EE143 F2010 Lecture 22 Electrical Characteristics of MOS ...ee143/fa10/lectures/Lec_22.pdf ·...

36
Professor N Cheung, U.C. Berkeley Lecture 22 EE143 F2010 1 Electrical Characteristics of MOS Devices The MOS Capacitor Voltage components Accumulation, Depletion, Inversion Modes Effect of channel bias and substrate bias Effect of gate oxide charges Threshold-voltage adjustment by implantation Capacitance vs. voltage characteristics MOS Field-Effect Transistor I-V characteristics Parameter extraction “metal” oxide semiconductor V G + x ox “metal” oxide semiconductor V G + x ox

Transcript of EE143 F2010 Lecture 22 Electrical Characteristics of MOS ...ee143/fa10/lectures/Lec_22.pdf ·...

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

1

Electrical Characteristics of MOS Devices

• The MOS Capacitor

– Voltage components

– Accumulation, Depletion, Inversion Modes

– Effect of channel bias and substrate bias

– Effect of gate oxide charges

– Threshold-voltage adjustment by implantation

– Capacitance vs. voltage characteristics

• MOS Field-Effect Transistor

– I-V characteristics

– Parameter extraction

“metal”

oxide

semiconductor

VG

+

xox

“metal”

oxide

semiconductor

VG

+

xox

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

2

2) Visit the Device Visualization Website

http://jas.eng.buffalo.edu/

and run the visualization experiments of

1) Charge carriers and Fermi level,

2) pn junctions

3) MOS capacitors

4) MOSFETs

1) Reading Assignment

Streetman: Section of Streetman Chap 8 on MOS

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

3

Work Function of Materials

Eo

EV

ECq

SEMICONDUCTOR

Ef

Eo

Ef

METAL

Work function

= q

Vacuum

energy level

qM is determined

by the metal material

qS is determined

by the semiconductor material,

the dopant type,

and doping concentration

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

4

Work Function (qM) of MOS Gate Materials

Eo = vacuum energy level Ef = Fermi level

EC = bottom of conduction band EV = top of conduction

band

Ef

Examples:

Al = 4.1 eV

TiSi2 = 4.6 eV

Ef

Eo

qM

Eo

qM

Ei

EC

EV

0.56eV

q = 4.15eV

0.56eV

q = 4.15eV (electron affinity)

Eo

Ei

EC

EV

0.56eV

q = 4.15eV

0.56eV

Ef

n+ poly-Si

(Ef = EC)p+ poly-Si

(Ef = EV)

qM

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

5

Work Function of doped Si substrate

q = 4.15eV

Ef

Eo

qs

Ei

EC

EV

|qF|

0.56eV

0.56eV

* Depends on substrate concentration NB

Ef

Eo

qs

Ei

EC

EV

|qF|

0.56eV

0.56eV

q = 4.15eV

n-type Si p-type Si

s (volts) = 4.15 +0.56 - |F| s (volts) = 4.15 +0.56 + |F|

i

BF

n

N

q

kTln

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

6

The MOS Capacitor

SioxFBG VVVV

ox

oxox

xC

[in Farads /cm2]

+_ VFB

Vox (depends on VG)

Vsi (depends on VG)

+

_

+

_

“metal”

oxide

semiconductor

VG

+

xox

Oxide capacitance/unit area

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

7

Flat Band Voltage

• VFB is the “built-in” voltage of the MOS:

• Gate work function M:

Al: 4.1 V; n+ poly-Si: 4.15 V; p+ poly-Si: 5.27 V

• Semiconductor work function S :

• Vox = voltage drop across oxide (depends on VG)

• VSi = voltage drop in the silicon (depends on VG)

SMFBV

s (volts) = 4.15 +0.56 - |F| for n-Si

s (volts) = 4.15 +0.56 + |F| for p-Si

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

8

A) Accumulation: VG < VFB for p-type substrate

VSi 0, so Vox = VG - VFB

QSi’ = charge/unit area in Si

=Cox (VG - VFB )

MOS Operation Modes

M O Si (p-Si)

Thickness of accumulation layer ~0

holes

Charge Distribution

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

9

MOS Operation Modes

• B) Flatband Condition : VG = VFB

No charge in Si (and hence no charge in metal gate)

• VSi = Vox = 0

M O S (p-Si)

Charge Distribution

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

10

C) Depletion: VG > VFB

MOS Operation Modes (cont.)

M O S (p-Si)

qNB

xd

s

2

dB

ox

dBFBG

2

xqN

C

xqNVV

(For given VG, can solve for xd)

B

SiSid

qN

V2x

VoxVSi

Depletion layer

Charge Distribution

Depletion

Layer

thickness

Note: NBxd is the total

charge in Si /unit area

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

11

x

x=0

Q'

Metal

(x)

Oxide

x=xo

x

xd

x=0

Q'

Metal Semiconductor

(x)

Oxide

x=xo

x=xo+

Q'-

x

xd

x=0

Q'

Metal Semiconductor

(x)

Oxide

x=xo

x=xo+

Semiconductor

Depletion Mode :Charge and Electric Field Distributions

by Superposition Principle of Electrostatics

x

xd

x=0

Metal SemiconductorE(x)

Oxide

x=xo

x=xo+

x

xd

x=0

Metal Semiconductor

E(x)

Oxide

x=xo

x=xo+

x

xd

x=0

Metal Semiconductor

E(x)

Oxide

x=xo

x=xo+

=+

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

12

D) Threshold of Inversion: VG = VT

nsurface = NB (for p-type substrate)

=> VSi = 2|F|

MOS Operation Modes (cont.)

M O S (p-Si)

qNB

xdmax

F

ox

BFs

FBTGC

qNVVV

2

22 )(

Q’n

This is a definition

for onset of

strong inversion

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

13

E) Strong Inversion: VG > VT

MOS Operation Modes (cont.)

M O S (p-Si)

qNa

xdmax

)(

max

TGoxn

ox

ndB

ox

VVCQ

C

QxqNV

B

FSi

dqN

x

4

max

Q’n

electrons

xdmax is approximately unchanged

when VG> VT

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

14

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

15

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

16

p-Si

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

17

Accumulation

Depletion

Inversion

Vox = Qa/Cox

VSi ~ 0

Vox =qNaxd/Cox

VSi = qNaxd2/(2s)

Vox = [qNaxdmax+Qn]/Cox

VSi = qNaxdmax2/(2s)

= 2|F|

Voltage drop = area under E-field curve

* For simplicity, dielectric constants assumed to be same for oxide and Si in E-field sketches

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

18

Most derivations for MOS shown in lecture notes

are done with p-type substrate (NMOS)

as example.

Repeat the derivations yourself for n-type substrate

(PMOS) to test your understanding of MOS.

Suggested Exercise

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

19

VG

(more

positive)VFB VT

Accumulation

(holes) depletionstrong inversion

(electrons)

p-Si substrate (NMOS)

n-Si substrate (PMOS)

VG

(more

negative)VFBVT

Accumulation

(electrons)depletionStrong inversion

(holes)

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

20

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

21

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

22

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

23

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

24

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

25

C-V Characteristic

C/Cox

VT

1

VG

p-type

substrate

a

c

d

b

e

C/Cox

VT

1

VG

n-type

substrate

a

c

d

b

e

a) accumulation: Cox

b) flatband: ~Cox (actually a bit less)

c) depletion: Cox in series with the Cdepl

d) threshold: Cox in series with the minimum Cdepl

e) inversion: Cox (with some time delay!)

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

26

Accumulation

Depletion

Inversion

Q

Q

Q

Q

Q

Q

Low frequency High frequency

Q

Q

All frequencies

All frequencies

C = Cox

C = Cox 1/C = 1/Cox + xdmax/s

1/C = 1/Cox + xd/s

Small signal charge response Q due to VG

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

27

SioxFBBG VVVVV

net bias across MOS

M

O

p-Si

V

VG

C

inversion

electrons

depletion

region

VB

n+n+

Effect of Substrate Bias VB and Channel Bias VC

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

28

s

da

OX

daFBBG

BCpSi

XqN

C

XqNVVV

VVV

max2

max

2

1

2

M O SiEi

Efs

q(VC-VB)

Efn

pq

pq

s

daSi

XqNV

max2

2

1

At the onset of strong inversion, where VG is defined

as the threshold voltage

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

29

At threshold: VG – VB = VFB+Vox+VSi

But VSi = 2|p| + (VC - VB ) =>

xdmax is different from no-bias case

B

SiSid

qN

Vx

2max

VT -VB = VFB + 2sqNB(2|F| + VC-VB)

Cox + 2|F| + VC - VB

VoxVSi

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

30

Flat Band Voltage with Oxide charges

VFB is the Gate voltage required to create no charge in the Si

dxx

xx

CC

QV

oxx

ox

ox

oxox

f

SMFB 0

)(1

x = 0 x = xox

M O S

ox (x)Qf

ox (x) due to alkaline

contaminants or trapped

chargeQf due to broken bonds

at

Si-SiO interface

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

31

VT Tailoring with Ion Implantation

Nsub

Shallow implanted

dopant profile at Si-SiO2

interface (approximated as

a delta function)

• Acceptor implant gives positive shift (+ VT)

• Donor implant gives negative shift - VT

Algebraic sign of VT shift is independent of n or p substrate !

OX

iT

C

QV

Qi = q implant dose in Si

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

32

p-Si

implanted acceptors

Na

SiO2

Doping Profile After Implantation

SiO2

xdmax

Q

Qd

d

Qn

p-Si

(due to implanted acceptors)

Charge Distribution for V G > VT

* Valid if thickness of implanted dopants << xdmax

The VT shift can be viewed as the extra gate voltage needed to

deplete the implanted dopants ~ Qi/Cox

The delta-function approximation of implanted profile

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

33

Summary : Parameters Affecting VT

6

7

n+

Na

VB

5

1

2

4

3

Dopant implant near Si/SiO2 interface

fOX Q& M

xox

VCQn n+

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

34

+ Qf or Qox

B threshold implant

As or P threshold implant

Xox increases

Xox increases

M increases

M decreases

|VCB| increases

|VCB| increases

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

35

Summary of MOS Threshold Voltage (NMOS, p-substrate)

• Threshold voltage of MOS capacitor:

• Threshold voltage of MOS transistor:

Note 1: At the onset of strong inversion, inversion charge is negligible

and is often ignored in the VT expression

Note 2: VT of a MOSFET is taken as the VT value at source ( i.e., VC =VS)

Note 3 : Qi = (q implant dose ) is the charge due to the ionized donors

or acceptors implanted at the Si surface. Qi is negative for acceptors

and is positive for donors

VT = VFB + 2sqNB(2|F|)

Cox + 2|F| -

Qi

Cox

VT = VFB + 2sqNB(2|F| + |VC-VB|)

Cox + 2|F| + VC -

Qi

Cox

Professor N Cheung, U.C. Berkeley

Lecture 22EE143 F2010

36

Summary of MOS Threshold Voltage (PMOS, n-substrate)

• Threshold voltage of MOS capacitor:

• Threshold voltage of MOS transistor:

* Yes, + sign for VC term but VC (<0) is a negative bias for PMOS because the

inversion holes have to be negatively biased with respect to the n-substrate

to create a reverse biased pn junction.

VT = VFB - 2sqNB(2|F|)

Cox - 2|F| -

Qi

Cox

VT = VFB - 2sqNB(2|F| + |VC-VB|)

Cox - 2|F| + VC -

Qi

Cox