of 57 /57
Combinational Logic Chapter 4
• date post

21-Dec-2015
• Category

## Documents

• view

225

3

TAGS:

Embed Size (px)

### Transcript of Combinational Logic Chapter 4. 2 4.1 Combinational Circuits Logic circuits for digital system...

• Slide 1
• Combinational Logic Chapter 4
• Slide 2
• 2 4.1 Combinational Circuits Logic circuits for digital system Combinational circuits the outputs are a function of the current inputs Sequential circuits contain memory elements the outputs are a function of the current inputs and the state of the memory elements the outputs also depend on past inputs
• Slide 3
• 3 A combinational circuits 2 n possible combinations of input values Specific functions Adders, subtractors, comparators, decoders, encoders, and multiplexers MSI circuits or standard cells Combinational Logic Circuit n input variables m output variables
• Slide 4
• 4 4-2 Analysis Procedure A combinational circuit make sure that it is combinational not sequential No feedback path derive its Boolean functions (truth table) design verification a verbal explanation of its function
• Slide 5
• 5 A straight-forward procedure F 2 = AB+AC+BC T 1 = A+B+C T 2 = ABC T 3 = F 2 'T 1 F 1 = T 3 +T 2
• Slide 6
• 6 F 1 = T 3 +T 2 = F 2 'T 1 +ABC = (AB+AC+BC)'(A+B+C)+ABC = (A'+B')(A'+C')(B'+C')(A+B+C)+ABC = (A'+B'C')(AB'+AC'+BC'+B'C)+ABC = A'BC'+A'B'C+AB'C'+ABC A full-adder F 1 : the sum F 2 : the carry
• Slide 7
• 7 The truth table
• Slide 8
• 8 4-3 Design Procedure The design procedure of combinational circuits State the problem (system spec.) determine the inputs and outputs the input and output variables are assigned symbols derive the truth table derive the simplified Boolean functions draw the logic diagram and verify the correctness
• Slide 9
• 9 Functional description Boolean function HDL (Hardware description language) Verilog HDL VHDL Schematic entry Logic minimization number of gates number of inputs to a gate propagation delay number of interconnection limitations of the driving capabilities
• Slide 10
• 10 Code conversion example BCD to excess-3 code The truth table
• Slide 11
• 11 The maps
• Slide 12
• 12 The simplified functions z = D' y = CD +C'D' x = B'C + B'D+BC'D' w = A+BC+BD Another implementation z = D' y = CD +C'D'= CD + (C+D)' x = B'C + B'D+BC'D = B'(C+D) +B(C+D)' w = A+BC+BD
• Slide 13
• 13 The logic diagram
• Slide 14
• 14 4-4 Binary Adder-Subtractor Half adder 0+0=0 ; 0+1=1 ; 1+0=1 ; 1+1=10 two input variables: x, y two output variables: C (carry), S (sum) truth table
• Slide 15
• 15 S = x'y+xy' C = xy the flexibility for implementation S=x y S = (x+y)(x'+y') S' = xy+x'y' S = (C+x'y')' C = xy = (x'+y')'
• Slide 16
• 16
• Slide 17
• 17 Full-Adder The arithmetic sum of three input bits three input bits x, y: two significant bits z: the carry bit from the previous lower significant bit Two output bits: C, S
• Slide 18
• 18
• Slide 19
• 19 S = x'y'z+x'yz'+ xy'z'+xyz C = xy + xz + yz S = xy'z'+x'yz'+xyz+x'y'z = z'xy'+z'x'y+z((x'+y)(x+y')) = z'(xy'+x'y)+z(xy'+x'y)' = z (x y) C = xy'z+x'yz+xy =z(xy'+x'y)+xy =z(x y)+xy
• Slide 20
• Slide 21
• 21 Carry propagation when the correct outputs are available the critical path counts (the worst case) (A 1,B 1,C 1 ) > C 2 > C 3 > C 4 > (C 5,S 4 ) > 8 gate levels
• Slide 22
• 22 Reduce the carry propagation delay employ faster gates look-ahead carry (more complex mechanism, yet faster) carry propagate: P i = A i B i carry generate: G i = A i B i sum: S i = P i C i carry: C i+1 = G i +P i C i C 1 = G 0 +P 0 C 0 C 2 = G 1 +P 1 C 1 = G 1 +P 1 (G 0 +P 0 C 0 ) = G 1 +P 1 G 0 +P 1 P 0 C 0 C 3 = G 2 +P 2 C 2 = G 2 +P 2 G 1 +P 2 P 1 G 0 + P 2 P 1 P 0 C 0
• Slide 23
• 23 Logic diagram
• Slide 24
• Slide 25
• 25 Binary subtractor A-B = A+(2s complement of B) 4-bit Adder-subtractor M=0, A+B; M=1, A+B+1
• Slide 26
• 26 Overflow The storage is limited Add two positive numbers and obtain a negative number Add two negative numbers and obtain a positive number V=0, no overflow; V=1, overflow
• Slide 27
• 27 4-5 Decimal Adder Add two BCD's 9 inputs: two BCD's and one carry-in 5 outputs: one BCD and one carry-out Design approaches A truth table with 2^9 entries use binary full Adders the sum
• 29 Modifications are needed if the sum > 9 C = K+ Z 8 Z 4 + Z 8 Z 2 C = 1 K = 1 Z 8 Z 4 = 1 Z 8 Z 2 = 1 modification: -(10) d or +6
• Slide 30
• 30 Block diagram
• Slide 31
• 31 Binary Multiplier Partial products AND operations
• Slide 32
• 32 4-bit by 3-bit binary multiplier
• Slide 33
• 33 4-7 Magnitude Comparator The comparison of two numbers outputs: A>B, A=B, A
• 34 Algorithm -> logic A = A 3 A 2 A 1 A 0 ; B = B 3 B 2 B 1 B 0 A=B if A 3 =B 3, A 2 =B 2, A 1 =B 1 and A 1 =B 1 equality: x i = A i B i +A i 'B i ' (A=B) = x 3 x 2 x 1 x 0 (A>B) = A 3 B 3 '+x 3 A 2 B 2 '+x 3 x 2 A 1 B 1 '+x 3 x 2 x 1 A 0 B 0 ' (A>B) = A 3 'B 3 +x 3 A 2 'B 2 +x 3 x 2 A 1 'B 1 +x 3 x 2 x 1 A 0 'B 0 Implementation x i = (A i B i '+A i 'B i )'
• Slide 35
• 35
• Slide 36
• 36 4-8 Decoder A n-to-m decoder a binary code of n bits = 2 n distinct information n input variables; up to 2 n output lines only one output can be active (high) at any time
• Slide 37
• 37 An implementation
• Slide 38
• 38 Combinational logic implementation each output = a minterm use a decoder and an external OR gate to implement any Boolean function of n input variables
• Slide 39
• 39 Demultiplexers a decoder with an enable input receive information on a single line and transmits it on one of 2 n possible output lines
• Slide 40
• 40 Decoder/demultiplexers
• Slide 41
• 41 Expansion two 3-to-8 decoder: a 4-to-16 deocder a 5-to-32 decoder?
• Slide 42
• 42 Combination Logic Implementation each output = a minterm use a decoder and an external OR gate to implement any Boolean function of n input variables A full-adder S(x,y,x)= (1,2,4,7) C(x,y,z)= (3,5,6,7)
• Slide 43
• 43 two possible approaches using decoder OR(minterms of F): k inputs NOR(minterms of F'): 2 n - k inputs In general, it is not a practical implementation
• Slide 44
• 44 4-9 Encoders The inverse function of a decoder
• Slide 45
• 45 An implementation limitations illegal input: e.g. D 3 =D 6 =1 the output = 111 (3 and 6)
• Slide 46
• 46 Priority Encoder resolve the ambiguity of illegal inputs only one of the input is encoded D 3 has the highest priority D 0 has the lowest priority X: don't-care conditions V: valid output indicator
• Slide 47
• 47
• Slide 48
• 48 4-10 Multiplexers select binary information from one of many input lines and direct it to a single output line 2 n input lines, n selection lines and one output line e.g.: 2-to-1-line multiplexer
• Slide 49
• 49 4-to-1-line multiplexer
• Slide 50
• 50 Note n-to- 2 n decoder add the 2 n input lines to each AND gate OR(all AND gates) an enable input (an option)
• Slide 51
• 51
• Slide 52
• 52 Boolean function implementation MUX: a decoder + an OR gate 2 n -to-1 MUX can implement any Boolean function of n input variable a better solution: implement any Boolean function of n+1 input variable n of these variables: the selection lines the remaining variable: the inputs
• Slide 53
• 53 an example: F(A,B,C)= (1,2,6,7)
• Slide 54
• 54 Procedure: assign an ordering sequence of the input variable the rightmost variable (D) will be used for the input lines assign the remaining n-1 variables to the selection lines w.r.t. their corresponding sequence construct the truth table consider a pair of consecutive minterms starting from m 0 determine the input lines
• Slide 55
• 55
• Slide 56
• 56 Three-state gates A multiplexer can be constructed with three-state gates Output state: 0, 1, and high-impedance (open ckts)
• Slide 57
• 57