EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C....

35
Professor N Cheung, U.C. Berkeley Lecture 12 EE143 F2010 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x10 5 Pa 1 bar = 10 5 Pa = 750 torr 1 torr = 1 mm Hg 1 mtorr = 1 micron Hg 1Pa = 7.5 mtorr = 1 newton/m 2 1 torr = 133.3 Pa 2. Ideal Gas Law: PV = NkT k = 1.38E-23 Joules/molecule –K = 1.37E-22 atm cm 3 /K N = # of molecules T = absolute temperature in K [Note] At T = 300 K ; kT = 3.1E-20 torr-liter 1

Transcript of EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C....

Page 1: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

1

Vacuum Basics

1. Units– 1 atmosphere = 760 torr = 1.013x105 Pa– 1 bar = 105 Pa = 750 torr– 1 torr = 1 mm Hg– 1 mtorr = 1 micron Hg– 1Pa = 7.5 mtorr = 1 newton/m2

– 1 torr = 133.3 Pa

2. Ideal Gas Law: PV = NkT– k = 1.38E-23 Joules/molecule –K

= 1.37E-22 atm cm3/K– N = # of molecules– T = absolute temperature in K– [Note] At T = 300 K ; kT = 3.1E-20 torr-liter

1

Page 2: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

2

For mixture of non-reactive gases in a common vessel,each gas exerts its pressure independent of others.

Ptotal = P1 + P2 + … + PN (Total P = Sum of partial pressure)Ntotal = N1 + N2 + … + NNP1V = N1kTP2V = N2kT...................PNV = NNkT

3. Dalton’s Law of Partial Pressure

Page 3: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

3

4. Average Molecular Velocity

v = (8kT/ m)1/2

where m = molecular weight of gas molecule

5. Mean Free Path ofmolecular collision

=1

2 d2o n

where n = molecular density = N/V,do = molecular diameter

[Note] For air at 300 °K, =6.6

P( in Pa) =0.05

P( in torr)with in mm

Assumes Maxwell-Boltzman Velocity Distribution

Page 4: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

4

6. Impingement Rate,

=n v

4 = # of molecules striking unit surface /unit time.

= 3.51022 × PmT

in #/cm2-secwith P in torr, m in amu

[Note] For air at 300 °K ; (in #/cm2 -sec) =3.81020 P

Example Calculation : Contamination from Residual Vacuum

For a residual vacuum of 10-6 torr, = 4 1014/cm2-secIf each striking molecule sticks to the surface, the equivalentdeposition rate of the residual gas is ~ 1/3 of a monolayer of solid persecond.

Page 5: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

5

Pressure (Torr)

Tim

e to

form

a m

onol

ayer

(sec

)

Impi

ngm

ent R

ate

(Mol

ecul

es/c

m2 s)

Mea

n fr

ee P

ath

(mm

)

At 25oC

M

I

P

1 meter!

m/min

Vacuum Basics (Cont.)

ResidualVacuum

PlasmaProcessing

CVD

Page 6: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

6

Thin Film Deposition

substratefilm

Applications:Metalization (e.g. Al, TiN, W, silicide)Poly-Sidielectric layers; surface passivation.

EvaporationSputtering

Reactive Sputtering

Chemical Vapor DepositionLow Pressure CVD

Plasma Enhanced CVD

Physical Methods Chemical Methods

Page 7: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

7

(1) Evaporation Deposition

Al film

wafer

Al vapor

Al

hot heatingboat (e.g. W)

I

electronsource

crucible iswater cooled

Al vapor

PmkT2

P P eHkT

0

Vapor PressureEvaporation Rate (max)

m=molecular weight of vapor molecule

Log P

1/T

e

Vacuum Torr 10 -5

Page 8: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

8

Vapor Pressure versus Temperature

Page 9: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

9

Basic Properties of Plasma

• The bulk of plasma contains equal concentrations of ionsand electrons.

• Electric potential is constant inside bulk of plasma. Thevoltage drop is mostly across the sheath regions.

• Plasma used in IC processing is a “weak” plasma,containing mostly neutral atoms/molecules. Degree ofionization is 10-3 to 10-6.

Page 10: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

10Source: www.icknowledge.com

Page 11: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

11

DiffusionFlux

DriftFlux

E 0

E ~ 0

Page 12: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

12

Al

(2) Sputtering Deposition

Al AlAr+

Deposited Al film

Al target

Ar plasma

waferheatsubstrate to~ 300oC (optiona12l)

NegativeBias ( kV)

I

Gas Pressure 1-10 m TorrDeposition rate =

sputtering yield

ion current

constant I S

Ar+

Example:DC plasma

12

Page 13: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

13Source: www.icknowledge.com

Page 14: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

14

Page 15: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

15

S # of ejected target atoms

incoming ion.

0.1 < S < 30

Al

Al

Al

Ar

Sputtering Yield S

Page 16: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

16

Sputtering Yield of bombarding ion atomic number

For reference only

Page 17: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

17

The Sputtering Yield with incidence angle

Page 18: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

18

Ar+

Aflux

Bflux

AxBy

targetFilm has same composition oftarget at steady state.

Because SA SB, Target surface will acquire a compositionAx’By’ at steady state.

Sputtering of Compound Targets

Page 19: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

19

Target

AxBy

Deposited Filmon substrate

AxBy

AxBy

Ax’By

Ax’By

t=t1

t=t2Difference betweent2 and t1 must becomposition depositedon substrate

Bulk targetcomposition

Proof

Page 20: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

20

Reactive Sputtering

• Sputter a Ti targetwith a nitrogenplasma

Ti Target

N2 plasma

Ti, N2+

TiN

Example: Formation of TiN

Substrate

Note: TiN is a metallic compoundwith a golden color. It is used frequentlyin ICs as a metallic conductor. Whensandwiched between two thin films, it canalso be used as a “diffusion barrier” toblock thin-film reactions

Page 21: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

21

Radio Frequency Plasma Generation

For reference only

•More efficient plasma generation•Needed if substrate is electricallyinsulating

Page 22: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

22

Page 23: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

23

Thickness Uniformity with various PVD sources

(i) Point-like Source

(ii) Plane-like Surface SourceF

surface

•Flux F leaving source surface isindependent of (isotropic source)Example: Laser vaporization of a wire tip

F

•Flux F leaving surface cosExample: E-beam evaporation

Emission source

surface

Emission source

Page 24: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

24

Let F = emission flux from source

Receiving flux F’ at a distance r from source = F/ r2

If the receiving surface is making an angle with respectto the F’ vector

Thickness deposited F’ cos = F cos / r2

Film Thickness Deposition on Wafer

F

F’

source

waferr

Page 25: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

25

wafer-l +lx =0

R0R

point-source(emission flux has no dependence)

Thickness t at x=0

cos / Ro2

= 1 / Ro2

Note : =0at position x=0

For this special geometry, =

Example 1 : Flat Wafer directly on top of Point Source

Page 26: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

26

23

2

01

0

3

coscos

3

22

0

0

0

220

220

Rl

lR

Rxt

lxt

R

RlRlR

x=0 x=+l

Thickness t at position x= +l cos / R2

Page 27: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

27N Cheung EE243 S2010 Lec 1727

Thickness Variation of PVD

(n=0)

(n=1)

*For this particular geometry, =

Page 28: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

28

Example 2 : Surafce Source & Spherical Receiving Surface

2cos21

coscos21

cos'waferonThickness

cos21'fluxReceiving

cosflux FEmission

r

r

Fr

F

Since cos = (r/2)/R

Thickness = constant !(1/r2) (r2/4R2)

waferR

R

r

plane-source

F ’

Page 29: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

29

Step Coverage Issues

Page 30: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

30

Step Coverage Problem with PVD

• Both evaporation and sputtering have directional fluxes.

wafer

step

filmFlux

film

“geometricalshadowing”

Page 31: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

31

stepfilm

“self-shadowing”

t=t1

t=0 t=t1

shadowingdistance

t=0

Page 32: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

32

Page 33: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

33

Sputtering Target

Methods to Minimize Step Coverage Problems

• Rotate + Tilt substrate during deposition• Elevate substrate temperature (enhance

surface diffusion)• Use large-area deposition source

Page 34: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

34

Dip Photoresist in Chlorobenzene to slow down developingrate of surface layer .

Surface layer treated by chlorobenzene

Photoresist

Directional Deposition Flux

film

Patterning of deposited layer using directional deposition.

Lift-off Technique

Page 35: EE143 F2010 Lecture 12 Vacuum Basicsee143/fa10/lectures/Lec_12.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 12 1 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x105

Professor N Cheung, U.C. Berkeley

Lecture 12EE143 F2010

35

Sputtering Target

Profile due to onesmall-area source

Superposition of all small-area sources

Sputtering Target

Profile due to onesmall-area source

Superposition of all small-area sources

•Better lateral thickness uniformityArea of sputtering target can be made much larger than that of an evaporating source.A larger area can be considered as a superposition of many small-area sources.By adding the flux from all the sources, a large area source will provide better lateral filmdeposition uniformity on wafer.

•For multi-component thin films, sputtering gives better compositioncontrol using compound targets. Evaporation depends on vapor pressure ofvarious vapor components and is difficult to control.

Advantages of Sputtering over Evaporation