Ed7211 Ansys Lab Manual

34
Aim To obtain the stress distribution of an axisymmetric component. The model will be that of a closed tube made from steel. Point loads will be applied at the centre of the top and bottom plate. Procedure 1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title. 2. Preference > Structural > OK. 3. Preprocessor > Element type > Add/Edit/ delete > solid 8node 183 > options> axisymmetric. 4. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2E5, PRXY = 0.3. 5. Preprocessor>Modeling>create>Areas>Rectangle> By dimensions Rectangle X1 X2 Y1 Y2 1 0 20 0 5 2 15 20 0 100 3 0 20 95 100 6. Preprocessor > Modeling > operate > Booleans > Add > Areas > pick all > Ok. 7. Preprocessor > meshing > mesh tool > size control > Areas > Element edge length = 2 mm > Ok > mesh > Areas > free> pick all. 8. Solution > Analysis Type>New Analysis>Static 9. Solution > Define loads > Apply .Structural > displacement > symmetry B.C > on lines. (Pick the two edger on the left at X = 0) 10. Utility menu > select > Entities > select all 11. Utility menu > select > Entities > by location > Y = 50 >ok.

description

ansys

Transcript of Ed7211 Ansys Lab Manual

Page 1: Ed7211 Ansys Lab Manual

AimTo obtain the stress distribution of an axisymmetric component. The model will be that of a

closed tube made from steel. Point loads will be applied at the centre of the top and bottom plate.

Procedure1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > solid 8node 183 > options> axisymmetric.

4. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2E5, PRXY = 0.3.

5. Preprocessor>Modeling>create>Areas>Rectangle> By dimensions

Rectangle X1 X2 Y1 Y2 1 0 20 0 5 2 15 20 0 100 3 0 20 95 100

6. Preprocessor > Modeling > operate > Booleans > Add > Areas > pick all > Ok.

7. Preprocessor > meshing > mesh tool > size control > Areas > Element edge length = 2 mm > Ok > mesh > Areas > free> pick all.

8. Solution > Analysis Type>New Analysis>Static

9. Solution > Define loads > Apply .Structural > displacement > symmetry B.C > on lines. (Pick the two edger on the left at X = 0)

10. Utility menu > select > Entities > select all

11. Utility menu > select > Entities > by location > Y = 50 >ok.

(Select nodes and by location in the scroll down menus. Click Y coordinates and type 50 in to the input box.)

12. Solution > Define loads > Apply > Structural > Force/Moment > on key points > FY > 100 > Pick the top left corner of the area > Ok.

13. Solution > Define Loads > apply > Structural > Force/moment > on key points > FY > -100 > Pick the bottom left corner of the area > ok.

14. Solution > Solve > Current LS

15. Utility Menu > select > Entities

16. Select nodes > by location > Y coordinates and type 45, 55 in the min., max. box, as shown below and click ok.

Page 2: Ed7211 Ansys Lab Manual

ED7211- ANALYSIS AND SIMULATION LABORATORY

17. General postprocessor > List results > Nodal solution > stress > components SCOMP.

18. Utility menu > plot controls > style > Symmetry expansion > 2D Axisymmetric > ¾ expansion

Result:Thus the stress distribution of the axisymmetric component is studied.

1

Page 3: Ed7211 Ansys Lab Manual

LAB MANUAL

Ex. No: 4 (a) STRESS ANALYSIS ON CANTILEVER BEAM SUBJECTED TO POINT LOAD

Aim:

To obtain stress analysis of cantilever beam subjected to point load and to determine max. stress and max. deflection.

Procedure:

1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > beam > 2D elastic 3 > close.

4. Preprocessor > Real Constant > Add/Edit/Delete > Area = 100, Izz = 833.33 & Height = 10 > Ok

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2E5, PRXY = 0.3.

6. Preprocessor > Modeling > create > nodes > Inactive CSNode 1X=0Y=0

Node 2X= 20Y=0

Node 3X= 40Y=0

Node 4X= 60Y=0

Node 5X= 80Y=0

Node 6X= 100Y=0

1. List > nodes > coordinate only > ok

2. Preprocessor > modeling > create > elements > Auto numbered thru’ nodes > select Node 1 & 2

2

Page 4: Ed7211 Ansys Lab Manual

ED7211- ANALYSIS AND SIMULATION LABORATORY

Node 2 & 3Node 3 & 4Node 4 & 5Node 5 & 6 > ok.

3. Solution > define loads > apply > structural > displacement > on nodes > select node 1 >

apply > all DOF > displacement = 0 > ok.

4. Solution > Force/moment > on nodes > node 6 > apply > FY > -100 > ok.

5. Solution > solve > current L.S > ok.

6. General post processor > plot result > deform shape > Deformed + Undeformed > ok.

7. General post processor > element table > define table > add > user table for item

Smax I > by sequence num > NMISC 1 > apply

Smax J > by sequence num > NMISC 3 > apply

Smin I > by sequence num > NMISC 2 > apply

Smin J > by sequence num > NMISC 4 > Ok.

8. Plot result > line element result > Smax I > Smax J > first result >Evaluate table data > Smax I, Smax J, Smin I, Smin J > Ok.

9. General postprocessor > list result > nodal solution > DOF solution > UY > displacement result ( Table 2)

10. General postprocessor > contour plot > line element res. > Ok.

3

Page 5: Ed7211 Ansys Lab Manual

LAB MANUAL

Table 1: Element Stresses

S.No.SMAXIN/mm2

SMAXJN/mm2

SMININ/mm2

SMININ/mm2

1 600 480 -600 -4802 480 360 -480 -3603 360 240 -360 -2404 240 120 -240 -1205 120 0.1746e-11 -120 0.1746e +11

Table 2: Displacement – Deflection

Nodes UY1 02 -1.0667 e-013 -0.39619 e-014 -0.82286 e-015 -0.134106 -0.19048

Result:Thus the stress analysis on cantilever beam subjected point load is performed.

4

Page 6: Ed7211 Ansys Lab Manual

ED7211- ANALYSIS AND SIMULATION LABORATORY

Ex. No: 4(b) STRESS ANALYSIS OF SIMPLY SUPPORTED BEAM.

Aim:To perform Stress analysis of simply supported beam.

Procedure:

1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > beam > 2D elastic 3> close.

4. Preprocessor > Real Constant > Add/Edit/Delete > Area = 100, Izz = 833.33 & Height = 10 > Ok

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2E5, PRXY = 0.3.

6. Preprocessor > Modeling > create > nodes > Inactive CSNode 1X=0Y=0

Node 2X= 25Y=0

Node 3X= 50Y=0

Node 4X= 75Y=0

Node 5X= 100Y=0

11. List > nodes > coordinate only > ok

12. Preprocessor > modeling > create > elements > Auto numbered thru’ nodes > select Node 1 & 2Node 2 & 3Node 3 & 4Node 4 & 5Node 5 & 6 > ok.

5

Page 7: Ed7211 Ansys Lab Manual

LAB MANUAL

Solution > define loads > apply > structural > displacement > on nodes > select node 1 & node 5 > apply > UY > displacement = 0 > ok.

13. Solution > Force/moment > on nodes > node 3 > apply > FY > -100 > ok.

14. Solution > solve > current L.S > ok.

15. General post processor > plot result > deform shape > Deformed + Undeformed > ok.

16. General post processor > element table > define table > add > user table for item

Smax I > by sequence num > NMISC 1 > Apply

Smax J > by sequence num > NMISC 3 > Apply

Smin I > by sequence num > NMISC 2 > apply

Smin J > by sequence num > NMISC 4 > Ok.

17. Plot result > line element result > Smax I > Smax J > first result >Evaluate table data > Smax I, Smax J, Smin I, Smin J > Ok.

18. General postprocessor > list result > nodal solution > DOF solution > UY > displacement result ( Table 2)

19. General postprocessor > contour plot > line element res. > Ok.

Table 1: Element Stresses

S.No.SMAXIN/mm2

SMAXJN/mm2

SMININ/mm2

SMININ/mm2

1 0.5457 e-14 7.5 - 0.5457 e-14 -7.52 7.5 15 -7.5 -153 15 7.5 -15 -7.54 15 7.5 -15 -7.55 7.5 0 -7.5 0

Table 2: Displacement – Deflection

Nodes UY1 02 -0.81846 e-23 -0.11905 e-14 -0.81846 e-2

Result:Thus the stress analysis of simply supported beam is obtained.

6

Page 8: Ed7211 Ansys Lab Manual

ED7211- ANALYSIS AND SIMULATION LABORATORY

Ex. No: 4(c) STRESS ANALYSIS OF FIXED BEAM.

Aim:To perform stress analysis of fixed beam subjected to point load.

Procedure:1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > beam > 2D elastic 3> close.

4. Preprocessor > Real Constant > Add/Edit/Delete > Area = 100, Izz = 833.33 & Height = 10 > Ok

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2E5, PRXY = 0.3.

6. Preprocessor > Modeling > create > nodes > Inactive CSNode 1X=0Y=0

Node 2X= 25Y=0

Node 3X= 50Y=0

Node 4X= 75Y=0

Node 5X= 100Y=0

7. List > nodes > coordinate only > ok

8. Preprocessor > modeling > create > elements > Auto numbered thru’ nodes > select

Node 1 & 2Node 2 & 3Node 3 & 4Node 4 & 5Node 5 & 6 > ok.

7

Page 9: Ed7211 Ansys Lab Manual

LAB MANUAL

9. Solution > define loads > apply > structural > displacement > on nodes > select

node 1 & node 5 > apply > all DOF > displacement = 0 > ok.

10. Solution > Force/moment > on nodes > node 3 > apply > FY > -100 > ok.

11. Solution > solve > current L.S > ok.

12. General post processor > plot result > deform shape > Deformed + Undeformed > ok.

13. General post processor > element table > define table > add > user table for item

Smax I > by sequence num > NMISC 1 > apply

Smax J > by sequence num > NMISC 3 > apply

Smin I > by sequence num > NMISC 2 > apply

Smin J > by sequence num > NMISC 4 > Ok.

14. Plot result > line element result > Smax I > Smax J > first result >Evaluate table data > Smax I, Smax J, Smin I, Smin J > Ok.

15. General postprocessor > list result > nodal solution > DOF solution > UY > displacement result ( Table 2)

16. General postprocessor > contour plot > line element res. > Ok.

Table 1: Element Stresses

S.No.SMAXIN/mm2

SMAXJN/mm2

SMININ/mm2

SMININ/mm2

1 7.503 0 -7.503 02 0.104 e-14 7.503 -0.104 e-14 -7.5033 7.503 0 -7.503 04 0 7.503 0 -7.503

Table 2: Displacement – DeflectionNodes UY

1 02 -0.14887 e-23 -0.20174 e-24 -0.14887 e-25 0

Result:Thus the stress analysis of fixed beam is obtained.

8

Page 10: Ed7211 Ansys Lab Manual

ED7211- ANALYSIS AND SIMULATION LABORATORY

Ex. No: 5 MODE FREQUENCY ANALYSIS OF 2D PLATE

Aim:To perform the model frequency analysis on 2D plate.

Procedure:

1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > Solid 8node 82 > options > plane stress with thickness > close.

4. Preprocessor > Real Constant > Add/Edit/Delete > thickness = 1 > Ok

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2.068 E5, PRXY = 0.3 & Density = 7.83E-6.

6. Preprocessor>Modeling>create>Areas>Rectangle> By dimensions0, 2500, 75

7. Preprocessor > meshing > mesh tool > size control > Areas > Element edge length = 15 mm > Ok > mesh > Areas > free> pick all.

8. Solution > Analysis Type > New Analysis > modal > OK.

9. Solution > Analysis option > sub space > Ok.5, 5

10. Solution > define load > apply > structural > displacement > on lines > select left side line > all DOF > Ok.

11. Solve > current L.S > close

12. General postprocessor > result summary.

13. General postprocessor > first set > plot result > deform shape > deformed + undeformed > next set > plot result > deformed + undeformed > Ok.

Table :

Result:Thus the modal frequency analysis on 2D element is performed.

9

S.No. Time/FrequencyLoad Shape

Sub step

Cumulation

1 0.93693 1 1 12 4.4734 1 2 23 5.1535 1 3 34 9.9837 1 4 45 15.345 1 5 5

Page 11: Ed7211 Ansys Lab Manual

LAB MANUAL

Ex. No: 6(a) MODE FREQUENCY ANALYSIS OF CANTILEVER BEAM Aim:

To obtain the mode frequency analysis on Cantilever beam and to determine its natural frequency.

Procedure:1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > beam > 2D elastic 3> close.

4. Preprocessor > Real Constant > Add/Edit/Delete > Area = 100, Izz = 833.33 & Height = 10 > Ok.

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2.068 E5, PRXY = 0.3 & Density = 7.83E-6.

6. Preprocessor > Modeling > create > key points > inactive CS Key point no.1 = (0, 0) Key point no.2 = (1000, 0)

7. Preprocessor > Modeling > create > lines > straight lines > select 1&2.

8. Meshing > mesh tool > lines > Element edge length > = 100 mm > mesh > pick all

9. Solution > analysis type > new analysis > modal > ok > analysis options > subspace = 5 > ok.

10. Solution > define loads > apply > structural > displacement > on key points > select first point > apply > all DOF > displacement = 0 > Ok.

11. Solve > current L.S > close

12. General postprocessor > result summary.

13. General postprocessor > read result > first set > Ok.

14. General postprocessor > plot result > deform shape > deformed + undeformed > Ok.

15. General postprocessor > plot control > animate > modal shape.

10

Page 12: Ed7211 Ansys Lab Manual

ED7211- ANALYSIS AND SIMULATION LABORATORY

Table :

Result:Thus the mode frequency analysis of Cantilever beam is obtained.

11

S.No. Time/FrequencyLoad Shape

Sub step

Cumulation

1 8.3 1 1 12 52.011 1 2 23 145.64 1 3 34 285.51 1 4 45 427.54 1 5 5

Page 13: Ed7211 Ansys Lab Manual

LAB MANUAL

Ex. No: 6(b) MODE FREQUENCY ANALYSIS OF SIMPLY SUPPORTED BEAM

Aim:To perform the model frequency analysis on simply supported beam.

Procedure:1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > beam > 2D elastic 3 > close.

4. Preprocessor > Real Constant > Add/Edit/Delete > Area = 100, Izz = 833.33 & Height = 10 > Ok.

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2.068 E5, PRXY = 0.3 & Density = 7.83E-6.

6. Preprocessor > Modeling > create > key points > inactive CS Key point no.1 = (0, 0) Key point no.2 = (1000, 0)

7. Preprocessor > Modeling > create > lines > straight lines > select 1&2.

8. Meshing > mesh tool > lines > Element edge length > = 100 mm > mesh > pick all

9. Solution > analysis type > new analysis > modal > ok > analysis options > subspace = 5 > ok.

10. Solution > define loads > apply > structural > displacement > on key points > select first point & second point > apply > UY > displacement = 0 > Ok.

11. Solve > current L.S > close

12. General postprocessor > result summary.

13. General postprocessor > read result > first set > Ok.

14. General postprocessor > plot result > deform shape > deformed + undeformed > Ok.

15. General postprocessor > plot control > animate > modal shape.

12

Page 14: Ed7211 Ansys Lab Manual

ED7211- ANALYSIS AND SIMULATION LABORATORY

Table :

Result:Thus the mode frequency analysis of simply supported beam is obtained.

13

S.No. Time/FrequencyLoad Shape

Sub step

Cumulation

1 0 1 1 12 23.298 1 2 23 93.191 1 3 34 209.73 1 4 45 373.16 1 5 5

Page 15: Ed7211 Ansys Lab Manual

LAB MANUAL

Ex. No: 6(c) MODEL FREQUENCY ANALYSIS OF FIXED BEAM.

Aim:To perform the model frequency analysis on Fixed beam.

Procedure:

1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > beam > 2D elastic 3> close.

4. Preprocessor > Real Constant > Add/Edit/Delete > Area = 100, Izz = 833.33 & Height = 10 > Ok.

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2.068 E5, PRXY = 0.3 & Density = 7.83E-6.

6. Preprocessor > Modeling > create > key points > inactive CS Key point no.1 = (0, 0) Key point no.2 = (1000, 0)

7. Preprocessor > Modeling > create > lines > straight lines > select 1&2.

8. Meshing > mesh tool > lines > Element edge length > = 100 mm > mesh > pick all

9. Solution > analysis type > new analysis > modal > ok > analysis options > subspace = 5 > ok.

10. Solution > define loads > apply > structural > displacement > on key points > select first point & second point > apply > all DOF > displacement = 0 > Ok.

11. Solve > current L.S > close

12. General postprocessor > result summary.

13. General postprocessor > read result > first set > Ok.

14. General postprocessor > plot result > deform shape > deformed + undeformed > Ok.

15. General postprocessor > plot control > animate > modal shape.

14

Page 16: Ed7211 Ansys Lab Manual

ED7211- ANALYSIS AND SIMULATION LABORATORY

Table:

Result:

Thus the mode frequency analysis on fixed beam is performed.

15

S.No. Time/FrequencyLoad Shape

Sub step

Cumulation

1 52.815 1 1 12 145.60 1 2 23 282.58 1 3 34 427.71 1 4 45 708.05 1 5 5

Page 17: Ed7211 Ansys Lab Manual

LAB MANUAL

Ex. No: 7 HARMONIC ANALYSIS ON 2D PLATE

Aim:To perform the harmonic analysis on 2D plate. We conduct a harmonic forced response test

by applying a cyclic load at the end of the plate. Procedure:

1. Utility Menu > Change Job Name > Enter Job Name. Utility Menu > File > Change Title > Enter New Title.

2. Preference > Structural > OK.

3. Preprocessor > Element type > Add/Edit/ delete > Solid 8node 82 > options > plane stress with thickness > close.

4. Preprocessor > Real Constant > Add/Edit/Delete > thickness = 1 > Ok

5. Preprocessor > Material Properties > Material Model > Structural > Linear > Elastic > Isotropic > EX = 2.068 E5, PRXY = 0.3 & Density = 7.83E-6.

6. Preprocessor>Modeling>create>Areas>Rectangle> By dimensions0, 250 0, 75

7. Preprocessor > meshing > mesh tool > size control > Areas > Element edge length = 15 mm > Ok > mesh > Areas > free> pick all.

8. Solution > Analysis Type > New Analysis > harmonic > OK > analysis options > real + imaginary (full solution method).

9. Solution > define loads > apply > structural > force/moment > on nodes > click right corner > FY real value = 100 & Imaginary value = 0 > Ok.

10. Solve > current L.S > ok.

11. Load step option > time frequency > frequency & sub steps > 0,200 > 200 > stepped > Ok.

12. Time history postprocessor > variable viewer > add > nodal solution > DOF solution > Y-component of displacement > click right corner > ok > graph data > Ok.

13. Utility Menu > plot controls > style > graphs > modify axis ( change the Y-axis scale to logarithmic)

14. Utility menu > plot > replot.Result:

Thus the harmonic analysis on 2D plate is performed.

16

Page 18: Ed7211 Ansys Lab Manual

ED7211- ANALYSIS AND SIMULATION LABORATORY

Ex. No: 8 THERMAL STRESS ANALYSIS OF A 2D COMPONENT

Aim:To perform the thermal stress analysis of a 2D component.

Procedure:1. Preference > thermal > Ok.

2. Preprocessor > Element type > Add/edit /delete > LINK33 (Thermal Mass Link 3D conduction) > close.

3. Preprocessor > real constant > add > Area = 4e-4

4. Preprocessor > material properties > Material Models > Thermal conductivity > Isotropic > KXX: 60.5

5. Preprocessor > Modeling > Create > Keypoints > In Active CS...

Keypoint Coordinates (x, y)1 (0,0)2 (1,0)

6. Preprocessor > modeling > create > lines > lines > In active coordinate system > select 1

& 2.

7. Preprocessor > Meshing > Mesh tool > Size Controls > Manual Size > element edge length = 0.1 > mesh > Areas > Free > Pick All

8. Preprocessor > Physics > Environment > Write In the window that appears, enter the TITLE Thermal and click OK.

9. Preprocessor > Physics > Environment > Clear > OK

10. Preprocessor > Element Type > Switch Elem Type (Choose Thermal to Structural from the scroll down list.)

11. Preprocessor > Material Properties > Material Models > Structural > Linear > Elastic > Isotropic > EX: 200e9, PRXY: 0.3

12. Preprocessor > Material Props > Material Models > Structural > Thermal Expansion Coefficient > Isotropic > ALPX = 12e-6

13. Preprocessor > Physics > Environment > Write > In the window that appears, enter the TITLE Struct.

14. Solution > Analysis Type > New Analysis > Static

15. Solution > Physics > Environment > Read > Choose thermal and click OK.

17

Page 19: Ed7211 Ansys Lab Manual

LAB MANUAL

(If the Physics option is not available under Solution, click Unabridged Menu at the bottom of the Solution menu. This should make it visible).

16. Solution > Define Loads > Apply > Thermal > Temperature > On Keypoints > Set the temperature of Keypoint 1, the left-most point, to 348 Kelvin.

17. Solution > Solve > Current LS

18. Main Menu > Finish

The thermal solution has now been obtained. If you plot the steady-state temperature on the link, you will see it is a uniform 348 K, as expected. This information is saved in a file labelled Jobname.rth, were .rth is the thermal results file. Since the jobname wasn't changed at the beginning of the analysis, this data can be found as file.rth. We will use these results in determining the structural effects.

19. Solution > Physics > Environment > Read

Choose struct and click OK.

20. Solution > Define Loads > Apply > Structural > Displacement > On Keypoints > Fix Keypoint 1 for all DOF's and Keypoint 2 in the UX direction.

21. Solution > Define Loads > Apply > Structural > Temperature > From Thermal Analysis

As shown below, enter the file name File.rth. This couple the results from the solution of the thermal environment to the information prescribed in the structural environment and uses it during the analysis.

22. Preprocessor > Loads > Define Loads > Settings > Reference Temp

For this set the reference temperature to 273 degrees Kelvin

23. Solution > Solve > Current LS

24. General Postprocessor > Element Table > Define Table > Add > CompStr > By Sequence Num > LS > LS, 1.

25. General Postprocessor > Element Table > List Elem Table > COMPSTR > Ok.

1. Hand Calculations

18

Page 20: Ed7211 Ansys Lab Manual

ED7211- ANALYSIS AND SIMULATION LABORATORY

Hand calculations were performed to verify the solution found using ANSYS:

As shown, the stress in the link should be a uniform 180 MPa in compression.

Result:

Thus the thermal stress analysis of 2D component is performed and the stress in each element ranges from -0.180e9 Pa, or 180 MPa in compression.

19

Page 21: Ed7211 Ansys Lab Manual

LAB MANUAL

Ex. No: 9 CONDUCTIVE HEAT TRANSFER ANALYSIS OF 2D COMPONENT

Aim:This tutorial was created to solve a simple conduction problem. The thermal conductivity (k)

of the material is 10 w/m° C and the block is assumed to be infinitely long.

Procedure:

1. Preference > thermal > Ok.

2. Preprocessor > Element type > Add/edit /delete > Select thermal mass solid, Quad 4 node 55 (Plane 55) > close.

3. Preprocessor > material properties > Material Models > Thermal conductivity > Isotropic > KXX = 10 (thermal Conductivity )

4. Preprocessor > modeling > create > Areas > Rectangle > By 2 Corners > X = 0, Y = 0, width = 1, Height = 1 > Ok.

5. Preprocessor > Meshing > Mesh tool > Size Controls > Manual Size > element edge length = 0.05 > mesh > Areas > Free > Pick All

6. Solution > Analysis type > New analysis > steady – state > Ok.

7. Solution > Define loads > Apply > Thermal > Temperature > On nodes

a. Click the box option and draw a box around the nodes on the top line.b. Fill the window in as shown to constrain the side to a const. temperature of 500.c. Using the same method, constrain the remaining 3 sides to a constant value of

100.

8. Solution > solve > Current LS.

9. General Preprocessor > Plot results > Contour Plot > Nodal Solution > DOF solution > nodal temperature (TEMP) > Ok.

Result:

Thus conductive heat transfer analysis is performed.

20

Page 22: Ed7211 Ansys Lab Manual

ED7211- ANALYSIS AND SIMULATION LABORATORY

Ex. No: 10 CONVECTIVE HEAT TRANSFER ANALYSIS OF 2D COMPONENT

Aim:To perform the thermal analysis on a given block with convective heat transfer coefficient (h)

of 10 W/m° C and the thermal conductivity (k) of the material is 10 W/m° C.

Procedure:

1. Preference > thermal > Ok.

2. Preprocessor > Element type > Add/edit /delete > Select thermal mass solid, Quad 4 node 55 (Plane 55) > close.

3. Preprocessor > material properties > Material Models > Thermal conductivity > Isotropic > KXX = 10 (thermal Conductivity )

4. Preprocessor > modeling > create > Areas > Rectangle > By 2 Corners > X = 0, Y = 0, width = 1, Height = 1 > Ok.

5. Preprocessor > Meshing > Mesh tool > Size Controls > Manual Size > element edge length = 0.05 > mesh > Areas > Free > Pick All

6. Solution > Analysis type > New analysis > steady state > Ok.

7. Solution > Define loads > Apply > Thermal > Temperature > on lines > click the top of the rectangular box > temperature > 500 > apply > click the left side of the rectangular box > ok > temperature > 100 > Ok.

8. Solution > Define loads > Apply > Thermal > convection > on lines > click the right side of the rectangular box > Ok.

9. Solve > current L.S > Ok.

10. General Preprocessor > Plot results > Contour Plot > Nodal Solution > DOF solution > nodal temperature (TEMP) > Ok.

Result:

Thus convective heat transfer analysis is performed.

21

Page 23: Ed7211 Ansys Lab Manual

LAB MANUAL

22