TheHSTGOALSSurvey · 12...

19
The HST GOALS Survey: Probing the Morphology and Evolution of U/LIRGs CSIRO ASTRONOMY & SPACE SCIENCE Sebas&an Haan 26 Sep 2013, Sydney

Transcript of TheHSTGOALSSurvey · 12...

Page 1: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

The  HST  GOALS  Survey:  Probing  the  Morphology  and  Evolution  of  U/LIRGs      CSIRO  ASTRONOMY  &  SPACE  SCIENCE  

Sebas&an  Haan  26  Sep  2013,  Sydney  

Page 2: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Luminous  Infra-­‐Red  Galaxies  •  Enhanced  IR  luminosity  (LIRGs  LIR  >  1011  L☉;  ULIRGs:  LIR  >  1012  L☉  )  •  Very  gas-­‐  and  dust-­‐rich,  10  to  500x  larger  SFR  than  normal  galaxies  •  Comprise  >50%  of  cosmic  IR  background  and  dominate  SF  ac&vity  at  z  >  1          (Capu&+07,  Magnelli+11,  Berta+11)  •  Represent  a  cri&cal  phase  in  the  evolu&on  of  galaxies  where  most  of  the  stellar  galaxies  mass  is  building  up  

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  2    |  

Magnelli+11  

Normal  Galaxies  LIRGs  ULIRGs  

Page 3: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  3    |  

Lee  Armus,  Aaron  Evans,  David  Sanders,  Philip  Appleton,  Josh  Barnes,  Greg  Bothun,  Carrie  Bridge,  Ben  Chan,  Vassilis  Charmandaris,  Lisa  Chien,  Tanio  Diaz-­‐Santos,  Michael  Dopita,  David  Frayer,  Justin  Howell,  Sebastian  Haan,    Hanae  Inami,  Kazushi  Iwasawa,  Joseph  Jensen,  Lisa  Kewley,  Dong-­‐Chan  Kim,  Stefanie  Komossa,  Steven  Lord,  Nanyao  Lu,  Barry  Madore,  Jason  Marshall,  Jason  Melbourne,  Joseph  Mazzarella,  Eric  Murphy,  Andreea  Petric,  George  Privon,  Jeff  Rich,  Shobita  Satyapal,  Bernhard  Schulz,  Henrik  Spoon,  Sabrina  Stierwalt,  Eckhard  Sturm,    Jason  Surace,  Vivian  U,  Tatjana  Vavilkin,  Sylvain  Veilleux,  Kevin  Xu    

HST Spitzer Herschel

Chandra GALEX

Groundbased:  JVLA Palomar CSO ALMA

Page 4: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  4    |  

The  GOALS  Sample  

•  Complete subset of the IRAS Revised Bright Galaxy

Sample (RBGS) with 202 LIRGS and ULIRGs �

•  Combination of imaging and spectroscopic data

from Spitzer (IRAC, IRS), HST (ACS, NICMOS,

WFC3), Chandra, GALEX, and Herschel. �

 

HST:  

•  88 most IR luminous systems (log[LIR/L¤] > 11.4) �

•  H-, I-, and B-band (1.6μm, 814nm, 435nm) �

à 50% of nuclei are dust-obscured in B-band! �

•  Predominantly mergers and interacting galaxies�

•  Resolution: 0.15 arcs (~106pc), redshift z < 0.05 �

Probing the dust-unobscured nuclear stellar structure! �

Page 5: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Probing  the  FormaFon  of  Nuclear  Stellar  Cusps  

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  5    |  

Interac&on  and  &dal  forces:  à  Gas  Inflow    

Final  coalescence  of  nuclei:  Dense  gas  in  center  à extreme  Starburst            (10—1000  M⊙/yr)  à  Stellar  Cusp  is  build  up  

Gas  evtl.  expelled  from  center    à  Shutdown  of  star  forma&on  Nuclear  stellar  cusp  remains    Progenitor  stars  form  spheroid      

Time  

Hopkins+08  

Page 6: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Open  quesFons:   •  Can we see cusp formation during the actual starburst phase

and how does it link to the nuclear properties of elliptical galaxies?

•  How much stellar mass is typically built up in nuclear cusps and what are the critical time-scales for cusp formation?

•  Is there a link between the strength of cusps in LIRGs and the current rate of star formation in these galaxies?

•  Do we see the same fraction of cusps in LIRGs as in elliptical galaxies?

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  6    |  

ObservaFonal  evidence:  Some elliptical galaxies show excess light in their radial light profiles.

Page 7: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  7    |  

Near-­‐IR  (Evolved  Stars)   Cusp  (radius=0.35’’,  110pc)  HST  

An  Example  of  a  Nuclear  Stellar  Cusps  

RGB  Image  (H-­‐,  I-­‐,  B-­‐band)  

H-­‐band,  1.6μm   H-­‐band,  1.6μm  

Logarithmic  brightness  scale!  

Page 8: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  8    |  

The  Nuker  Profile  (Lauer  et  al.  1995):  •  Double  power  law  •  γ  is  the  inner  (cusp)  slope                  

Nuker Profilewith Cusp

Standard Parameter Fit(No Cusp)

Transition betweeninner and outer slope(R=0.34arcsec, 110pc)

1995AJ....110.2622L

Page 9: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

FiLng  of  the  nuclear  stellar  light  and  cusp       In  prac&ce:    

2-­‐dimensional  fit  with  GALFIT  (Peng  et  al.  2010)    •  Simultaneous  fikng  of  several  components    

•  Fikng  and  subtrac&ng  of  central  unresolved  light  component  

 

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  9    |  

Page 10: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Cusp  Slope  and  Luminosity  DistribuFon  

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  10    |  

0.0 0.5 1.0 1.5Cusp Slope !

0

5

10

15

20

25

N

MergerNon-Merger

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0LCusp log[L/L!]

0

5

10

15

20

25

N

Upper Limits

H-­‐band  Cusp  Luminosity  Nuclear  Slope  

Resolve  nuclear  cusps  in  76%  of  LIRGs  

Page 11: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  11  

RelaFonship  between  Current  Star-­‐formaFon  and  Cusp  Strength    

Haan+13  

11.0 11.5 12.0 12.5LIR(8–1000µm) log[L/L!]

6

7

8

9

10

11

12

L Cusp(1.6µm)log[L/L

!]

SFR

CuspMass

Increase  in  Cusp  Mass:  Above  log[LIR/L⊙]=11.9:    all  galaxies  have  large  cusp  NIR  luminosi&es.  On  average,  five  &mes  larger  than  for  lower  luminosity  LIRGs  (log[LIR  /L⊙  ∼  11.5]).      

Page 12: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  12  

Cusp  ProperFes  as  FuncFon  of  Merger  Stage  

LIR  Luminosity  (8—1000μm)   Cusp  Luminosity  (1.6μm)   Nuclear  Density  (R=1kpc)  

Current starburst activity is associated with the build-up of cusps due to merger process.

1 2 3 4 5Merger Stage

10.5

11.0

11.5

12.0

12.5

L IRlog[L/L !]

N = 7 N = 21 N = 14 N = 11 N = 141 2 3 4 5

10.0

10.2

10.4

10.6

10.8

11.0

11.2

11.4

L Nuclog[L/L !]

N = 6 N = 16 N = 14 N = 6 N = 111 2 3 4 5

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

L Cusplog[L/L !]

N = 6 N = 16 N = 14 N = 6 N = 11

Page 13: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  13  

Stellar  Masses  and  Timescales  for  Build-­‐up  of  Cusps    

•  Increase  in  stellar  cusp  mass  towards  late  merger  stages:    

ΔMcusp  =  (7  ±  3.5)  ×  109M¤        (ΥH  =  0.3  ±  0.15,  from  STARBURST99  and    

dynamical    mass  measurements)    

•  Typical  merger  &mescale  from  mid-­‐stage  to  late  stage:  ≈500  Myrs  

•  Timescale  to  build-­‐up  stellar  cusp  mass:    

Δt  =  (60  ±  30)  Myrs  (based  on  current  SFR,  ≈220  M¤  /yr,    and  50%  of  LIR  from  cusp  region)  

 

       

Page 14: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  14  

0.0 0.5 1.0 1.5024681012141618

N

0.0 0.5 1.0 1.5Cusp Slope !

0

5

10

15

20

N

Comparison  of  Cusp  DistribuFon  to  EllipFcals  Early

 Type  Galaxies  

(Lau

er  et  a

l  200

7)  

LIRG

s  Sta&s&cs  for  same  range  in  host  galaxy  mass:    

-­‐23  <  MH  <-­‐25.5  [mag]  (98%  of  the  LIRGs  in  our  sample  )  

cusp/core  =  0.7:1    

cusp/core  >  3.2:1    

Late  Stage    Merger  

Page 15: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  15  

3.3. Intermediate Galaxies

The intermediate classification appears to be highly dependenton resolution, as Rest et al. (2001) noted. Indeed, we consider allthe galaxies so classified by Rest et al. (2001) to be core galaxies,given the finer resolution limits adopted here for their WFPC2profiles. At the same time, we consider NGC 2902, NGC 4482,NGC 5796, and NGC 5898, which were classified as power lawsby Rest et al. (2001), to be intermediate galaxies. Likewise, wefind the intermediate classification in the Ravindranath et al.(2001) sample to vary with choice of resolution limit. In a sense,the tests conducted above might lead one to relabel the interme-diate galaxies with 0:3 < ! 0 < 0:5 as ‘‘ambiguous galaxies.’’ Thevalley in a bimodal distribution is a region where outliers fromeach mode coexist and classification of any given galaxy cannotbe done with any degree of reliability. It is likely that with betterresolution some of the present intermediate galaxies would beclassified as core galaxies. NGC 3585 and NGC 4709, for ex-ample, have well-defined breaks but have ! 0 of 0.31 and 0.32,respectively, falling only just above the core boundary; theywould probably fall below it with better resolution.

At the same time, we are left with the real physical question ofwhy intermediate galaxies are rare and the possibility that in atleast some cases their central structure may offer a unique win-dow on the problem of core formation.AsRest et al. (2001) noted,many intermediate galaxies have small " and do not show asstrong breaks as the core galaxies, even accounting for the higher! values. In the present sample we have difficulty identifying anygalaxy with ! 0 ! 0:4 that shows a sharp break and well-definedinner cusp: the best candidates for this appear to be NGC 2902,NGC 5796, and NGC 5898. To explore the utility of the inter-mediate classification, we choose to preserve the 13 intermediategalaxies in the sample as a separate class. This appears to be sen-sible based on the central parameter relationships presented inLauer et al. (2007); the intermediate galaxies do not appear to fallon the relationships defined by core galaxies.

4. A NONPARAMETRIC DEMONSTRATIONOF BIMODALITY IN SPACE DENSITY

Parametric models provide a means to represent data in a sim-ple way that allows one to determine underlying physical rela-tionships. However, care has been taken so that unknown biasesin the parameterization do not affect the overall results. This con-cern is especially important when studying the luminosity den-sity. Since it is calculated by deprojecting the surface brightnessprofile, any biases in the brightness profile model will be ampli-fied. Luminosity density is more fundamental than surface bright-ness, thus it is important to verify that the bimodality of cuspslopes in projection truly reflects the intrinsic distribution of spacedensity slopes. We therefore bolster the result in the previous sec-tion with a nonparametric approach.

The uncertainties for nonparametric models will generally belarger than those resulting from parameter fits and should pro-vide a more realistic estimate. The comparison between the twoapproaches was done in Gebhardt et al. (1996), where we foundthat the Nuker law provides an accurate estimate of the surfacebrightness profile in the central regions of early-type galaxies.While detailed analysis of the luminosity density, including dy-namical studies, should incorporate a nonparametric approach,use of the Nuker law facilitates comparison with theoreticalmodels and parameter correlation studies. Therefore, both areappropriate.

We follow the same procedures as in Gebhardt et al. (1996) toestimate the surface brightness and luminosity density profiles.The technique represents the measured brightness profiles withsmoothing splines and then inverts the splines into density space.Monte Carlo simulations are used to establish the errors in thefinal density profiles. As the present analysis is identical to thatof Gebhardt et al. (1996), we refer the reader to that paper for acomplete description.

Figure 6 shows the luminosity density profiles normalized inboth radius and luminosity density of all galaxies for which we

Fig. 5.—Limiting logarithmic slope ! 0 of the surface photometry profiles ofthe sample as a function of galaxy luminosity. The solid line shows the distri-bution of ! 0 for just those galaxies with "20:5 # MV > "22:5 (double verticallines) modeled as the sum of two Gaussians with equal dispersions. The dashedline shows the distribution when the two Gaussians are allowed to have differingdispersions. The normalization is arbitrary but is the same for both distributions.

Fig. 4.—Limiting logarithmic slope ! 0 of the surface photometry profiles ofthe sample as a function of distance. The solid line shows the distribution of ! 0 forjust those galaxies with D $ 50 Mpc (vertical line) modeled as the sum of twoGaussians with equal dispersions. The dashed line shows the distribution whenthe twoGaussians are allowed to have differing dispersions. The normalization isarbitrary but is the same for both distributions.

CENTERS OF EARLY-TYPE GALAXIES WITH HST. VI. 239No. 1, 2007

Lauer+07  

Stellar  Mass  of  Galaxy  

Cusp  

Core  

Cusp-­‐Core  Dichotomy  in  Early  Type  Galaxies  

Page 16: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  16  

Stellar  Mass  of  Galaxy  

Cusp  

Core  

Early  Type  Galaxies  vs  LIRGs  

Haan+13    

Page 17: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  17  

What’s  going  on?  

Cusp  DestrucFon:  via  BH  binary  in  a  subsequent  dry  merger  (no  gas)  à    Forma&on  of  massive  core  ellipFcals  

Different  Cusp-­‐Galaxy  FormaFon  Scenario  E.g.  most  cusp  ellipFcals  formed  at  an  early  phase  of  the  universe  when  most  galaxies  were  smaller  and  had  larger  gas  frac&ons  than  in  today’s  LIRGs.    

?  Cusp  

BHs  

Black hole ‘scouring’

Different  environment  during  formaFon  and  evoluFon:  a)  gas  fracFon,  b)  mass  of  progenitor  galaxies,  c)  merger  density/history  

Page 18: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

Morphology  and  Evolu&on  of  LIRGS    |    Sebas&an  Haan  18  

Summary  &  Conclusions  •  Measurement  of  the  nuclear  structure  provides  important  insight  into  

merger  and  starburst  history  of  galaxies.  

•  Nuclear  stellar  cusps  are  found  in  at  least  76%  of  (U)LIRGs.  

•  Cusp  strength  and  luminosity  increase  with  merger  stage  and  total  IR  luminosity  (excluding  AGN),  confirming  models  that  recent  starburst  ac&vity  is  associated  with  the  build-­‐up  of  cusps.    

•  Nuclear  stellar  structure  becomes  more  compact  towards  late  merger  stages.  

•  Comparison  to  local  early-­‐type  galaxies:      a)  Local  (U)LIRGs  have  a  significantly  larger  cusp  frac&on      b)  Most  LIRGs  have  host  galaxy  luminosi&es  (H-­‐band)  similar  to  core  ellip&cals          which  is  roughly  one  order  in  magnitude  larger  than  for  cusp                    ellip&cals.    

Page 19: TheHSTGOALSSurvey · 12 Morphology(and(Evolu&on(of(LIRGS((|((Sebas&an(Haan(Cusp!ProperFes!as!FuncFon!of!Merger!Stage! L IR Luminosity(8—1000 μm)! CuspLuminosity(1.6 μm)! Nuclear!Density!(R=1kpc)!

CSIRO  ASTRONOMY  &  SPACE  SCIENCE  

Thank  you  CSIRO  Astronomy  &  Space  Science  SebasFan  Haan  Postdoc  Fellow    E  sebas&[email protected]  w  www.atnf.csiro.au/people/Sebas&an.Haan/