The GSI Future Project Klaus Peters Ruhr-Universität Bochum University of Tennessee Knoxville, Nov...

47
The GSI Future Project Klaus Peters Ruhr-Universität Bochum University of Tennessee Knoxville, Nov 25, 2002 Oak Ridge National Laboratory Oak Ridge, Nov 26, 2002

Transcript of The GSI Future Project Klaus Peters Ruhr-Universität Bochum University of Tennessee Knoxville, Nov...

The GSI Future Project

Klaus PetersRuhr-Universität Bochum

University of TennesseeKnoxville, Nov 25, 2002

Oak Ridge National LaboratoryOak Ridge, Nov 26, 2002

3 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Mission Statement

Strong and weak interaction critically determine the structure of matter at the microscopic level

Goal: Comprehensive and quantitative understanding

Many-body aspects play an important role at all levels of the hierarchical structure of matter

Goal: Investigate many-body effects in all scales

4 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Overview

The Project

Nuclear Structure PhysicsNuclear Matter PhysicsPhysics with AntiprotonsPlasma PhysicsAtomic PhysicsApplications

Construction

Heating with IonsExtreme QEDCancer Therapy

5 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Radioactive Ion Beams

RIB

6 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Nuclei

The Quark-Gluon-Substructure:important consequences for the nucleus and the nuclear forceexploration possible with beams of short-lived nucleiextreme conditions will reveal new features

•pushed to the limits in proton and neutron number• far away from stability

GSI experienceplayed an important role in pioneering such beamsfirst generation triggered considerable excitementnext generation is mandatory to pursue

the envisioned research opportunities•primary beams: 100x more intensity•secondary beams: 10000x more intensity

The RIB ProjectThe RIB Project

7 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Research Program

Structure of the nucleimain binding: strong force against electroweakwhere are the very limits of nuclei

•new collective modes, shell structures, decay modes•strangeness in the nucleon

Nuclear astrophysicsredraw pathways of nucleosynthesisiterate in collaboration with astrophysicists

Fundamental interactions and symmetriese.g. measure Vud by superallowed Fermi transitions

The RIB ProjectThe RIB Project

8 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

The RIB ProjectThe RIB ProjectSuper-FRS: Large-Acceptance High-Resolution Spectrometer for Exotic Nuclei

9 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Precision SpectroscopyPrecision Spectroscopy

and and

Unique ApplicationsUnique Applications

The RIB ProjectThe RIB ProjectPrecision Experiments with Exotic Nuclei at Low Energies

10 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Experiments with Exotic Beams at High Energies

~20 m

Beam cocktail (all unstable !)

Reaction products after target

20O beam

40Ar primary beam

The RIB ProjectThe RIB Project

11 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Mass- and Lifetime Measurements

Nuclear Reactions in the Internal Target

Electron Scattering off Exotic Nuclei

The RIB ProjectThe RIB ProjectExperiments with Stored Exotic Nuclei

13 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Hadron Physics Proton-Antiproton @ Darmstadt

PANDA

14 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

MASSMASS

Physics Case

MASSMASSUnderstand the generation of mass

Higgs is only responsible for about 2% of proton mass !

How can we understand the difference ?

The PANDA ProjectThe PANDA Project

15 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

aS

2 2S Z(Q M )

0.12

Q2

Confinement asymptotic Freedom

2 1( 0)

137QED Q

aQED

Q2e

e

e

e

Leptons (e,,)

couple to electric charge

mu 3 MeV

md 6 MeV

Mp = 938 MeV

gg

g

Quarks (u,d,s,c,b,t)

couple to 3

q

q

q

q

me = 0.5 MeV

mp = 938 MeV

Eb = 13 eV

Photon carriesno charge

QED - QCD The PANDA ProjectThe PANDA ProjectThe PANDA ProjectThe PANDA Project

+ -

V r

„String“

V r

16 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

QCD running coupling constant

2Q

transition from pertubative to non-pertubative regime

Q2 [GeV2]10 1 0.1 0.05

pert

urb

ati

ve Q

CD

con

sti

tuen

t q

uark

con

fin

em

en

t

meson

s a

nd

bary

on

s

0 0.1 0.3 1Rn r [fm]

Transition from the quark-gluon to the hadronic degrees of freedom

pertubative strong

QCD

The PANDA ProjectThe PANDA Project

17 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Physics Case cont’d

QCD is confirmed to high accuracy at small distancesAt large distances, QCD is characterized by:

ConfinementChiral symmetry breaking

Challenge: Quantitative understanding of the relevant degrees

of freedom in strongly interacting systems

Experimental approach: Charm physics:

Transition between the chiral and heavy quark limitsProton-Antiproton as a rich hadronic source

The PANDA ProjectThe PANDA Project

18 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Hadrons are very complicated

Standard model meson only one leading term

Other colour neutral configurations may mix

Decoupling is possible only if

states are narrow Charmoniumleading term vanishes Exotic States

The PANDA ProjectThe PANDA Project

19 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

3 GeV/c

HypernucleiHypernuclei

3rd dimension (strangeness)of the nuclear chart

New Era:high resolution -spectroscopy

Double-hypernuclei:very little data

Baryon-baryon interactions:-N only short ranged

(no 1 exchange due to isospin)

- impossible in scattering reactions

secondary target

-(dss) p(uud) (uds) (uds)

Trigger

-

K+K

The PANDA ProjectThe PANDA Project

20 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

The Antiproton Facility

Antiproton production similar to CERN, HESR = High Energy Storage RingProduction rate 107/secPbeam = 1.5 - 15 GeV/c

Nstored = 5 x 1010 p

High luminosity modeLuminosity = 2 x 1032 cm-2s-1

p/p ~ 10-4 (stochastic cooling)

High resolution modep/p ~ 10-5 (electron cooling < 8 GeV/c)Luminosity = 1031 cm-2s-1

The PANDA ProjectThe PANDA Project

21 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Proposed Detector

High RatesTotal ~ 55 mb

Vertexing(p,KS,,…)

Charged particle ID(e±,±,±,p,…)

Magnetic trackingElm. Calorimetry

(,0,)

Forward capabilities(leading particles)

Sophisticated Trigger(s)

The PANDA ProjectThe PANDA Project

22 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Compressed Baryonic Mattter

CBM

23 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Tem

pera

ture

[M

eV

]

200

100

0 1 Net Baryon Density

Quarks and Gluons

Critical Point?

Colour Super-Conductor?

Nuclei

Hadrons

Early

Univ

erse

Neutron stars

Deconfinement &

chiral transitionRH

IC &

LH

C

GSI SIS 200+

The CBM ProjectThe CBM ProjectMatter at High Densities:Phase diagram

Compressed

Baryonic

Matter

25 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Physics Case

Tri-critical point (phase transition

J/ suppression at high baryon densities

In-medium change of hadron properties

Equation of state (neutron stars)

Effective degrees of freedom

The CBM ProjectThe CBM ProjectCompressed

Baryonic

Matter

26 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

An Ion-Ion Collision (U+U) The CBM ProjectThe CBM ProjectCompressed

Baryonic

Matter

27 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Simulated Event

700 – 1000 charged particles per event

+ 328- 357p 161K+ 41K- 13- 9+ 8

The CBM ProjectThe CBM Project

beambeam

Compressed

Baryonic

Matter

28 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Requirements

PID: Identification of electrons

and hadrons • 2 electron detectors: pion

suppression by 104-105

Reconstruction of particlevertices with high resolution

• 1000 charged particles in central Au+Au collisions at 25 AGeV

Rate:107 Au+Au reactions/sec beam intensities up to

109 ions/sec, 1% interaction target

Good momentum resolutionLarge acceptance

The CBM ProjectThe CBM ProjectCompressed

Baryonic

Matter

29 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Detector Concept

Magnetic field 1-2TSilicon pixel/strip detectors: , , , RICH: particles with

= 10-100: electrons, (pions, kaons)

TRD: electrons 2000: J/

TOF: start (diamond pixel detector) and stop (RPC): particle identification for

pions, kaons, protons, …

All needed for D-mesons

Trigger: 1. level: reactions, centrality,

hits in TRD and RICH 2. level: electrons, momentum,

hit matching, rings in RICH 3. level: displaced vertex

The CBM ProjectThe CBM Project

2nd Generation Fixed Target Expt

Compressed

Baryonic

Matter

30 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Detector Layout The CBM ProjectThe CBM Project

HADESHADESCBMCBM

A+A at 2-8 AGeV

A+A at 8-40 AGeV

Compressed

Baryonic

Matter

31 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Effective Masses

In solid states we see effective electron masses

Polarizable Media microscopic friction

Newtonian relation F = meff a (meff >m0)

Same for macroscopic friction

Since QCD Vacuum is strongly polarized huge effect

33 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Hadrons in Nuclear Matter

f*= 0.78f

CollaborationNava, GSI, Munich, Jülich, Tokyo, Niigata, RIKEN

Partial restoration of chiral symmetry in nuclear matter

Light quarks are sensitive to quark condensate

Evidence for mass changes of pions and kaons has been deduced previously:

deeply bound pionic atoms

34 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Hadrons in Nuclear Matter

Nucleus-Nucleus CollisionsProton-Proton Collisions

KaoS Collaboration TU Darmstadt, Frankfurt, GSI Darmstadt, Marburg, Cracow, Rossendorf Partial restoration of chiral

symmetry in nuclear matter Light quarks are sensitive

to quark condensate

Evidence for mass changes of pions and kaons has been deduced previously:

deeply bound pionic atoms (anti-)kaon yield and phase

space distribution

35 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Partial restoration of chiral symmetry in nuclear matter

Light quarks are sensitive to quark condensate

Evidence for mass changes of pions and kaons has been deduced previously:

deeply bound pionic atoms (anti-)kaon yield and phase

space distribution

D-Mesons are the QCD analogue of the H-atom.

chiral symmetry to be studied on a single light quark

Hayaski, PLB 487 (2000) 96Morath, Lee, Weise, priv. Comm.

D

50 MeV

D

D+

vacuumvacuum nuclear mediumnuclear medium

K

25 MeV

100 MeV

K+

K

Hadrons in Nuclear Matter

36 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

bare D+D-

10-2

10-1

1

10

102

103

(nb

)

4 5 6 7

Open Charm in the NucleiOpen Charm in the Nuclei

The expected signal:strong enhancement of the

D-meson cross section,relative D+ D- yields, in the

near/sub-threshold region.

This probes ground state nuclear matter density and T~0

Complementary to heavy ion collisions

D+

in-mediumfree masses

T (GeV)

D-

Compressed

Baryonic

Matter

37 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Charmonium in the NucleiCharmonium in the Nuclei

Lowering of the D+D- massallow charmonium states to

decay into this channel, thus resulting in a dramatic

increase of width

• (3770) =2040 MeV

• c2 =0,322,7 MeV

• Experiment:Dilepton-

Channels

IdeaStudy relative changes of

yield and width of the charmonium states.

38 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

The GSI Future Facility

Existing GSI Facilities

Hadron Physics

Plasma Physics

Condensed Baryonic Matter

Atomic PhysicsRare Isotope

Beams

39 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

GSI Facility Characteristics

40 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Primary Beams

1012/s; 1.5 GeV/u; 238U28+

Factor 100-1000 over present in intensity4x1013/s 30 GeV protons1010/s 238U73+ up to 25 (- 35) GeV/u

GSI Facility Characteristics

41 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Primary Beams

1012/s; 1.5 GeV/u; 238U28+

Factor 100-1000 over present in intensity4x1013/s 30 GeV protons1010/s 238U73+ up to 25 (- 35) GeV/u

Secondary Beams

Broad range of radioactive beams up to 1.5 - 2 GeV/uUp to factor 10 000 over present in intensity1011 stored and cooled 3(0) - 15 GeV antiprotons

GSI Facility Characteristics

42 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Cooled beamsRapidly cycling superconducting magnets

Primary Beams

1012/s; 1.5 GeV/u; 238U28+

Factor 100-1000 over present in intensity4x1013/s 30 GeV protons1010/s 238U73+ up to 25 (- 35) GeV/u

Secondary Beams

Broad range of radioactive beams up to 1.5 - 2 GeV/uUp to factor 10 000 over present in intensity1011 stored and cooled 3(0) - 15 GeV antiprotons

Key Technical Features

GSI Facility Characteristics

43 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

0% 50% 100%

Radioactive Beams

Nucleus-NucleusCollisions

Antiprotons

Plasma-Physics

100 Tm Ring

200 Tm Ring

Collector & Storage Ring

High-Energy Storage Ring

Nucleus-Nucleus 100 sec

RadioactiveBeams

PlasmaPhysics

Antiprotons

Duty-Cycles of the Accelerator Rings Duty-Cycles of the Physics Programs

Parallel Operation

45 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Working Groups on Long-Term Perspectives of GSI

Deep-inelastic electron-nucleon and electron-nucleus scattering at s = 20 – 30 GeVConveners: V. Metag (GSI), D. v. Harrach (Mainz),A. Schäfer (Frankfurt)

X-ray spectroscopy and radiation physicsConveners: J. Kluge (GSI), H. Backe (Mainz), G. Soff (Dresden)

Nuclear collisions at maximum baryon densityConveners: P. Braun-Munzinger (GSI), R. Stock (Frankfurt),J. P. Blaizot (Saclay)

Physics with secondary beamsConveners: U. Lynen (GSI), D. Frekers (Münster),J. Wambach (Darmstadt)

Nuclear structure with radioactive beamsConveners: G. Münzenberg (GSI), D. Habs (LMU München),H. Lenske (Gießen), P. Ring (TU München)

Plasma physics with heavy ion beamsConveners: R. Bock (GSI), D.H.H. Hoffmann (Erlangen),J. Meyer-ter-Vehn (IPP München)

Accelerator studies (electron-nucleon/nucleus collider)Conveners: K. Blasche (GSI), J. Maidment (DESY),B. Autin (CERN), N. S. Dikansky (Novosibirsk)

Accelerator studies (high intensity option)Convener: D. Böhne (GSI)

Short Pulse/High Power LasersConvener: J. Kluge (GSI)

Letter of Intent: "Construction of a GLUE/CHARM Factory at GSI"

Editorial Board: B. Franzke (GSI)P. Kienle (Munich)H. Koch (Bochum)W. Kühn (Gießen)V. Metag (Gießen)U. Wiedner (CERN & Uppsala)

Contributions from W. Cassing (Gießen), S. Paul (Munich), J. Pochodzalla (Heidelberg), M. Soyeur (Saclay) and J. Wambach (Darmstadt) and many members of the Hadron Working Group for GSI.

more than 20 Workshops on science and technical aspects of the GSI future facility

Evaluation of the German Wissenschaftsrat

“Stellungnahme zu neun Großgeräten der naturwissenschaftlichen Grundlagenforschung und zur Weiterentwicklung derInvestitionsplanung von Großgeräten“

Activities in Connection with the GSI Plans

46 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Contributors to the CDR

47 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Realization/Cost

Civil Construction ~ 225 M€Accelerator Components ~ 265 M€Instrumentation and Major Detectors ~ 185 M€

~ 675 M€

Year 200X + 6 yearscommissioning

Year 200X + 8 yearsregular data taking

48 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Summary and Outlook

49 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

Electroweak Force

Electromagnetic ForceQED

Weak ForceStandard Model

Strong Force

QCD

Gravitational ForceGeneral Relativity

galaxy1021 m

matter10-1 m

crystal10-9 m atom

10-10 m

atomic nucleus10-14 m

<10-18 m

electron

quark

nucleon10-15 m

DNA10-8 m

Research with Beams of Hadrons and Ions

quark-gluon plasmaexcited vacuum

HI Beams 12 TW/g

RIBs 1.5 – 2 GeV/u

Antiprotons 0-15(30) GeV

Relativ. HI 35 GeV/u

Ion-Matter InteractionsDense Plasmas

Ultra High EM FieldsNuclei at the Extremes

Quark Gluon Structure of Hadrons

Quark Matter

Structure of Matter

50 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

tim

e

tem

pera

ture

15 billion years

1 billion years

300.000 years

3 minutes

1/1000 of a second

3 K

20 K

3.000 K

109 K

1012 K

Novae, supernovae

compressed nuclear matter

Synthesis of heavy elements

r-process and rp-process

HI Beams 12 TW/g

RIBs 2 GeV/n

Antiprotons 0-15(30) GeV

Relativ. HI 35 GeV/n

Nuclear Physics in the Universe

Neutron stars – strangeness matter

Synthesis of light elements

Dark matter Chiral symmetry breaking

Quark-gluon plasma

Research with Beams

of Hadrons and Ions

51 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

AstrophysicsAstrophysicsFundamentalFundamentalsymmetries andsymmetries andinteractionsinteractions

Structure of nuclei: the nuclear many-body system far

from stability

The phases of QCD/quark-gluon

plasma

Quark-gluon structure

of hadrons and the origin of thenuclear force

Nuclear Physics and Its New Frontiers

GSIGSI

52 Nov 25, 2002Klaus Peters - U Bochum - The GSI Future Project

More Information

http://www.gsi.de/GSI-Future/project/eng/index.phphttp://www.gsi.de/GSI-Future/project/eng/index.php

http://www.gsi.de/GSI-Future/cdr/http://www.gsi.de/GSI-Future/cdr/

http://www.gsi.de/GSI-Future/project/eng/i/pdf_e.gifhttp://www.gsi.de/GSI-Future/project/eng/i/pdf_e.gif