Topic 4 Industrial Power Quality

download Topic 4 Industrial Power Quality

of 45

description

SUBJECT : INDUSTRIAL POWER SYSTEMBEF 44903Industrial Power Systems is a must-have course for anyone involved in power engineering, especially in the design and maintenance of power distribution systems. This course is arranged to furnish students’ understanding of the utilisation of electrical energy in industrial applications. The industrial power distribution system generally represents a relatively small portion of the entire plant cost (5% to 10%), yet the production and output of the other 90% to 95% ofplant investment is dependent on the service delivered by that investment in the power distribution system. Thus, it is vital for a power engineer to know the features and design procedures of industrial power systems, including basic plant planning, load estimation, instrument transformers, protective devices, power cables, power monitoring and control, as well as the energy management and control.

Transcript of Topic 4 Industrial Power Quality

  • 11/3/2014

    1

    Topic4Topic4INDUSTRIALINDUSTRIALPOWERQUALITYPOWERQUALITYBEF44903BEF44903

    By:Engr.Dr.Kok BoonChing (JEK2013)

    1

    BEF44903 IndustrialPowerSystems Topic4

    OutlinesOutlines4.1MotorStartingStudies

    2

    4.2ApplicationofIndustrialPowerFactorCorrection

    4.3HarmonicsTreatmentinIndustrialPowerSystems

    4 4 V lt S A l i4.4VoltageSagAnalysis

    4.5FlickerAnalysis

  • 11/3/2014

    2

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesDirectonDirectonlinestartinglinestarting Whenitisswitchedon,the

    motor behaves like a

    3

    motorbehaveslikeatransformerwithitssecondary,formedbytheverylowresistancerotorcage,inshortcircuit.

    Thereisahighinducedcurrentintherotorwhichresultsinacurrentpeakinthemainssupplypp y

    Currentonstarting=5to8ratedCurrent

    Torqueonstarting(ST)=0.5to1.5ratedtorque(RT)

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesStarStardeltastartingdeltastarting Theprincipleistostartthe

    motor by connecting the star

    4

    motorbyconnectingthestarwindingsatmainsvoltage,whichdividesthemotorsratedstarvoltageby3.

    Thestartingcurrentpeak(SC)isdividedby3,SC=1.5to2.6RC(RCratedCurrent).

    As the starting torque (ST) isAsthestartingtorque(ST)isproportionaltothesquareofthesupplyvoltage,itisalsodividedby3:ST=0.2to0.5RT(RTRatedTorque)

  • 11/3/2014

    3

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesResistancestatorstartingResistancestatorstarting Themotorstartsatreduced

    voltage because resistors are

    5

    voltagebecauseresistorsareinsertedinserieswiththewindings.

    Whenthespeedstabilises,theresistorsareeliminatedandthemotorisconnecteddirectlytothemains.Thisprocessisusuallycontrolledp ybyatimer.

    Thestartingcurrentandtorquevaluesaregenerally:SC=4.5RCST=0.75RT

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesAutotransformerstartingAutotransformerstarting Inthefirstplace,the

    autotransformerisstar

    6

    connected,thenthemotorisconnectedtothemainsviapartoftheautotransformerwindings.

    Thestarconnectionisopenedbeforegoingontofullvoltage.Thisoperationtakesplacewhenthespeedbalancesoutattheendofthefirststep.

    The piece of autotransformerThepieceofautotransformerwindinginserieswiththemotorisshortcircuitedandtheautotransformerisswitchedoff.

    Thevaluesobtainedare:SC=1.7to4RCST=0.5to0.85RT

  • 11/3/2014

    4

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesSlipringmotorstartingSlipringmotorstarting Aslipringmotorcannotbe

    started direct on line with its

    7

    starteddirectonlinewithitsrotorwindingsshortcircuited,otherwiseitwouldcauseunacceptablecurrentpeaks.

    Resistorsmustthereforebeinsertedintherotorcircuitandthengraduallyshortcircuited.

    The current absorbed is moreThecurrentabsorbedismoreorlessproportionaltothetorquesupplied.Forexample,forastartingtorqueequalto2RT,thecurrentpeakisabout2RC.

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesSoftstarterstartingSoftstarterstarting Thisisaneffectivestarting

    system for starting and

    8

    systemforstartingandstoppingamotorsmoothly.

    Controlbycurrentlimitationsetsamaximumcurrent(3to4xRC)duringthestartingstageandlowerstorqueperformance.Thiscontrolisespeciallysuitable forturbomachines (centrifugalturbomachines (centrifugalpumps,fans).

    Controlbytorqueadjustmentoptimises torqueperformanceinthestartingprocessandlowersmainsinrushcurrent.Thisissuitedtoconstanttorquemachines.

  • 11/3/2014

    5

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesFrequencyconverterstartingFrequencyconverterstarting Thisisaneffectivestarting

    9

    systemtousewheneverspeedmustbecontrolledandadjusted.

    Itspurposesinclude: startingwithhighinertialoads, startingwithhighloadsonsupplieswithlowshortcircuitcapacity,

    optimisation ofelectricityconsumption adapted to the speedconsumptionadaptedtothespeedof"turbomachines".

    Itisasolutionprimarilyusedtoadjustmotorspeed,startingbeingasecondarypurpose.

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudies 10

  • 11/3/2014

    6

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesVoltagedrop/dip

    11

    PQduringMotorStarting

    InrushcurrentVoltageFlicker

    Voltage/CurrentHarmonics

    BEF44903 IndustrialPowerSystems Topic4

    4.1MotorStartingStudies4.1MotorStartingStudiesEXAMPLE4.1:VoltagedropduringmotorstartingA i d t i l t l t

    12

    1MVA11kV/415V%Z=5%X/R=5

    ZS =(1.55+j1.66)m

    PCC

    SupplySystemAn industrial customer plans toconnect a new induction motorto the power supply system asshown in the diagram.

    Using the permissible level ofvoltage fluctuations as a

    M

    ZL =(25+j60)m75kW415VPFStart =0.3KSOC =7kVA/kW

    PCCvoltage fluctuations as acriterion, decide whether themotor should be installed.For the planned number of 20starts per hour the voltagechange: Kmax = 3%

  • 11/3/2014

    7

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC PowerFactorinSinusoidal Situations

    R

    13

    M MotorLoad(Linear)Vsin (t)

    R

    )sin()()sin()(

    101

    101

    tItitVtv

    rmsrms

    avgavgtrue IV

    PSP

    PF

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Forthepurelysinusoidal case,

    P

    14

    22

    )cos(22

    11

    1111

    22

    IV

    IVQP

    PPFPF avgdisptrue

    wherePFdisp iscommonlyknownasthedisplacementpowerfactor,andwhere(11)isknownasthepower factor angle

    )cos(22

    11 powerfactorangle.

  • 11/3/2014

    8

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC

    7.00EffectofPFonPowerLosses

    15

    2.00

    3.00

    4.00

    5.00

    6.00

    Power

    Losses

    (pu) Displacementpowerfactor

    greatlyaffectslosses

    0.00

    1.00

    2.00

    1.00 0.90 0.80 0.70 0.60 0.50 0.40

    P

    PF

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC PowerFactorinNonsinusoidal Situations When steady state harmonics are presented the

    16

    Whensteadystateharmonicsarepresented,thevoltagesandcurrentscanberepresentedbyFourierseriesoftheform,

    1

    0 )sin()(k

    kk tkVtv

    1

    2

    1

    2

    2 kkrms

    k

    krms V

    VV

    1

    0

    1

    )sin()(k

    kk

    k

    tkIti

    1

    2

    1

    2

    11

    2 kkrms

    k

    krms

    kk

    III

    ...)cos( 3211

    avgavgavgk

    kkkrmskrmsavg PPPIVP

  • 11/3/2014

    9

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Totalharmonicdistortion(ordistortionfactor),

    17

    %100%1001

    2

    2

    1

    2

    2

    V

    V

    V

    VTHD k

    k

    rms

    kkrms

    V

    %100%100 22

    2

    2

    II

    THD kk

    kkrms

    I %00%0011 II rms

    I

    21 )100/(1 Vrmsrms THDVV 21 )100/(1 Irmsrms THDII

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Truepowerfactor,

    1avgP

    18

    2211 )100/(1)100/(1

    1

    IVrmsrms

    avgtrue

    THDTHDIVPF

    EXAMPLE4.2Calculatethetruepowerfactorforthefollowingmeasurements:Frequency (Hz) Voltage (V) Current (A)Frequency(Hz) Voltage(V) Current(A)

    50 4150 5030150 9.525 1570250 5.840 5010350 1.235 5020

  • 11/3/2014

    10

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCEffectofPFtrueonPowerLosses

    19

    3.004.005.006.007.008.00

    wer

    Losses

    (pu)

    NonLinearLoad

    Linear Load

    0.001.002.00

    1.00 0.90 0.80 0.70 0.60 0.50 0.40

    Pow

    PF

    LinearLoad

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC 20

  • 11/3/2014

    11

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Averagepowerfactorvaluesforthemostcommonlyused

    equipmentandappliances

    21

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC

    Why to improve

    22

    Reductionof losses

    Reductionofcablesize

    Reductioninthecostofelectricity

    Whytoimprovethepowerfactor?

    Increaseinavailablepower

    Reductionofvoltagedrop

    oflosses(kW)incables

  • 11/3/2014

    12

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCFixedcapacitors Automaticcapacitorbankscto

    r?23

    Attheterminalsofinductivedevices(motors

    andtransformers)

    Atbusbars supplyingnumeroussmallmotors

    Atthebusbars ofageneralpowerdistribution

    board

    Attheterminalsofaheavilyloadedfeederve

    thep

    ower

    fac

    andinductive

    Incaseswherethelevelofloadisreasonably

    constant

    ycable

    How

    toim

    prov

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC(Design)(Design)

    IndentifySystemRequirements

    24

    CapacitorSizingConsiderharmonicscondition(capacitorvoltage > system voltage) frequency?

    CalculatecompensatedQaccordingtothesystem needs

    Totalsystemloading(P&Q) Frequencyandvoltage(system&capacitors) OverallPFandtargetPF

    AnalysisforPossiblePQResonanceeffect? Switchingtransient?

    voltage>systemvoltage),frequency? systemneeds.

  • 11/3/2014

    13

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC(Design)(Design)

    1121 QQQC 25

    2111 costancostan PFPFP PFDesired

    PFOriginal0.85 0.86 0.87 0.88

    0.50

    0 51

    KFactor

    0.51

    0.52

    0.53

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC(Design)(Design) Differencesinvoltage/frequencylevelbetweenthesupplysystem andthecapacitor usedwillproducedifferent injected reactive power into the system

    26

    differentinjectedreactivepowerintothesystem. Thefactortobeconsideredisasfollows:

    where

    2

    S

    CAPSCAP VVQQ

    S

    CAPSCAP f

    fQQ

    where,QCAP =EffectivereactivepowerprovidedbycapacitorQS =EffectivereactivepowerinjectedintosupplysystemVCAP =CapacitorvoltagelevelVS =Supplysystemvoltagelevel

  • 11/3/2014

    14

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCEXAMPLE4.3

    Incoming

    27

    Incoming3phase,50Hz,400V

    M1 M2C1 C2

    L1

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC 28

    Component DescriptionM1 8unitsof3phaseinductionmotor,eachoneratedat2kVA,

    0.78laggingpowerfactorwith88%efficiency.M2 24unitsofsinglephaseconveyormotor,connectedinbalance

    3phasecoordination,eachoneratedat300W,0.82laggingpowerfactorwith78%efficiency.

    L1 Lumploads,ratedat10kVAr,0.9laggingpowerfactor.C1 6 steps power factor corrector with the switching arrangementC1 6stepspowerfactorcorrectorwiththeswitchingarrangement

    of(1:1:2:2:4:4).Theunitcapacitorusedisratedat525V,2kVAr.

    C2 3stepspowerfactorcorrectorwiththeswitchingarrangementof(1:2:3).Theunitcapacitorusedisratedat440V.

  • 11/3/2014

    15

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Analysetheaveragepowerfactorofthisfactorywhenboth

    powerfactorcorrectors,C1andC2aredisabled.

    29

    RecommendtheproperkVAr ratingfortheunitcapacitorusedinC2ifthepowerfactorforthegroupmotorcircuit,M1istobecorrectedatleastto0.95lagging.AssumeC2isswitchedtostep3.

    AnalyseagaintheaveragepowerfactorforthisfactoryifC1d C2 it h d t t 4 d t 2 ti landC2areswitchedtostep4andstep2,respectively.

    IftheC1andC2inFigureareaccidentallyswitchedtoitsmaximumstepsandL1isdisconnectedduetotheshortcircuitevent,predicttheoverallpowerfactorforthisinstallation.

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCSomeissuesinPFCapplication:

    30

    Avoidnuisancetripscausebycapacitorswitchingtransients

    Currentlimitingfusesat150%to175%ofthecapacitorratedcurrent

    Capacitorshouldbedischargetoaresidualvoltageof50V,1minuteafteritisdisconnected

    Greaterswitchingtransientswillberesulted if not

    Avoidresonanceasitincreasestheheatinganddielectricstresses

    Seriesresonancemightcausezerovoltageatsomefrequenciescurrent

    Donotsettootightortooloose

    Protection

    resultedifnotproperlydischarged

    CapacitorDischarge

    frequencies Parallelresonanceswillamplifyharmonicsatspecificfrequencies

    Harmonics

  • 11/3/2014

    16

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC

    SeriesSeries

    31

    SeriesSeriesResonanceResonance

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC

    ParallelParallel

    32

    ParallelParallelResonanceResonance

  • 11/3/2014

    17

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCResonance

    33

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCWhentohavefiltertoeliminatetheharmonics?

    34

    Powerfactorcorrection(kvar)isgreaterthan25%ofthe transformer kVA

    Harmonicproducingload(e.g.driveload)isgreaterthan40%ofthe transformer kVA

    RISK

    thetransformerkVA thetransformerkVANoproblemisexpectedifbelow15%

    Noproblemisexpectedifbelow25%

    kVArZkVA

    hrtransforme

    rtransforme

  • 11/3/2014

    18

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCCAPACITORSWITCHINGTRANSIENTS Capacitor switching transient is a normal system

    35

    Capacitorswitchingtransientisanormalsystemeventthatcanoccurwheneveracapacitorisenergised.

    Typically,deenergising acapacitordoesnotcauseasystemtransient.

    Thetransientoccursbecauseofthedifferencebetweenthesystemvoltageandthevoltageonthecapacitor.

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Themagnitudeofthetransientwillvarybasedon two variables at the time of the switching.

    36

    ontwovariablesatthetimeoftheswitching.

  • 11/3/2014

    19

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Thesevariablesaretheinitialvoltageonthecapacitor(trappedcharge,usuallyclosetozeroifthe

    37

    capacitorhasbeenallowedtodischarge)andtheinstantaneoussystemvoltageatthetimeoftheswitching.

    Thegreaterthedifferencebetweenthesetwovoltages,thegreaterthemagnitudeofthetransient.h ll h h Theworstcasetransientwilloccurwhenthesystemvoltageisatpeakvoltageandthereisatrappedchargeonthecapacitorofpeaksystemvoltageattheoppositepolarity.

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC 38

    LCVVI CStransient

    Where,VS :Instantaneoussystemvoltage(V)VC :Instantaneouscapacitorvoltage(V)C:CapacitorvalueinFL:InductancevalueinH

  • 11/3/2014

    20

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCBACKTOBACKCAPACITORSWITCHING This situation occurs when a second capacitor is

    39

    Thissituationoccurswhenasecondcapacitorisswitchedoninclose(electrical)proximitytoapreviouslyenergised capacitor.

    Inthiscaseahigherfrequencytransientinitiallyoccursasthepreviouslyenergised capacitorsharesitschargewiththenewlyenergizedcapacitor.

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFC Figurebelowshowstheenergisation ofa50kVAr, 480 V capacitor step with trapped charge

    40

    kVAr,480Vcapacitorstepwithtrappedchargeandwith150kvar ofothercapacitorstepsinservice.

  • 11/3/2014

    21

    BEF44903 IndustrialPowerSystems Topic4

    4.2ApplicationofIndustrialPFC4.2ApplicationofIndustrialPFCMINIMISINGCAPACITORTRANSIENTS There are two basic ways to minimize capacitor

    41

    Therearetwobasicwaystominimizecapacitorswitchingtransients. Switchthecapacitoratapointintimewhenthesystemvoltagematchesthevoltageonthecapacitor,evenifthereisatrappedcharge.I i d i i d i Insertsomeimpedance,resistanceorinductance,inthecircuittominimise thetransient(limitthecapacitorinrushcurrent,thusminimising theresultingvoltageoscillation).

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems 42

    Fundamental(50Hz) Fifthharmonic(250Hz)Thirdharmonic(150Hz) Resultingwaveform

  • 11/3/2014

    22

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems 43

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems Thisperiodicphenomenon(harmonics)canberepresented by a Fourier series as follows:

    44

    representedbyaFourierseriesasfollows: nn

    nn tnYYty

    sin2)(

    10

    where:

    Y = the amplitude of the DC component which is generally

    Accordingtostandards,harmonicordersabove40 areneglected.

    Y0 =theamplitudeoftheDCcomponent,whichisgenerallyzeroinelectricalpowerdistribution(atsteadystate),Yn =theRMSvalueofthenth harmoniccomponent,n =phaseangleofthenthharmoniccomponentwhent=0.

  • 11/3/2014

    23

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsHarmonicssourcesinindustrialapplications:

    45

    pp Staticconverters(n=kp 1ofcurrentharmonics)

    Arcfurnaces Lighting(dischargelampsorfluorescentlampsproducing3rd harmonics)

    Variablespeeddrives Weldingmachines

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems Oneofthemostcommonharmonicssourcesinindustrial applications is rectifier loads.

    46

    industrialapplicationsisrectifierloads. TheharmonicloadcurrentdemandsofrectifiersmaybecalculatedfromtherectifierformulastofindI1,thenfindtheoddharmonics(Singlephase)or5,7,11,13th harmonics(sixpulse)

    /using1/hrule

  • 11/3/2014

    24

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsExample4.4A 1000 kVA three phase six pulse rectifier serves

    47

    A1000kVA threephasesixpulserectifierservesa2000VDCloadusingthedelayangletoholdtheDCvoltageconstantoverallloadsintherange100kWto250kW.Thesupplytransformerisratedat1100kVA,13.8kV/6900V,x=20%,50Hz.Estimatethefifthandseventhharmoniccurrentsonthehighvoltagesideofthetransformerinthe100kWand250kWoperatingrange.

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsSolution:Find transformer reactance

    48

    Findtransformerreactance, 28.43

    1100)6900( 22

    kVAV

    SVX LLbase

    656.828.432.0SS XL3)(23 S ILVV

    )2

    cos(

    22)cos()cos(

    )cos(

    disp

    LL

    dcS

    dcS

    LLdc

    PF

    VIL

    IVV

    SixpulseRectifierFormula

  • 11/3/2014

    25

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems At250kW,

    49

    003.71

    2000250656.83cos6900232000

    kW

    22cos)cos(

    LL

    dcS

    VIL

    216.0)2/cos(042.13

    )6900(2)2000/250)(656.8(2)003.71cos()003.71cos(

    dispPF

    kW

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    kVAkWPFPS 1157

    2160250

    50

    AII

    AVSI

    PF

    PLL

    disp

    68.951

    405.483

    216.0

    15

    )(1

    AII 92.671

    17

  • 11/3/2014

    26

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems At100kW,

    51

    990.74

    2000100656.83cos6900232000

    kW

    22cos)cos(

    LL

    dcS

    VIL

    2149.0)2/cos(206.5

    )6900(2)2000/100)(656.8(2)990.74cos()990.74cos(

    dispPF

    kW

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    kVAkWPFPS 33.465

    21490100

    52

    AII

    AVSI

    PF

    PLL

    disp

    89.351

    468.193

    2149.0

    15

    )(1

    AII 78.2715

    17

  • 11/3/2014

    27

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    Summary

    53

    4

    6

    8

    10

    12

    Harm

    onic

    Value(

    A)

    0

    2

    I5(250kW) I7(250kW) I5(100kW) I7(100kW)

    Curren

    t

    HarmonicOrderbyApplicationPower

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    INSTANTANEOUS LONGTERM

    CONSEQUENCESOFHARMONICS54

    INSTANTANEOUSEFFECTS

    Disturbcontrollers

    LONGTERMEFFECTS

    Additionalheatingoninductiveloads/equipment

    Additionalerrorsininductiondiskelectricity

    meters

    Disturbprotectivedevices

    Vibrationsandnoise

    Interferenceoncommunicationandcontrol

    circuits

  • 11/3/2014

    28

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsSomesymptomscausedbyharmonics:

    Voltagenotching

    55

    Erraticelectronicequipmentoperation Computerand/orPLClockups Overheating(motors,cables,transformers,neutrals) Motorvibrations Audiblenoiseintransformersandrotatingmachines Nuisancecircuitbreakeroperation Timingordigitalclockerrors Electricalfires Voltage/generatorregulatormalfunctioning

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsCompatibilitylevelsforvoltagetolerance,voltageunbalanceandpowerfrequencyvariations

    56

  • 11/3/2014

    29

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsHarmonicStandardforIndustrialNetworks IEC6100024:2002Oddharmonicsnonmultipleofthree

    57

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsHarmonicStandardforIndustrialNetworks IEC6100024:2002Oddharmonicsmultipleofthree

    58

  • 11/3/2014

    30

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsHarmonicStandardforIndustrialNetworks IEC6100024:2002Evenharmonics

    59

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsCompatibilitylevelsfortotalharmonicdistortion

    60

  • 11/3/2014

    31

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsHarmonicmitigationmethods:Passive filter (or tuned filter)

    61

    Passivefilter(ortunedfilter)ActivefilterMultipulse transformerHarmonicsmitigationtransformer

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    Passivefilter

    62

  • 11/3/2014

    32

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems TunedFilter

    Xf 1

    63

    LCXX

    ffh

    L

    Cnn

    00

    1

    CC Q

    kVX2

    CLXXX /XR n CLXXX CLn /Q

    R n

    22 /)(

    /)(

    hXhXRhZ

    hXhXjRhZ

    CLF

    CLF

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsEXAMPLE4.5A series filter is tuned to the 11th harmonic

    64

    Aseriesfilteristunedtothe11th harmonic.GivenXC =405Ohm.Calculatethefilterelements.Takethequalityfactor(Q)as50.

  • 11/3/2014

    33

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystemsEXAMPLE4.6What is the tuning order and the quality factor

    65

    Whatisthetuningorderandthequalityfactorfora36kVseriestunedfilterwithXC =544.5Ohms,XL =4.5OhmsandR=0.825Ohms?

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    Activefilter

    66

  • 11/3/2014

    34

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems 67

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    Multipulse transformer

    68

    Multipulse transformer

  • 11/3/2014

    35

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems

    Harmonicsmitigationtransformer

    69

    BEF44903 IndustrialPowerSystems Topic4

    4.3HarmonicsTreatmentin4.3HarmonicsTreatmentinIndustrialPowerSystemsIndustrialPowerSystems 70

  • 11/3/2014

    36

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysis 71

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisIEEEStd.11591995/MSIEC61000

    72

  • 11/3/2014

    37

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysis Maincausesofvoltagesagsinindustrialpowersystems:

    73

    systems: Faults inthesystem,includinglightningstrike Transformerenergising Heavyloadswitching,mainlylargemotor (>300HP)

    Typesofvoltagesags: Sudden SinglePhaseSags PhasetoPhaseSags ThreephaseSags

    QEXAMPLEStartinglargemotorsorbyelectricalfaultsinsidethefacility

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisSinglePhaseSags The most common voltage sags over 70% are single

    74

    Themostcommonvoltagesags,over70%,aresinglephaseeventswhicharetypicallyduetoaphasetogroundfaultoccurringsomewhereonthesystem.Thisphasetogroundfaultappearsasasinglephasevoltagesagonotherfeedersfromthesamesubstation Typical causes are lightning strikes treesubstation.Typicalcausesarelightningstrikes,treebranches,animalcontactetc.Itiscommontoseesinglephasevoltagesagsto30%ofnominalvoltageorevenlowerinindustrialplants.

  • 11/3/2014

    38

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisPhasetoPhaseSags 2 Phase phase to phase sags may be caused by

    75

    2Phase,phasetophasesagsmaybecausedbytreebranches,adverseweather,animalsorvehiclecollisionwithutilitypoles.Thetwophasevoltagesagwilltypicallyappearonotherfeedersfromthesamesubstation.

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisThreephaseSags Symmetrical3phasesagsaccountforlessthan20%

    76

    y p gofallsageventsandarecausedeitherbyswitchingortrippingofa3phasecircuitbreaker,switchorrecloser whichwillcreatea3phasevoltagesagonotherlinesfedfromthesamesubstation.3phasesagswillalsobecausedbystartinglargemotors butthis type of event typically causes voltage sags tothistypeofeventtypicallycausesvoltagesagstoapproximately80%ofnominalvoltageandareusuallyconfinedtoanindustrialplantoritsimmediateneighbours.

  • 11/3/2014

    39

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysis

    Metering systems? Motor quality? Speed

    77

    Meteringsystems?Monitoringsystems?Accuracyproblems?

    Motorquality?Speedvariation?Motordrives

    effects?

    EFFECTSOFVOLTAGESAGS

    ControlSystem?PLC?Electronicprocesscontrols?Sensors?Computercontrols?

    VSD?

    Industrialprocesses?Manufacturingstoppage?

    Restartproduction?

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysis Thedipmagnitudeduringafaultisdependenton two impedances, the source impedance, ZS

    78

    ontwoimpedances,thesourceimpedance, ZSandtheimpedancetothefault,ZF

    EZZ

    ZVFS

    FPCC

  • 11/3/2014

    40

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysis Industrialcustomerswhohaveinvestedheavilyin production equipment which is susceptible to

    79

    inproductionequipmentwhichissusceptibletovoltagesagsmusttakeresponsibilityfortheirownsolutionstovoltagesagsorlosesomebenefitfromtheirinvestment.

    ReplacementofcomponentsorVoltagesagsareafactoflifetheycannotreadilybeeliminatedfromregularutilitysystems.

    devices,whichareespeciallysensitive,withlessvoltagesensitivesubstitutesorinstallationofsomeformofprotectionagainstvoltagesags.

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisIdentifytheProblem

    MeasuretheProblem

    ChooseaSolution

    80

    EquipmentIdentification

    Whichequipmentissusceptibletounplannedstoppages?

    IdentifytheVoltageSags

    Determine the

    InstallMetering Installationofanelectronicmeterwithwaveformcapturecapability

    RecordUnplannedProductionStoppages

    Calculatethetypeofvoltagesagcorrectionofexpectedfuturevoltagesagevents

    CorrecttheproblembychangingsomeDeterminethe

    frequency,depthanddurationofthevoltagesags

    pp g MeterCostvs.CostofUnplannedProductionStoppage

    sensitivecomponents

    IdentifythesizeoftheloadtobeprotectedinkVAanditssupplyvoltage

  • 11/3/2014

    41

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysis Somepossiblevoltagesagscorrectionmethods:

    81

    FerroresonantTransformer

    UninterruptiblePowerSupply

    (UPS)

    FlywheelandMotor

    Generator(MG)

    DynamicVoltage

    Restorer(DVR)StaticVar

    Compensator(SVC)

    SagProofingTransformers

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisFerroresonant Transformer Also known as a constant voltage transformer (CVT), is a

    82

    Alsoknownasaconstantvoltagetransformer(CVT),isatransformerthatoperatesinthesaturationregionofthetransformerBHcurve.

    Voltagesagsdownto30%retainedvoltagecanbemitigatedusingthistechnique.

    Ferroresonant transformersareavailableinsizesuptoaround25kVAkVA.

  • 11/3/2014

    42

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisUninterruptiblePowerSupply(UPS) UPS mitigate voltage sags by supplying the load using stored

    83

    UPSmitigatevoltagesagsbysupplyingtheloadusingstoredenergy.

    Upondetectionofavoltagesag,theloadistransferredfromthemainssupplytotheUPS.

    BlockDiagramofanofflineUPS BlockDiagramofanonlineUPS

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisFlywheelandMotorGenerator(MG) Flywheel systems use the energy stored in the inertia of a rotating

    84

    Flywheelsystemsusetheenergystoredintheinertiaofarotatingflywheeltomitigatevoltagesags.

    Theflywheelisacceleratedtoaveryhighspeedandwhenavoltagesagoccurs,therotationalenergyofthedeceleratingflywheelisutilised tosupplytheload.

  • 11/3/2014

    43

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisDynamicVoltageRestorer(DVR) DVRinjectsvoltageintothesystemin

    85

    ordertobringthevoltagebackuptothelevelrequiredbytheloadduringvoltagesag.

    Injectionofvoltageisachievedbyaswitchingsystemcoupledwithatransformerwhichisconnectedinserieswith the loadwiththeload.

    ThedifferencebetweenaDVRwithstorageandaUPSisthattheDVRonlysuppliesthepartofthewaveformthathasbeenreducedduetothevoltagesag,notthewholewaveform.

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisStaticVar Compensator(SVC) A SVC is a shunt connected power electronics based device

    86

    ASVCisashuntconnectedpowerelectronicsbaseddevicewhichworksbyinjectingreactivecurrentintotheload,therebysupportingthevoltageandmitigatingthevoltagesag.

  • 11/3/2014

    44

    BEF44903 IndustrialPowerSystems Topic4

    4.4VoltageSagAnalysis4.4VoltageSagAnalysisSagProofingTransformers Also known as voltage sag

    87

    Alsoknownasvoltagesagcompensators,arebasicallyamultiwindingtransformerconnectedinserieswiththeload.

    Effectiveforvoltagesagstoapproximately40%retainedvoltage.g

    Onlyavailableforrelativelysmallloadsofuptoapproximately5kVA.

    BEF44903 IndustrialPowerSystems Topic4

    4.5FlickerAnalysis4.5FlickerAnalysis Flickerisdefinedasthevariationintheluminosityproducedinalightsourcebecauseoffluctuationsin

    88

    p gthesupplyvoltage.

    Themainsourcesofflickerarelargeandfastloadvariationsindustrialloads,suchaselectricarcfurnaces,motors,rollingmills,mashwelders electric welders and electric boilerswelders,electricwelders,andelectricboilers.

    Thevoltageflickerischaracterised byvariationofvoltagemagnitudeintherangeof10%ofnominalvoltageandwithfrequencies between0.2to30Hz.

  • 11/3/2014

    45

    BEF44903 IndustrialPowerSystems Topic4

    4.5FlickerAnalysis4.5FlickerAnalysis Rectangularfluctuationatafrequencyof8.8Hzandanamplitude

    V=0.4V(i.e.,V/V=40%),whichmodulatesamainssignalof50 H d li d V 1 V

    89

    50HzandamplitudeV=1V.

    BEF44903 IndustrialPowerSystems Topic4

    4.5FlickerAnalysis4.5FlickerAnalysis 90