles and statistics in 2D

Particle exchange in 2D: Ψ: (R2)N → C

Ψ(x1, . . . ,xj , . . . ,xk, . . . ,xN ) = ±Ψ(x1, . . . ,xk, . . . ,xj , . . . ,xN )

eiαπ ∈ U(1) any phase

α = 0: bosons

α = 1: fermions

xj xk

anyons: ‘fractional’-statistics quasiparticles in confined systems— expected to arise e.g. in fractional quantum Hall systems

∼1970 Souriau; Streater & Wilde . . . Leinaas & Myrheim ’77; Goldin, Menikoff & Sharp ’81; Wilczek ’82 . . .

Reviews by Frohlich ’90, Wilczek ’90, Lerda ’92, Myrheim ’99, Khare ’05, Ouvry ’07, Stern ’08, Hansson et al ’17...

Past rigorous QM studies by Baker, Canright & Mulay ’93, Dell’Antonio, Figari & Teta ’97

Emergence of anyons Lundholm Slide 3/37

Page 7: Emergence of anyons and ground-state properties of the anyon gas

Identical particles and statistics in 2D

Particle exchange in 2D: Ψ: (R2)N → C

Ψ(x1, . . . ,xj , . . . ,xk, . . . ,xN ) = eiαπΨ(x1, . . . ,xk, . . . ,xj , . . . ,xN )

eiαπ ∈ U(1) any phase

α = 0: bosons

α = 1: fermionsxj xk

anyons: ‘fractional’-statistics quasiparticles in confined systems— expected to arise e.g. in fractional quantum Hall systems

∼1970 Souriau; Streater & Wilde . . . Leinaas & Myrheim ’77; Goldin, Menikoff & Sharp ’81; Wilczek ’82 . . .

Reviews by Frohlich ’90, Wilczek ’90, Lerda ’92, Myrheim ’99, Khare ’05, Ouvry ’07, Stern ’08, Hansson et al ’17...

Past rigorous QM studies by Baker, Canright & Mulay ’93, Dell’Antonio, Figari & Teta ’97

Emergence of anyons Lundholm Slide 3/37

Page 8: Emergence of anyons and ground-state properties of the anyon gas

Identical particles and statistics in 2D

Particle exchange in 2D: Ψ: (R2)N → C

Ψ(x1, . . . ,xj , . . . ,xk, . . . ,xN ) = eiαπΨ(x1, . . . ,xk, . . . ,xj , . . . ,xN )

eiαπ ∈ U(1) any phase

α = 0: bosons

α = 1: fermionsxj xk

anyons: ‘fractional’-statistics quasiparticles in confined systems— expected to arise e.g. in fractional quantum Hall systems

∼1970 Souriau; Streater & Wilde . . . Leinaas & Myrheim ’77; Goldin, Menikoff & Sharp ’81; Wilczek ’82 . . .

Reviews by Frohlich ’90, Wilczek ’90, Lerda ’92, Myrheim ’99, Khare ’05, Ouvry ’07, Stern ’08, Hansson et al ’17...

Past rigorous QM studies by Baker, Canright & Mulay ’93, Dell’Antonio, Figari & Teta ’97

Emergence of anyons Lundholm Slide 3/37

Page 9: Emergence of anyons and ground-state properties of the anyon gas

Modelling anyons concretely — anyon gauge

ei2pαπ ei(2p+1)απ

p p

Think: free kinetic energy T0 = ~22m

∑Nj=1(−i∇j)2 acting on multi-valued

Ψα := Uα Ψ0, U :=∏j<k

eiφjk =∏j<k

zj − zk|zj − zk|

.

Emergence of anyons Lundholm Slide 4/37

Page 10: Emergence of anyons and ground-state properties of the anyon gas

Modelling anyons concretely — anyon gauge

ei2pαπ ei(2p+1)απ

p p

Think: free kinetic energy T0 = ~22m

∑Nj=1(−i∇j)2 acting on multi-valued

Ψα := Uα Ψ0, U :=∏j<k

eiφjk =∏j<k

zj − zk|zj − zk|

.

Emergence of anyons Lundholm Slide 4/37

Page 11: Emergence of anyons and ground-state properties of the anyon gas

Modelling anyons concretely — magnetic gauge

Bosons (Ψ∈L2sym) in R2 with Aharonov-Bohm magnetic interactions:

Tα :=~2

2m

N∑j=1

D2j , Dj = −i∇j+αAj(xj), Aj(x) =

∑k 6=j

(x− xk)⊥

|x− xk|2

These are ideal anyons. One can also model R-extended anyons:

ARj (x) :=

∑k 6=j

(x− xk)⊥

|x− xk|2R, |x|R := max{|x|, R}

⇒ curlαARj = 2πα

∑k 6=j

1BR(xk)

πR2

R→0−−−→ 2πα∑k 6=j

δxk

We would like to understand the N -anyon ground state Ψ0 and energy

E0(N) := inf spec HN , HN = Tα + V =

N∑j=1

(~2

2mD2j + V (xj)

)

Emergence of anyons Lundholm Slide 5/37

Page 12: Emergence of anyons and ground-state properties of the anyon gas

Modelling anyons concretely — magnetic gauge

Bosons (Ψ∈L2sym) in R2 with Aharonov-Bohm magnetic interactions:

Tα :=~2

2m

N∑j=1

D2j , Dj = −i∇j+αAj(xj), Aj(x) =

∑k 6=j

(x− xk)⊥

|x− xk|2

These are ideal anyons. One can also model R-extended anyons:

ARj (x) :=

∑k 6=j

(x− xk)⊥

|x− xk|2R, |x|R := max{|x|, R}

⇒ curlαARj = 2πα

∑k 6=j

1BR(xk)

πR2

R→0−−−→ 2πα∑k 6=j

δxk

We would like to understand the N -anyon ground state Ψ0 and energy

E0(N) := inf spec HN , HN = Tα + V =

N∑j=1

(~2

2mD2j + V (xj)

)

Emergence of anyons Lundholm Slide 5/37

Page 13: Emergence of anyons and ground-state properties of the anyon gas

Modelling anyons concretely — magnetic gauge

Bosons (Ψ∈L2sym) in R2 with Aharonov-Bohm magnetic interactions:

Tα :=~2

2m

N∑j=1

D2j , Dj = −i∇j+αAj(xj), Aj(x) =

∑k 6=j

(x− xk)⊥

|x− xk|2

These are ideal anyons. One can also model R-extended anyons:

ARj (x) :=

∑k 6=j

(x− xk)⊥

|x− xk|2R, |x|R := max{|x|, R}

⇒ curlαARj = 2πα

∑k 6=j

1BR(xk)

πR2

R→0−−−→ 2πα∑k 6=j

δxk

We would like to understand the N -anyon ground state Ψ0 and energy

E0(N) := inf spec HN , HN = Tα + V =

N∑j=1

(~2

2mD2j + V (xj)

)Emergence of anyons Lundholm Slide 5/37

Page 14: Emergence of anyons and ground-state properties of the anyon gas

How to create an anyon in the lab?

• Need several particles!

• Need 2D!

Emergence of anyons Lundholm Slide 6/37

Page 15: Emergence of anyons and ground-state properties of the anyon gas

How to create an anyon in the lab?

• Need several particles!

• Need 2D!

Emergence of anyons Lundholm Slide 6/37

Page 16: Emergence of anyons and ground-state properties of the anyon gas

How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984cf. e.g. Forte, 1991

zj

,wk

∈ C

←→ strong pot.

B

• Two species of particles in a plane (bosons or fermions)

• Strong perpendicular magnetic field B ⇒ LLL

• Strong repulsion between particles ⇒ Laughlin state

⇒ Effective Hamiltonian with a reduced magnetic field andα = α0 + 1/n

Emergence of anyons Lundholm Slide 7/37

Page 17: Emergence of anyons and ground-state properties of the anyon gas

How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984cf. e.g. Forte, 1991

zj ,wk∈ C

←→ strong pot.

B

• Two species of particles in a plane (bosons or fermions)

• Strong perpendicular magnetic field B ⇒ LLL

• Strong repulsion between particles ⇒ Laughlin state

⇒ Effective Hamiltonian with a reduced magnetic field andα = α0 + 1/n

Emergence of anyons Lundholm Slide 7/37

Page 18: Emergence of anyons and ground-state properties of the anyon gas

How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984cf. e.g. Forte, 1991

zj ,wk∈ C

←→ strong pot.

B

• Two species of particles in a plane (bosons or fermions)

• Strong perpendicular magnetic field B ⇒ LLL

• Strong repulsion between particles ⇒ Laughlin state

⇒ Effective Hamiltonian with a reduced magnetic field andα = α0 + 1/n

Emergence of anyons Lundholm Slide 7/37

Page 19: Emergence of anyons and ground-state properties of the anyon gas

How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984cf. e.g. Forte, 1991

zj ,wk∈ C

←→ strong pot.

B

• Two species of particles in a plane (bosons or fermions)

• Strong perpendicular magnetic field B ⇒ LLL

• Strong repulsion between particles ⇒ Laughlin state

⇒ Effective Hamiltonian with a reduced magnetic field andα = α0 + 1/n

Emergence of anyons Lundholm Slide 7/37

Page 20: Emergence of anyons and ground-state properties of the anyon gas

How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984cf. e.g. Forte, 1991

zj

,wk

∈ C

←→ strong pot.

B′

• Two species of particles in a plane (bosons or fermions)

• Strong perpendicular magnetic field B ⇒ LLL

• Strong repulsion between particles ⇒ Laughlin state

⇒ Effective Hamiltonian with a reduced magnetic field andα = α0 + 1/n

Emergence of anyons Lundholm Slide 7/37

Page 21: Emergence of anyons and ground-state properties of the anyon gas

How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984cf. e.g. Forte, 1991

zj

,wk

∈ C

←→ strong pot.

B′

• Two species of particles in a plane (bosons or fermions)

• Strong perpendicular magnetic field B ⇒ LLL

• Strong repulsion between particles ⇒ Laughlin state

⇒ Effective Hamiltonian with a reduced magnetic field andα = α0 + 1/n

Emergence of anyons Lundholm Slide 7/37

Page 22: Emergence of anyons and ground-state properties of the anyon gas

How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984

Take two different species of quantum particles in a strongmagnetic field B > 0: ‘tracer’ particles at xj=1...M ∈ R2

in a large sea of ‘bath’ particles at yk=1...N ∈ R2, N �M .

HM+N = L2sym(R2M )⊗ L2

sym(R2N )

HM+N = HM ⊗ 1 + 1⊗HN +

M∑j=1

N∑k=1

W12(xj − yk),

HM =

M∑j=1

1

2m

(pxj + eA(xj)

)2+

∑1≤i<j≤M

W11(xi − xj),

HN =

N∑k=1

1

2(pyk + A(yk))

2 +∑

1≤i<j≤NW22(yi − yj)

Emergence of anyons Lundholm Slide 8/37

Page 23: Emergence of anyons and ground-state properties of the anyon gas

How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984

Take two different species of quantum particles in a strongmagnetic field B > 0: ‘tracer’ particles at xj=1...M ∈ R2

in a large sea of ‘bath’ particles at yk=1...N ∈ R2, N �M .

HM+N = L2sym(R2M )⊗ L2

sym(R2N )

HM+N = HM ⊗ 1 + 1⊗HN +

M∑j=1

N∑k=1

W12(xj − yk),

HM =

M∑j=1

1

2m

(−i∇xj +

eB

2x⊥j

)2

+∑

1≤i<j≤MW11(xi − xj),

HN =

N∑k=1

1

2

(−i∇yk +

B

2y⊥k

)2

+∑

1≤i<j≤NW22(yi − yj)

Emergence of anyons Lundholm Slide 8/37

Page 24: Emergence of anyons and ground-state properties of the anyon gas

How to create anyons in the lab?

Ansatz: Ψ(X,Y) = Φ(X)cqh(X)Ψqh(X,Y),

with a Laughlin wave function coupled to quasi-holes at xj ≡ zj :

Ψqh(X,Y) =

M∏j=1

N∏k=1

(zj−wk)q∏

1≤i<j≤N(wi−wj)n e−B

∑Nj=1 |wj |2/4.

Claim: for N �M :

〈Ψ, HM+NΨ〉 ≈⟨

Φ, HeffM Φ

⟩+BN/2,

where

HeffM =

M∑j=1

1

2m

(pxj +

B

2(e− 1

n)x⊥j + αAR

j (xj)

)2

+∑

1≤i<j≤MW11(xi−xj)

is an effective Hamiltonian describing M anyons with α = 1/n,R =

√2/B.

Emergence of anyons Lundholm Slide 9/37

Page 25: Emergence of anyons and ground-state properties of the anyon gas

How to create anyons in the lab?

Ansatz: Ψ(X,Y) = Φ(X)cqh(X)Ψqh(X,Y),

with a Laughlin wave function coupled to quasi-holes at xj ≡ zj :

Ψqh(X,Y) =

M∏j=1

N∏k=1

(zj−wk)q∏

1≤i<j≤N(wi−wj)n e−B

∑Nj=1 |wj |2/4.

Claim: for N �M :

〈Ψ, HM+NΨ〉 ≈⟨

Φ, HeffM Φ

⟩+BN/2,

where

HeffM =

M∑j=1

1

2m

(pxj +

B

2(e− 1

n)x⊥j + αAR

j (xj)

)2

+∑

1≤i<j≤MW11(xi−xj)

is an effective Hamiltonian describing M anyons with α = 1/n,R =

√2/B.

Emergence of anyons Lundholm Slide 9/37

Page 26: Emergence of anyons and ground-state properties of the anyon gas

How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984

zj ,wk∈ CB

• Two species of particles in a plane (bosons or fermions)

• Strong perpendicular magnetic field B ⇒ LLL

• Strong repulsion between particles ⇒ Laughlin state

Ψ(z,w) = Φ(z)c(z)∏j,k

(zj − wk)q∏i<k

(wi − wk)n e−B|w|2/4

⇒ Effective Hamiltonian for Φ with a reduced magnetic field andα = α0 + 1/n

Emergence of anyons Lundholm Slide 10/37

Page 27: Emergence of anyons and ground-state properties of the anyon gas

How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984

zj

,wk

∈ CB′

• Two species of particles in a plane (bosons or fermions)

• Strong perpendicular magnetic field B ⇒ LLL

• Strong repulsion between particles ⇒ Laughlin state

Ψ(z,w) = Φ(z)c(z)∏j,k

(zj − wk)q∏i<k

(wi − wk)n e−B|w|2/4

⇒ Effective Hamiltonian for Φ with a reduced magnetic field andα = α0 + 1/n

Emergence of anyons Lundholm Slide 10/37

Page 28: Emergence of anyons and ground-state properties of the anyon gas

How to create anyons in the lab?

DL, Rougerie, Phys. Rev. Lett., 2016 — avoids usual Berry phase argument of Arovas, Schrieffer, Wilczek, 1984

zj

,wk

∈ C

B′

• Two species of particles in a plane (bosons or fermions)

• Strong perpendicular magnetic field B ⇒ LLL

• Strong repulsion between particles ⇒ Laughlin state

Ψ(z,w) = Φ(z)c(z)∏j,k

(zj − wk)q∏i<k

(wi − wk)n e−B|w|2/4

⇒ Effective Hamiltonian for Φ with a reduced magnetic field andα = α0 + 1/n

Emergence of anyons Lundholm Slide 10/37

Page 29: Emergence of anyons and ground-state properties of the anyon gas

Understanding the zero-temperature ideal anyon gas

cold bosons cold fermions

anyons?

2-body: Leinaas, Myrheim, 1977; Wilczek, 1982; Arovas, Schrieffer, Wilczek, Zee, 19853- and 4-body numerics: Sporre, Verbaarschot, Zahed, 1991-92; Murthy, Law, Brack, Bhaduri, 1991Approximations: average-field theory, lowest Landau level, diluteHundreds of papers...

Emergence of anyons Lundholm Slide 11/37

Page 30: Emergence of anyons and ground-state properties of the anyon gas

Compare with the ideal Bose gas in 2D

Know: Ψ0 = ⊗Nϕ0, ϕ0 lowest state of H1 = −∆R2 + V (x)

The free Bose gas in a box Q = [0, L]2:

H1 = (−∆Q)Dirichlet, ϕ0(x, y) = sin(πx/L) sin(πy/L),

E0(N,L) =〈Ψ0, HNΨ0〉‖Ψ0‖2

= Nλ0 = N2π2

L2= 2π2%

⇒ Energy per area:

E0(N,L)

L2=

2π2%

L2→ 0,

as N →∞ and L→∞ with fixed density % = N/L2.

Emergence of anyons Lundholm Slide 12/37

Page 31: Emergence of anyons and ground-state properties of the anyon gas

Compare with the ideal Bose gas in 2D

Know: Ψ0 = ⊗Nϕ0, ϕ0 lowest state of H1 = −∆R2 + V (x)

The free Bose gas in a box Q = [0, L]2:

H1 = (−∆Q)Dirichlet, ϕ0(x, y) = sin(πx/L) sin(πy/L),

E0(N,L) =〈Ψ0, HNΨ0〉‖Ψ0‖2

= Nλ0 = N2π2

L2= 2π2%

⇒ Energy per area:

E0(N,L)

L2=

2π2%

L2→ 0,

as N →∞ and L→∞ with fixed density % = N/L2.

Emergence of anyons Lundholm Slide 12/37

Page 32: Emergence of anyons and ground-state properties of the anyon gas

Compare with the ideal Bose gas in 2D

Know: Ψ0 = ⊗Nϕ0, ϕ0 lowest state of H1 = −∆R2 + V (x)

The free Bose gas in a box Q = [0, L]2:

H1 = (−∆Q)Dirichlet, ϕ0(x, y) = sin(πx/L) sin(πy/L),

E0(N,L) =〈Ψ0, HNΨ0〉‖Ψ0‖2

= Nλ0 = N2π2

L2= 2π2%

⇒ Energy per area:

E0(N,L)

L2=

2π2%

L2→ 0,

as N →∞ and L→∞ with fixed density % = N/L2.

Emergence of anyons Lundholm Slide 12/37

Page 33: Emergence of anyons and ground-state properties of the anyon gas

Compare with the ideal Fermi gas in 2D

Know: Ψ0 =∧N−1k=0 ϕk, ϕk lowest states of H1 = −∆R2 + V (x)

The free Fermi gas in a box Q ⊂ R2: (Weyl asymptotics)

E0(N,L) =N−1∑k=0

λk ∼ 2πN2

L2= 2π%2 L2

⇒ Thomas–Fermi approximation: (Thomas, Fermi, 1927 — precursor to modern DFT)

〈Ψ0, (Tα=1 + V )Ψ0〉 ≈∫R2

(2π%Ψ0(x)2 + V (x)%Ψ0(x)

)dx

The Lieb–Thirring inequality: (Lieb, Thirring, 1975)

〈Ψ, (Tα=1 + V )Ψ〉 ≥∫R2

(CLT %Ψ(x)2 + V (x)%Ψ(x)

)dx

Emergence of anyons Lundholm Slide 13/37

Page 34: Emergence of anyons and ground-state properties of the anyon gas

Compare with the ideal Fermi gas in 2D

Know: Ψ0 =∧N−1k=0 ϕk, ϕk lowest states of H1 = −∆R2 + V (x)

The free Fermi gas in a box Q ⊂ R2: (Weyl asymptotics)

E0(N,L) =

N−1∑k=0

λk ∼ 2πN2

L2= 2π%2 L2

⇒ Thomas–Fermi approximation: (Thomas, Fermi, 1927 — precursor to modern DFT)

〈Ψ0, (Tα=1 + V )Ψ0〉 ≈∫R2

(2π%Ψ0(x)2 + V (x)%Ψ0(x)

)dx

The Lieb–Thirring inequality: (Lieb, Thirring, 1975)

〈Ψ, (Tα=1 + V )Ψ〉 ≥∫R2

(CLT %Ψ(x)2 + V (x)%Ψ(x)

)dx

Emergence of anyons Lundholm Slide 13/37

Page 35: Emergence of anyons and ground-state properties of the anyon gas

Compare with the ideal Fermi gas in 2D

Know: Ψ0 =∧N−1k=0 ϕk, ϕk lowest states of H1 = −∆R2 + V (x)

The free Fermi gas in a box Q ⊂ R2: (Weyl asymptotics)

E0(N,L) =

N−1∑k=0

λk ∼ 2πN2

L2= 2π%2 L2

⇒ Thomas–Fermi approximation: (Thomas, Fermi, 1927 — precursor to modern DFT)

〈Ψ0, (Tα=1 + V )Ψ0〉 ≈∫R2

(2π%Ψ0(x)2 + V (x)%Ψ0(x)

)dx

The Lieb–Thirring inequality: (Lieb, Thirring, 1975)

〈Ψ, (Tα=1 + V )Ψ〉 ≥∫R2

(CLT %Ψ(x)2 + V (x)%Ψ(x)

)dx

Emergence of anyons Lundholm Slide 13/37

Page 36: Emergence of anyons and ground-state properties of the anyon gas

Compare with the ideal Fermi gas in 2D

Know: Ψ0 =∧N−1k=0 ϕk, ϕk lowest states of H1 = −∆R2 + V (x)

The free Fermi gas in a box Q ⊂ R2: (Weyl asymptotics)

E0(N,L) =

N−1∑k=0

λk ∼ 2πN2

L2= 2π%2 L2

⇒ Thomas–Fermi approximation: (Thomas, Fermi, 1927 — precursor to modern DFT)

〈Ψ0, (Tα=1 + V )Ψ0〉 ≈∫R2

(2π%Ψ0(x)2 + V (x)%Ψ0(x)

)dx

The Lieb–Thirring inequality: (Lieb, Thirring, 1975)

〈Ψ, (Tα=1 + V )Ψ〉 ≥∫R2

(CLT %Ψ(x)2 + V (x)%Ψ(x)

)dx

Emergence of anyons Lundholm Slide 13/37

Page 37: Emergence of anyons and ground-state properties of the anyon gas

Compare with a relaxed Pauli principle

If ν particles allowed in each state: Ψ0 =⊗ν ∧N/ν ϕk,

The free Fermi gas in a box Q ⊂ R2: (Weyl asymptotics)

E0(N,L) =

N−1∑k=0

λk ∼ 2πν(N/ν)2

|Q|= 2πν−1%2 |Q|

⇒ Thomas–Fermi approximation: (Thomas, Fermi, 1927 — precursor to modern DFT)

〈Ψ0, (Tα=1 + V )Ψ0〉 ≈∫R2

(2πν−1%Ψ0(x)2 + V (x)%Ψ0(x)

)dx

The Lieb–Thirring inequality: (Lieb, Thirring, 1975)

〈Ψ, (Tα=1 + V )Ψ〉 ≥∫R2

(CLT ν

−1%Ψ(x)2 + V (x)%Ψ(x))dx

Emergence of anyons Lundholm Slide 14/37

Page 38: Emergence of anyons and ground-state properties of the anyon gas

Average-field approximation

Huge past literature: see e.g. Wilczek 1990 review

For anyons one may consider an average-field approximation

〈Ψ0, (Tα + V )Ψ0〉 ≈∫R2

(2π|α|%Ψ0(x)2 + V (x)%Ψ0(x)

)dx,

where B = curlαAj ≈ 2πα% with LLL energy/particle ∼ |B|.

A particular almost-bosonic limit α = β/N → 0 leads to

Eaf [ψ] :=

∫R2

(∣∣(−i∇+ βA[|ψ|2])ψ(x)

∣∣2 + V (x)|ψ(x)|2)dx,

where curlA[|ψ|2] = 2π|ψ|2 and β the only parameter.DL, Rougerie, 2015; Correggi, DL, Rougerie, 2017; Chern-Simons coupled to non-rel. matter ∼1980

Emergence of anyons Lundholm Slide 15/37

Page 39: Emergence of anyons and ground-state properties of the anyon gas

Average-field approximation

Huge past literature: see e.g. Wilczek 1990 review

For anyons one may consider an average-field approximation

〈Ψ0, (Tα + V )Ψ0〉 ≈∫R2

(2π|α|%Ψ0(x)2 + V (x)%Ψ0(x)

)dx,

where B = curlαAj ≈ 2πα% with LLL energy/particle ∼ |B|.

A particular almost-bosonic limit α = β/N → 0 leads to

Eaf [ψ] :=

∫R2

(∣∣(−i∇+ βA[|ψ|2])ψ(x)

∣∣2 + V (x)|ψ(x)|2)dx,

where curlA[|ψ|2] = 2π|ψ|2 and β the only parameter.DL, Rougerie, 2015; Correggi, DL, Rougerie, 2017; Chern-Simons coupled to non-rel. matter ∼1980

Emergence of anyons Lundholm Slide 15/37

Page 40: Emergence of anyons and ground-state properties of the anyon gas

Average-field approximation for almost-bosonic anyons

“Less bosonic” anyons would then amount to β = αN →∞.

Theorem: As β →∞

Eaf0 (β) = ETF

0 (β) + lower order,

where ETF0 (β) is the minimum of the Thomas–Fermi functional

ETF[%] :=

∫R2

(e(1, 1)β%(x)2 + V %(x)

)dx,

∫R2

%(x)dx = 1.

Furthermore, e(1, 1) ≥ 2π, with e(β, ρ) = e(1, 1)βρ2 the energyper area of the homogeneous problem at density ρ.

Conjecture: e(1, 1) > 2πCorreggi, DL, Rougerie, 2017

Emergence of anyons Lundholm Slide 16/37

Page 41: Emergence of anyons and ground-state properties of the anyon gas

Average-field approximation for almost-bosonic anyons

Continued study of the average-field functional Eaf [ψ] is work inprogress with M. Correggi, R. Duboscq and N. Rougerie.

Numerical simulations of |ψ0|2 at β = 318 by Romain Duboscq.

Emergence of anyons Lundholm Slide 17/37

Page 42: Emergence of anyons and ground-state properties of the anyon gas

Universal bounds: A local exclusion principle for anyons

ei2pαπ ei(2p+1)απ

Recall: 2-particle exchange phase (2p+ 1)α times π.But anyons can also have pairwise relative angular momenta ±2q.

⇒ effective statistical repulsion DL, Solovej, 2013

Vstat(r) = |(2p+ 1)α− 2q|2 1

r2≥

α2N

r2, r = |xj − xk|

Emergence of anyons Lundholm Slide 18/37

Page 43: Emergence of anyons and ground-state properties of the anyon gas

Universal bounds: A local exclusion principle for anyons

ei2pαπ ei(2p+1)απ

Recall: 2-particle exchange phase (2p+ 1)α times π.But anyons can also have pairwise relative angular momenta ±2q.⇒ effective statistical repulsion DL, Solovej, 2013

Vstat(r) = |(2p+ 1)α− 2q|2 1

r2≥

α2N

r2, r = |xj − xk|

Emergence of anyons Lundholm Slide 18/37

Page 44: Emergence of anyons and ground-state properties of the anyon gas

Universal bounds: A local exclusion principle for anyons

α

α∗

αN := minp∈{0,1,...,N−2}

minq∈Z|(2p+ 1)α− 2q|

−→N→∞

α∗ :=

{1ν , if α = µ

ν is a reduced fraction with µ odd,

0, otherwise.

Emergence of anyons Lundholm Slide 19/37

Page 45: Emergence of anyons and ground-state properties of the anyon gas

Universal bounds for the homogeneous anyon gasDL, Solovej, 2011-’13, Larson, DL, 2016-’18, DL, Seiringer, 2017Work in progress with Qvarfordt extends to non-abelian anyons.

Define the ground-state energy per particle and unit density

e(α) := lim infN,L→∞N/L2=%

E0(N,L)

N%

e(0) = 0,

e(1) = 2π

Theorem: There exist constants 0 < C1 ≤ C2 <∞ such that forany 0 ≤ α ≤ 1,

C1α ≤ e(α) ≤ C2α,

and as α→ 0,e(α) ≥ π

4α(1−O(α1/3)

)e(α) ≥ πα∗

(1−O(α

1/3∗ )

)Conjecture: optimal C1 and C2 cannot both be 2π.

Emergence of anyons Lundholm Slide 20/37

Page 46: Emergence of anyons and ground-state properties of the anyon gas

Lieb–Thirring inequalities for anyons

Dyson, Lenard, 1967DL, Solovej, 2011-’13; LT with general local exclusion developed by Nam, Portmann, Solovej, 2013-’15;Larson, DL, 2016-’18; DL, Seiringer, 2017

Theorem (LT inequality for ideal anyons)

There exists a constant 0 < C ≤ 2π such that for any 0 ≤ α ≤ 1and any N -anyon wave function Ψ on R2,

〈Ψ, TαΨ〉 ≥ Cα

∫R2

%Ψ(x)2 dx.

Hence

〈Ψ, HNΨ〉 ≥∫R2

(Cα%Ψ(x)2 + V (x)%Ψ(x)

)dx

i.e. a universal lower bound of the form of average-field theory.

Emergence of anyons Lundholm Slide 21/37

Page 47: Emergence of anyons and ground-state properties of the anyon gas

References

D. L., J.P. Solovej, Hardy and Lieb-Thirring inequalities for anyons,Commun. Math. Phys. 322 (2013) 883.

D. L., J.P. Solovej, Local exclusion principle for identical particles obeyingintermediate and fractional statistics, Phys. Rev. A 88 (2013) 062106.

D. L., J.P. Solovej, Local exclusion and Lieb-Thirring inequalities forintermediate and fractional statistics, Ann. H. Poincare 15 (2014) 1061.

D. L., N. Rougerie, The Average Field Approximation for Almost BosonicExtended Anyons, J. Stat. Phys. 161 (2015) 1236.

D. L., N. Rougerie, Emergence of fractional statistics for tracer particlesin a Laughlin liquid, Phys. Rev. Lett. 116 (2016) 170401.

S. Larson, D. L.,Exclusion bounds for extended anyons, ARMA, 2018

D. L., Many-anyon trial states, Phys. Rev. A 96 (2017) 012116.

M. Correggi, D. L., N. Rougerie, Local density approximation for thealmost-bosonic anyon gas, Analysis & PDE 10 (2017) 1169.

D. L., R. Seiringer, Fermionic behavior of ideal anyons, arXiv:1712.06218

Emergence of anyons Lundholm Slide 22/37

Page 48: Emergence of anyons and ground-state properties of the anyon gas

Discussion

• Extended case

• Harmonic trap

• Clustering trial states

Emergence of anyons Lundholm Slide 23/37

Page 49: Emergence of anyons and ground-state properties of the anyon gas

Hardy inequality

Statistical repulsion gives rise to the following “Hardy inequality”:

Tα ≥4α2

N

N

∑1≤j<k≤N

|xj − xk|−2

Emergence of anyons Lundholm Slide 24/37

Page 50: Emergence of anyons and ground-state properties of the anyon gas

Extended case

We use a magnetic Hardy inequality with symmetry(cf. Laptev, Weidl, 1998; Hoffmann-Ostenhof2, Laptev, Tidblom, 2008; Balinsky...)

to consider the enclosed flux inside a two-particle exchange loop,subtracted with arbitrary pairwise angular momenta. Unwantedoscillation can be controlled by smearing (but analysis is tricky!)

Vstat(r) = ρ(r)1

r2, ρ(r) = min

q∈Z

∣∣∣∣Φ(r)

2π− 2q

∣∣∣∣2

α = 1/3 r

ρ

α2∗

1

Emergence of anyons Lundholm Slide 25/37

Page 51: Emergence of anyons and ground-state properties of the anyon gas

Extended case (clustering)

α = 1/3 r

ρ

α = 2/3 r

ρ

Emergence of anyons Lundholm Slide 26/37

Page 52: Emergence of anyons and ground-state properties of the anyon gas

Universal bounds for the extended anyon gas

Consider ground-state energy on a box Q ⊂ R2:

E0(N,Q, α,R) := inf{〈Ψ, TRα Ψ〉 : Ψ ∈ L2

c(QN ) , ‖Ψ‖ = 1

}In the thermodynamic limit, N, |Q| → ∞ with % = N/|Q| fixed,for dimensional reasons,

E0(N,Q, α,R)

N→ e(α, γ)%, γ := R

√%.

We define (with Dirichlet b.c.)

e(α, γ) := lim infN, |Q|→∞N/|Q|=%

E0(N,Q, α,R)

%N.

Emergence of anyons Lundholm Slide 27/37

Page 53: Emergence of anyons and ground-state properties of the anyon gas

Universal bounds for the extended anyon gas

Consider ground-state energy on a box Q ⊂ R2:

E0(N,Q, α,R) := inf{〈Ψ, TRα Ψ〉 : Ψ ∈ L2

c(QN ) , ‖Ψ‖ = 1

}In the thermodynamic limit, N, |Q| → ∞ with % = N/|Q| fixed,for dimensional reasons,

E0(N,Q, α,R)

N→ e(α, γ)%, γ := R

√%.

We define (with Dirichlet b.c.)

e(α, γ) := lim infN, |Q|→∞N/|Q|=%

E0(N,Q, α,R)

%N.

Emergence of anyons Lundholm Slide 27/37

Page 54: Emergence of anyons and ground-state properties of the anyon gas

Universal bounds for the extended anyon gas

γ

α∗ = 0

α∗ = 1/3

α∗ = 1

γ

α = 1/3

α = 2/3

α = 1

α = 2

α = 3

Theorem ([Larson-DL’16] Bounds for the extended anyon gas)

Up to some universal constant C > 0,

e(α, γ) &

2π|ln γ| + π(j′α∗)

2 ≥ 2πα∗, γ → 0, α 6= 0

2π|α|, γ & 1.

Emergence of anyons Lundholm Slide 28/37

Page 55: Emergence of anyons and ground-state properties of the anyon gas

Ideal anyons in a harmonic trap

Harmonic oscillator Hamiltonian:

HN = Tα + V =

N∑j=1

(1

2m(−i∇j + αAj)

2 +mω2

2|xj |2

).

Rigorous bounds for the ground-state energy E0(N):

HN |ang.mom.= L ≥ ω(N +

∣∣∣L+ αN(N−1)2

∣∣∣) (Chitra, Sen, 1992)

C1 j′αN≤ E0(N)/(ωN

32 ) ≤ C2 ∀α,N (DL, Solovej, 2013; Larson, DL, 2016)

Cp. with fermions in 2D: E0(N) ∼√

83 ωN

32 as N →∞

Average-field suggests: E0(N) ≈√

83

√|α|ωN

32 as N →∞

Emergence of anyons Lundholm Slide 29/37

Page 56: Emergence of anyons and ground-state properties of the anyon gas

Ideal anyons in a harmonic trap

Harmonic oscillator Hamiltonian:

HN = Tα + V =

N∑j=1

(1

2m(−i∇j + αAj)

2 +mω2

2|xj |2

).

Rigorous bounds for the ground-state energy E0(N):

HN |ang.mom.= L ≥ ω(N +

∣∣∣L+ αN(N−1)2

∣∣∣) (Chitra, Sen, 1992)

C1 j′αN≤ E0(N)/(ωN

32 ) ≤ C2 ∀α,N (DL, Solovej, 2013; Larson, DL, 2016)

Cp. with fermions in 2D: E0(N) ∼√

83 ωN

32 as N →∞

Average-field suggests: E0(N) ≈√

83

√|α|ωN

32 as N →∞

Emergence of anyons Lundholm Slide 29/37

Page 57: Emergence of anyons and ground-state properties of the anyon gas

Ideal anyons in a harmonic trap

Harmonic oscillator Hamiltonian:

HN = Tα + V =

N∑j=1

(1

2m(−i∇j + αAj)

2 +mω2

2|xj |2

).

Rigorous bounds for the ground-state energy E0(N):

HN |ang.mom.= L ≥ ω(N +

∣∣∣L+ αN(N−1)2

∣∣∣) (Chitra, Sen, 1992)

C1 j′αN≤ E0(N)/(ωN

32 ) ≤ C2 ∀α,N (DL, Solovej, 2013; Larson, DL, 2016)

Cp. with fermions in 2D: E0(N) ∼√

83 ωN

32 as N →∞

Average-field suggests: E0(N) ≈√

83

√|α|ωN

32 as N →∞

Emergence of anyons Lundholm Slide 29/37

Page 58: Emergence of anyons and ground-state properties of the anyon gas

Anyons in a harmonic trap — exact spectrum

Exact N = 2 spectrum: Leinaas, Myrheim, 1977

Emergence of anyons Lundholm Slide 30/37

Page 59: Emergence of anyons and ground-state properties of the anyon gas

Anyons in a harmonic trap — exact spectrum

Numerical N = 3 spectrum: Murthy, Law, Brack, Bhaduri, 1991; Sporre, Verbaarschot, Zahed, 1991

Emergence of anyons Lundholm Slide 31/37

Page 60: Emergence of anyons and ground-state properties of the anyon gas

Anyons in a harmonic trap — exact spectrum

Numerical N = 4 spectrum: Sporre, Verbaarschot, Zahed, 1992

Emergence of anyons Lundholm Slide 32/37

Page 61: Emergence of anyons and ground-state properties of the anyon gas

Anyons in a harmonic trap — qualitative spectrum

Schematic N →∞ spectrum: Chitra, Sen, 1992 (θ = απ)

Emergence of anyons Lundholm Slide 33/37

Page 62: Emergence of anyons and ground-state properties of the anyon gas

Anyons in a harmonic trap — current lower bounds

j′α∗

α

E0(N)

ωN32

&

Rigorous lower bounds: DL, Solovej, 2013/’14, improved in Larson, DL, 2016, and DL, Seiringer, 2017 ...

Emergence of anyons Lundholm Slide 34/37

Page 63: Emergence of anyons and ground-state properties of the anyon gas

Upper bounds: many-anyon trial states

V1 V2

V3

j

xj

αAj

Jj

V∗1

N = νK particles arranged into ν complete graphs (Vq, Eq)

α = µν even:

ψα(z) :=∏j<k

|zjk|−α S

ν∏q=1

∏(j,k)∈Eq

(zjk)µ

N∏k=1

ϕ0(zk)

(cf. Moore–Read (Pfaffian), Read–Rezayi)

Emergence of anyons Lundholm Slide 35/37

Page 64: Emergence of anyons and ground-state properties of the anyon gas

Upper bounds: many-anyon trial states

V1 V2

V3

j

xj

αAj

Jj

V∗1

N = νK particles arranged into ν complete graphs (Vq, Eq)α = µ

ν even:

ψα(z) :=∏j<k

|zjk|−α S

ν∏q=1

∏(j,k)∈Eq

(zjk)µ

N∏k=1

ϕ0(zk)

(cf. Moore–Read (Pfaffian), Read–Rezayi)

Emergence of anyons Lundholm Slide 35/37

Page 65: Emergence of anyons and ground-state properties of the anyon gas

Upper bounds: many-anyon trial states

V1 V2

V3

j

xj

αAj

Jj

V∗1

N = νK particles arranged into ν complete graphs (Vq, Eq)α = µ

ν even:

ψα(z) :=∏j<k

|zjk|−α S

ν∏q=1

∏(j,k)∈Eq

(zjk)µ

N∏k=1

ϕ0(zk)

(cf. Moore–Read (Pfaffian), Read–Rezayi)

Emergence of anyons Lundholm Slide 35/37

Page 66: Emergence of anyons and ground-state properties of the anyon gas

Upper bounds: many-anyon trial states

V1 V2

V3

j

xj

αAj

Jj

V∗1

N = νK particles arranged into ν complete graphs (Vq, Eq)α = µ

ν odd:

ψα(z) :=∏j<k

|zjk|−α S

ν∏q=1

∏(j,k)∈Eq

(zjk)µK−1∧k=0

ϕk (zj∈Vq)

(cf. Moore–Read (Pfaffian), Read–Rezayi)

Emergence of anyons Lundholm Slide 35/37

Page 67: Emergence of anyons and ground-state properties of the anyon gas

Upper bounds: many-anyon trial states

Proposition: For Ψ = Φψα, Φ ∈ H1loc(R2N ;R), α = µ

ν even,

〈Ψ, HNΨ〉 =

(1− αν − 1

2

)ωN

∫R2N

|Ψ|2 dx

+

∫R2N

N∑j=1

|∇jΦ|2|ψα|2 dx.

Emergence of anyons Lundholm Slide 36/37

Page 68: Emergence of anyons and ground-state properties of the anyon gas

Upper bounds: many-anyon trial states

R-extended case: Replace∏j<k |zjk|−α with e−α

∑j<k wR(xj−xk).

Proposition: For the free gas on a box Q ⊂ R2, α even

TRα ψα = αWR ψα ,

WR(x) :=

N∑j 6=k=1

∆wR(xj − xk) = 2π

N∑j 6=k=1

1BR(0)

πR2(xj − xk).

Proposition: For Ψ = Φψα, Φ ∈ H10 (QN ;R), α even

〈Ψ, TRα Ψ〉 =

∫QN

N∑j=1

|∇jΦ|2 + αWR|Φ|2 |ψα|2 dx.

Emergence of anyons Lundholm Slide 37/37