4 Network Dimension Ing

download 4 Network Dimension Ing

of 44

Transcript of 4 Network Dimension Ing

  • 8/6/2019 4 Network Dimension Ing

    1/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningN

    etwork Dimensioning

    Summary

    Technologies

    Radio Network Planning Process

    Radio Media & Model Tuning

    Network Dimensioning

    Transmission Planning Parameter Planning &

    Optimisation

    Network Capacity Evolution

    Planning Tools

  • 8/6/2019 4 Network Dimension Ing

    2/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningN

    etwork Dimensioning

    Network Dimensioning

    EXPLAIN CHAPTER 4

    Dimensioning

    Coverage Planning

    Capacity Planning

  • 8/6/2019 4 Network Dimension Ing

    3/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningN

    etwork Dimensioning

    Dimensioning

    EXPLAIN paragraph 4.1

    Dimensioning (3)

    Input data (4)

  • 8/6/2019 4 Network Dimension Ing

    4/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningN

    etwork Dimensioning

    DimensioningKey Quantities

    Key quantities for radio network

    dimensioning # of BS needed for coverage reasons

    (par. 4.2) # of BS needed for capacity reasons

    (par. 4.3)

    outage probabilities/percentages frequency re-use rate (vs.interference)

    bandwidth used

    Design goals are inter-dependant network can only be optimised with

    respect to one single aspectDe

    sign goals to be applied must beclearly agreed with customer!

  • 8/6/2019 4 Network Dimension Ing

    5/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningN

    etwork Dimensioning

    DimensioningLimiting factors

    Before T0, the network is coverage limited

    After T0, the network is capacity limited

    The other constraint is automaticallyfulfilled

    # of BS

    time

    coverage

    capacity

    T0

    At the very beginning, just thecoverage planning is needed

  • 8/6/2019 4 Network Dimension Ing

    6/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningN

    etwork Dimensioning

    DimensioningNetwork Expansion

    When the network is coverage

    limited, the expansion consists of: adding new sites in not already

    covered areas

    When the network is capacitylimited, the expansion consists of:

    adding TRXs; adding new sites in already covered

    areas; adding software capacity...

    cap. 7

  • 8/6/2019 4 Network Dimension Ing

    7/44EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    Input DataPreliminary Questions

    Main purpose of the network?

    1st operator in country plain coverage? 2nd operator competitive pricing? 3rd operator replacing wire line phones?

    Roamer volumes expected?

    Where?

    Neighbouring countries

    existing international regulations?

    Use of microwave links for transmission?

    Each network philosophycalls for a different planningapproach

  • 8/6/2019 4 Network Dimension Ing

    8/44EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    Input DataMorpho data

    Maps main cities

    important roads

    location ofmountain ranges

    inhabited area

    shore lines

    Localknowledge

    city skylines

    typicalarchitecture

    structure of city

    local habits

  • 8/6/2019 4 Network Dimension Ing

    9/44EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    Input DataDemographic Data

    Statistical

    yearbook largest towns, cities

    population distribution

    where are expectedcustomers?

    Local knowledge

    population migrationroutes

    commuting trafficvolumes

    subscriberconcentration points

    2 mill.pop.

    300 000 pop.

    400 000 pop.

    400 000 pop.

    250 000 pop.

  • 8/6/2019 4 Network Dimension Ing

    10/44EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    Roll-out phases &

    time schedules Coverage level

    requirements

    Indoor coverageareas

    MS classes to planfor

    Operators celldeploymentstrategies

    omni-cells in rural

    areas?3-sector cells inurban areas?

    minimum of 2 TRXper cell?

    phase 1NW launch

    rollout

    phase 2

    rollout

    phase 3

    Input DataCoverage Requirements

    k i i i

  • 8/6/2019 4 Network Dimension Ing

    11/44EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    Coverage Planning

    EXPLAIN paragraph 4.2

    Power budget (8)

    Cell size (12)

    N

    t k Di i i

  • 8/6/2019 4 Network Dimension Ing

    12/44EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    Power BudgetBasics

    Power budget is used to calculate

    the maximum allowed path loss Main factors depend on

    equipment characteristics BTS & MS TX power BTS & MS RX sensitivity

    Other factors can be classified into3 categories and have to beestimated

    loss factors

    gain factors margins

    N

    t k Di i i

  • 8/6/2019 4 Network Dimension Ing

    13/44EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    ~ 3 5 dB losses50 70% of

    signal power is lostbefore even

    reaching the TXantenna

    Power BudgetLoss Factors

    At BS side connectors cables isolator combiner filter

    At MS side body loss polarisation ofantenna

    manym

    eters

    cables &connectors

    filter

    combiner

    BS output

    N

    t k Di i i

  • 8/6/2019 4 Network Dimension Ing

    14/44EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    Power BudgetGain Factors

    Antenna gain main antenna parameter slight difference between DL and UL the antenna models in use should be

    defined at the very beginning of theproject

    Diversity gain diversity can be implemented in manyways, with different gains

    Frequency hopping gain FH improves average link quality, but

    it isnt taken into account in powerbudget calculations

    No gain factors at MS side

    N

    et ork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    15/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    Power BudgetMargins

    Fast fading margin

    Fast variations in field strength levelsthat are caused by multipath receptionhas to be taken into account incalculating the maximum allowed pathloss

    Slow fading margin

    Slow fading that is caused byshadowing has a direct effect on the

    location probability; this has to betaken into account in evaluating cellsize

    Penetration losses

    Fo

    rpowerbu

    dget

    ca

    lculations

    Forcellsizeevaluatio

    ns

    N

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    16/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    WLL subscribers

    path loss = 154 dB

    combinerloss = 5dB

    FeederLoss = 4 dB

    Rx Sensitivity- 102 dBm

    Tx Power45 dBm (20W)

    Antenna

    Gain = 16dBi

    - 102 dBm

    52 dBm

    36 dBm

    40 dBm

    Power BudgetDown-Link

    N

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    17/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    WLL subscribers

    path loss = 154 dBFeeder

    Loss = 4 dB

    Tx Power33 dBm (2W)

    AntennaGain = 16 dBi

    DiversityGain = 4 dB

    33 dBm

    - 121 dBm

    - 101 dBm

    - 105 dBm

    Rx Sensitivity-105 dB

    Power BudgetUp-Link

    N

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    18/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    Power BudgetExample

    Power budget

    GENERAL INFORMATION

    Frequency ( 1800 System: DCS1800

    Case descri MS Class: 1

    RECEIVING END: BS MS

    RX RF- Input Sensitivity dBm -108.00 -100.00 A

    Interference Degradation Margin dB 3.00 3.00 B

    Body Proximity Loss dB 0.00 2.00 C

    Cable Loss +Connectors dB 3.00 0.00 D

    Rx Antenna Gain dBi 18.00 0.00 E

    Diversity Gain dB 4.00 0.00 F

    Isotropic Power dBm -124.00 -95.00 G=A+B+C+D-E-F

    Field Strength dBV/m 18.31 47.31 H=G+Z*

    TRANSMITTING END: MS BS

    TX RF Output Peak Power W 1.00 29.50

    (mean power over RF cycle) dBm 30.00 44.70 K

    Body Proximity Loss dB 2.00 0.00 L

    Isolator +Combiner +Filter dB 0.00 2.20 M

    RF-Peak Power, Combiner Output dBm 28.00 42.50 N=K-L-M

    Cable Loss +Connectors dB 0.00 3.00 O

    TX Antenna Gain dBi 0.00 18.00 P

    Peak EIRP W 0.63 562.11

    (EIRP =ERP +2dB) dBm 28.00 57.50 Q=N-O+P

    * Z=77.2 +20*log(freq[MHz])LINK-BALANCE EVALUATION UL DL

    Theoretic Isotropic Path Loss dB 152.00 152.50 R=Q-G

    Isotropic Path Loss to be considered dB 152.00 UL Limited Min (UL,DL)

    Path Loss unbalancement dB 0.50 Abs (UL-DL)

    TX RF Max Output Power to be used dBm 30.00 44.20

    BT99 - AFE with combiner bypass (equiv. to

    1 2

    3

    4

    N

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    19/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    Power BudgetConclusions

    Power budget has to be balanced, even if

    the BTS has higher TX power than the MS diversity gain is for UL only

    BTS RX sensitivity is better than for the MS

    The maximum allowed path loss is usuallyUL limited

    There are as many power budgets asdifferent site configurations are defined,even into the same project

    the site configurations in use should be definedat the very beginning of the project

    k i i iN

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    20/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    Cell SizeBasics

    Based on the calculated maximumallowed path loss, the cell size canbe evaluated

    This is done by using

    location probability values coverage thresholds

    basic propagation prediction formulas

    Okumura-Hata

    Walfish-Ikegami

    N t k Di i iN

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    21/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    Real maximumallowed path loss

    Cell SizeProcess

    EIRP -

    (Maximum allowedpath loss

    Slow fading margin

    Building penetrationloss)

    =

    Coverage threshold

    Cell radius

    Cell area

    function (location probability)

    From power budget calculations

    function (morphological area)

    Okumura-Hata

    function (morphological area)

    N t k Di i iN

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    22/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    Full coverage of an area can neverbe guaranteed!

    Cell SizeLocation Probability

    Outages

    due to coverage gaps Pno_cov due to interferences Pif

    Total location probability in a cell

    (1- Pno_cov ) * (1- Pif)

    Both time and location probability

    Typical required values are 90-95%

    N t k Di i iN

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    23/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    When calculating cell radius, LP is

    50% by the cell edge and ~75%over the cell area

    To get 90% LP, the cell radius hasto be reduced

    Cell SizeSlow Fading Margin

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1

    -3 -2 -1 0 1 2 3

    90% ofthe area

    Slow fading margin

  • 8/6/2019 4 Network Dimension Ing

    24/44

    Network DimensioningN

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    25/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    Cell SizeCoverage Thresholds

    Network DimensioningN

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    26/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network DimensioningNetwork Dimensioning

    COMMON INFO DU U SU F O

    MS antenna height (m): 1,5 1,5 1,5 1,5 1,5

    BS antenna height (m): 30,0 30,0 30,0 45,0 45,0

    Standard Deviation (dB): 7,0 7,0 7,0 7,0 7,0

    BPL Average (dB): 15,0 12,0 10,0 6,0 6,0

    Standard Deviation indoors (dB): 10,0 10,0 10,0 10,0 10,0

    OKUMURA-HATA (OH) DU U SU F O

    Area Type Correction (dB) 0,0 -4,0 -6,0 -10,0 -15,0

    WALFISH-IKEGAMI (WI) DU U SU F O

    Roads width (m): 30,0 30,0 30,0 30,0 30,0

    Road orientation angle (degrees): 90,0 90,0 90,0 90,0 90,0

    Building separation (m): 40,0 40,0 40,0 40,0 40,0

    Buildings average height (m): 30,0 30,0 30,0 30,0 30,0

    INDOOR COVERAGE DU U SU F O

    Propagation Model OH OH OH OH OH

    Slow Fading Margin + BPL (dB): 22,8 19,8 17,8 13,8 13,8

    Coverage Threshold (dBV/m): 59,1 56,1 54,1 50,1 50,1

    Coverage Threshold (dBm): -77,2 -80,2 -82,2 -86,2 -86,2

    Location Probability over Cell Area(L%): 90,0% 90,0% 90,0% 90,0% 90,0%

    Cell Range (km): 1,33 2,10 2,72 5,70 7,99

    OUTDOOR COVERAGE DU U SU F O

    Propagation Model OH OH OH OH OH

    Slow Fading Margin (dB): 4,5 4,5 4,5 4,5 4,5

    Coverage Threshold (dBV/m): 40,8 40,8 40,8 40,8 40,8

    Coverage Threshold (dBm): -95,5 -95,5 -95,5 -95,5 -95,5

    Location Probability over Cell Area(L%): 90,0% 90,0% 90,0% 90,0% 90,0%

    Cell Range (km): 4,39 5,70 6,50 10,69 14,99

    Cell SizeExample

    Network DimensioningN

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    27/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network Dimensioningg

    After cell radius has been

    determined, cell area can becalculated

    When calculating cell area,traditional hexagonal model is

    taken into account

    R

    OmniA = 2,6 R1

    2Bi-sector

    A= 1,73 R22

    Tri-sector

    A = 1,95 R32

    R

    R

    Cell SizeCell Area

    Network DimensioningN

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    28/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network Dimensioningg

    Cell SizeCell Area Terms

    Dominance

    area Service area

    Coverage area

    6dB hysteresismargin

    coverage limit

    cell coverage range

    cell service range

    dominance range

    Network DimensioningN

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    29/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network Dimensioningg

    Three hexagons Three cells

    Cell SizeHexagons vs. Cells

    Network DimensioningN

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    30/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network Dimensioningg

    Cell SizeEnhancement

    Improving link budget

    sensitivity power antennas

    Reducing the effect of geography

    BTS antenna heights good network plan

    Technical solutions for improvinglink budget

    combiner by-pass

    mast head preamplifier booster

  • 8/6/2019 4 Network Dimension Ing

    31/44

    Network DimensioningN

    etwork Dimensioning

  • 8/6/2019 4 Network Dimension Ing

    32/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network Dimensioning

    Capacity PlanningEXPLAIN paragraph 4.3

    Traffic (2)

    Trunking (3)

    Erlang (3)

    Cell Capacity (4)

    Network DimensioningN

    etwork Dimensioning

    T ffi

  • 8/6/2019 4 Network Dimension Ing

    33/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network Dimensioning

    TrafficTraffic Estimations

    Estimate number of subscribers over

    time long-term predictions numbers available from marketing people?

    Expected traffic load per subscriber different subscriber segments? expected behaviour of user segments

    Particular phone habits of subscribers e.g. mainly heavy indoor usage phoning while in traffic jams?

    Busy hour conditions time of day

    traffic patterns

    Network DimensioningN

    etwork Dimensioning

    T ffi

  • 8/6/2019 4 Network Dimension Ing

    34/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network Dimensioning

    TrafficTraffic Patterns

    Traffic is not evenly spread across the

    day(or week)

    Dimensioning must be able to copewith peak loads

    busy hour is typically twice the

    average hour load

    0

    10203040

    5060708090

    100

    0 2 4 6 8 10 12 14 16 18 20 22 24hr

    %peak timeoff-peak

    Network DimensioningN

    etwork Dimensioning

    T ki

  • 8/6/2019 4 Network Dimension Ing

    35/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Network Dimensioning

    M potential customers

    m available resourcesM >> m

    Problem: many customers, limited

    number of resources How many resources do we need

    to satisfy the demand?

    TrunkingBasics

    Network DimensioningN

    etwork Dimensioning

    T ki

  • 8/6/2019 4 Network Dimension Ing

    36/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    g

    TrunkingTrunking Effect

    Trunking increases effective usage

    of limited resources when we increase the traffic, we may

    not need that many new lines

    Main parameter: acceptedblocking probability

    Blocking depends on number of available resources traffic statistical distribution

    Network DimensioningN

    etwork Dimensioning

    T ki

  • 8/6/2019 4 Network Dimension Ing

    37/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    g

    time

    CH 1

    CH 2

    CH 3

    CH 4

    CH ...

    CH 5

    CH n-2

    CH n-1

    CH n

    Offered newtraffic

    TrunkingTrunking Effect

    Network DimensioningN

    etwork Dimensioning

    E l

  • 8/6/2019 4 Network Dimension Ing

    38/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    g

    ErlangDefinition

    Erlang is the unit of traffic

    definition

    2 formulas Erlang B: for systems that

    support no queuing Erlang C: for systems that

    support queuing

    Seconds3600

    )()(Erlangs

    timeonconversatiaveragehourpercallsx

    =

    Agner Krarup Erlang (1878-1929)

    Network DimensioningN

    etwork Dimensioning

    E l

  • 8/6/2019 4 Network Dimension Ing

    39/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    g

    ErlangErlang Formulas

    Erlang B

    no queuing:blocked calls aredropped depends oncall lengths &statistical

    distribution ofcalls applicable inmobile systems(e.g. airinterface)

    Erlang C

    queuing applicable intrunkingsystems

    pk =

    k

    / k !

    i=0

    M

    [ i

    / i ! ]

    =

    +=>

    1

    0 !1!

    )0(Pr C

    k

    kC

    C

    k

    A

    C

    ACA

    A

    delayob

    Network DimensioningN

    etwork Dimensioning

    E l

  • 8/6/2019 4 Network Dimension Ing

    40/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    B lo c k in g P ro b a b ility B lo c k in g P ro b a b ility

    C h a n n e ls 1 % 2 % 3 % 5 % C h a n n e ls 1 % 2 % 3 % 5 %

    1 0 , 0 1 0 , 0 2 0 , 0 3 0 , 0 5 2 1 1 2 , 8 0 1 4 , 0 0 1 4 , 9 0 1 6 , 2 0

    2 0 , 1 5 0 , 2 2 0 , 2 8 0 , 3 8 2 2 1 3 , 7 0 1 4 , 9 0 1 5 , 8 0 1 7 , 1 0

    3 0 , 4 6 0 , 6 0 0 , 7 2 0 , 9 0 2 3 1 4 , 5 0 1 5 , 8 0 1 6 , 7 0 1 8 , 1 0

    4 0 , 8 7 1 , 0 9 1 , 2 6 1 , 5 2 2 4 1 5 , 3 0 1 6 , 6 0 1 7 , 6 0 1 9 , 0 0

    5 1 , 3 6 1 , 6 6 1 , 8 8 2 , 2 2 2 5 1 6 , 1 0 1 7 , 5 0 1 8 , 5 0 2 0 , 0 0

    6 1 , 9 1 2 , 2 8 2 , 5 4 2 , 9 6 2 6 1 7 , 0 0 1 8 , 4 0 1 9 , 4 0 2 0 , 9 0

    7 2 , 5 0 2 , 9 5 3 , 2 5 3 , 7 5 2 7 1 7 , 8 0 1 9 , 3 0 2 0 , 3 0 2 1 , 9 08 3 , 1 3 3 , 6 3 3 , 9 9 4 , 5 4 2 8 1 8 , 6 0 2 0 , 2 0 2 1 , 2 0 2 2 , 9 0

    9 3 , 7 8 4 , 3 4 4 , 7 5 5 , 3 7 2 9 1 9 , 5 0 2 1 , 0 0 2 2 , 1 0 2 3 , 8 0

    1 0 4 , 4 6 5 , 0 8 5 , 5 3 6 , 2 2 3 0 2 0 , 3 0 2 1 , 9 0 2 3 , 1 0 2 4 , 8 0

    1 1 5 , 1 6 5 , 8 4 6 , 3 3 7 , 0 8 3 1 2 1 , 2 0 2 2 , 8 0 2 4 , 0 0 2 5 , 8 0

    1 2 5 , 8 8 6 , 6 1 7 , 1 4 7 , 9 5 3 2 2 2 , 0 0 2 3 , 7 0 2 4 , 9 0 2 6 , 7 0

    1 3 6 , 6 1 7 , 4 0 7 , 9 7 8 , 8 3 3 3 2 2 , 9 0 2 4 , 6 0 2 5 , 8 0 2 7 , 7 0

    1 4 7 , 3 5 8 , 2 0 8 , 8 0 9 , 7 3 3 4 2 3 , 8 0 2 5 , 5 0 2 6 , 8 0 2 8 , 7 01 5 8 , 1 1 9 , 0 1 9 , 6 5 1 0 , 6 0 3 5 2 4 , 6 0 2 6 , 4 0 2 7 , 7 0 2 9 , 7 0

    1 6 8 , 8 8 9 , 8 3 1 0 , 5 0 1 1 , 5 0 3 6 2 5 , 5 0 2 7 , 3 0 2 8 , 6 0 3 0 , 7 0

    1 7 9 , 6 5 1 0 , 7 0 1 1 , 4 0 1 2 , 5 0 3 7 2 6 , 4 0 2 8 , 3 0 2 9 , 6 0 3 1 , 6 0

    1 8 1 0 , 4 0 1 1 , 5 0 1 2 , 2 0 1 3 , 4 0 3 8 2 7 , 3 0 2 9 , 2 0 3 0 , 5 0 3 2 , 6 0

    1 9 1 1 , 2 0 1 2 , 3 0 1 3 , 1 0 1 4 , 3 0 3 9 2 8 , 1 0 3 0 , 1 0 3 1 , 5 0 3 3 , 6 0

    2 0 1 2 , 0 0 1 3 , 2 0 1 4 , 0 0 1 5 , 2 0 4 0 2 9 , 0 0 3 1 , 0 0 3 2 , 4 0 3 4 , 6 0

    ErlangErlang B Table

    Network DimensioningN

    etwork Dimensioning

    C ll C it

  • 8/6/2019 4 Network Dimension Ing

    41/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Cell CapacityTraffic

    Traffic capacity of a cell is determined by

    the number of available traffic timeslots Trunking effect gives significant gains

    TRX 1 1 2 3 4 5 6 7BCCH + CCCH 0,5 0,5 0,5 0,5 0,5 0,5 1 1SDCCH 1,5 0,5 1,5 1,5 2,5 2,5 3 3TCH 6 7 14 22 29 37 44 52Erl (2% blocking)2,27 2,93 8,20 14,89 21,04 28,25 34,68 42,12

    TCH

    SDCCH

    BCCH/CCCH

    Network DimensioningN

    etwork Dimensioning

    Cell Capacit

  • 8/6/2019 4 Network Dimension Ing

    42/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Mainly realised by Stand-alone

    Dedicated Control CHannel(SDCCH)

    SDCCH is mainly used in 5 cases: call set-up SMS

    location updates emergency call call re-establishment

    SDCCH channel is key in achievingsuccessful & efficient call set-up

    Cell CapacitySignalling

    Network DimensioningN

    etwork Dimensioning

    Cell Capacity

  • 8/6/2019 4 Network Dimension Ing

    43/44

    EXPLAIN v3.0 - Nokia 2001 DVassena

    Cell CapacitySDCCH Configurations

    TS0of BCCH TRX always for BCCH

    + CCCHTS

    0may be configured to carry

    DCCH

    SDCCH channels may beconfigured in any other TS.Convention (but not law!) is to putit on TS1

    2 basic configurations

    combined non-combined

    Combined configuration

    0 7

    ts0=bcch/sdcch/4/pch/agch

    Non-combined configuration

    0 7

    ts0=bcch/pch/agchts1=sdcch/8

    Network DimensioningN

    etwork Dimensioning

    Cell Capacity

  • 8/6/2019 4 Network Dimension Ing

    44/44

    Cell CapacitySDCCH Dimensioning

    Efficient network design is

    required to achieve 2 goals an appropriate signallingdimensioning strategy, on a cell percell basis

    an appropriate upgrade philosophy

    SDDCH channels may bedimensioned in 3 ways on a cell per cell basis on a generic macro layer (not linked

    to macro/ micro cell layer definitions) on both of the above