Well-to-Wheels analysis of future fuels and associated ...€¦ · of future fuels and associated...

38
13/05/03 EUCAR Prelimina Slide 1 Well-to-Wheels analysis of future fuels and associated automotive powertrains in the European context A joint initiative of EUCAR/JRC/CONCAWE Preliminary Results for Hydrogen Summary of Material Presented to the EC Contact Group on Alternative Fuels in May 2003

Transcript of Well-to-Wheels analysis of future fuels and associated ...€¦ · of future fuels and associated...

13/05/03

EUCAR

Preliminary

Slide 1

Well-to-Wheels analysis of future fuels and associated automotive powertrains

in the European context

A joint initiative of EUCAR/JRC/CONCAWE

Preliminary Results for Hydrogen

Summary of Material Presented to the EC Contact Group on Alternative Fuelsin May 2003

13/05/03

EUCAR

Preliminary

Slide 2

Well-to-Wheels analysis of future fuels and associated automotive powertrains

in the European contextPartial and preliminary results

Conventional fuels/enginesHydrogen powertrains

Well-to-tankGasoline and diesel production and distributionHydrogen pathways

Tank-to Wheels 2002, assessments 2010Conventional advanced gasoline, diesel, natural gas vehiclesHydrogen vehicles

Well-to-Wheels integration

13/05/03

EUCAR

Preliminary

Slide 3

WELL-TO-TANK

13/05/03

EUCAR

Preliminary

Slide 4

Well-to-Tank analysisConventional oil pathways

At the 2010-2020 horizon, alternative fuels will replace some fraction of the current conventional fuels market

The energy that can be saved and the GHG emissions that can be avoided therefore pertain to the MARGINAL production of conventional fuels

Europe is short in diesel and long in gasoline: the “natural” balance between gasoline and middle distillates is stretched

As a result, refinery production of marginal diesel is more energy-intensive than that of marginal gasoline

Energy

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Extraction &Processing

Transport Refining Distribution Total chain

MJ/

MJ Gasoline

Diesel

GHG

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Extraction &Processing

Transport Refining Distribution Total chain

g C

O2

eq /

MJ

GasolineDiesel

CO2 on combustion is about 75g/MJ

13/05/03

EUCAR

Preliminary

Slide 5

Compressed hydrogen pathways(excluding electricity)

Coal (EU mix) Production and EU mix typical Gasification + Pipeline, 50 kmconditioning CO shift + compression

NG (piped) Production and Pipeline into EU NG gridconditioning EU-mix

4000 km7000 km Reforming (on-site) Compression

Reforming (central) Road or pipeline50 km+ compression

NG (remote) Production and Liquefaction Shipping (LNG)conditioning

Wood waste Collection Road, 50 km Small scale gasif. Pipeline, 10 km+ CO shift + compression

Road, 50 km Large scale gasif.+ Shipping CO shift

Pipeline, 50 kmFarmed wood Growing Road, 50 km + compression

Harvesting + Shipping

13/05/03

EUCAR

Preliminary

Slide 6

Liquefied hydrogen pathways(excluding electricity)

NG (piped) Production and Pipeline into EU Reforming Road, 300 kmconditioning (central)

+ H2 Liquefaction

NG (remote) Production and Reforming Shipping Road, 500 kmconditioning + H2 liquefaction (LH2)

NG (remote) Production and Liquefaction Shipping (LNG) Reforming (central) Road, 500 kmconditioning + H2 liquefaction

13/05/03

EUCAR

Preliminary

Slide 7

Electricity to hydrogen pathways

Electricity Electrolysis Pipeline(grid) (central) Compression

Electrolysis Compression(on-site)

Electricity Electrolysis Road, 300 km(grid) (central)

+ H2 Liquefaction

Electricity production pathways

Coal (EU mix) Production and Typical of EU mix IGCC MV gridconditioning

NG (piped) Production and Pipeline into EU CCGT MV gridconditioning

NG (remote) Liquifaction Shipping (LNG) CCGT MV grid

EU fuel mix EU mix typical MV grid

Wind Wind turbine MV gridOn/offshore

13/05/03

EUCAR

Preliminary

Slide 8

Compressed HydrogenNG-to-Hydrogen pathways

Compressed hydrogen from on-site NG reforming

0.00.20.40.60.81.01.21.4

NG

Extr

actio

n &

Proc

essi

ng

NG

Liqu

efac

tion

Long

-di

stan

cetr

ansp

ort

LNG

Vapo

risat

ion

+

On-

site

refo

rmin

g

On-

site

deliv

ery

Tota

l cha

in

MJ/

MJ

NG EU-mix, 1000 km, on-site reformingPiped NG, 4000 km, on-site reformingPiped NG, 7000 km, on-site reformingLNG, on-site reforming

Compressed hydrogen from on-site NG reforming

020406080

100120140

NG

Ext

ract

ion

&Pr

oces

sing

NGLi

quef

actio

n

Long

-di

stan

cetr

ansp

ort

LNG

Vap

oris

atio

n+

Dis

trib

utio

n

On-

site

refo

rmin

g

On-

site

deliv

ery

Tota

l cha

in

g C

O2e

q/M

J

NG EU-mix, 1000 km, on-site reformingPiped NG, 4000 km, on-site reformingPiped NG, 7000 km, on-site reformingLNG, on-site reforming

Reforming energy is the main element

GHG from reforming is major contribution (because of decarbonisation)

13/05/03

EUCAR

Preliminary

Slide 9

Compressed HydrogenNG-to-Hydrogen pathways

On-site vs central reforming

0.0

0.2

0.4

0.6

0.8

1.0

1.2

NG Extraction& Processing

NG Transport NGDistribution

Reforming Distributionand delivery

Total chain

MJ/

MJ

Piped NG, 4000 km, on-site reforming

Piped NG, 4000 km, central reforming, pipeline

Piped NG, 4000 km, central reforming, trucking

On-site vs central reforming

0

20

40

60

80

100

120

NG Extraction& Processing

NG Transport NGDistribution

Reforming Distributionand delivery

Total chain

g C

O2e

q/M

J

Piped NG, 4000 km, on-site reforming

Piped NG, 4000 km, central reforming, pipeline

Piped NG, 4000 km, central reforming, trucking

Central reforming is more efficient (heat recovery)

Distribution mode has only marginal effect(only pipeline is practical in the long term)

13/05/03

EUCAR

Preliminary

Slide 10

Liquid HydrogenNG-to-Hydrogen pathways

Liquid hydrogen

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

NG Extrac

tion &

Proces

sing

NG Liquefactio

nRem

ote ref

orming

Remote

hyd liquefa

ction

NG tran

sport

(pipeline)

LNG Transport

(shipping)

LNG Rec

eipt + Vap

orisati

on

Liquid hyd tr

ansp

ort (shipping)

NG Dist

ributio

n (HP)

Centra

l refo

rming

Hyd liq

uefactio

n

Liquid hyd dist

ributio

n & deliv

eryTotal c

hain

MJ/

MJ

Piped NG, 4000 km, central reforming + liquefaction Piped NG, 7000 km, central reforming + liquefactionRemote NG reforming + hyd liquefaction + liquid hyd shipping LNG, central reforming + liquefaction

Liquid hydrogen

020406080

100120140160180

NG Extrac

tion &

Pro

cess

ingNG Li

quefac

tion

Remote

reform

ing

Remote

hyd liq

uefacti

on

NG tran

spor

t (pipeli

ne)

LNG Transp

ort (sh

ipping

)

LNG Rec

eipt +

Vapor

isatio

n

Liquid hyd tr

ansp

ort (s

hippin

g)NG D

istrib

ution (H

P)Cen

tral r

eform

ingHyd

lique

factio

n

Liquid hyd di

stributi

on &

deliv

ery

Total c

hain

g C

O2e

q/M

J

Piped NG, 4000 km, central reforming + liquefaction Piped NG, 7000 km, central reforming + liquefactionRemote NG reforming + hyd liquefaction + liquid hyd shipping LNG, central reforming + liquefaction

Piped NG is slightly more favourable for 4000 km(LNG similar to 7000 km pipeline case)

Remote hydrogen liquefaction not attractive

13/05/03

EUCAR

Preliminary

Slide 11

SummaryNG-to-Hydrogen pathways

Hydrogen WTT pathways

0.00.20.40.60.81.01.21.41.61.8

CH2, NG 40

00 km

, ref

on-site

CH2, NG 40

00 km

,ref c

entra

l, pipeli

ne

CH2, LNG, o

n-site

CH2, LNG, re

f cen

tral

LH2, NG 40

00 km

, ref c

entra

lLH2,

ref re

mote

LH2, LNG, re

f cen

tral

Diesel

CNG, 400

0 km

MJ/

MJ

Conditioning & distribution

Transformation near market

Transportation to market

Transformation at source

Production & conditioning at sourceHydrogen WTT pathways

020406080

100120140160180

CH2, NG 40

00 km

, ref

on-site

CH2, NG 40

00 km

,ref c

entra

l, pipeli

ne

CH2, LNG, o

n-site

CH2, LNG, re

f cen

tral

LH2, NG 40

00 km

, ref c

entra

lLH2,

ref re

mote

LH2, LNG, re

f cen

tral

Diesel

CNG, 400

0 km

g C

O2e

q/M

JConditioning & distribution

Transformation near market

Transportation to market

Transformation at source

Production & conditioning at source

LH2 is more energy-intensive than CH2

CH2 LH2

13/05/03

EUCAR

Preliminary

Slide 12

Wood-to-Hydrogen pathways

Wood to Hydrogen

0.00.20.40.60.81.01.21.41.61.8

Farm

ing

/co

llect

ion

and

chip

ping

Mix

edtr

ansp

ort

Gas

ifier

+C

O s

hift

+po

wer

gene

ratio

n

Liqu

efac

tion

Dis

trib

utio

n&

del

iver

y

Tota

l cha

in

MJ/

MJ

Wood waste, on-site gasification, 10 MW (biomass)Wood waste, large scale gasification, 200 MW (biomass)Farmed wood , on-site gasification, 10 MW (biomass)Farmed wood, large scale gasification, 200 MW (biomass)Farmed wood, large scale gasification, 200 MW (biomass), liquefaction

200 MW (biomass) is a very large plant! (about 50 t/h of wood)

Wood to Hydrogen

05

101520253035

Farm

ing

/co

llect

ion

and

chip

ping

Mix

edtr

ansp

ort

Gas

ifier

+C

O s

hift

+po

wer

gene

ratio

n

Liqu

efac

tion

Dis

trib

utio

n&

del

iver

y

Tota

l cha

in

g C

O2e

q/M

J

Wood waste, on-site gasification, 10 MW (biomass)Wood waste, large scale gasification, 200 MW (biomass)Farmed wood , on-site gasification, 10 MW (biomass)Farmed wood, large scale gasification, 200 MW (biomass)Farmed wood, large scale gasification, 200 MW (biomass), liquefaction

13/05/03

EUCAR

Preliminary

Slide 13

Hydrogen via electrolysis pathways

Hydrogen via electrolysis

0.00.51.01.52.02.53.03.54.04.55.0

NG

Extr

actio

n &

Proc

essi

ng

NG

Tran

spor

t

NG

Dis

trib

utio

n

Pow

erge

nera

tion

Elec

tric

itydi

strib

utio

n

Elec

trol

ysis

Hyd

lique

fact

ion

Hyd

dist

ribut

ion

and

deliv

ery

Tota

l cha

in

MJ/

MJ

EU-mix electricity, on-site electrolysisPiped NG, 4000 km, CCGT, on-site electrolysisPiped NG, 4000 km, CCGT, central electrolysisEU-mix electricity, on-site electrolysis, liquefactionPiped NG, 4000 km, CCGT, central electrolysis, liquefaction

Little difference between central and on-site electrolysis

EU-mix more energy-intensive than NG/CCGT, but…

Hydrogen via electrolysis

050

100150200250300

NG

Extr

actio

n &

Proc

essi

ng

NG

Tran

spor

t

NG

Dis

trib

utio

n

Pow

erge

nera

tion

Elec

tric

itydi

strib

utio

n

Elec

trol

ysis

Hyd

lique

fact

ion

Hyd

dist

ribut

ion

and

deliv

ery

Tota

l cha

in

g C

O2e

q/M

J

EU-mix electricity, on-site electrolysisPiped NG, 4000 km, CCGT, on-site electrolysisPiped NG, 4000 km, CCGT, central electrolysisEU-mix electricity, on-site electrolysis, liquefactionPiped NG, 4000 km, CCGT, central electrolysis, liquefaction

…very close in terms of GHG

13/05/03

EUCAR

Preliminary

Slide 14

Hydrogen via electrolysis pathways

Hydrogen via electrolysis

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Piped NG,4000 km,

CCGT, on-siteelectrolysis

Piped NG,4000 km,

CCGT, centralelectrolysis

Piped NG,4000 km,

CCGT, centralelectrolysis,liquefaction

Farmed wood,CCGT, on-site

electrolysis

Farmed wood,conv. powerplant, on-siteelectrolysis

Wind offshore,on-site

electrolysis

EU-mixelectricity, on-

site electrolysis

Ener

gy (M

J/M

J)

Production & conditioning at source Transformation at source Transportation to marketTransformation near market Conditioning & distribution

Hydrogen via electrolysis

0

50

100

150

200

250

Piped NG,4000 km,

CCGT, on-siteelectrolysis

Piped NG,4000 km,

CCGT, centralelectrolysis

Piped NG,4000 km,

CCGT, centralelectrolysis,liquefaction

Farmed wood,CCGT, on-site

electrolysis

Farmed wood,conv. powerplant, on-siteelectrolysis

Wind offshore,on-site

electrolysis

EU-mixelectricity, on-

site electrolysis

GH

G (g

CO

2eq/

MJ)

Production & conditioning at source Transformation at source Transportation to marketTransformation near market Conditioning & distribution

Wood is more energy-intensive than NGThe type of power plant is crucial

Is wind a real option?Or is it simply replacing marginal electricity?

13/05/03

EUCAR

Preliminary

Slide 15

SummaryHydrogen pathways

Hydrogen WTT pathways

0.00.51.01.52.02.53.03.54.04.55.0

CH2, NG 40

00 km

, ref

on-site

CH2, NG 40

00 km

,ref c

entra

l, pipeli

ne

CH2, LNG, re

f cen

tral

CH2, far

med w

ood, gas

ifier o

n-site

CH2, far

med w

ood, gas

ifier c

entra

l

CH2, EU-m

ix ele

c, ele

ctrolys

is on

-site

CH2, Coal

EU-mix,

gasifie

r

LH2, NG 40

00 km

, ref c

entra

l

LH2, ref

remote

LH2, LNG, re

f cen

tral

LH2, far

med w

ood, gas

ifier c

entra

l

LH2, EU-m

ix ele

c, ele

ctrolys

is ce

ntral

LH2, NG 40

00 km

, elec

trolys

is ce

ntral

Diesel

CNG, 400

0 km

MJ/

MJ

Conditioning & distribution

Transformation near market

Transportation to market

Transformation at source

Production & conditioning at source

Electrolysis must be the “last resort”unless an uncontroversial renewable energy source can be used

Hydrogen WTT pathways

0

50

100

150

200

250

300

CH2, NG 40

00 km

, ref

on-site

CH2, NG 40

00 km

,ref c

entra

l, pipeli

ne

CH2, LNG, re

f cen

tral

CH2, far

med w

ood, gas

ifier o

n-site

CH2, far

med w

ood, gas

ifier c

entra

l

CH2, EU-m

ix ele

c, ele

ctrolys

is on

-site

CH2, Coal

EU-mix,

gasifie

r

LH2, NG 40

00 km

, ref c

entra

l

LH2, ref

remote

LH2, LNG, re

f cen

tral

LH2, far

med w

ood, gas

ifier c

entra

l

LH2, EU-m

ix ele

c, ele

ctrolys

is ce

ntral

LH2, NG 40

00 km

, elec

trolys

is ce

ntral

Diesel

CNG, 400

0 km

g C

O2e

q/M

J

Conditioning & distribution

Transformation near market

Transportation to market

Transformation at source

Production & conditioning at source

CH2 LH2

NG wood elec

13/05/03

EUCAR

Preliminary

Slide 16

WTT Conclusions

LH2 is more energy and GHG intensive than CH2

Central reforming requires somewhat less energy than on-site

Electrolysis is very energy-intensive and can only be justified if genuinely renewable electricity is available

13/05/03

EUCAR

Preliminary

Slide 17

TANK-TO-WHEELS

Gasoline, Diesel, Natural gas, Hydrogen2002 - 2010

13/05/03

EUCAR

Preliminary

Slide 18

Tank-to-Wheels study:Gasoline, Diesel, Natural gas, Hydrogen

For the purpose of this study, a “virtual” vehicle was created, figurableas a VW Golf 1.6 l gasoline (most popular segment of the market)The results do not represent a fleet average

The Fuels / powertrains considered here are :- Technologies 2002 are purely Internal Combust. Engines (I.C.E.)- Technologies assessed for 2010 include : I.C.E. & Fuel Cells

The engine technologies and fuels investigated do not imply any assumptions with regard to their potential market share

ICE hybrid vehicles will be included later

13/05/03

EUCAR

Preliminary

Slide 19

Tank-to-Wheels studyPerformance & Emissions

All technologies fulfil at least minimal customer performance criteriaFor bi-fuel (gasoline-CNG) the vehicle performance decay (12% torque down-shift) is accepted. A dedicated CNG engine, upsized at 2 l. to fulfil the required performances is simulated.

The H2 I.C. engine is simulated as extrapolated from single cylinder present studies : 1.3 liter, already turbo-charged to meet the performances.

“Vehicle / Fuel” combinations comply with emissions regulationsThe 2002 vehicles comply with Euro IIIThe 2010 vehicles comply with EU IV

Direct Injection for gaseous fuels is not simulated as still at the level of research with open issues to be adressed (energy penalty or limited range)

13/05/03

EUCAR

Preliminary

Slide 20

Tank-to-Wheels studyFuels & adapted technologies for comparable performance

PISI SIDI CIDIGasoline 1.6 lit. DieselCNG (Bi Fuels)CNG (dedicated)CGH2LH2

1.6 lit.*

1.6 lit.

2.0 lit.

1.9 lit.

1.3 lit. TC1.3 lit. TC

Engine Type F.C.

75 kW75 kW

dieselgasolineFuelcell

Objective is to compare vehicles at same level

of technology

* Reduced performance

PISI : Port Injection Spark IgnitionSIDI : Spark Ignition Direct InjectionCIDI : Compression Ignition Direct Injection (Common Rail)F.C. : Fuel Cells (Direct Hydrogen)

13/05/03

EUCAR

Preliminary

Slide 21

Tank-to-Wheels studyComments : state of the art 2002

H2 ICE : Energy efficiency results from simulation are better than gasoline reference :Reason:- The S.I. H2 engine model is, already in 2002, simulated as downsized and turbo charged (DSTC), while the reference gasoline engine is not.

- The gasoline ICE will include the same technology in the 2010 version(and therefore be more energy efficient)

- The benefit of DSTC will not be accounted twice for H2 in 2010

No GHG are emitted by the H2 powertrain, except the NOx contribution

13/05/03

EUCAR

Preliminary

Slide 22

Tank-to-Wheels studyCompared Energy Efficiency

Cold start on NEDC PISI 1,6 SIDI 1,6 DIESEL1,9 CNGBF 1,6 CNG2,0 CGH2 LH2CO2 (g/km) 166,2 155,3 135 129 130 0 0ENERGY EFF. (MJ/100km) 223,5 209 183 229 230 180 180MASS Consump. (kg/100km) 5,21 4,87 4,26 5,08 5,1 1,50 1,50FUEL Consump. (l /100km) 6,95 6,49 5,1 7,12 7,15 5,60 5,60Other G.H.G. (g/km)Methane (g/kmCO2 eq.) 0,84 0,84 0,25 3,36 3,36N2O (g/km CO2 eq 0,93 0,93 3,1 0,93 0,93 0,93 0,93GHG global g/km 168,0 157,0 137,9 133,3 133,8 0,9 0,9

CNGbi-fueldieselgasoline CNG

dedicated

E n e r g y e f f ic ie n c y (M J / k m )

0 ,0 0

0 ,5 0

1 ,0 0

1 ,5 0

2 ,0 0

2 ,5 0

PISI 1,6

SIDI 1

,6

DIESEL1,9

CNGBF 1,6

CNG2,0

CGH 2

LH 2

ICE en

giARnes

STATE of the

T 2002

13/05/03

EUCAR

Preliminary

Slide 23

Tank-to-Wheels studyCompared G.H.G. emissions

Cold start on NEDC PISI 1,6 SIDI 1,6 DIESEL1,9 CNGBF 1,6 CNG2,0 CGH2 LH2CO2 (g/km) 166,2 155,3 135 129 130 0 0ENERGY EFF. (MJ/100km) 223,5 209 183 229 230 180 180MASS Consump. (kg/100km) 5,21 4,87 4,26 5,08 5,1 1,50 1,50FUEL Consump. (l /100km) 6,95 6,49 5,1 7,12 7,15 5,60 5,60

Other G.H.G. (g/km)Methane (g/kmCO2 eq.) 0,84 0,84 0,25 3,36 3,36N2O (g/km CO2 eq 0,93 0,93 3,1 0,93 0,93 0,93 0,93

GHG global g/km 168,0 157,0 137,9 133,3 133,8 0,9 0,9

ICE en

gines

STATE of the A

RT 2002

Fuels / Vehicles G.H.G. (g/km CO2 eq.)

0

20

40

60

80

100

120

140

160

180

PISI 1,6 SIDI 1,6 DIESEL1,9 CNGBF 1,6 CNG2,0 CGH2 LH 2

CO2 on the NEDC (g/km) cold Other GHG global g/km

13/05/03

EUCAR

Preliminary

Slide 24

Tank-to-Wheels studyEvolutions 2002 - 2010

From present State of the Art until 2010, Fuel efficiency evolutions should occur, depending on:

- the maturity of the technology- the specific possibilities and constraints of the fuel

Car manufacturers globally converge towards assumptions :- Port injection S.I. : + 15 % (includ. Downsizing Turbo Charged)- Direct injection S.I. : + 10 %- Diesel : + 6 % ( or 2 %, only, under Particle Trap)- Hydrogen I.C.E. : + 6 % ( D.S.T.C. already accounted as 2002)

- Nat. Gas & H2 : + 1 % supplementary for optimal air - gas mixture

DPF w/o DPFPISI SIDI DIESEL DIESEL CNGl H2

2010 improvement 15 10 2 6 16 7

13/05/03

EUCAR

Preliminary

Slide 25

Tank-to-Wheels studyCompared Energy Efficiency

Forecas

t 201

0

I.C.E.s

DPF w/o DPFCold start N.E.D.C. PISI SIDI DIESEL DIESEL CNG CGH2 LH2CO2 (g/km) 140 138 131 126 107 0 0ENERGY EFF. (MJ/100km) 190,0 188,0 179,1 171,8 190,8 168,1 168,1MASS Consump. (kg/100km) 4,43 4,38 4,17 4,00 4,23 1,40 1,40Cons. NEDC (l/100km) 2010 5,91 5,84 4,99 4,79 5,93 5,22 5,22Other G.H.G. (g/km)Methane (g/kmCO2 eq.) 0,42 0,42 0,21 0,21 0,84N2O (g/km CO2 eq 0,5 0,5 1,55 1,55 0,5 0,5 0,5

GHG global g/km 140,5 138,9 133,0 127,6 108,8 0,5 0,5

Gasoline

MJ / km on the NEDC (cold)

1,55

1,60

1,65

1,70

1,75

1,80

1,85

1,90

1,95

PISI SIDI DIESEL DPF

DIESELw.o. DPF

CNG CGH2 LH2

13/05/03

EUCAR

Preliminary

Slide 26

Tank-to-Wheels studyCompared G.H.G. emissions

DPF w/o DPFCold start N.E.D.C. PISI SIDI DIESEL DIESEL CNG CGH2 LH2CO2 (g/km) 140 138 131 126 107 0 0ENERGY EFF. (MJ/100km) 190 188 179 172 191 168 168MASS Consump. (kg/100km) 4.43 4.38 4.17 4.00 4.23 1.40 1.40Cons. NEDC (l/100km) 2010 5.91 5.84 4.99 4.79 5.93 5.22 5.22Other G.H.G. (g/km)Methane (g/kmCO2 eq.) 0.42 0.42 0.21 0.21 0.84N2O (g/km CO2 eq 0.5 0.5 1.55 1.55 0.5 0.5 0.5

GHG global g/km 140.5 138.9 133.0 127.6 108.8 0.5 0.5

Gasoline

Fuels/ Vehicles 2010 G.H.G.emissions

020406080

100120140160

PISI

SIDI

DIESEL DPF

DIESEL w.o. D

PF

CNG

CGH2

LH2

CO2 on the NEDC (g/km) cold Other GHG global g/km

Forecas

t s ’20

10

I.C.E.

13/05/03

EUCAR

Preliminary

Slide 27

Tank-to-Wheels studyComments : assessments 2010

Hydrogen Fuel Cells : Stack : 80 kW Elect. Motor : 75 kW200 kg 73 kg

Non Hybrid : Fuel : 4.7 kg Pressure Tank : 69 kg(CryoTank : 57 kg )

Hybrid : Fuel : 4.2 kg Pressure Tank : 56 kgBatteries : 20 kg (CryoTank : 51 kg )“Battery Electric” range : 20 km

Gasoline vehicles : Cycle test weight class : 1250 kgDiesel, Nat.Gas, H2 vehicles : Cycle test weight class : 1360 kgH2 Fuel Cells vehicles : Cycle test weight class : 1470 kg

13/05/03

EUCAR

Preliminary

Slide 28

Tank-to-Wheels studyComments : assessments 2010

FC Engine efficiency

0%

10%

20%

30%

40%

50%

60%

0% 20% 40% 60% 80% 100%% Net Power

Syst

em E

ffici

ency

H2 FC

The Fuel Cell system efficiency maps, implemented in code Advisor, are an average distribution . (Sources : G.M. Opel, European program FUERO, Daimler Chrysler)

13/05/03

EUCAR

Preliminary

Slide 29

Tank-to-Wheels studyCompared Energy Efficiency

Forecas

t 201

0

Direct

H2 Fuel

Cells

Cold start N.E.D.C. PISI DIESEL CNG LH2 ICE CGH2 F.C. CGH2 Hyb. F.C.CO2 (g/km) 140 131 107 0 0 0ENERGY EFF. (MJ/100km) 190 179 191 168 94 84MASS Consump. (kg/100km) 4,43 4,17 4,23 1,40 0,78 0,70Cons. NEDC (l/100km) 2010 5,91 4,99 5,93 5,22 2,92 2,60Other G.H.G. (g/km)Methane (g/kmCO2 eq.) 0,42 0,21 0,84N2O (g/km CO2 eq 0,5 1,55 0,5 0,5GHG global g/km 140,5 133,0 108,8 0,5 0,0 0,0

MJ / km on the NEDC (cold)

0,00

0,50

1,00

1,50

2,00

2,50

PISI DIESEL DPF

CNG LH2 ICE CGH2F.C.

CGH2Hyb. F.C.

13/05/03

EUCAR

Preliminary

Slide 30

Tank-to-Wheels studyCompared G.H.G. emissions

Cold start N.E.D.C. PISI DIESEL CNG LH2 ICE CGH2 F.C. CGH2 Hyb. F.C.CO2 (g/km) 140 131 107 0 0 0ENERGY EFF. (MJ/100km) 190,0 179,1 190,8 168,1 94,0 84,0MASS Consump. (kg/100km) 4,43 4,17 4,23 1,40 0,78 0,70Cons. NEDC (l/100km) 2010 5,91 4,99 5,93 5,22 2,92 2,60Other G.H.G. (g/km)Methane (g/kmCO2 eq.) 0,42 0,21 0,84N2O (g/km CO2 eq 0,5 1,55 0,5 0,5GHG global g/km 140,5 133,0 108,8 0,5 0,0 0,0

020406080

100120140160

PISIDIESEL D

PF

CNG

LH2 ICE

CGH2 F.C

.CGH2 H

yb. F

.C.

CO2 on the NEDC (g/km) cold Other GHG global g/km

Forecas

t 201

0

Direct

H2 Fuel

Cells

13/05/03

EUCAR

Preliminary

Slide 31

WELL-TO-WHEELS

13/05/03

EUCAR

Preliminary

Slide 32

Well-to-Wheels analysisSELECTED PATHWAYS

The following WTW integration aims at comparing:2002 / 2010 technologies

Gasoline, Diesel, NG Conventionals and H2 ICE, Direct & Hybrid FCFuelled by

Diesel & Gasoline Fossil FuelCNG 4000 km for Conventionals

Liquid H2LH2, NG 4000 km, central reformingLH2, remote reformingLH2, LNG, central reformingLH2, farmed wood, gasifier centralLH2, EU-mix electricity, electrolysis centralLH2, NG 4000 km, CCGT, electrolysis central

for ICE, Direct & Hybrid FC

Compressed H2CH2,NG 4000 km, on-site reformingCH2 and LH2, NG 4000 km, central reformingCH2, LNG, central reformingCH2, farmed wood, gasifier on-siteCH2, farmed wood, gasifier centralCH2, EU-mix electricity, electrolysis on-site CH2, EU-mix coal, gasifier central

13/05/03

EUCAR

Preliminary

Slide 33

Well-to-Wheels analysisICE H2 vs conventional pathways

WTW, 2010 technologies, hydrogen ICE

0.01.02.03.04.05.06.07.08.09.0

10.0

Gasoli

ne P

ISI

Gasoli

ne S

IDI

Diesel

CIDI d

pfDies

el CID

I

CNG, 400

0 km

CH2, NG 40

00 km

, ref o

n-site

CH2, NG 40

00 km

,ref c

entra

l, pipe

line

CH2, LN

G, ref c

entra

l

CH2, far

med w

ood,

gasif

ier on

-site

CH2, far

med w

ood,

gasif

ier ce

ntral

CH2, EU-m

ix ele

c, ele

ctroly

sis on

-site

CH2, Coa

l EU-m

ix, ga

sifier

LH2,

NG 4000

km, re

f cen

tral

LH2,

ref re

mote

LH2,

LNG, re

f cen

tral

LH2,

farmed

woo

d, ga

sifier

centr

al

LH2,

EU-mix

elec,

electr

olysis

centr

al

LH2,

NG 4000

km, e

lectro

lysis

centr

al

MJ/

km

2002-2010 performance rangeTTWWTT

Conventionals Liquid H2Compressed H2

ICE ICEICE

13/05/03

EUCAR

Preliminary

Slide 34

Well-to-Wheels analysisICE H2 vs conventional pathways

WTW, 2010 technologies, Hydrogen ICE

050

100150200250300350400450

Gasoli

ne P

ISI

Gasoli

ne S

IDI

Diesel

CIDI d

pfDies

el CID

I

CNG, 400

0 km

CH2, NG 40

00 km

, ref

on-si

te

CH2, NG 40

00 km

,ref c

entra

l, pipe

line

CH2, LN

G, ref

centr

al

CH2, far

med w

ood,

gasif

ier on

-site

CH2, far

med w

ood,

gasif

ier ce

ntral

CH2, EU-m

ix ele

c, ele

ctroly

sis on

-site

CH2, Coa

l EU-m

ix, ga

sifier

LH2,

NG 4000

km, re

f cen

tral

LH2,

ref re

mote

LH2,

LNG, re

f cen

tral

LH2,

farmed

woo

d, ga

sifier

centr

al

LH2,

EU-mix

elec,

electr

olysis

centr

al

LH2,

NG 4000

km, e

lectro

lysis

centr

al

g C

O2e

q/km

2002-2010 performance rangeTTWWTT

Conventionals Liquid H2Compressed H2

ICE ICEICE

13/05/03

EUCAR

Preliminary

Slide 35

Well-to-Wheels assessmentFuels / Vehicles assumptions 2010

Remarks for ICE

Highest energy use ------------------------------------------------------------------------Lowest energy use

Global Primary Energy Intensity: for all fossil energy sources, used in ICE:

LH2 > CGH2 > Conventional fuels

GHG global impact :Direct use of NG as CNG better than hydrogenHydrogen ICE more GHG-intensive than conventional engines/fuelsElectrolysis worst option unless electricity is from renewable sourceCoal could only compete with CO2 sequestration

Renewable sources obviously give best GHG but…Are there alternative use for these?

13/05/03

EUCAR

Preliminary

Slide 36

Well-to-Wheels analysisFuel Cell vs conventional pathways

WTW, 2010 technologies, hydrogen FC

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Gasolin

e PISI

Gasolin

e SID

I

Diesel

CIDI d

pfDies

el CID

I

CNG, 400

0 km

CH2, NG 40

00 km

, ref o

n-site

CH2, NG 40

00 km

, ref o

n-site

, Hyb

rid

CH2, NG 40

00 km

,ref c

entra

l, pipeli

ne

CH2, LNG, re

f cen

tral

CH2, far

med woo

d, gas

ifier o

n-site

CH2, far

med woo

d, gas

ifier c

entral

CH2, EU-m

ix ele

c, elec

trolys

is on

-site

CH2, Coa

l EU-m

ix, ga

sifier

LH2,

NG 4000

km, re

f cen

tral

LH2,

ref re

mote

LH2,

LNG, re

f centr

al

LH2,

farmed

wood

, gas

ifier c

entra

l

LH2,

EU-mix

elec,

electr

olysis

centr

al

LH2,

NG 4000

km, e

lectro

lysis

centra

lM

J/km

2002-2010 performance rangeTTWWTT

Conventionals Liquid H2Compressed H2

ICE FCFC

13/05/03

EUCAR

Preliminary

Slide 37

Well-to-Wheels analysisFC vs conventional pathways

WTW, 2010 technologies, Hydrogen FC

0

50

100

150

200

250Gas

oline

PIS

I

Gasoli

ne S

IDI

Diesel

CIDI d

pfDies

el CID

I

CNG, 400

0 km

CH2, NG 40

00 km

, ref

on-si

te

CH2, NG 40

00 km

, ref

on-si

te, H

ybrid

CH2, NG 40

00 km

,ref c

entra

l, pipe

line

CH2, LN

G, ref

centr

al

CH2, far

med w

ood,

gasif

ier on

-site

CH2, far

med w

ood,

gasif

ier ce

ntral

CH2, EU-m

ix ele

c, ele

ctroly

sis on

-site

CH2, Coa

l EU-m

ix, ga

sifier

LH2,

NG 4000

km, re

f cen

tral

LH2,

ref re

mote

LH2,

LNG, re

f cen

tral

LH2,

farmed

woo

d, ga

sifier

centr

al

LH2,

EU-mix

elec,

electr

olysis

centr

al

LH2,

NG 4000

km, e

lectro

lysis

centr

al

g C

O2e

q/km

2002-2010 performance rangeTTWWTT

Conventionals Liquid H2Compressed H2

ICE FCFC

13/05/03

EUCAR

Preliminary

Slide 38

Well-to-Wheels assessmentFuels / Vehicles ICE - F.C. 2010

Remarks

Global Primary Energy Intensity: for all fossil sources:

LH2/FC ~ conventional ICEs > CH2/FC

GHG global impact :

H2 Fuel Cells, even with H2 from NG, compare favourably with conventional fuels ICE’s

Worst option remains Electrolysis from EU-mix power

Highest energy use ------------------------------------------------------------------------Lowest energy use

ICE hybrids still to be calculated