Visual Prostheses: The Enabling Technology to Give Sight to the ...

12
JOURNAL OF OPHTHALMIC AND VISION RESEARCH 2014; Vol. 9, No. 4 494 INTRODUCTION Owing to the incredible recent technological progress in the development of tools and devices aiming at interfacing to the nervous system, much research has been conducted over the past few decades to either deepen our understanding of the human neural system, or to interface with the nervous system for prosthetic purposes. Implantable microsystems designed and developed to either stimulate the nervous system or directly record neuronal activities with high spatial resolution are referred to as neural prostheses. [1] Among the successfully commercialized examples of neural prostheses, one can name cochlear implants, which provided partial hearing to more than 120,000 persons worldwide at the end of year 2008. [2] Visual Prostheses: The Enabling Technology to Give Sight to the Blind Mohammad Hossein Maghami 1 , MS; Amir Masoud Sodagar 1,2 , PhD; Alireza Lashay 3 , MD Hamid Riazi‑Esfahani 3 , MD; Mohammad Riazi‑Esfahani 3 , MD 1 Research Laboratory for Integrated Circuits and Systems (ICAS), Electrical Engineering Department, K.N. Toosi University of Technology, Tehran, Iran 2 Electrical Engineering Department, Polytechnique Montreal, Montreal, Quebec, Canada 3 Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran Abstract Millions of patients are either slowly losing their vision or are already blind due to retinal degenerative diseases such as retinitis pigmentosa (RP) and age‑related macular degeneration (AMD) or because of accidents or injuries. Employment of artificial means to treat extreme vision impairment has come closer to reality during the past few decades. Currently, many research groups work towards effective solutions to restore a rudimentary sense of vision to the blind. Aside from the efforts being put on replacing damaged parts of the retina by engineered living tissues or microfabricated photoreceptor arrays, implantable electronic microsystems, referred to as visual prostheses, are also sought as promising solutions to restore vision. From a functional point of view, visual prostheses receive image information from the outside world and deliver them to the natural visual system, enabling the subject to receive a meaningful perception of the image. This paper provides an overview of technical design aspects and clinical test results of visual prostheses, highlights past and recent progress in realizing chronic high‑resolution visual implants as well as some technical challenges confronted when trying to enhance the functional quality of such devices. Keywords: Electrical Stimulation; Medical Implants; Neural Prostheses; Visual Prostheses Correspondence to: Mohammad Riazi‑Esfahani,, MD. Eye Research Center, Farabi Eye Hospital, Qazvin Sq., Tehran, Iran. E‑mail: [email protected] Received: 21‑09‑2013 Accepted: 02‑03‑2014 The idea of electrically stimulating the human visual system was first described in the 18 th century by Franklin, [3] Cavallo [4] and LeRoy. [5] In 1755, LeRoy [5] produced visual sensations of light by passing an electrical charge through the eye of a blind man. In 1929, Foerster, a German neurosurgeon, observed a visual neural response to electrical stimulation, when his patient saw a spot of light during electrical stimulation of his visual cortex. [6] Since then, the idea of restoring vision to the blind has moved from a distant dream to near‑future reality. [7] Failure in the operation of any part of the visual system, as illustrated in Figure 1, can potentially cause blindness. Aside from approaches such as cell regrowth J Ophthalmic Vis Res 2014; 9 (4): 494‑505. Access this article online Quick Response Code: Website: www.jovr.org DOI: 10.4103/2008‑322X.150830 Review Article [Downloaded free from http://www.jovr.org on Saturday, February 07, 2015, IP: 46.62.176.11] || Click here to download free Android application for this journal

Transcript of Visual Prostheses: The Enabling Technology to Give Sight to the ...

Page 1: Visual Prostheses: The Enabling Technology to Give Sight to the ...

Journal of ophthalmic and Vision research 2014; Vol. 9, No. 4494

INTRODUCTION

Owingtotheincrediblerecenttechnologicalprogressinthedevelopmentoftoolsanddevicesaimingatinterfacingtothenervoussystem,muchresearchhasbeenconductedoverthepastfewdecadestoeitherdeepenourunderstandingofthehumanneuralsystem,ortointerfacewiththenervoussystemforprostheticpurposes.Implantablemicrosystemsdesignedanddevelopedtoeitherstimulatethenervoussystemordirectly recordneuronalactivitieswithhighspatial resolutionarereferredtoasneuralprostheses.[1] Amongthesuccessfullycommercializedexamplesofneuralprostheses, one can name cochlear implants,whichprovidedpartialhearing tomore than120,000personsworldwideattheendofyear2008.[2]

VisualProstheses:TheEnablingTechnologytoGiveSighttotheBlind

Mohammad Hossein Maghami1, MS; Amir Masoud Sodagar1,2, PhD; Alireza Lashay3, MD Hamid Riazi‑Esfahani3, MD; Mohammad Riazi‑Esfahani3, MD

1Research Laboratory for Integrated Circuits and Systems (ICAS), Electrical Engineering Department, K.N. Toosi University of Technology, Tehran, Iran

2Electrical Engineering Department, Polytechnique Montreal, Montreal, Quebec, Canada 3Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran

AbstractMillionsofpatientsareeitherslowlylosingtheirvisionorarealreadyblindduetoretinaldegenerativediseases suchas retinitispigmentosa (RP)andage‑relatedmaculardegeneration (AMD)orbecauseofaccidentsorinjuries.Employmentofartificialmeanstotreatextremevisionimpairmenthascomeclosertorealityduringthepastfewdecades.Currently,manyresearchgroupsworktowardseffectivesolutionstorestorearudimentarysenseofvisiontotheblind.Asidefromtheeffortsbeingputonreplacingdamagedparts of the retinaby engineered living tissuesormicrofabricatedphotoreceptor arrays, implantableelectronicmicrosystems,referredtoasvisualprostheses,arealsosoughtaspromisingsolutionstorestorevision.Fromafunctionalpointofview,visualprosthesesreceiveimageinformationfromtheoutsideworldanddeliverthemtothenaturalvisualsystem,enablingthesubjecttoreceiveameaningfulperceptionoftheimage.Thispaperprovidesanoverviewoftechnicaldesignaspectsandclinicaltestresultsofvisualprostheses,highlightspastandrecentprogressinrealizingchronichigh‑resolutionvisualimplantsaswellassometechnicalchallengesconfrontedwhentryingtoenhancethefunctionalqualityofsuchdevices.

Keywords:ElectricalStimulation;MedicalImplants;NeuralProstheses;VisualProstheses

Correspondence to: MohammadRiazi‑Esfahani,,MD.EyeResearchCenter,FarabiEyeHospital,QazvinSq.,Tehran,Iran.E‑mail:[email protected]

Received:21‑09‑2013 Accepted:02‑03‑2014

Theideaofelectricallystimulatingthehumanvisualsystemwasfirstdescribedinthe18thcenturybyFranklin,[3] Cavallo[4]andLeRoy.[5]In1755,LeRoy[5]producedvisualsensationsoflightbypassinganelectricalchargethroughthe eye of a blindman. In 1929, Foerster, aGermanneurosurgeon, observed a visual neural response toelectricalstimulation,whenhispatientsawaspotoflightduringelectricalstimulationofhisvisualcortex.[6]Sincethen,theideaofrestoringvisiontotheblindhasmovedfromadistantdreamtonear‑futurereality.[7]

Failure in the operationof anypart of the visualsystem,asillustratedinFigure1,canpotentiallycauseblindness.Asidefromapproachessuchascellregrowth

J Ophthalmic Vis Res2014;9(4):494‑505.

Access this article online

Quick Response Code:Website: www.jovr.org

DOI: 10.4103/2008‑322X.150830

Review Article

[Downloaded free from http://www.jovr.org on Saturday, February 07, 2015, IP: 46.62.176.11]  ||  Click here to download free Android application for this journal

Page 2: Visual Prostheses: The Enabling Technology to Give Sight to the ...

Visual Prostheses; Maghami et al

Journal of ophthalmic and Vision research 2014; Vol. 9, No. 4 495

using stem cells and semiconductor photodetectorarrays, implantablevisualprostheseshave exhibitedsuccessfulperformancethroughelectricalstimulation.[8] Implantablevisualprosthesismicrosystems,ingeneral,aimat receiving image information from theoutsideworldandaccordinglystimulatingaproperpartofthevisualsystem.Infact,avisualprosthesisisdesignedtobypassfailingpartsofthevisualpathwayanddelivertheimageinformationtotherestofthenaturalvisualsystemthatworksperfectly.Thiswillartificiallyproducevisualperceptioninindividualswithprofoundlossofvision.Althoughitisunlikelytorecreateperfectvision,artificialvisionsystemsmayevokeenoughphosphene(acollectionofthespotsoflightwhichareseenduringelectrical stimulationof thevisual cortex)perceptiontoperform every‑day tasks such as navigation, facerecognition,andreadinglarge‑sizetexts.[9,10]

Itisworthmentioningthattodevelopafullyfunctionalvisualprosthesis, in addition to thedevelopment ofelectronics andhardware required for this purpose,engineersneedtocollaboratewithspecialistsinclinicaland surgicalfields to formamultidisciplinary team.In addition tomakingdecisionsonmain issues suchas surgical and implantationprocedures, themedicalresearchteamalsoworksontheselectionofappropriatetypesoflabanimals,assessesandmonitorsissuesrelatedtothehealthandnormalbehaviorofthesubjectspre‑andpost‑implantation,andonthedesignanddevelopmentofclinicalteststoassesstheefficacyoftheimplant.Insummary, todevelop a visualprosthesis system forchronicoperation,closecollaborationbetweenspecialistsin both engineering (designing circuits and systems,fabricatingmicrostructuresandsignalprocessing)andmedical disciplines is inevitable. Figure 2 illustratesthe different design thrusts of a visual prosthesismicrosystem.Inthisreviewarticle,thegeneralstructureofavisual

prosthesisisstudied.Mainbuildingblocksofatypicalvisualprosthesis systemare thenbriefly introduced.Someof thekeydesignaspectsat thesystemlevelaswell as challenges faced in thedevelopment of such

Figure 1.Humanvisualpathway. Figure 2.Visualprosthesisdesignthrusts.

systemsaresubsequentlyaddressed.Finally,thelatestachievements in the design of visual prostheses byvariousresearchgroupsaroundtheglobeandsomeoftheirclinicaltestresultswillbereviewed.

VISUAL PROSTHESES, GENERAL DESIGN

Figure 3 shows the general architecture for visualprostheses of different kinds developed by severalgroupsworldwide.[11‑16] In avisualprosthesis system,anexternalvideocamera,usuallywornoneyeglasses,captures images from the visionfield of thepatientin theoutsideworld.Someexternalpre‑processing isperformedonrecordedimagesinordertoextractkeyimageinformationandhencereducetheamountofdatathatwillbetransmittedtotheimplant.Afterretrievalofdata on the implant side, an embeddedprocessorsendstheimageinformationtoastimulationback‑end,whichisinchargeofgeneratinganalogelectricalpulses.Usually,aflexiblecableconveystheseelectricaloutputstoanelectrodearraythatinterfacestothetargettissue.Inthefollowingsubsections,abriefdescriptionofthe

aforementionedvisualprosthesis electronichardwareunits aswell as some theassociateddesign concernsarepresented.

External Video Capture and ProcessingTheexternalmoduleofavisualprosthesisconsistsoftwoparts:Videocaptureunitandimageprocessingunit.Asaninseparablepartofanyvisualprosthesissystem,thevideocaptureunitcomprisesaminiaturizedcameramountedonthepatient’seyeglassesorhead.Differenttypesofcamerashavebeenusedforimageandvideocapture, e.g. photodiode arrays,[16] charge‑coupleddevices (CCDs),[17] and complementarymetal‑oxidesemiconductor(CMOS)cameras.[13,14]Duetothelimitednumberofelectrodesintheimplant,imageresolutionofthecameradoesnotimposeanyparticularconstraintsontheimageprocessingcapabilityoftheentiresystem.Temporal resolution isnot expected tobe aproblem

[Downloaded free from http://www.jovr.org on Saturday, February 07, 2015, IP: 46.62.176.11]  ||  Click here to download free Android application for this journal

Page 3: Visual Prostheses: The Enabling Technology to Give Sight to the ...

Visual Prostheses; Maghami et al

Journal of ophthalmic and Vision research 2014; Vol. 9, No. 4496

either,sincetheresponseoftypicalcamerasisusuallymuchfasterthanthatofthehumanvisualsystem.The externalunit of a visualprosthesis isusually

powered by batteries and the implanted electronicsreceivepowerthroughwirelessconnection.Consideringthe fact that the implantablemodule is preferred toberealizedwithsmallphysicalsizeandoperatewithlowpowerdissipation, anyattempt to reduce circuitcomplexityandalsopowerconsumptionoftheimplantiswelcomed.Forthisreason,compleximageprocessingtasksareusuallyperformedrightaftercapturingvideoinformationon thewearable externalmodulewherephysical size and supplying electric power are notmajor concerns. Edge detection and image qualityenhancement, zooming, contrast and brightnessadjustmentareamongtheimagepre‑processingtasksthatarerealizedontheexternalside.[18]Imageprocessingcomplexitydependsonthetypeoftechniquesemployedforenhancementofimagequalityandalsoonthepartofthevisualsystembeingstimulated(i.e.retina,opticnerve,orthevisualcortex).Theamountofdataconveying the imagecaptured

from theoutsideworldneeds tobe reduced inorderto complywith some system‑level restrictions andconstraints suchaswireless transmissionbandwidthandprocessing capabilitiesof the implantedmodule.Forthispurpose,bothresolutionandcolorinformationoftheimageislowered.Figure4showsasampleindoorpicture,withdifferentresolutionsandgraylevels.In imageprocessing, ingeneral,pixels areusually

intheshapeofsmallsquaressittingbyeachotherandforminga continuouspicture.This iswhile, invisualprostheses, eachpixel corresponds to a stimulatingelectrode. Patientsundergoing electrical stimulation

reportvisual sensations as amatrixof separate lightspots.Therefore,tovisualizewhatapatientcarryingavisualprosthesissees,itmightbemoremeaningfultopixelizepictureswithcircularshapesratherthanwithsquare‑shapepixels.Thequalityofvisionrestoredusingavisualprosthesisishighlydependentontheresolutionoftheimagedeliveredtothevisualsystemofthesubject.This resolution is indeeddefinedby the number ofstimulation sites on the target tissue. Simulations ofprostheticvisionsuggestthat600–1000electrodeswillberequiredtorestorevisualfunctiontoalevelthatwouldallow for reading, independentmobility, and facialrecognitioninretinalprostheses.[8]

Figure5showstwoCMOScameramodulesusedastheexternalvideocapturedevicebyoneoftheIranianresearchgroups (ResearchLaboratory for IntegratedCircuits andSystems [ICAS],K.N.ToosiUniversityof Technology, Tehran, Iran) in the field of visualprostheses.[19,20]Thesearebothwearablehardwarethatcan beused indynamic tests to evaluate the imageprocessingalgorithmsusedinresearchprototypesandalsoinrealvisualprostheses.

Wireless InterfaceDue to implant size limitations in visual prosthesesand because of the necessity to avoidingwires toreducetheriskofinfection,wirelessoperationofvisualprosthesesisinevitable.Aninductivelinkbetweentwoclosely‑coupledcoilsisthemostcommonapproachtowirelesslysendpoweranddatafromtheexternalworldtoimplantablebiomedicaldevices.[21‑23]Inthisapproach,asshowninFigure6a,aprimary(transmitting)coilisplacedontheoutsideandasecondary(receiving)coilisimplantedinsidethebodywiththethinlayersofliving

Figure 3.Generalarchitecturefordifferentkindsofvisualprosthesissystemsdevelopedbyseveralgroupsactivelyinvolvedinthisresearchdomain.

[Downloaded free from http://www.jovr.org on Saturday, February 07, 2015, IP: 46.62.176.11]  ||  Click here to download free Android application for this journal

Page 4: Visual Prostheses: The Enabling Technology to Give Sight to the ...

Visual Prostheses; Maghami et al

Journal of ophthalmic and Vision research 2014; Vol. 9, No. 4 497

tissuesbetweenthem.Bothsidesofthelinkaretunedtothesameresonantfrequency,referredtoasthecarrierfrequency.Thewirelessinterfaceontheimplantcontainsapowerregulatorandadatademodulatorcircuitfortheretrievalofthereceivedpoweranddata,respectively.[24]

Recently, capacitive links have beenproposed asnovel alternativeswhich offer several advantagesover their traditional counterparts, i.e. the inductivelinks[Figure6b].Oneofthemostimportantadvantagesof the capacitive coupling approach is thehigh‑passnature of the link.[25,26] This is specificallywelcomedinvisualprostheses,where ratherhighdata ratesarerequiredtoenhancethequalityoftheimagestelemeteredtotheimplant.Besides size constrains, type of thewireless link

and the high data rate, one of themost importantissues inwireless telemetry is powerdissipation inthehumaneye.Thispowerdissipationmay result inexcessivetemperatureriseinbiologicaltissues,whichcanleadtotissuedamage.Therefore,whendesigningwireless interfaces, the amount of absorbed radiofrequency(RF)energyhastobeevaluatedandcomparedwith the human safety levels, usually expressed intermsof specific absorption rate (SAR) in associatedstandards.[27]Nowadays,SARcalculationsareperformedusinghigh‑resolution three‑dimensionalhumanbodymodelsbymostelectromagneticsimulators.[28,29]

Embedded Control UnitSimilartoalmostanyotherimplantablemicrostimulatingsystems, a visual prosthesis receives both setupand stimulationdata froman externalmodule. Theimplantablemicrosystem contains an embeddedcentralized controller,which is in charge of bothadministering the implant operation andgeneratingstimulation commands/data. Ingeneral, system levelspecifications of thedesigned embedded controllersto be used in any kind of visual prostheses are thesame.Thestimulationdataprovidedbytheembeddedcontrolleraresenttoastimulationback‑end,accordingtowhichappropriatestimulationpulsesaregeneratedanddeliveredtothetargettissue.Infact,theembeddedcontroller commands themicrostimulator togenerateelectrical pulseswith various amplitudes andpulsewidthsaccordingtothedatareceivedfromtheexternalmodule.Otherparameterssuchasinter‑phaseintervaland stimulation period are also controlled by thisblock.Moreover,theembeddedcontrollercontrolsthesequenceandorderofstimulationsforalltheelectrodes.As the embedded controller is designed to be

implantedinsidethebody,itneedstoberealizedwithsmall physical dimensions, consume small amountof power, andutilize a limited bandwidth for datatelemetryaccordingtofrequencyallocationregulations.Thereareotherconcernsinthedesignofanembedded

controller,whichincludeinterfacingwithothermodulesofthesystemthroughminimumpossibleinterconnects,andalsooperationwith sucha fastpace that allowsthe system to stimulate thenaturalvisual system forreal‑time,flicker‑freevideostreaming.Thisiswhytheresearchgroupsdevelopingvisualprosthesissystems

Figure 4. Various pixelized versions of different spatialresolutionswithdifferentgraylevels.[20]

Figure 5.CMOScamerahardwareusedbyICASvisualprosthesisteam(a)Firstgeneration,[19](b)Secondgeneration.[20]

ba

Figure 6. (a) Inductive coupling approach (b)Capacitivecouplingapproach.[25]

b

a

[Downloaded free from http://www.jovr.org on Saturday, February 07, 2015, IP: 46.62.176.11]  ||  Click here to download free Android application for this journal

Page 5: Visual Prostheses: The Enabling Technology to Give Sight to the ...

Visual Prostheses; Maghami et al

Journal of ophthalmic and Vision research 2014; Vol. 9, No. 4498

prefertodesigntheirownspecial‑purposecontroller[30,31] ratherthanusingoff‑the‑shelfcommerciallyavailable,generalpurposecontrollers.

Stimulation CircuitryIn amicrostimulation system, analog stimulationpulsesneed tobegenerated according to thedigitalcommandsanddataissuedbytheembeddedcontroller.Astimulationback‑endisinchargeofgeneratinganddelivering electrical stimulationpulses to the targettissue. In electrical stimulation, stimulations can, ingeneral, be in the formof current,voltage,or chargepulses.Fromthestandpointofthegeneralformofthestimuli,bothmonophasicandbiphasicpulsesareusedfor stimulation. Inmonophasic stimulation, for eachstimulation,asinglepulseisgeneratedtodeliveracertainamountofelectriccurrent,charge,orvoltagetothetargettissue. In this case, oneneeds to considerprovisionsfordischarging the stimulated area to avoiddamagetothetargettissuecausedbychargeaccumulation.Incharge‑balancedbiphasic stimulation [Figure7], eachstimulationpulse(anodicpulse)isfollowedbyapulseof reversepolarity (cathodicpulse) to collect chargesdelivered to the stimulatedareaby theanodicpulse.Amplitudeandtimingspecificationsofthestimulationpulsesneedtobetunedbasedonpatientfeedbackonvisualperception.Typicalpulseamplitudesarewithinthe10–600µArange,andthepulsewidthsrangefrom100 µs to around 2ms.A typicaldelayof 0–1ms isconsideredbetweentheanodicandcathodicpulses,andpulserepetitionrateforvisualprosthesesvaries from10Hzto125Hz.[32]

It should be noted that, even in charge balancedbiphasicstimulation,unavoidablesystematicmismatchesin thedesignandfabricationof thestimulationcausesmall residual charge at stimulation sites.Moreover,other issues such as charge leakage from adjacentstimulationsitesoveraperiodoftimemayresultinthebuildupofelectricchargeinthetissuebeingstimulated.Thus, charge cancellation circuitry is envisioned toperiodicallydischargestimulationsitesbyconnectingtheelectrodestothecommongroundpotential.

Microelectrode ArraysThe advent ofmicroelectrode arrays (MEAs)morethan 20 years ago led to steady advancement inthe development of neural interfaces aswell as ameaningful progress in neuroscience research. TheMEAsusedinadvancedneuralandvisualprosthesismicrosystems comprise multiple electrode sitesdevelopedforchronicimplantation.[33,34]Typically,anMEAisconnectedtotheelectronicsplatformusingaribboncablecontainingmultipleinterconnectscoatedbyorsandwiched inbetweenflexiblebiocompatiblepolymericprotectivelayers[Figure8].However,theprotective passivation layer,which is an insulatorfrom the standpoint of electrical conduction, isremoved from over the electrode sites in order toallow them to electrically interfacewith the targettissue.Silicon,[35]polyethyleneterephthalate(PET),[36] polyimide,[37,38]andliquidcrystalpolymer[39]areamongthematerialsusedastheelectrodesubstrate.Electrodesites are usuallymade of gold,[36] platinum,[40] and iridium‑oxide.[41]High‑temperature silicon oxide[42] and polymeric materials such as Parylene‑C, [41] epoxy‑based negative photoresist (SU‑8) [36] and polydimethylsiloxane (PDMS) [43] are used for passivation.Inprinciple, thehigher thenumberof stimulation

sitesare,thebettertheresolutionwillbe.Animmediateconsequenceoftheincreaseinthenumberofchannelsistheincreasedcomplexity,size,andpowerdissipationof the system,noneofwhich aredesirable invisualprostheses.

DIFFERENT APPROACHES TO THE DEVELOPMENT OF VISUAL PROSTHESES

Thevisualpathwayextendsfromphotoreceptorsintheretina to thevisual cortex in thebrain.Conceptually,to realize a visual prosthesis, the image informationrecorded from the externalworld can be deliveredto thenatural visual systemat anypoint along thispath(ofcourse,providedthatfromthereon,therestofthesystemishealthyandfunctioning).Hence,several

Figure 7.Diagramofbiphasiccurrentpulseinformofcurrent. Figure 8.Stimulationmicroelectrodearray.

[Downloaded free from http://www.jovr.org on Saturday, February 07, 2015, IP: 46.62.176.11]  ||  Click here to download free Android application for this journal

Page 6: Visual Prostheses: The Enabling Technology to Give Sight to the ...

Visual Prostheses; Maghami et al

Journal of ophthalmic and Vision research 2014; Vol. 9, No. 4 499

approachesaretakentorestorevisiontotheblind,whichcanbecategorizedinto:Stimulationoftheretina,opticnervestimulation,andcorticalstimulation.Eachoneoftheseapproacheshasitsownattraction.Oneofthekeyreasons,ontheengineeringside,forthegreatinterestdirected towards retinal approaches is tomaximallybenefit from the imageprocessingperformed in thenaturalvisualsystem,hencereducingtheextentoftheimageprocessingexpectedfromthevisualprosthesis.Opticnervestimulationisanattempttodeliverimageinformationtothenaturalvisualsystemattheveryfirstplaceaftertheretina.Thisapproachcanbeapossibleoptionwhen the retina is atrophied. The corticalapproach is also considered as one of the possiblecandidates,tryingtobypassthevisualpathwayallthewaytothevisualcortex.

Retinal ProsthesisIthasbeenshownthatelectricalstimulationofretinalbipolar and ganglion cells yields visual sensation.Therefore,aretinalimplantforpatientssufferingfromRPandAMDseemstobefeasible.[8,11,12,16]Therearetwomain approaches to stimulate retinal ganglion cells:(I) Epi‑retinal stimulation, inwhich, the prostheticdeviceisattachedtotheinnerretinalsurface;and(II)the sub‑retinal approach,which involves implantinganelectrodearraybetweenbipolarcellsandtheretinalpigmentepithelium[11,12][Figure9].Inbothapproaches,generally,powerandinformationaredeliveredtotheelectrodearrayfromaseparatingprocessingunit.Whilethe electrode arrayneeds tobe attached to a certainareaintheretina,factorssuchassurgicaldetail,lengthof interconnections between the electrode array andthe implantedelectronicpackage, and thermal safetyconsiderationsdeterminewheretheelectronicsplatformwillbeplaced.[11,12]

Anumber of retinal prosthesis projects are beingpursued through both epi‑retinal and sub‑retinalapproaches.Theadvantagesoftheepi‑retinalapproachincludethefollowing:(1)Theprocedureforimplantationis relatively straightforward and placement on theepi‑retinal surfacewill not separate the retina fromretinalpigmentepitheliumandchoroid.(2)Epi‑retinalplacementallows for thevitreous toact as a sink for

heatdissipation from themicroelectronicdevice.[44,45] Disadvantagesofthisapproachinclude:(1)Requirementof techniques thatwillprovideprolongedattachmentofthedevicetotheinnerretinaonthemedicalside,[46,47] and(2)stimulationattheoutputoftheretina(ganglioncells)ontheengineeringside,whichwillrequiremoresophisticated imageprocessing to account for retinaalgorithms.[48]

Placementof theprosthesis in the sub‑retinal spacehas advantages such as closerproximity to thenextsurviving layers of neurons in the visual pathway(i.e.bipolarcells).[49,50]Stimulationatthebipolarcelllevelwillallowsignificantretinalprocessingtoshapetheneuralresponse.Placinganelectrodeinterfaceinthesub‑retinalspacewilluse the retina tohold theelectrode incloseproximitytotheelectrode.[49]Also,fixationofanimplantinthesub‑retinalspacemightbemorestablethantackingittotheepi‑retinalsurface.Disadvantagesofthisapproachincludethelimitedsub‑retinalspacetoplacetheelectronicsaswellasthecloseproximityoftheretinatotheelectronicswhichwouldincreasethelikelihoodofthermalinjurytoneuronsandconsequently limit the thermalbudgetoftheimplant.Ifthesub‑retinalimplantisonlyanelectrodearraywiththeelectronicsoutsidetheeye,thentheimplantwillhaveacableacrossthesclera,whichmayresultinatetheringeffecton thecable.[51]Furthermore, thiscable,overthelongterm,increasesthelikelihoodofsub‑retinalhemorrhageandtotalorlocalretinaldetachment.There is another sub‑retinal approach, inwhich a

microchip containingphotodiodearrays is implantedunderthetransparentretinatosubstitutethedegeneratedphotoreceptors. The implant is, indeed, a singlecomponent in charge of converting incident light toelectricalcurrentanddeliveringtheresultingelectricalstimulitotheretina.[16]Whilealloftheapproachesonthedevelopmentofvisualprosthesesrequireexternalimageanddataprocessingdue to bypassing retinal imageanalysis, implantablephotodiodearraysare intendedtoreplacethefunctionofdegeneratedphotoreceptorsbydirectly translating the image into small electricalstimulationswith no need for additional electroniccircuitry.Otheradvantagesofthisapproachincludeeasyplacement,fewercomponents,andsincenovideocamera

Figure 9.Retinalvisualprosthesis. Figure 10.Opticnervestimulation.

[Downloaded free from http://www.jovr.org on Saturday, February 07, 2015, IP: 46.62.176.11]  ||  Click here to download free Android application for this journal

Page 7: Visual Prostheses: The Enabling Technology to Give Sight to the ...

Visual Prostheses; Maghami et al

Journal of ophthalmic and Vision research 2014; Vol. 9, No. 4500

isused,thepossibilityofusingeyemovementtolocateobjects.Initsoriginalform,theprincipaldrawbackofthissystemistheinabilityofthephotodiodestogeneratestrongenoughcurrentstostimulatetheadjacentneuronsbyusingmerelytheincidentlight.Also,placementofthephotodiodearraycomponentcoulddamagetheretinathroughpigmentepitheliumseparationorobstructionofbloodflowfromtheretina.

Optic Nerve StimulationTheopticnerve,which is about1–2mm indiameter,servesasa compact conduit forall the information inthevisualscene.Thismeansthatelectricalstimulationofasmallareaoftheopticnervewouldbeexpectedtoactivatealargesegmentofthevisualfield.Stimulationoftheopticnerveisrealizedusingacuffelectrodeencirclingit,asillustratedinFigure10.Sincetheelectrodesareontheoutsideofaverydenselypackednerve(~1.2millionfiberswithinthenerve),focalstimulationanddetailedperceptionaredifficulttoachieve.[52]Thisapproachalsorequiresreal‑timeimagecaptureandprocessing,andalsoatelemetrylinkforthetransferofpoweranddatatotheelectronicimplant.Asaresultofcompletelybypassingtheretina,notonlythisapproachcanbeusedforpatientswithretinaldegeneration,italsooffersarelativelysaferandeasierimplantationprocedurecomparedtoretinalapproaches.Thisapproachis,however,ratherimmaturecomparedtoitscounterparts.Thepossibilityofgeneratingpatternvisionbyelicitingspatiallyadjacentphosphenesusingopticnervestimulationisstillunclear.[53]

The Cortical ApproachHistorically, there has been notable research in thedevelopmentofavisualprosthesisthatstimulatesthevisualcortex.Startinginthe1960’s,severalreportswerereleasedon the inductionofphosphenes inpatientswith profound blindness.[54,55] Patients reported theabilitytoreadBraillepatterns,realletters,driveacarinaparkinglot,andwalkaroundaroomusingthiskindofprostheses.[56‑58]

Figure 11.Corticalapproach.

Figure 12.Number of scientific and technical documentspublishedwiththekeywords‘visual’and“prosthesis”intheirtitlesorabstracts.

Withouttakingsomanytechnological,surgical,andcognitivechallengesintoconsideration,stimulationofthevisualcortex[Figure11]isbelievedtobesuccessfulin restorationofvision for theblinddue todifferentcauses,includingthosesufferingfromdamagetoboththe retina andoptic nerve.However, for thosewhoare eligible to use retinal prosthesis or optic nervestimulation,corticalvisualprosthesesmightnotbethefirstchoice.Theratherhighsurgicalriskthatapatientwithanotherwisehealthybrainneedstotake,andalsotheextracomplicatedimageprocessingthattheartificialsystemneedstohandleareamongthereasonswhythecorticalapproachhasnotbeenwelcomedascomparedwithother approaches.[7,10,59‑62]Among the significantadvantagesofthecorticalapproachoveritscounterparts,onecanpointtothereducedpowerrequirementsperstimulationsite,morepredictablephosphenegeneration,lessphospheneinteraction,absenceofflicker,andthepossibilityofpackingmorestimulationchannelstherebyincreasingresolution.[63]

VISUAL PROSTHESES PIONEERING RESEARCH GROUPS

Overthepastdecade,severalresearchteamshavebeeninvolved in the development of functioning visualprostheses.BasedonasearchwithinElsevier’sScopusdatabase,Figure12showstheexponential‑likegrowthofscientificandtechnicaldocumentspublishedon‘visual’and‘prosthesis’overthepastdecades.Contributionofpioneercountriesinthefieldofvisualprostheses,intermsofpaperspublishedduring2008–2013[64] is illustrated in Figure13.Morethan55%ofthesepublicationsareinthefieldofmedicine.[64]

TheArtificial Retina team is one of the pioneergroups in the development of implantable visualprostheses. ProfessorsM.Humayun andE.DeJuanof the Doheny Eye Institute at the University ofSouthern California (USC), Dr. R. Greenberg ofSecond Sight company, and ProfessorW. Liu oftheUniversity of California at SantaCruz (UCSC)are the original inventors of the active epi‑retinalprosthesis. They demonstrated proof of principle

[Downloaded free from http://www.jovr.org on Saturday, February 07, 2015, IP: 46.62.176.11]  ||  Click here to download free Android application for this journal

Page 8: Visual Prostheses: The Enabling Technology to Give Sight to the ...

Visual Prostheses; Maghami et al

Journal of ophthalmic and Vision research 2014; Vol. 9, No. 4 501

in acute patient investigations at JohnsHopkinsUniversity in the early 1990s. In the late 1990s, thecompanySecondSightwasformedbyDr.Greenbergalongwithmedicaldeviceentrepreneur,A.Mann,todevelopachronicallyimplantableretinalprosthesis.Theirfirstgenerationimplanthad16electrodesandwasimplantedin6subjectsbetween2002and2004.Thesesubjects,whowereallcompletelyblindpriortoimplantation,couldperformasurprisingarrayoftasksusingthedevice.[7]In2007,SecondSightbeganatrialofitssecondgeneration60‑electrodeimplant,namedArgusII, intheU.S.andEurope.Intotal,30subjectsparticipatedinthestudiesspanning10sitesin4countries.ThepreliminaryresultsshowthattheArgus II systemprovides some functionalvision toblindsubjects.[59]Inthespringof2011,aftermorethantwodecadesofresearchanddevelopmentinthefieldofvisualprosthesis,ArgusIIwasapprovedforclinicalandcommercialuseinSwitzerland,France,andtheUK.[65]SecondSightCompanylaunchedtheproductlater the same year. ThreemajorU.S. governmentfundingagencies(NationalEyeInstitute,Departmentof Energy, andNational Science Foundation) havesupportedtheworkatSecondSightCompany,USC,UCSC,CalTech,andotherresearchlaboratories.[7]

To date, Second Sight has sponsored clinicalt e s t s approved by the US Food and DrugAdministration (FDA) for theArgus I and IImodelsystems.TheArgusIIretinalimplantwassuccessfullyimplantedin2013intwopatientssufferingfromRPinSaudiArabia.ThepatientswereonemanandonewomanandhadtheArgusIIretinalprosthesissystemimplantedinoneeye.Averagelengthofsurgerywas3h.Now,thepatientscanrecognizethepresenceofpeopleinfrontofthemandareabletodetectbuildingsoutside,aswellasflowersingrassareas.[7] As research

ontheimplantprogresses,upgradedperformancefortheprocessingofvisual informationareexpected inthefuture.TheSecondSightCompanyexpectsfutureupgradedmodels to givepatients the ability to seefaces, colorandalsonightvision.[7]Thenext stepoftheArgusprojectistoproducea256‑electrodedeviceready for extensive preclinical testing.[11] Their newdesignhas ahighly compact arrayand this array isfour timesmoredenselypackedwithmetal contactelectrodes than that of theArgus II.[11] Simulationsand calculations indicate that the 256 electrode device shouldprovideimprovedvisionforpatients.InterestedreadersarereferredtothelatestnewspublishedbytheSecondSightCompany’swebsiteformoreinformationandalsoclinicalstudies.[7]

TheBostonRetinal Implant (USA) is involved inthe development of a sub‑retinal visual prosthesis.The i r min ia tu r i zed , he rmet i ca l l y ‑ encased ,wirelessly‑operated retinal prosthesis has beendeveloped for preclinical studies in a Yucatanminipig.The implantpartof this systemattaches tothe outer surface of the eye and electrically drives a microfabricatedthinfilmpolyimidearrayofsputterediridiumoxidefilmelectrodes.Thisarrayisimplantedinto the sub‑retinal space using a customized abexterno surgical technique. The implanted deviceincludes a hermetic titanium case containing a15‑channel stimulator chip aswell as somediscretecircuit components. The operation of this implanthasbeenverifiedintwopigsforupto5½monthsbydetectingstimulusartifactsgeneratedbytheimplanteddevice.[12,60]

C‑Sight(ChineseProjectforSight)isamultidisciplinaryresearch project on visual prosthesis founded inChina.ThegoaloftheC‑Sightprojectistodevelopanimplantable optic nerve stimulationmicroelectronic

Figure 13.Contributionofthecountriesactivelyinvolvedinresearchonvisualprosthesesintermsofthenumberofpaperstheypublishedduring2008–2013.

[Downloaded free from http://www.jovr.org on Saturday, February 07, 2015, IP: 46.62.176.11]  ||  Click here to download free Android application for this journal

Page 9: Visual Prostheses: The Enabling Technology to Give Sight to the ...

Visual Prostheses; Maghami et al

Journal of ophthalmic and Vision research 2014; Vol. 9, No. 4502

medical device thatwill restore vision to a limitedextenttotheblind.Intheirapproach,theycoupletheencodedelectricalstimuliintoaxonsofganglioncellsbypenetratingmulti‑electrodearraysintotheopticnerve.Feasibility of this approach has been studiedusinganimalexperiments.[13,66]

Asanexampleofcorticalvisualprosthesis,onecanname the systemdevelopedby theDobelle Instituteunder direction ofWilliamDobelle (1941–2004). Inthiswork, visual information are transcutaneouslytransferred from an external image capture andpreprocessingunittoanimplanted64‑electrodearray.Thepatientcarryingthisprosthesiswasabletoreadtwoinchtalllettersatadistanceoffivefeet,representingavisualacuityofabout20/400.Althoughtheelectrodearrayproduces tunnelvision, the subjectwasable tonavigateinunfamiliarenvironments.[54]

Whilealloftheabovementionedapproachesworkon thesamebasicconcept illustrated inFigure3, the

Retina Implant group inGermany tries to restorevisionusing a subretinalmicrophotodiode array. Inthefirstclinicalpilotstudy,thearraywasimplantedin11patientssufferingfromphotoreceptordegeneration.Inone subject,whose implantwasplacedunder themacula, visual acuity of 20/1000was reported. Theresults of this studydemonstrated, for thefirst time,that sub‑retinalmicroelectrode arrayswith 1,500photodiodes can create detailedmeaningful visualperception.[10,16] In another study, the photodiodeswere implanted in 9 blind patients. The patientsreceivedthesubretinalvisualimplantinoneeyeandtheother eyewas alwaysoccludedduring the tests.Noneofthesubjectshadothereyediseasesthatmightaffectthevisualpathway.Inthisstudy,visualacuitymeasurementwithLandoltC‑ringsuptoSnellenvisualacuity of 20/546 (corresponding todecimal 0.037orcorresponding to 1.43 logMAR [minimumangle ofresolution])wererestoredviathesubretinalimplant.[67]

Table 1. Brief overview of current artificial vision projects around the world

Country University Researchers Group name Approach Latest Pubs.

USA UniversityofS.California(DohenyRetinaInstitute)andUniversityofCalifornia

M.S.Humayun,W.Liu,andJ.D.Weiland

ArtificialRetina Epi‑retinal [11,59,68,69]

Germany RWTHAachenUniversityandFraunhoferInstituteofMicroelectronic

W.Mokwa N/A Epi‑retinal [41,70,71]

Germany IMIIntelligentMedicalImplantsandInst.ofMicroelectronics,UniversityofUlm

R.HornigandM.Ortmanns

IntelligentMedicalImplants

Epi‑retinal [72,73]

Iran K.N.ToosiUniversityofTechnology A.M.Sodagar,A.LashayandM.Riazi

ICAS Epi‑retinal [31,36,74‑77]

USA MassachusettsInstituteofTechnologyandMassachusettsEyeandEarInfirmary

J.Rizzo,J.WyattandW.A.Drohan

BostonRetinalImplant

Sub‑retinal [12,60,61]

Germany TübingenUniversity,EyeHospital E.Zrenner RetinaImplant Sub‑retinal [10,16,62]USA LoyolaUniversityofChicago,Schoolof

MedicineAlan and Vincent Chow

ArtificialSiliconRetina

Sub‑retinal [50,78]

Japan OsakaUniversity,MedicalSchool Y.Tano,T.FujikadoandH.Sawai

JapaneseConsortiumforanArtificialRetina

Suprachoroidal‑ transretinal stimulation

[79,80]

USA StanfordUniversity D.Palanker OptoelectronicRetinalProsthesis

Photovoltaicretinalprosthesis

[81,82]

Australia Centre for Eye Research Australia at the UniversityofMelbourne,theBionicEarInstituteandtheVisionSciencesGroupattheAustralianNationalUniversity

N.LovellandG.Suaning

Australian Vision Project

Opticnervestimulation/retinal

[83,84]

Belgium CatholiqueUniversitédeLouvain C.Veraart VisionProject Opticnervestimulation

[85]

China ShanghaiJiao‑TongUniversity X.ChaiandQ.Ren C‑Sight Opticnervestimulation

[13,66]

Portugal DobelleInstitute W.Dobelle N/A Cortical [3,54]Canada PolytechniqueMontrealUniversity M.Sawan Polystim Cortical [14,86]USA UniversityofUtah R.Normann UtahArtificial

VisionCortical [63,87]

USA IllinoisInstituteofTechnology P.R.Troyk N/A Cortical [88,89]

[Downloaded free from http://www.jovr.org on Saturday, February 07, 2015, IP: 46.62.176.11]  ||  Click here to download free Android application for this journal

Page 10: Visual Prostheses: The Enabling Technology to Give Sight to the ...

Visual Prostheses; Maghami et al

Journal of ophthalmic and Vision research 2014; Vol. 9, No. 4 503

Lightperception,lightlocalizationandmotiondetectiontestswerealsoperformedonthesubjects.Thisstudyhasshownthatthedesignedsystemcanrestoreusefulvisionindaily lifeforat least two‑thirdsof theblindpatientsinvestigated.Abriefoverviewofcurrentartificialvisionprojectsis

presentedinTable1.Interestedreadersarereferredtothelatestpaperspublishedbyeachresearchgroupformoreinformation.

SUMMARY

Areviewofthevisualprosthesesintendedtorestorefunctional vision is providedherein. Basic conceptsin research on these implantable microsystemsare studied, and general issues in their design anddevelopmentarediscussed.Differenttypesofvisualprostheses, from the standpoint of how theyworkandhowtheyareused,areintroduced.Subsequently,latestachievementsinthedesignofvisualprosthesesbypioneerresearchgroupsandcompaniesaroundtheglobeandsomeoftheirclinicaltestresultsarebrieflyreviewed.

ACKNOWLEDGMENTS

TheauthorswouldliketothanktheICASvisualprosthesisteammembers:M. A. Shahzeidi, A. Shaker,H. Salehi,L. Saadati‑fard, S. Novin,M. Takhti, E. Ashoori, andF.Asgarian for their technical contribution; S. SharafzadehandZ.Erfani‑Gholampourfortheirassistanceinartworkandcomputergraphics;andalsoA.Sheikholeslami,J.Maghami,andF.Khosravifortheirhelpandsupport.

REFERENCES1. ProchazkaA,MushahwarVK,McCreeryDB.Neuralprostheses.

J Physiol2001;533(Pt1):99‑109.2. ZengFG,Rebscher S,HarrisonW, SunX, FengH.Cochlear

implants:Systemdesign,integration,andevaluation.IEEE Rev Biomed Eng2008;1:115‑142.

3. DobelleWH.Artificial vision for the blind by connecting atelevisioncameratothevisualcortex.ASAIO J2000;46:3‑9.

4. FodstadH,HarizM.Electricityinthetreatmentofnervoussystemdisease.In:SakasDE,SimpsonBA,KramesES,editors.OperativeNeuromodulation:FunctionalNeuroprostheticSurgery.Vol.1.Vienna: Springer;2007.p.11‑19.

5. SekirnjakC,HottowyP, SherA,DabrowskiW, LitkeAM,ChichilniskyEJ.High‑resolutionelectricalstimulationofprimateretinaforepiretinalimplantdesign.J Neurosci2008;28:4446‑4456.

6. Margalit E,MaiaM,Weiland JD,Greenberg RJ, Fujii GY,TorresG, et al.Retinalprosthesisfortheblind.Surv Ophthalmol 2002;47:335‑356.

7. SecondSightCompany.Availablefrom:http://www.2‑sight.eu/ee/home‑ee.[Lastaccessedon2013Nov30].

8. WeilandJD,HumayunMS.Visualprosthesis.Proc IEEE Inst Electr Electron Eng 2008;96:1076‑1084.

9. HumayunMS,Dorn JD, daCruz L,DagnelieG, Sahel JA,StangaPE, et al. Interimresults fromthe international trialof

SecondSight’svisualprosthesis.Ophthalmology2012;119:779‑788.10. ElectronicsupplementarymaterialtothepublicationofE.Zrenner

etal.Subretinalelectronicchipsallowblindpatientstoreadlettersandcombinethemtowords.ProcRSocB2011;278:1489‑1497,Availablefrom:URL:http://dx.doi.org/10.1098/rspb.2010.1747.

11. ChenK,YangZ,HoangL,WeilandJD,HumayunMS,LiuW.AnIntegrated256‑ChannelEpiretinalProsthesis.IEEE J Solid‑State Circuits2010;45:1946‑1956.

12. ShireDB,KellySK,ChenJ,DoyleP,GingerichMD,CoganSF, et al.Developmentand implantationof aminimally invasivewireless subretinal neurostimulator. IEEE Trans Biomed Eng 2009;56:2502‑2511.

13. ChaiX, Li L,WuK,ZhouC,CaoP, RenQ.C‑sight visualprosthesesfortheblind.IEEE Eng Med Biol Mag2008;27:20‑28.

14. SawanM,TrepanierA,Trepanier JL,AudetY,GhannoumR.ANewCMOSmultimodedigitalpixelsensordedicatedtoanimplantablevisualcorticalstimulator.Analog Integr Circuits Signal Process2006;49:187‑197.

15. CoulombeJ,SawanM,GervaisJF.Ahighlyflexiblesystemformicrostimulationofthevisualcortex:Designandimplementation.IEEE Trans Biomed Circuits Syst2007;1:258‑269.

16. ZrennerE,Bartz‑SchmidtKU,BenavH,BeschD,BruckmannA,GabelVP, et al.Subretinalelectronicchipsallowblindpatientstoreadlettersandcombinethemtowords.Proc Biol Sci2011;278:1489‑1497.

17. Harvey J.‑F, SawanM. ImageAcquisition and ReductionDedicatedtoaVisualImplant.ProcoftheAnnualInternationalConference of the IEEEEMBS (EMBC),Vol. 1,Amsterdam,Netherlands,October31‑November3,1996.p.403‑404.

18. Boyle J. Improving Perception from Electronic VisualProstheses. PhDDissertation. QueenslandUniversity ofTechnology;2005.

19. ShahzeidiMA. Video Image Capturing, Processing andPreparation for an Implantable Visual Prosthesis. MScDissertation.K.N.ToosiUniversityofTechnology;2010.

20. ShakerA.ImageCaptureandProcessingtobeUsedinVisualProstheses.M.Sc.Dissertation.ShahidRajaeeTeacherTrainingUniversity;2011.

21. HuY, SawanM,El‑GamalM.An integratedpower recoverymodulededicatedtoimplantableelectronicdevices.Analog Integr Circuits Signal Process2005;43:171‑181.

22. SodagarAM,NajafiK.Wireless Interfaces for ImplantableBiomedicalMicrosystems.ProcoftheIEEEInternationalMidwestSymposiumonCircuits and Systems (MWSCAS), San Juan,PuertoRico;2006.p.265‑269.

23. LehmannT,ChunH,YangY. Power saving circuit designtechniques for implantableneuro‑stimulators. J Circuits Syst Comput2012;21:1‑14.

24. AsgarianF, SodagarAM.Wireless telemetry for implantablebiomedicalmicrosystems.In:LaskovskiAN,editor.BiomedicalEngineering, Trends in Electronics, Communications andSoftware.Rijeka:InTech.;2011.p.21‑44.

25. SodagarAM,AmiriP.CapacitiveCouplingforPowerandDataTelemetrytoImplantableBiomedicalMicrosystems.ProcoftheInternational IEEE/EMBSConferenceonNeuralEngineering(NER),Antalya,Turkey,April29‑May2,2009.p.411‑414.

26. TakhtiM,AsgarianF,SodagarAM.ModelingofaCapacitiveLink forDataTelemetry toBiomedical Implants.Procof theIEEEBiomedicalCircuitsandSystemsConference(BioCAS),SanDiego,California,USA,November10‑12,2011.p.181‑184.

27. IEEEStandardC95.1‑2005.IEEEStandardsforSafetyLevelswithRespecttoHumanExposuretoRadioFrequencyElectromagneticFields,3KHzto300GHz.Availablefrom:http://standards.ieee.org/findstds/standard/C95.1‑2005.html.[Lastaccessedon2013Nov20].

28. DimbylowP.Developmentofthefemalevoxelphantom,NAOMI,anditsapplicationtocalculationsofinducedcurrentdensitiesand

[Downloaded free from http://www.jovr.org on Saturday, February 07, 2015, IP: 46.62.176.11]  ||  Click here to download free Android application for this journal

Page 11: Visual Prostheses: The Enabling Technology to Give Sight to the ...

Visual Prostheses; Maghami et al

Journal of ophthalmic and Vision research 2014; Vol. 9, No. 4504

electricfieldsfromappliedlowfrequencymagneticandelectricfields.Phys Med Biol2005;50:1047‑1070.

29. ChristA,KainzW,HahnEG,HoneggerK,ZeffererM,NeufeldE, et al. TheVirtual Family –Development of surface‑basedanatomicalmodelsoftwoadultsandtwochildrenfordosimetricsimulations.Phys Med Biol2010;55:N23‑38.

30. TalukderMI, SiyP,AunerGW.High resolution implantablemicrosystem and probe design for retinal prosthesis.Open Ophthalmol J2008;2:77‑90.

31. SalehiH, SodagarAM.Design of anApplication‑SpecificControllerforaVisualProsthesis.ProcoftheIEEEInternationalCaribbean Conference onDevices, Circuits, and Systems(ICCDCS),PlayadelCarmen,Mexico,March14‑17,2012.p.1‑4.

32. AunerGW,YouR,SiyP,McAllisterJP,TalukderM,AbramsGW.Developmentofawirelesshigh‑frequencymicroarrayimplantforretinalstimulation.In:HumayunMS,WeilandJD,ChaderG,GreenbaumE,editors.ArtificialSight:BasicResearch,BiomedicalEngineering,andClinicalAdvances.NewYork: Springer;2007.p.169‑186.

33. MohseniP,NajafiK.ABattery‑Powered 8‑ChannelWirelessFMICforBiopotentialRecordingApplications.ProcoftheIEEEInternationalSolid‑StateCircuitsConference,DigestofTechnicalPapers(ISSCC),Vol.1,SanFrancisco,CA,USA,February10,2005.p.560‑617.

34. HarrisonRR,WatkinsPT,KierRJ,LovejoyRO,Black,DJ,GregerB,etal.Alow‑powerintegratedcircuitforawireless100‑electrodeneuralrecordingsystem.IEEE J Solid State Circuits2007;42:123‑133.

35. NormannRA,CapmbellPK,JonesKE.Micromachined,SiliconBasedElectrodeArraysforElectricalStimulationoforRecordingfromCerebralCortex.ProcoftheIEEEMEMSConference,Nara.January30‑February2,1991. p.247‑252.

36. Ahani A, Saadati‑Fard L, Sodagar AM, Boroumad FA.FlexiblePET/ITOElectrodeArrayforImplantableBiomedicalApplications.Procof theAnnual InternationalConferenceofthe IEEEEMBS(EMBC),Boston,Massachusetts,USA,August30‑September3,2011.p.2878‑2881.

37. Johnson LJ, Scribner DA. Electrode architecturemeetingthe challenge of the retina–electrode interface. In: Rizzo J,Tombran‑Tink J,BarnstableCJ, editors.VisualProsthesis andOphthalmicDevices:NewHopeinSight.Totowa,NJ:HumanaPressInc.;2007.p.121‑133.

38. SuiX,SunJ,LiL,ZhouC,LuoX,XiaN, et al. Evaluation of a MEMS‑baseddualmetal‑layer thin‑filmmicroelectrode arrayforsuprachoroidalelectricalstimulation.IEEE Trans Neural Syst Rehabil Eng2013;21:524‑531.

39. LeeSE, JunSB,LeeHJ,KimJ,LeeSW, ImC, et al. A flexibledepthprobeusingliquidcrystalpolymer.IEEE Trans Biomed Eng 2012;59:2085‑2094.

40. Weiland JD,HumayunMS, EckhardtH,Ufer S, Laude L,BasingerB,etal.AComparisonofRetinalProsthesisElectrodeArray SubstrateMaterials. Proc of theAnnual InternationalConferenceoftheIEEEEMBS(EMBC),Minneapolis,Minnesota,USA,September2‑6,2009.p.4140‑4143.

41. MokwaW,GoertzM,KochC,Krisch I,TrieuH‑K,WalterP.Intraocular Epiretinal Prosthesis toRestoreVision in BlindHumans.ProcoftheAnnualInternationalIEEEEMBSConference(EMBC),Vancouver,BritishColumbia,Canada,August20‑24,2008.p.5790‑5793.

42. WangK,DeurzenM,KooymanN,DecréMMJ.TowardsCircuitIntegrationonFullyFlexibleParyleneSubstrates.Procof theAnnual InternationalConferenceof the IEEEEMBS (EMBC),Minneapolis,Minnesota,USA,September2‑6,2009.p.5866‑5869.

43. Minev IR,ChewDJ,DelivopoulosE, Fawcett JW,LacourSP.EvaluationofanElastomerBasedGoldMicroelectrodeArrayforNeuralRecordingApplications.ProcoftheInternationalIEEEEMBSConferenceonNeuralEngineering(NER),Cancun,Mexico,April27‑May1,2011. p.482‑485.

44. PiyathaisereDV,Margalit E,Chen SJ, Shyu JS,D’Anna SA,WeilandJD, et al.Heateffectsontheretina.Ophthalmic Surg Lasers Imaging2003;34:114‑120.

45. GosaliaK,WeilandJ,HumayunM,LazziG.Thermalelevationin thehumaneyeandheaddue to theoperationof a retinalprosthesis.IEEE Trans Biomed Eng2004;51:1469‑1477.

46. MajjiAB,HumayunMS,WeilandJD,SuzukiS,D’AnnaSA,deJuanEJr.Long‑termhistologicalandelectrophysiologicalresultsof an inactiveepiretinal electrodearray implantation indogs.Invest Ophthalmol Vis Sci1999;40:2073‑2081.

47. WalterP,SzurmanP,VobigM,BerkH,Lüdtke‑HandjeryHC,Richter H, et al.Successfullong‑termimplantationofelectricallyinactive epiretinalmicroelectrode arrays in rabbits.Retina 1999;19:546‑552.

48. BeckerM,EckmillerR,HunermanR.Psychophysical test oftunableretinaencoderforretinalimplants.IEEE J Neural Netw 1999;1:192‑195.

49. VölkerM,ShinodaK,SachsH,GmeinerH,SchwarzT,KohlerK, et al. In vivo assessmentofsubretinallyimplantedmicrophotodiodearraysincatsbyopticalcoherencetomographyandfluoresceinangiography.Graefes Arch Clin Exp Ophthalmol2004;242:792‑799.

50. ChowAY, ChowVY, PackoKH, Pollack JS, PeymanGA,SchuchardR. The artificial silicon retinamicrochip for thetreatmentofvisionlossfromretinitispigmentosa.Arch Ophthalmol 2004;122:460‑469.

51. GekelerF,KobuchK,SchwahnHN,StettA,ShinodaK,ZrennerE.Subretinalelectricalstimulationoftherabbitretinawithacutelyimplanted electrode arrays.Graefes Arch Clin Exp Ophthalmol 2004;242:587‑596.

52. MargalitE, SaddaSR.Retinal andopticnervediseases.Artif Organs2003;27:963‑974.

53. CohenED.Prostheticinterfaceswiththevisualsystem:Biologicalissues.J Neural Eng2007;4:R14‑31.

54. DobelleWH,MladejovskyMG,Girvin JP.Artificalvision fortheblind:Electricalstimulationofvisualcortexoffershopeforafunctionalprosthesis.Science1974;183:440‑444.

55. ButtonJ,PuttnamT.Visualresponsestocorticalstimulationintheblind.J Lowa Med Soc1962;52:17‑21.

56. BrindleyGS,LewinWS.Thesensationsproducedbyelectricalstimulationofthevisualcortex.J Physiol1968;196:479‑493.

57. BrindleyGS.Effectsofelectricalstimulationofthevisualcortex.Hum Neurobiol 1982;1:281‑283.

58. BrindleyG,RushtonD,Implantedstimulatorsofthevisualcortexasvisualprostheticdevices.Trans Am Acad Ophthalmol Otolaryngol 1974;78:741‑745.

59. HumayunMS,DornJD,AhujaAK,CaspiA,FilleyE,DagnelieG,etal.Preliminary6MonthResultsfromtheArgusIIEpiretinalProsthesis FeasibilityStudy.Procof theAnnual InternationalConferenceoftheIEEEEMBS(EMBC),Minneapolis,Minnesota,USA,September2‑6,2009.p.4566‑4568.

60. KellySK,ShireDB,ChenJ,DoyleP,GingerichMD,CoganSF, et al. A hermeticwirelesssubretinalneurostimulatorforvisionprostheses.IEEE Trans Biomed Eng2011;58:3197‑31205.

61. KellyS,ShireDB,ChenJ,GingerichMD,CoganSF,DrohanWA,etal.DevelopmentsontheBoston256‑ChannelRetinalImplant.Procof the IEEEInternationalConferenceonMultimediaandExpoWorkshops(ICMEW),SanJose,California,USA,July15‑19,2013. p.1‑6.

62. PetersT,KlingbergS,ZrennerE,WilhelmB.Emotionalwellbeingofblindpatientsinapilottrialwithsubretinalimplants.Graefes Arch Clin Exp Ophthalmol2013;251:1489‑1493.

63. NormannRA,MaynardEM,GuilloryKS,WarrenDJ.Corticalimplantsfortheblind.IEEE Spectr1996;33:54‑59.

64. Based on a Search in Elsevier’s Scopus Data Base withKeyword (‘visual’AND ‘prosthesis’) in Title,Abstract, orKeywords.Available from: http://www.scopus.com. [Last

[Downloaded free from http://www.jovr.org on Saturday, February 07, 2015, IP: 46.62.176.11]  ||  Click here to download free Android application for this journal

Page 12: Visual Prostheses: The Enabling Technology to Give Sight to the ...

Visual Prostheses; Maghami et al

Journal of ophthalmic and Vision research 2014; Vol. 9, No. 4 505

accessedon2014Mar03].65. ABionicEyeComestoMarket.MITTechnologyReview;7March,

2011Available from: http://www.technologyreview.com/news/423216/a‑bionic‑eye‑comes‑to‑market/.[Lastaccessedon2013Nov30].

66. LuY,YanY,ChaiX,RenQ,ChenY,LiL.Electricalstimulationwithapenetratingopticnerveelectrodearrayelicitsvisuotopiccorticalresponsesincats.J Neural Eng2013;10:036022.

67. StinglK,Bartz‑SchmidtKU,BeschD,BraunA,BruckmannA,Gekeler F, et al.Artificial VisionwithWirelessly PoweredSubretinalElectronicImplantAlpha‑IMS.ProcBiolSci2013;280:20130077(1:8).

68. ChenK,LoYK,YangZ,Weiland JD,HumayunMS,LiuW.A system verification platform for high‑density epiretinalprostheses.IEEE Trans Biomed Circuits Syst2013;7:326‑37.

69. ZhouDD,DornJD,GreenbergRJ.TheArgusIIRetinalProsthesisSystem:AnOverview.ProcoftheIEEEInternationalConferenceonMultimedia and ExpoWorkshops (ICMEW), San Jose,California,USA,July15‑19,2013. p.1‑6.

70. SchwarzM, Ewe L, Hijazi N, Hosticka BJ, Huppertz J,KolnsbergS,etal.MicroImplantableVisualProstheses.ProcoftheAnnualInternationalIEEE‑EMBSSpecialTopicConferenceonMicrotechnologies,Medicine&Biology,Lyon,France,October12‑14,2000. p.461‑465.

71. WinkinN,MokwaW. FlexibleMulti‑ElectrodeArraywithIntegratedBendableCMOS‑ChipforImplantableSystems,ProcoftheAnnualInternationalConferenceoftheIEEEEMBS(EMBC),SanDiego,CA,USA,August28‑September1,2012.p.3882‑3885.

72. HornigR,ZehnderT,Velikay‑ParelM,LaubeT, FeuchtM,RichardG.TheIMIretinal implantsystem.In:HumayunMS,WeilandJD,ChaderG,GreenbaumE,editors.ArtificialSight:BasicResearch,BiomedicalEngineering,andClinicalAdvances.NewYork: Springer;2007.p.111‑128.

73. NoorsalE,SooksoodK,XuH,HornigR,BeckerJ,OrtmannsM.Aneuralstimulatorfrontendwithhigh‑voltagecomplianceandprogrammablepulseshapeforepiretinalimplants.IEEE J Solid State Circuits2012;47:244‑256.

74. Razmpour S, Sodagar AM, Faizollah M, Darmani MY,NourianM.Reconfigurable Biological SignalCo‑Processorfor FeatureExtractionDedicated to ImplantableBiomedicalMicrosystems.Procof the IEEE International SymposiumonCircuitsandSystems(ISCAS),Beijing,China,May19‑23,2013. p.861‑864.

75. ZabihianAR,MaghamiMH,AsgarianF,SodagarAM.Implantablebiomedicaldevices.In:HudakR,PenhakerM,MajernikJ,editors.BiomedicalEngineering,TechnicalApplications inMedicine,Rijeka:InTech;2012.p.157‑190.

76. MaghamiMH,SodagarAM,SawanM.Biphasic,Energy‑Efficient,Current‑Controlled StimulationBack‑End forRetinalVisualProsthesis.ProcoftheIEEEInternationalSymposiumonCircuitsandSystems (ISCAS),Melbourne,Australia, June1‑5, 2014.p.241‑244.

77. KarimiM,MaghamiMH, FaizollahM, Sodagar AM. ANoncoherentLow‑PowerHigh‑Data‑RateBPSKDemodulatorandClockRecoveryCircuitforImplantableBiomedicalDevices.Procof the IEEEBiomedicalCircuitsandSystemsConference

How to cite this article: Maghami MH, Sodagar AM, Lashay A, Riazi-Esfahani H, Riazi-Esfahani M. Visual prostheses: The enabling technology to give sight to the blind. J Ophthalmic Vis Res 2014;9:494-505.

Source of Support: Nil. Conflict of Interest: None declared.

(BioCAS),Lausanne,Switzerland,October22‑24,2014.p.372‑375.78. DeMarcoPJJr,YarbroughGL,YeeCW,McLeanGY,SagdullaevBT,

Ball SL, et al. Stimulationvia a subretinallyplacedprostheticelicits central activity and induces a trophic effect onvisualresponses. Invest Ophthalmol Vis Sci2007;48:916‑926.

79. Nishida K, KameiM, KondoM, SakaguchiH, SuzukiM,Fujikado T, et al. Efficacy of suprachoroidal‑transretinalstimulation in a rabbitmodel of retinal degeneration. Invest Ophthalmol Vis Sci2010;51:2263‑2268.

80. OhtaJ,NodaT,SasagawaK,TokudaT,TerasawaY,KandaH,et al.ACMOSMicrochip‑BasedRetinalProstheticDevice forLargeNumbersofStimulationinWideArea.ProcoftheIEEEInternational SymposiumonCircuits and Systems (ISCAS),Beijing,China.May19‑23,2013.p.642‑645.

81. WangL,MathiesonK,Kamins TI, Loudin JD,GalambosL,GoetzG, et al.Photovoltaicretinalprosthesis:Implantfabricationandperformance.J Neural Eng2012;9:046014.

82. MathiesonK,LoudinJ,GoetzG,HuieP,WangL,KaminsTI, et al.PhotovoltaicRetinalProsthesiswithHighPixelDensity.Nat Photonics2012;6:391‑397.

83. ZapfMP,MatteucciPB,LovellNH,SuaningGJ.SmartphonesasImageProcessingSystemsforProstheticVision.ProcoftheAnnual InternationalConferenceof the IEEEEMBS (EMBC),Osaka,Japan,July3‑7,2013.p.3690‑3693.

84. MatteucciPB,Byrnes–PrestonP,ChenSC,LovellNH,SuaningGJ.ARM‑BasedVisual Processing System for ProstheticVision.ProcoftheAnnualInternationalConferenceoftheIEEEEMBS(EMBC),Boston,Massachusetts,USA,August30‑September3,2011.p.3921‑3924.

85. BrelénME,VinceV,GérardB,VeraartC,DelbekeJ.Measurementofevokedpotentialsafterelectricalstimulationofthehumanopticnerve. Invest Ophthalmol Vis Sci2010;51:5351‑5355.

86. MohammadiHM, Ghafar‑Zadeh E, SawanM. An imageprocessingapproachforblindmobilityfacilitatedthroughvisualintracorticalstimulation.Artif Organs2012;36:616‑628.

87. KimS,NormannRA,HarrisonR,SolzbacherF.PreliminaryStudyoftheThermalImpactofaMicroelectrodeArrayImplantedintheBrain.ProcoftheAnnualInternationalConferenceoftheIEEEEMBS(EMBC),NewYork,USA,August30‑September3,2006. p.2986‑2989.

88. LaneFJ,HuyckMH,TroykP.Lookingahead:Planningforthefirsthuman intracorticalvisualprosthesisbyusingpilotdatafromfocusgroupsofpotentialusers.Disabil Rehabil Assist Technol 2011;6:139‑147.

89. SrivastavaNR,TroykPR,TowleVL,CurryD,SchmidtE,KuftaC,etal.EstimatingPhospheneMapsforPsychophysicalExperimentsusedinTestingaCorticalVisualProsthesisDevice.ProcoftheInternational IEEEEMBSConference onNeuralEngineering(NER),KohalaCoast,Hawaii,USA,May2‑5,2007. p.130‑133.

[Downloaded free from http://www.jovr.org on Saturday, February 07, 2015, IP: 46.62.176.11]  ||  Click here to download free Android application for this journal