Ultrasound Microscopy and High Frequency Coded Signals

34
www.helsinki.fi/ yliopisto Ultrasound Microscopy and High Frequency Coded Signals Antti Meriläinen, Edward Hæggström

description

Ultrasound Microscopy and High Frequency Coded Signals. Antti Meriläinen, Edward Hæggström. Ultrasound Microscopy What it is?. Using high frequency acoustic waves for mm-/µm-scale imaging Method is non-destructive It “Sees” inside the sample - PowerPoint PPT Presentation

Transcript of Ultrasound Microscopy and High Frequency Coded Signals

Page 1: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Ultrasound Microscopy and High Frequency Coded Signals

Antti Meriläinen, Edward Hæggström

Page 2: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Using high frequency acoustic waves for mm-/µm-scale imaging

• Method is non-destructive• It “Sees” inside the sample• Ultrasound images differences of

acoustic impedances

Ultrasound MicroscopyWhat it is?

Page 3: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Ultrasound Imaging

TOF image

Amplitude image

Page 4: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Ultrasound MicroscopyBasic techniques

Phase Arrays Single transducer pulse-echo

http://en.wikipedia.org/wiki/Ultrasonic_testinghttp://www.nde.com/phased_array_technology.htm

Page 5: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Focused Ultrasound Transducer

[Yu, Scanning acoustic microscopy and its applications to material characterization, 1995]

Page 6: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• TX• Pulser, delta spike excitation• Gated sinus wave

‒ For high frequencies ~1 GHz

• RX• Protection circuit & Pre-amplifier• (Envelope detector / pulse shaper)• Oscilloscope

Tx/Rx for USM

Camacho, J., Fritsch, C.: ‘Protection circuits for ultrasound applications’ Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, 2008, 55, (5), pp.1160-1164

Page 7: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Delta spike excitation• Stress for transducer and sample• Energy/amplitude variation with high PRF

• Gated sinus• Stress for transducer and sample• Uncertainty of Time-of-Fly (TOF)

‒ Depth resolution

Challenges with current techniques

Page 8: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Coded USM

•Coded signals

•Electronics• Signal generation• Switch and timing• Preamplifier

•Signal Synthesis

•Ultrasound measurements

•RF-design• Components• PCB layout

Page 9: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Tx signal is wave packed• Frequency can be programmed• Phase can be programmed• Envelope (amplitude over time)

can be programmed

• Example linear frequency modulation (LFM)/chirp

Coded Signals

Page 10: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Cross Correlation

dt descript depth resolutiondt depends on bandwidth

dt

Page 11: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Coded Signal and SNR

SNR =10SNR =1

Page 12: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Arbitrary waveform generators• Digital to Analog converter (DAC) • Bandwidth up to 120 MHz (2 GS/s)• If you have money: 5.6 GHz (24 GS/s)

• High frequency signal generators• Output: continuous sine wave• Frequency range up to 4+ GHz• Narrow modulation bandwidth (less than 1

kHz)

Signal generationNumerical vector to Electric signal

Page 13: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Modulation = change carrier wave by signal• Amplitude modulation (AM)

‒ Quadrature amplitude modulation (QAM)

• Frequency modulation (FM)• Phase Modulation (PM)• Many other ….

Modulation techniques

Modulation

Page 14: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• AM:

• QAM: •

QAM / IQ-modulation

Page 15: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

TRF370417 Modulator

• Arbitrary/modulation bandwidth is 2*120 MHz

‒ dt = 4.2ns

• Center output frequency is set by Local oscillator

• Output Bandwidth is NOT maximum output frequency

Page 16: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Modulator outputs

1 cm

LoQ I

RF Out

Page 17: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Carrier Feedthrough and Sideband Suppression

Page 18: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Preamplifier

Page 19: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Amplification• Cascade design

• Voltage range• Max/Min signal input strenght

• Impedance maching• Input impedance• Output impedance

• DC-blocks• Capacitors and inductos for high frequencies• Same component can be tunet for different band

Preamplifier Design

Modulator -> Attenuator(-60 dB) -> Preamplifier(+55 dB)

Page 20: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Receiving during transmission is impossible

• Transducer delay line gives time limit for coded signal• Typically 0.3 – 5 µs• Signal generator limits coded

length 8 µs

• Maximize signal time and minimize switching time

Switch and Timing

Page 21: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Switch Circuit

Page 22: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Power handling• Bandwidth • Attenuation

• Insertion loss (Smaller is better)• Isolation (Higher is better)

• Switching time• Glitch• AC/DC coupling • Control voltages

Switch designing

Page 23: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Circuit based on AVR µController• Programmable• Predictable• Timing resolution is

62.5 ns

• AVR trigs AWG and oscilloscope and controls the switches

Timing

Page 24: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Timing Circuit

Page 25: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Coded USM

•Coded signals

•Electronics• Signal generation• Switch and timing• Preamplifier

•Signal Synthesis

•Ultrasound measurements

•RF-design• Components• PCB layout

Page 26: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• I and Q are numerical signals that can be generated by Matlab

Signal generationHow to generate I and Q

RF LO sin

LO cos

X X

Q I

LPLP

Matlab

RF

LO sin

LO cos

X X

Q I

+

Modulator

AWG

I & Q

Page 27: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Results with 100 – 300 MHz

27/15

Transmitted signal

Received A-line

B-scan image

Page 28: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

• Signal-to-noise ratios (SNR) of surface echoes were estimated to compare coded excitation and delta spike excitation

• Preliminary results showed that coded chirp signal excitation increased mean SNR (16±3) dB for 75 MHz transducer

Results from 2010: 30 – 70 MHz Coded signal

Pulse-echo measurement using a coded 5 Vpp chirp signal excitation at 30-70 MHz (left) and a 33 Vpp delta spike excitation (right). The coded excitation increased mean SNR (16±3) dB.

Page 29: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Higher frequency and coded signals• Higher frequency gives resolution

• Modulator shift arbitrary band (Not increase bandwidth)

• Coded signals may improve SNR/CNR• Cross correlation is sensitive for noise which has same

band than signal• Bad modulator can generated ”noise” (Feedthrough)

• Effective bandwidth can be tuned by arbitrary code• Transducer bandwidth• Attenuation in immersion liquid

• Arbitrary codes able multitone transmission

Page 30: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

RF design

• Impedance matching• Single-end vs. Differential signals• Available IC components:

• Amplifiers• Attenuators• Switches• Modulators / Demodulators• Power detector• Clock generator (PLL/VCO)All components are SMD

Page 31: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Single-End vs. Differential signals

• Differential signals:• Single supply• No ground loops• Longer signal path• Reduces common-mode noise (noise

from ground)• Paired signal is required

• Single• Simpler design• (Dual supply)

There is amplifiers for conversion

Page 32: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Available IC components Amplifiers

• Low noise (Pre. Amp.)• Noise figure <1dB• Gain ~20dB

• Gain blocks• 50 Ω line driver

• Power amplifier (Linear amplifier)• Differential amplifier• Variable gain amplifier (VGA)

Page 33: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Available IC components Modulators

Page 34: Ultrasound Microscopy and High Frequency Coded Signals

www.helsinki.fi/yliopisto

Available IC components Modulators