Transverse beam breakup simulation for compact and Multi ...

48
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Theory Compact ERL ERL light source Summary Transverse beam breakup simulation for compact and Multi-GeV ERLs CHEN, Si 加速器第六研究系 October 22, 2014 1 / 48

Transcript of Transverse beam breakup simulation for compact and Multi ...

Page 1: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

Transverse beam breakup simulation forcompact and Multi-GeV ERLs

CHEN, Si

加速器第六研究系

October 22, 2014

1 / 48

Page 2: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

Outline

Introduction of the ERL project at Peking University

Theory and simulation code of ERL BBU

BBU simulation for compact ERL with 9-cell TESLA-typecavities

BBU simulation for a multi-GeV ERL light source

Summary

2 / 48

Page 3: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

Abstract

In energy recovery linacs (ERLs), the transverse beam break-up (BBU) due to theHOMs of RF cavities may limit their capability of running at higher beam current.It is important to determine the BBU threshold via simulations while designingthe ERLs. At Peking University, a compact ERL test facility is underconstruction, which will use two 9-cell TESLA-type RF cavities in the main linac.The BBU effect was simulated for the PKU-ERL test facility and the possibility ofusing 9-cell TESLA-type cavity on such a compact ERL was proved. At KEK, amulti-GeV ERL based synchrotron light source, extendable to a XFEL-O, is underdesign. The designed average current for the multi-GeV ERL is up to 100mA. TheBBU effects were simulated with various design schemes. In this talk, I will brieflyoverview the progress of the compact ERL at PKU and the BBU theories andsimulations codes. The BBU simulations for the compact ERL at PKU and themulti-GeV ERL at KEK will be presented as well.

3 / 48

Page 4: Transverse beam breakup simulation for compact and Multi ...

Introduction of the ERL project at Peking University

Theory and simulation code of ERL BBU

BBU simulation for compact ERL with 9-cell TESLA-typecavities

BBU simulation for a multi-GeV ERL light source

Summary

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Page 5: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

Energy Recovery Linacs

Benfities Saving RF-power: High current. Good beam quality: not limited

by the machine Reduce the energy dispose on the

dump

Applications Next generation light

source; High power FEL and THz

radiation source; other applications.

5 / 48

Page 6: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

ERLs all over the World

Existed and Existing ERLs 1965, proposed by M. Tigner. Realized by several laboratories during 1970s and 1980s as experiments. JLab(IR-FEL Demo@19981, IR-FEL Upgrade@20042, JLAMP@20123,

CEBAF@20034), JAERI(2001)5, BINP(2004)6, Daresbury(ALICE@2010)7,ERL facilities after 1990s

Left: JLAMP@JLab; Right: ALICE@Daresbury

1. Benson, S., et al., NIM A, 429(1):27-32, 1999. 2. Neil, G., et al., NIM A, 557(1):9-15, 2006.3. Douglas, G., et al., Proceedings of IPAC2012. 4. Bogacz, A., et al., Proceedings of PAC2003.5. Hajima, R., et al., Proceedings of PAC2001. 6. Bolotin, V.P., et al., BINP-tech report, 2004.7. Jackson, F., et al., Proceedings of IPAC2011.

6 / 48

Page 7: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

ERLs all over the World

ERLs under construction or under design.1

1. Nakamura, N., Proceedings of IPAC2012

7 / 48

Page 8: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

The ERL project at Peking University

PKU-ETF: Peking University ERL Test Facility First ERL project proposed in China. Superconducting accelerator technology; FEL/THz/ICS research;

Other related technologies.

Two stages First stage: DC-SRF injector with THz beamline. Second stage: Energy recovery linac based on the DC-SRF

injector.

8 / 48

Page 9: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

The ERL project at Peking UniversityParameters and lattice design

One of the lattice designs of PKU-ETF1

DC-SRF injector; 2×9-cell TESLA-type cavities; Beamline;Undulator; etc.

Macro pulse mode.

Energy Bunch charge Emittance Bunch length30MeV 60pC 4µm 4ps

Energy spread rep. rate pulse rep. rate pulse length0.32% (FWHM) 81.25/26MHz 10Hz 2ms

1. Huang, S., et al., Proceedings of ERL2011 9 / 48

Page 10: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

The ERL project at Peking University

A key component: DC-SRF photoinjector1

Combination of a DC piercegun and a 3.5-cellsuperconducting cavity.

Two working modes Marco pulse or continue wave

mode for ERL. Bunch compressor mode for

coherent THz radiation.

Now the THz mode is under commissioning2. Stable electronbeam has been generated.

1. Zhu, F., et al., Proceedings of SRF2011 2. Liu, K., et al., Proceedings of SRF2013

10 / 48

Page 11: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

The ERL project at Peking UniversityA THz radiation source based on the DC-SRF photoinjector1

DC-SRF photoinjector(including the photocathode);Driving-Laser; Solid state microwave source;

Beamline(Solenoid & Beam diagnostics); 10-period Wiggler; Beamdump; etc.

LLRF control system & Control system based on EPICS.3

1.Thanks Feng Liwen for providing the pictures.2. Wang, F., et al., arXiv.1405.1238 11 / 48

Page 12: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

The ERL project at Peking University

upper left: The first 2K cryogenic system in China; upper right:Bruker Far Infra-red Spectrograph; bottom: PKU people and visitorsin the control room.1,2,31. Thanks Feng Liwen for providing the pictures. 2. Huang, S.L., Proceedings of IPAC2013 3.Hao, J.K., Chinese Physics Letters, 30(8) 080702(2013)

12 / 48

Page 13: Transverse beam breakup simulation for compact and Multi ...

Introduction of the ERL project at Peking University

Theory and simulation code of ERL BBU

BBU simulation for compact ERL with 9-cell TESLA-typecavities

BBU simulation for a multi-GeV ERL light source

Summary

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Page 14: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

HOM-BBU in ERLs

Positive feedback process betweenrecoverying beam and HOMs insuperconducting cavities.

Limit the maximum beam currentof ERL.

1977, first observed on the SCA atStanford.

1986, SCA operates on ERLmodel.2004, observed on the IR-FELupgrade at JLab.2007, JLab, CEBAF.

Theorytical research by SLAC,JLab, Cornell Univ., etc..

14 / 48

Page 15: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

BBU theory - Time Domain: Energy conservationE. Pozdeyev, Phys.Rev.ST AB. 8, 074401 (2005).Assumptions: Single HOM in single cavity; twice pass through linac;Energy loss negelected in two passes.

dUdt =

dUbeamdt − Pc = ⟨∆U1 +∆U2⟩ · fb − Pc

= −V2a

a2

[Ib

qωnpR∗

12

sin(ωntr)

2− 1

k2n(Rd/Q)QL

]= 0

Ith = − 2Vbk(Rd/Q0)QLR∗

12 sin(ωtr)

R∗12 = R12 cos2 θ + (R14 + R23) sin θ cos θ + R34 sin2 θ

Not suitable for R∗12 sinωtr ≥ 0.

15 / 48

Page 16: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

BBU theory - Time Domain

−1.5 −1 −0.5 0 0.5 1 1.5

x 10−10

−8

−6

−4

−2

0

2

4

6

8

∆tr / s

Thr

esho

ld c

urre

nt /

A

Pozdeyev formulaSimulation code

Comparison of analytical formula with simulation code Analytical formula agrees well with simulation when

R∗12 sinωtr < 0.

When R∗12 sinωtr ≥ 0, BBU threshold current is relatively high.

16 / 48

Page 17: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

BBU theory - Frequency Domain

G. Hoffstaetter & I. Bazarov, Phys.Rev.ST AB. 7,054401 (2004).

Dispersion relation - A more general BBU threshold current formula.

1

I0=

K(

eωλtb2Qλ e−iΩtb

)sin(ωλtb)

1− 2(

eωλtb2Qλ e−iΩtb

)cos(ωλtb) +

(e

ωλtb2Qλ e−iΩtb

)2

1

e−iΩtr

whereK ≡ tb(Rd/Q0)λkλωλR12

2Vb

The smallest positive value of I0 to make Im(Ω) = 0 is thethreshold current.

17 / 48

Page 18: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

BBU simulation codes

For real cases, simulation codes required.Two main algorithms:

Tracking (Time domain): TDBBU, ERLBBU, BBU-R, bi Eigenvalue solution (Freq. domin): MATBBU, BMAD

Main approximations The kick effect of HOMs

treats as thin lens; Point charge;

Energy change negelectedbetween two passes;

Linear beam transportation.

18 / 48

Page 19: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

BBU simulation codes

Comparison of BBU simulation codesName TDBBU ERLBBU MATBBU BBU-R bi Bmad

Developer JLab JLab JLab JAERI Cornell CornellMethod track track eigenvalue track track eigenvalue

T/L T T T T T/L TDimensional 1D 2D 1D 1D 1D 1D

Polarization X/Y arbitray X/Y X/Y arbitray arbitrayTopology arbitray 2 2 2 arbitray 2Language Fortran/C C++/java C C C++ Fortran

Simulation results meet well with the experiment at JLabERL-FEL1

Here, the bi code, which was developed by I. Bazarov of CornellUniv.,2 is used.

1. Tennant C.D., Ph. D. Dessertion, 20062. bi, http://www.lepp.cornell.edu/ ib38/bbu/

19 / 48

Page 20: Transverse beam breakup simulation for compact and Multi ...

Introduction of the ERL project at Peking University

Theory and simulation code of ERL BBU

BBU simulation for compact ERL with 9-cell TESLA-typecavities

BBU simulation for a multi-GeV ERL light source

Summary

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Page 21: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

9-cell TESLA-type cavity@Peking University

Relatively mature in shape design and manufacture technology. High R/Q and Q0 value, high accelerating efficiency

Peking University has a lot of experiences on the manufacturing of9-cell TESLA-type cavities.

The first 9-cell TESLA-type cavity in China1; The first 9-cell TESLA-type cavity to meet the basic requirement

of ILC in China.1. Lu, X.Y., et al., Chinese Physics Letter, 25(11) 3934(2008)

21 / 48

Page 22: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

High-Order-Modes in TESLA-type cavity

Several dipole HOMs with large value of R/Q and QL exist in9-cell TESLA-type cavity.

Dipole HOMs with the largest value of (R/Q)QL/f in TESLA-type cavity1,2

f Qe Rd/Q0 (R/Q)Qe/f Type[GHz] [Ω/cm2] [Ω/cm2/GHz]1.7074 5×104 11.21 3.28×105 TE111

1.7343 2×104 15.51 1.79×105 TE111

1.8687 5×104 6.54 1.75×105 TM110

1.8738 7×104 8.69 3.25×105 TM110

1.8799 1×105 1.72 9.15×104 TM110

2.5751 5×104 23.80 4.62×105 TE121

Question:Can 9-cell TESLA-type cavity be used on compact ERLs like thePKU-ERL Test Facility?

1. TESLA TDR2. Luo, X., et al., unpublished

22 / 48

Page 23: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

BBU simulation – Modeling

Main parameters for simulation HOM parameters (f,R/Q,QL, θ) Beam parameters (fb,Einj) Beamline parameters (Transport matrix, Recirculating time

(length of beamline))

HOM parameters Each HOM has two polarization directions: x(0) and y(90). HOMs affact individually to the beam.

23 / 48

Page 24: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

BBU simulation – Modeling

Beamline parameters Linear transfer matrix Transverse focusing effect included in cavity matrix – Rosenzweig-Serafini’s

form:Rosenzweig-Serafini’s form of the transfer matrix of a pure π modecavity

cosα−√2 cos(∆ϕ) sinα

√8 γiγ′ cos(∆ϕ) sinα

−γ′

γf

(cos(∆ϕ)√

2+ 1√

8 cos(∆ϕ)

)sinα γi

γf(cosα+

√2 cos(∆ϕ) sinα)

(1)

x-y phase space no coupling: R14 = R23 = 0

1. Rosenzweig, G., Serafini, L., Phys. Rev. E., 49(2):1599,1994

24 / 48

Page 25: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

BBU threshold current VS. Betatron phase advance

For x-polarized HOM: R∗12 = R12

R12(i → f) = γi

√βiβfγiγf

sin∆ψ ≈ pi

√βiβfpipf

sin∆ψ

Ith ∝ − 1

R12

Ith ∝ 1√β1β2 sin∆(ψ)

∆ψ clearly influences the BBUthreshold current. 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6

BB

U t

hre

sh

old

cu

rre

nt

(A)

Betatron phase advance (rad)

All HOMs

Maximum Ith about 330mA and minimum about 24mA.

25 / 48

Page 26: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

The most threatening HOM in TESLA-type cavity

BBU threshold current when each HOM acts individually to the beam

0.01

0.1

1

10

0 1 2 3 4 5 6

BB

U t

hre

sh

old

cu

rre

nt

(A)

Betatron phase advance (rad)

1.7074 GHz

(a) 1.7074 GHz TE111

0.1

1

10

0 1 2 3 4 5 6

BB

U t

hre

sh

old

cu

rre

nt

(A)

Betatron phase advance (rad)

1.7343 GHz

(b) 1.7343 GHz TE111

0.1

1

0 1 2 3 4 5 6

BB

U t

hre

sh

old

cu

rre

nt

(A)

Betatron phase advance (rad)

1.8687 GHz

(c) 1.8687 GHz TM110

0.01

0.1

1

10

0 1 2 3 4 5 6

BB

U t

hre

sh

old

cu

rre

nt

(A)

Betatron phase advance (rad)

1.8738 GHz

(d) 1.8738 GHz TM110

0.1

1

10

100

0 1 2 3 4 5 6

BB

U t

hre

sh

old

cu

rre

nt

(A)

Betatron phase advance (rad)

1.8799 GHz

(e) 1.8799 GHz TM110

0.01

0.1

1

10

0 1 2 3 4 5 6

BB

U t

hre

sh

old

cu

rre

nt

(A)

Betatron phase advance (rad)

2.5751 GHz

(f) 2.5751 GHz TE121

Most threatening HOMs in 9-cell TESLA-type cavity1.7074GHz(TE111), 1.8738GHz(TM110), 2.5751GHz(TE121)

26 / 48

Page 27: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

The most threatening HOM in TESLA-type cavity

∆ψ = 0,Ith ≈ 30mA。I0 = 33mA,ton = 100µs。

x offset VS. time⇓FFT

Frequency spectrumevolution VS. time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10−4

−1.5

−1

−0.5

0

0.5

1

1.5x 10

−6

t (s)

Tra

nsv

erse

off

set

(m)

0 10 20 30 40 500

1

2

3

4x 10

−4

∆f (MHz)

HO

M v

olt

age

(V)

t∈ (0, 25)µs

0 10 20 30 40 500

1

2

3

4

5

6x 10

−4

∆f (MHz)

HO

M v

olt

age

(V)

t∈ (25, 50)µs

0 10 20 30 40 500

1

2

3

4

5

6x 10

−4

∆f (MHz)

HO

M v

olt

age

(V)

t∈ (50, 75)µs

0 10 20 30 40 500

1

2

3

4

5

6x 10

−4

∆f (MHz)

HO

M v

olt

age

(V)

t∈ (75, 100)µs

∆f≈24.9 MHzf≈2575.1MHz

TE121 − like mode determines the BBU at last.

27 / 48

Page 28: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

Influence of inhomogeneous HOMs

Inhomogeneous ofcavity shape duringfarbication leads toHOM spread betweendifferent cavities.1

HOM frequency spreaddisturbs the phasebetween bunch andHOMs

1000 random seed ofHOM frequency(Gaussian distribution)

0 0.05 0.10

50

1000.25MHz

0 0.05 0.10

50

100

150

2000.5MHz

0 0.05 0.10

50

100

1500.75MHz

0 0.05 0.10

50

100

1501MHz

0 0.05 0.10

50

100

1501.5MHz

0 0.2 0.40

100

200

300

4002MHz

0 0.2 0.40

100

200

3002.5MHz

0 0.2 0.40

100

200

300

4003MHz

0 0.2 0.40

100

200

3004MHz

1. Xiao, L., et al., Proceedings of PAC200728 / 48

Page 29: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

Influence of inhomogeneous HOMs

σf: 0MHz-10MHz,1000 Gasussianrandom seed offrequency at eachσf.

Average BBUthreshold valueincreases with the σfincreases.

Changes slower afterσf > 6MHz 0 1 2 3 4 5 6 7 8 9 10

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Frequency spread σf (MHz)

BB

U t

hre

sho

ld c

urr

ents

(A

)

Due to the limited cavity number, large fluctuations of thethreshold currents.

29 / 48

Page 30: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

BBU threshold with different cavity numbers

Higher energyrequires morecavities.

Same gradient;Same Einj;Same tr;Single module.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.01

0.1

2-Cavity 4-Cavity 6-Cavity 8-Cavity

BB

U th

resh

old

curr

ent (

A)

Betatron phase advance ( rad)

8×9-cell TESLA-type cavity: Ith,max ≈35mA, Ith,min ≈7mA. BBU threshold current drops clearly with the cavity number

increases.

30 / 48

Page 31: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

BBU superssion methods

Improve HOM damping ability - High current superconductingcavities

9-cell KEK-ERL cavity; 7-cell Cornell cavity; 7-cell CEBAF cavity; 5-cellBNL cavity......etc. 1

Improve the beam energy (Injection energy and acceleratinggradient to reduce cavity number)

Beam optics methods Adjusting the betatron phase advance or the return loop

length. Inducing transverse phase space coupling:

Rotation/Reflection.

Beam-based feedback.

31 / 48

Page 32: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

BBU superssion methods - Beam optics methods

Betatron phase advance adjusting Point-to-Point focusing: Adjusting betatron phase advance

without influence the phase space match. JLab method: Phase Trombone1,2

∆βnβn

o= ∓

N∑k=1

Pkβnk sin(2(ψn

o − ψnk))

∆αn = ±N∑

k=1

Pkβnk (cos(2(ψn

o − ψnk))− αo sin(2(ψn

o − ψnk)))

∆ψn = ± 1

N∑k=1

Pkβnk sin2((ψn

o − ψnk)

1. Douglas, D., Proceedings of PAC19912. Douglas, D., JLAB-TN-04-017, 2004

32 / 48

Page 33: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

BBU superssion methods - Beam optics methods

Transverse phase space coupling method1

Reflection

Mref =

(0 II 0

)R12 = R34 = 0

Rotation

Mref =

(0 I−I 0

)R12 = R34 = 0

R14 + R23 = 0

1. R.Rand & T. Smith, Particle accelerators, 2:1– 13, 1980

33 / 48

Page 34: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

BBU superssion methods - Beam optics methods

Efficiency oftransverse phasespace coupling.

8×9-cellTESLA-type cavityin a singlecryomodule.

0 1 2 3 4 5 6

10-2

10-1

Thre

shol

d C

urre

nts

(A)

Betatron Phase Advance (rad)

nominal reflector rotator

BBU threshold current improves significantly.I(norm)th < I(ref)

th < I(rot)th (with same ∆ψ)

Limitation: Sometimes transverse phase space coupling should beavoid.

34 / 48

Page 35: Transverse beam breakup simulation for compact and Multi ...

Introduction of the ERL project at Peking University

Theory and simulation code of ERL BBU

BBU simulation for compact ERL with 9-cell TESLA-typecavities

BBU simulation for a multi-GeV ERL light source

Summary

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Page 36: Transverse beam breakup simulation for compact and Multi ...

BBU of ERL light source

ERL light source, BBU is much complex than compact ERLs Higher beam energy: MeV→GeV ⇒ Much more cavities.

Average current up to 100mA ⇒ Stronger beam-HOM interaction.

KEK 3-GeV ERL light source——PEARL 3-3.5GeV ERL light source & 6-7GeV XFEL-O

BBU simulation for 5-GeV ERL design carried out in 20071.

In the preliminary design report, preciesely simulation of the newdesign is not included.

BBU simulation for 3-GeV ERL 2 different ERL designs: 3.0-GeV (470m-linac); 3.4-GeV

(630m-linac)3 9-cell KEK-ERL mode-2 superconducting cavity used.

1. Hajima, R. Proceedings of ERL20072. ERL preliminary design report(2012)3. Lattice file provided by Miho Shimada .

.

...

..

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Page 37: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

9-cell KEK-ERL mode-2 cavity

9-cell KEK-ERL mode-2 cavity

main HOMs in 9-cell KEK-ERL mode-2 cavity1.f Qe R/Q (R/Q)Qe · f

[GHz] [Ω/cm2] [Ω/cm2/GHz]1.835 1.1010×103 8.087 48521.856 1.6980×103 7.312 66912.428 1.6890×103 6.801 47323.002 2.9990×104 0.325 32464.011 1.1410×104 3.210 91354.330 6.0680×105 0.018 2522

2007, 5-GeV ERL design: Ith ≈600mA1.1. Sakai H., et al., Proceedings of ERL2007

1

37 / 48

Page 38: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

3.0-GeV ERL design

0 100 200 300 400 500 600 700 800 9000

10

20

30

40

50

60

70

80

90

100

βx

βy

2nd pass for energy recoverying1st pass for acceleration

recirculation

28 modules×8 cavities,Einj=10MeV,Eacc=13.4MV/m,Efull=3.0GeV.

β value at the end of linac isabout 83m.

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0 0.5 1 1.5 2

BB

U t

hre

sh

old

cu

rre

nt

(A)

Betatron phase advance (π⋅rad)

3.0-GeV ERL

∆ψ ∈ [0, 2π],Ith,min ≈240mA andIth,max ≈340mA.

38 / 48

Page 39: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

3.4-GeV ERL design

0 200 400 600 800 1000 12000

20

40

60

80

100

120

Z (m)

β fu

nctio

n (m

)

βx

βy

recirculation

2nd pass for energy recoverying1st pass for acceleration

34 modules×8 cavities,Einj=10MeV,Eacc=12.5MV/m,Efull=3.4GeV.

β value at the end of linac isabout 100m.

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0 0.5 1 1.5 2

BB

U t

hre

sh

old

cu

rre

nt

(A)

Betatron phase advance (π⋅rad)

∆ψ ∈ [0, 2π],Ith,min ≈220mA,Ith,max ≈300mA

39 / 48

Page 40: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

HOM frequency spread

1000 random seeds with σf = 1MHz

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.90

5

10

15

20

25

30

35

BBU threshold currents (A)

Num

ber

of e

vent

s

Ith,average

≈640mA

3.0-GeV ERL

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.750

5

10

15

20

25

30

35

BBU threshold current (A)

Num

ber

of e

vent

s

Ith,average

≈530mA

3.4-GeV ERL

σf = 1MHz

I(1)th ≈ 640mA,σ(1)I ≈ 56mA,σ(1)I /I(1)th ≈ 8.75%

I(2)th ≈ 530mA,σ(1)I ≈ 54.2mA,σ(1)I /I(1)th ≈ 10.2%

40 / 48

Page 41: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

HOM frequency spread

Average value of Ith VS. σf

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Ave

rage

BB

U th

resh

old

Cur

rent

s (A

)

Frequency spread (MHz)

3.0-GeV ERL

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Ave

rage

BB

U th

resh

old

Cur

rent

s (A

)

Frequency spread (MHz)

3.4-GeV ERL σf = 2MHz, Ith ≈ 940mA.

41 / 48

Page 42: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

Return loop length

In ERL, sometimes we need to adjust the length of return loop.

0.0 0.5 1.0 1.5 2.00.22

0.24

0.26

0.28

0.30

0.32

0.0 0.5 1.0 1.5 2.00.60

0.62

0.64

0.66

0.68

0.70

BB

U th

resh

old

curr

ent (

A)

Return loop length ( T T0)

f=0

BB

U th

resh

old

curr

ent (

A)

Return loop length ( T T0)

f=1MHz

The most threating mode:4.011GHz.

Quansi-periodic variationalong with the path lengthvariation when σf = 0.

when σf=1 MHz, periodicvariation almost disappears.

42 / 48

Page 43: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

Comparison of different ERL designs

3.4-GeV ERL 3.0-GeV ERL 5.0-GeV ERLEinj[MeV] 10 10 10Efull[MeV] 3410 3010 4970Modules 34 28 31

Eacc[MV/m] 12.5 13.4 20Ith,min(σf=0)[mA] 220 240 580

Ith,average(σf=2MHz)[mA] 940 940 2.4e3

10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5

0.20

0.21

0.22

0.23

0.24

0.25

2.81 GeV

3.01 GeV

3.21 GeV

3.51 GeV

3.41 GeV

BB

U th

resh

old

curr

ent (

A)

Accelerating Gradient (MV/m)

Same cavity number;Different cavity gradient.

Ith ∝ Eacc.

Thanks Dr. M. Shimada for providing lattice files

43 / 48

Page 44: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

Contribution of different cavity to BBU

The cavities at low energy section (the start and the end of the linac)

1

Ith∝

√β1β2√p1p2

sin∆ψ

44 / 48

Page 45: Transverse beam breakup simulation for compact and Multi ...

Introduction of the ERL project at Peking University

Theory and simulation code of ERL BBU

BBU simulation for compact ERL with 9-cell TESLA-typecavities

BBU simulation for a multi-GeV ERL light source

Summary

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Page 46: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

Summary

BBU simulation for compact ERL with 9-cell TESLA-type cavities BBU threshold current of PKU-ETF is about 24mA, larger than the design

average current. The most threatening mode in TESLA-type cavity is the TE121-like mode

with frequency about 2.57GHz. By applying beam optics methods, BBU threshold current can be improved

significantly.

BBU simulation for multi-GeV ERL light source in KEK BBU threshold of both the two designs of KEK ERL light source is larger

than the design value of average current. By improving the accelerating gradient, BBU threshold current can also be

improved.

46 / 48

Page 47: Transverse beam breakup simulation for compact and Multi ...

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction Theory Compact ERL ERL light source Summary

Acknowledgement

Many thanks to:Peking University

Prof. Jia-er Chen, Prof. Kexin Liu, Prof. Baocheng Zhang, Prof.Shengwen Quan,Dr. Jiankui Hao, Dr. Senlin Huang, Dr. Feng Zhu, Dr. YongmingLi, Dr. Liu Yang,Liwen Feng, Xiaodong Wen, Zhiwen Wang, Xing Luo, and otherpeople in the SRF group of PKU.

KEK Prof. N. Nakamura, Prof. K. Ohmi, Dr. M. Shimada, Dr. Demin

Zhou, and other people in KEK ERL group.

JAEA Prof. R. Hajima

47 / 48

Page 48: Transverse beam breakup simulation for compact and Multi ...

Thank you!

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.