EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5...

24
1 Professor N. Cheung, U.C. Berkeley Lecture 5 EE143 F05 Thermal Oxidation of Si General Properties of SiO 2 Applications of thermal SiO 2 Deal-Grove Model of Oxidation Thermal SiO 2 is amorphous. Weight Density = 2.20 gm/cm 3 Molecular Density = 2.3E22 molecules/cm 3 Crystalline SiO 2 [Quartz] = 2.65 gm/cm 3 SiO2 <Si>

Transcript of EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5...

Page 1: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

1Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

Thermal Oxidation of Si• General Properties of SiO2

• Applications of thermal SiO2

• Deal-Grove Model of Oxidation

Thermal SiO2 is amorphous.Weight Density = 2.20 gm/cm3

Molecular Density = 2.3E22 molecules/cm3

Crystalline SiO2 [Quartz] = 2.65 gm/cm3

SiO2

<Si>

Page 2: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

2Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

Thermal SiO2 Properties(1) Excellent Electrical Insulator

Resistivity > 1E20 ohm-cm Energy Gap ~ 9 eV

(2) High Breakdown Electric Field > 10MV/cm

(3) Stable and Reproducible Si/SiO2 Interface

(4) Conformal oxide growth on exposed Si surface

Si Si

SiO2

ThermalOxidation

SiSi Si

SiO2

ThermalOxidation

Page 3: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

3Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

(5) SiO2 is a good diffusion mask for common dopants

D Dsio si2<< e.g. B, P, As, Sb.

(6) Very good etching selectivity between Si and SiO2.

SiO2

Si

SiO2

Si

HF dip

*exceptions are Ga (a p-type dopant) and some metals, e.g. Cu, Au

*exceptions are Ga (a p-type dopant) and some metals, e.g. Cu, Au

Thermal SiO2 Properties – cont.

Si

Page 4: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

4Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

Steam generationfor wet oxidation

ThermalOxidation Equipment

Page 5: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

5Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

Thickness of Si consumed during oxidation

si

oxoxsi NNXX •=

oxox XcmatomscmmoleculesX 46.0

/105/103.2

322

322

=××

= •

XsiSiSi

SiO2

originalsurface

Xox

molecular density of SiO2

atomic density of Si

Page 6: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

6Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

1µm Si oxidized 2.17 µm SiO2

One-dimensional planar oxide growth

Suggested calculation exercise:

Si1 µm diameterSi sphere

SiO21.3 µm diameterSiO2 sphere

completelyoxidized

SiSi

SiO21µm2.17 µm

Page 7: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

7Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

Kinetics of SiO2 Growth

Gas Diffusion

Solid-stateDiffusion

SiO2Formation

Si-Substrate

SiO2

Oxidant Flow(O2 or H2O)

Gas FlowStagnant Layer

Page 8: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

8Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

Deal-Grove Model

CGCs

Co

Ci

X0x

stagnantlayer

SiO2 Si

F1 F2 F3

gastransportflux

diffusionflux

through SiO2

reactionflux

at interface

NoteCs ≠ Co

NoteCs ≠ Co

Page 9: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

9Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

( )F h C CG G S1 = −

xCDF∂∂

−=2

−⋅≅

ox

io

XCCD

is CkF ⋅=3

Diffusivity [cm2/sec]

Mass transfer coefficient [cm/sec].

“Fick’s Law of Solid-state Diffusion”

Surface reaction rate constant [cm/sec]Comment: The derivation used in Jaeger textbook assumes F1 is large (not a rate-limiting factor for growth rate).Hence, the algebra looks simpler. However, the lecture notes derivation includes gas transport effect and can be directly applied to CVD growth rate which will be discussed in later weeks.

Page 10: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

10Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

• CS and Co are related by Henry’s Law

• CG is a controlled process variable (proportional to the input oxidant gas pressure)

Only Co and Ci are the 2 unknown variables which can be solved from the steady-state condition:

F1 = F2 =F3 ( 2 equations)

Only Co and Ci are the 2 unknown variables which can be solved from the steady-state condition:

F1 = F2 =F3 ( 2 equations)

How to solve the oxidant concentrations?

Page 11: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

11Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

so PHC ⋅=

( )sCkTH ⋅⋅=

partial pressure of oxidantat surface [in gaseous form].Henry’s

constant

from ideal gas law PV= NkT

HkTCC o

s =∴

Derivation of Oxidation Growth Rate

Henry’s Law

Page 12: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

12Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

)( GA CHkTC ⋅≡

F hHkT

C CGA o1 = −( )

321 FFF ==

Define

Using the steady-state condition:

2 equations to solve the2 unknowns: Co & Ci

2 equations to solve the2 unknowns: Co & Ci

1 2

h≡

This is a controlprocess variable.For a given oxidantpressure, CA is known.

F1 can be re-written as:

Derivation of Oxidation Growth Rate – cont.

Conservation of mass flux

Page 13: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

13Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

C Ckh

k XD

iA

s s ox=

+ +1

+⋅=

DXkCC oxs

io 1

( )DXk

hk1

CkCkFFFFoxss

Asis321

++=⋅====

Therefore

Derivation of Oxidation Growth Rate – cont.

Page 14: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

14Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

Now, convert Flux F into Oxide Thickness Growth Rate

⋅=dtdXNF ox

1

Oxidant molecules/unit volume required to form a unit volume of SiO2.

SiO2 Si

F

∆Xox

Therefore, we have the oxide growth rate eqn:

++=•

DXk

hkCk

dtdXN

oxss

Asox

11

Page 15: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

15Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

1

2

)11(2

NDCB

hkDA

A

s

+≡

BAXX ii +=

2

τ

Initial Condition: At t = 0 , Xox = Xi

)(2 τ+=+ tBAXX oxoxSolution

Note: h >>ks for typical oxidation condition

SiO2

Si

SiO2

Si

xox

Page 16: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

16Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

Note : “dry” and “wet” oxidation have different N1 factors

N cm122 32 3 10= ×. / for O2 as oxidant

Si O SiO+ →2 2

Si H O SiO H+ → + ↑2 22 2 2

N cm122 34 6 10= ×. / for H2O as oxidant

Page 17: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

17Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

BdtdxA

dtdxX

tBAXX

oxoxox

xox

=+

+=+

2

)(02 τ

Summary of Deal-Grove Model

∝ t

∝ t

Xox

t

ox

ox

XAB

dtdx

2+=∴ Oxide Growth Rate slows

down with increase of oxide thickness

Oxide Growth Rate slowsdown with increase of oxide

thickness

Page 18: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

18Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

X A tA

Box = +

+

2

14

12

τ

(Case 1) Large t [ large Xox ]

BtXox→

(Case 2) Small t [ Small Xox ]

tABX ox →

Page 19: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

19Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

Deal-Grove Model Parameters

DNCDB A ∝≡1

2 kTQ

eD−

∝(1)

(2)1

A

s

NC

)k1

h1(

1AB

+=

Q = activation energyfor diffusion

For thermal oxidation of Si, h is typically >> ks B/A is ∝ ks (i.e. F1 is rarely the rate-limiting step)For thermal oxidation of Si, h is typically >> ks

B/A is ∝ ks (i.e. F1 is rarely the rate-limiting step)

kTQ

s

'

ek−

∝Q’ = activation energyfor interface reaction

Page 20: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

20Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

B = Parabolic ConstantB/A = Linear Constant

Page 21: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

21Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

Oxidation Charts

The charts arebased on

Xi = 0 !

The charts arebased on

Xi = 0 !

Page 22: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

22Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

Two Ways to Calculate Oxide ThicknessGrown by Thermal Oxidation

E.g.

SiO2

Si4000Axi=

1100oC33min

steam

SiO2

Si

xox

Method 1: Find B & B/A from Charts

Solve )(2 τ+=+ tBAXX oxox

Page 23: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

23Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

Method 2: Use Oxidation Charts

The charts arebased on

Xi =0 !

The charts arebased on

Xi =0 !

min244000 =⇒= τAX i at 1100oC from chart

Total effective oxidation timemin57min)3324( =+ if start with 0=iX

Xox T3

T2

T1

1100o C

6500oA

4000oA

24 33 57

time(min)0

Two Ways to Calculate Oxide ThicknessGrown by Thermal Oxidation

Page 24: EE143 F05 Lecture 5 Thermal Oxidation of Siee143/sp06/lectures/Lec_05.pdf · EE143 F05 Lecture 5 Thermal Oxidation of Si ... the lecture notes derivation includes gas transport effect

24Professor N. Cheung, U.C. Berkeley

Lecture 5EE143 F05

SiO2

Si

4000oA

SiO2

Si

4000oA

SiO2

Si

4000oAxiCVDOxide

(1) Grown at 1000oC, 5hrs

(2) Grown at 1100oC, 24min

(3) CVD Oxide

For same Xi, τ is the same for all threecases shown here

For same Xi, τ is the same for all threecases shown here