The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar...

78
The Geometric Weil Representation and Pseudo-Random Vectors Shamgar Gurevich Madison August 5, 2014 Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19

Transcript of The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar...

Page 1: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

The Geometric Weil Representation and Pseudo-RandomVectors

Shamgar Gurevich

Madison

August 5, 2014

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19

Page 2: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(0) MOTIVATION - GPS

CLIENT WANT: Coordinates of satellite and time delay (enables tocalculate distance to a satellite)?

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 2 / 19

Page 3: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Motivation - GPS

S , R ∈ H = Cp —Hilbert space of digital sequences, p 1000.

S , R : Fp = 0, ...., p − 1 → C.

ψ[n] = e2πip n .

Satellite transmits b · S , b ∈ 1,−1 coordinates.

FactClient receives

R [n] = b · α0 · ψ[ω0n] · S [n− τ0] +W [n], n ∈ Fp ,

α0 ∈ C attenuation, ω0 ∈ Fp Doppler, τ0 ∈ Fp delay, W ∈ H randomwhite noise.

Problem (The GPS Problem)

Design S ∈ H, and effective method to extract (b, τ0), using R and S .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 3 / 19

Page 4: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Motivation - GPS

S , R ∈ H = Cp —Hilbert space of digital sequences, p 1000.

S , R : Fp = 0, ...., p − 1 → C.

ψ[n] = e2πip n .

Satellite transmits b · S , b ∈ 1,−1 coordinates.

FactClient receives

R [n] = b · α0 · ψ[ω0n] · S [n− τ0] +W [n], n ∈ Fp ,

α0 ∈ C attenuation, ω0 ∈ Fp Doppler, τ0 ∈ Fp delay, W ∈ H randomwhite noise.

Problem (The GPS Problem)

Design S ∈ H, and effective method to extract (b, τ0), using R and S .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 3 / 19

Page 5: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Motivation - GPS

S , R ∈ H = Cp —Hilbert space of digital sequences, p 1000.

S , R : Fp = 0, ...., p − 1 → C.

ψ[n] = e2πip n .

Satellite transmits b · S , b ∈ 1,−1 coordinates.

FactClient receives

R [n] = b · α0 · ψ[ω0n] · S [n− τ0] +W [n], n ∈ Fp ,

α0 ∈ C attenuation, ω0 ∈ Fp Doppler, τ0 ∈ Fp delay, W ∈ H randomwhite noise.

Problem (The GPS Problem)

Design S ∈ H, and effective method to extract (b, τ0), using R and S .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 3 / 19

Page 6: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Motivation - GPS

S , R ∈ H = Cp —Hilbert space of digital sequences, p 1000.

S , R : Fp = 0, ...., p − 1 → C.

ψ[n] = e2πip n .

Satellite transmits b · S , b ∈ 1,−1 coordinates.

FactClient receives

R [n] = b · α0 · ψ[ω0n] · S [n− τ0] +W [n], n ∈ Fp ,

α0 ∈ C attenuation, ω0 ∈ Fp Doppler, τ0 ∈ Fp delay, W ∈ H randomwhite noise.

Problem (The GPS Problem)

Design S ∈ H, and effective method to extract (b, τ0), using R and S .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 3 / 19

Page 7: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Motivation - GPS

S , R ∈ H = Cp —Hilbert space of digital sequences, p 1000.

S , R : Fp = 0, ...., p − 1 → C.

ψ[n] = e2πip n .

Satellite transmits b · S , b ∈ 1,−1 coordinates.

FactClient receives

R [n] = b · α0 · ψ[ω0n] · S [n− τ0] +W [n], n ∈ Fp ,

α0 ∈ C attenuation, ω0 ∈ Fp Doppler, τ0 ∈ Fp delay, W ∈ H randomwhite noise.

Problem (The GPS Problem)

Design S ∈ H, and effective method to extract (b, τ0), using R and S .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 3 / 19

Page 8: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Motivation - GPS

S , R ∈ H = Cp —Hilbert space of digital sequences, p 1000.

S , R : Fp = 0, ...., p − 1 → C.

ψ[n] = e2πip n .

Satellite transmits b · S , b ∈ 1,−1 coordinates.

FactClient receives

R [n] = b · α0 · ψ[ω0n] · S [n− τ0] +W [n], n ∈ Fp ,

α0 ∈ C attenuation, ω0 ∈ Fp Doppler, τ0 ∈ Fp delay, W ∈ H randomwhite noise.

Problem (The GPS Problem)

Design S ∈ H, and effective method to extract (b, τ0), using R and S .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 3 / 19

Page 9: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

SOLUTION - Matched Filter

DefinitionMatched filter M(R, S) :

Time-Frequency︷ ︸︸ ︷Fp ×Fp → C,

M(R, S)[τ,ω] = 〈R [n] , ψ[ωn] · S [n− τ]〉 .

Question: What S to use for extracting (τ0,ω0) fromM(R, S) ?

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 4 / 19

Page 10: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

SOLUTION - Matched Filter

DefinitionMatched filter M(R, S) :

Time-Frequency︷ ︸︸ ︷Fp ×Fp → C,

M(R, S)[τ,ω] = 〈R [n] , ψ[ωn] · S [n− τ]〉 .

Question: What S to use for extracting (τ0,ω0) fromM(R, S) ?

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 4 / 19

Page 11: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Solution - MATCHED FILTER

Typical solution: S = pseudo-random (PR)

Figure: |M(R, S)|, (τ0,ω0) = (50, 50).

Using FFT computeM(R,S) in O(p2 · log p) operations.

Task: Find method to construct explicit PR sequences.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 5 / 19

Page 12: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Solution - MATCHED FILTER

Typical solution: S = pseudo-random (PR)

Figure: |M(R, S)|, (τ0,ω0) = (50, 50).

Using FFT computeM(R,S) in O(p2 · log p) operations.

Task: Find method to construct explicit PR sequences.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 5 / 19

Page 13: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Solution - MATCHED FILTER

Typical solution: S = pseudo-random (PR)

Figure: |M(R, S)|, (τ0,ω0) = (50, 50).

Using FFT computeM(R,S) in O(p2 · log p) operations.

Task: Find method to construct explicit PR sequences.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 5 / 19

Page 14: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

WEIL REP’N SEQUENCES - Idea

Weil rep’n (Weil 64)ρ : SL2(Fp)→ GL(C(Fp)),

ρ

(0 −11 0

)= DFT .

Mechanism for sequences construction

T ⊂ SL2(Fp) torus

ρ : T y H = ⊕χ:T→C∗

Hχ.

dimHχ = 1, ϕχ ∈ Hχ,∥∥∥ϕχ

∥∥∥ = 1.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 6 / 19

Page 15: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

WEIL REP’N SEQUENCES - Idea

Weil rep’n (Weil 64)ρ : SL2(Fp)→ GL(C(Fp)),

ρ

(0 −11 0

)= DFT .

Mechanism for sequences construction

T ⊂ SL2(Fp) torus

ρ : T y H = ⊕χ:T→C∗

Hχ.

dimHχ = 1, ϕχ ∈ Hχ,∥∥∥ϕχ

∥∥∥ = 1.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 6 / 19

Page 16: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

WEIL REP’N SEQUENCES - Idea

Weil rep’n (Weil 64)ρ : SL2(Fp)→ GL(C(Fp)),

ρ

(0 −11 0

)= DFT .

Mechanism for sequences construction

T ⊂ SL2(Fp) torus

ρ : T y H = ⊕χ:T→C∗

Hχ.

dimHχ = 1, ϕχ ∈ Hχ,∥∥∥ϕχ

∥∥∥ = 1.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 6 / 19

Page 17: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

WEIL REP’N SEQUENCES - Idea

Weil rep’n (Weil 64)ρ : SL2(Fp)→ GL(C(Fp)),

ρ

(0 −11 0

)= DFT .

Mechanism for sequences construction

T ⊂ SL2(Fp) torus

ρ : T y H = ⊕χ:T→C∗

Hχ.

dimHχ = 1, ϕχ ∈ Hχ,∥∥∥ϕχ

∥∥∥ = 1.Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 6 / 19

Page 18: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Weil Rep’n Sequences - IDEA

Theorem (Pseudo Randomness)

For (τ,ω) 6= (0, 0) ∣∣∣M(ϕχ , ϕχ)[τ,ω]∣∣∣ ≤ 2√

p.

Figure: M(ϕχ, ϕχ), q = 199.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 7 / 19

Page 19: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

BOUNDS VIA GEOMETRIC WEIL REP’N - Idea

`-adic sheaves (Grothendieck 60s)

Dbc (A1) C(Fq).

WantGeometric Weil Rep’n ρ.

Application: GeometrizingM(ϕχ, ϕχ) and obtain the bound.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 8 / 19

Page 20: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

BOUNDS VIA GEOMETRIC WEIL REP’N - Idea

`-adic sheaves (Grothendieck 60s)

Dbc (A1) C(Fq).

WantGeometric Weil Rep’n ρ.

Application: GeometrizingM(ϕχ, ϕχ) and obtain the bound.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 8 / 19

Page 21: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

BOUNDS VIA GEOMETRIC WEIL REP’N - Idea

`-adic sheaves (Grothendieck 60s)

Dbc (A1) C(Fq).

WantGeometric Weil Rep’n ρ.

Application: GeometrizingM(ϕχ, ϕχ) and obtain the bound.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 8 / 19

Page 22: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(I) WEIL REPRESENTATION

Heisenberg Representation

(V ,Ω) —2n-dimensional symplectic vector space over k = Fq ,char 6= 2.H = H(V ) —Heisenberg group

H = V × k ;(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 1

2Ω(v , v ′)).

1 6= ψ : k → C∗ —additive character.

Theorem (Stone—von Neumann)

There exists a unique (up to ') irreducible representationπ : H → GL(H)︸ ︷︷ ︸Heisenberg rep’n

s.t. π(z) = ψ(z) · IdH, z ∈ Z (H) = k.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 9 / 19

Page 23: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(I) WEIL REPRESENTATION

Heisenberg Representation

(V ,Ω) —2n-dimensional symplectic vector space over k = Fq ,char 6= 2.

H = H(V ) —Heisenberg group

H = V × k ;(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 1

2Ω(v , v ′)).

1 6= ψ : k → C∗ —additive character.

Theorem (Stone—von Neumann)

There exists a unique (up to ') irreducible representationπ : H → GL(H)︸ ︷︷ ︸Heisenberg rep’n

s.t. π(z) = ψ(z) · IdH, z ∈ Z (H) = k.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 9 / 19

Page 24: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(I) WEIL REPRESENTATION

Heisenberg Representation

(V ,Ω) —2n-dimensional symplectic vector space over k = Fq ,char 6= 2.H = H(V ) —Heisenberg group

H = V × k ;(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 1

2Ω(v , v ′)).

1 6= ψ : k → C∗ —additive character.

Theorem (Stone—von Neumann)

There exists a unique (up to ') irreducible representationπ : H → GL(H)︸ ︷︷ ︸Heisenberg rep’n

s.t. π(z) = ψ(z) · IdH, z ∈ Z (H) = k.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 9 / 19

Page 25: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(I) WEIL REPRESENTATION

Heisenberg Representation

(V ,Ω) —2n-dimensional symplectic vector space over k = Fq ,char 6= 2.H = H(V ) —Heisenberg group

H = V × k ;

(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 12Ω(v , v ′)).

1 6= ψ : k → C∗ —additive character.

Theorem (Stone—von Neumann)

There exists a unique (up to ') irreducible representationπ : H → GL(H)︸ ︷︷ ︸Heisenberg rep’n

s.t. π(z) = ψ(z) · IdH, z ∈ Z (H) = k.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 9 / 19

Page 26: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(I) WEIL REPRESENTATION

Heisenberg Representation

(V ,Ω) —2n-dimensional symplectic vector space over k = Fq ,char 6= 2.H = H(V ) —Heisenberg group

H = V × k ;(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 1

2Ω(v , v ′)).

1 6= ψ : k → C∗ —additive character.

Theorem (Stone—von Neumann)

There exists a unique (up to ') irreducible representationπ : H → GL(H)︸ ︷︷ ︸Heisenberg rep’n

s.t. π(z) = ψ(z) · IdH, z ∈ Z (H) = k.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 9 / 19

Page 27: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(I) WEIL REPRESENTATION

Heisenberg Representation

(V ,Ω) —2n-dimensional symplectic vector space over k = Fq ,char 6= 2.H = H(V ) —Heisenberg group

H = V × k ;(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 1

2Ω(v , v ′)).

1 6= ψ : k → C∗ —additive character.

Theorem (Stone—von Neumann)

There exists a unique (up to ') irreducible representationπ : H → GL(H)︸ ︷︷ ︸Heisenberg rep’n

s.t. π(z) = ψ(z) · IdH, z ∈ Z (H) = k.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 9 / 19

Page 28: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(I) WEIL REPRESENTATION

Heisenberg Representation

(V ,Ω) —2n-dimensional symplectic vector space over k = Fq ,char 6= 2.H = H(V ) —Heisenberg group

H = V × k ;(v , z) · (v ′, z ′) = (v + v ′, z + z ′ + 1

2Ω(v , v ′)).

1 6= ψ : k → C∗ —additive character.

Theorem (Stone—von Neumann)

There exists a unique (up to ') irreducible representationπ : H → GL(H)︸ ︷︷ ︸Heisenberg rep’n

s.t. π(z) = ψ(z) · IdH, z ∈ Z (H) = k.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 9 / 19

Page 29: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

WEIL REPRESENTATION

Example

n = 1, V = k × k, H = C(k),

[π(τ, 0, 0)f ](t) = f (t + τ);

[π(0,ω, 0)f ](t) = ψ(ωt)f (t);

[π(0, 0, z)f ](t) = ψ(z)f (t).

Weil Representation (Weil ’64): Take g ∈ Sp(V ) = Sp, then

πρ(g )→ πg (v , z) = π(gv , z),

i.e.,ρ(g)π(h)ρ(g)−1 = π(g [h]), for every h ∈ H. (1)

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 10 / 19

Page 30: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

WEIL REPRESENTATION

Example

n = 1, V = k × k, H = C(k),

[π(τ, 0, 0)f ](t) = f (t + τ);

[π(0,ω, 0)f ](t) = ψ(ωt)f (t);

[π(0, 0, z)f ](t) = ψ(z)f (t).

Weil Representation (Weil ’64): Take g ∈ Sp(V ) = Sp, then

πρ(g )→ πg (v , z) = π(gv , z),

i.e.,ρ(g)π(h)ρ(g)−1 = π(g [h]), for every h ∈ H. (1)

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 10 / 19

Page 31: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

WEIL REPRESENTATION

Example

n = 1, V = k × k, H = C(k),

[π(τ, 0, 0)f ](t) = f (t + τ);

[π(0,ω, 0)f ](t) = ψ(ωt)f (t);

[π(0, 0, z)f ](t) = ψ(z)f (t).

Weil Representation (Weil ’64): Take g ∈ Sp(V ) = Sp, then

πρ(g )→ πg (v , z) = π(gv , z),

i.e.,ρ(g)π(h)ρ(g)−1 = π(g [h]), for every h ∈ H. (1)

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 10 / 19

Page 32: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

WEIL REPRESENTATION

Example

n = 1, V = k × k, H = C(k),

[π(τ, 0, 0)f ](t) = f (t + τ);

[π(0,ω, 0)f ](t) = ψ(ωt)f (t);

[π(0, 0, z)f ](t) = ψ(z)f (t).

Weil Representation (Weil ’64): Take g ∈ Sp(V ) = Sp, then

πρ(g )→ πg (v , z) = π(gv , z),

i.e.,ρ(g)π(h)ρ(g)−1 = π(g [h]), for every h ∈ H. (1)

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 10 / 19

Page 33: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

WEIL REPRESENTATION

Example

n = 1, V = k × k, H = C(k),

[π(τ, 0, 0)f ](t) = f (t + τ);

[π(0,ω, 0)f ](t) = ψ(ωt)f (t);

[π(0, 0, z)f ](t) = ψ(z)f (t).

Weil Representation (Weil ’64): Take g ∈ Sp(V ) = Sp, then

πρ(g )→ πg (v , z) = π(gv , z),

i.e.,ρ(g)π(h)ρ(g)−1 = π(g [h]), for every h ∈ H. (1)

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 10 / 19

Page 34: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

WEIL REPRESENTATION

Example

n = 1, V = k × k, H = C(k),

[π(τ, 0, 0)f ](t) = f (t + τ);

[π(0,ω, 0)f ](t) = ψ(ωt)f (t);

[π(0, 0, z)f ](t) = ψ(z)f (t).

Weil Representation (Weil ’64): Take g ∈ Sp(V ) = Sp, then

πρ(g )→ πg (v , z) = π(gv , z),

i.e.,ρ(g)π(h)ρ(g)−1 = π(g [h]), for every h ∈ H. (1)

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 10 / 19

Page 35: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

WEIL REPRESENTATION

TheoremThere exists a unique representation

ρ : Sp → GL(H) – Weil representation,

that satisfies (1).

ProblemFormula for ρ ?

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 11 / 19

Page 36: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

WEIL REPRESENTATION

TheoremThere exists a unique representation

ρ : Sp → GL(H) – Weil representation,

that satisfies (1).

ProblemFormula for ρ ?

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 11 / 19

Page 37: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Weil Rep’n - FORMULA

Formula for A ∈ End(H)?

Weyl Transform

∗C(H,ψ−1)

πW

End(H);

W (A)[h] = 1dimHTr(Aπ[h−1 ]).

Kernel of Weil Rep’nK : Sp × V → C,

K (g , v) = W (ρ(g))[v ].

1 π[K (g , ·)] := ∑v∈V

K (g , v)π(v) = ρ(g).

2 K (g1, ·) ∗K (g2, ·) = K (g1g2, ·).3 Formula: On U = g ∈ Sp; det(g − I ) 6= 0

K (g , v) =1qn· σ[(−1)n det(g − I )] · ψ[Ω(g + I

g − I v , v)].

Proof. Geometric Weil Rep’n.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 12 / 19

Page 38: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Weil Rep’n - FORMULA

Formula for A ∈ End(H)?Weyl Transform

∗C(H,ψ−1)

πW

End(H);

W (A)[h] = 1dimHTr(Aπ[h−1 ]).

Kernel of Weil Rep’nK : Sp × V → C,

K (g , v) = W (ρ(g))[v ].

1 π[K (g , ·)] := ∑v∈V

K (g , v)π(v) = ρ(g).

2 K (g1, ·) ∗K (g2, ·) = K (g1g2, ·).3 Formula: On U = g ∈ Sp; det(g − I ) 6= 0

K (g , v) =1qn· σ[(−1)n det(g − I )] · ψ[Ω(g + I

g − I v , v)].

Proof. Geometric Weil Rep’n.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 12 / 19

Page 39: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Weil Rep’n - FORMULA

Formula for A ∈ End(H)?Weyl Transform

∗C(H,ψ−1)

πW

End(H);

W (A)[h] = 1dimHTr(Aπ[h−1 ]).

Kernel of Weil Rep’nK : Sp × V → C,

K (g , v) = W (ρ(g))[v ].

1 π[K (g , ·)] := ∑v∈V

K (g , v)π(v) = ρ(g).

2 K (g1, ·) ∗K (g2, ·) = K (g1g2, ·).3 Formula: On U = g ∈ Sp; det(g − I ) 6= 0

K (g , v) =1qn· σ[(−1)n det(g − I )] · ψ[Ω(g + I

g − I v , v)].

Proof. Geometric Weil Rep’n.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 12 / 19

Page 40: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Weil Rep’n - FORMULA

Formula for A ∈ End(H)?Weyl Transform

∗C(H,ψ−1)

πW

End(H);

W (A)[h] = 1dimHTr(Aπ[h−1 ]).

Kernel of Weil Rep’nK : Sp × V → C,

K (g , v) = W (ρ(g))[v ].

1 π[K (g , ·)] := ∑v∈V

K (g , v)π(v) = ρ(g).

2 K (g1, ·) ∗K (g2, ·) = K (g1g2, ·).3 Formula: On U = g ∈ Sp; det(g − I ) 6= 0

K (g , v) =1qn· σ[(−1)n det(g − I )] · ψ[Ω(g + I

g − I v , v)].

Proof. Geometric Weil Rep’n.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 12 / 19

Page 41: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Weil Rep’n - FORMULA

Formula for A ∈ End(H)?Weyl Transform

∗C(H,ψ−1)

πW

End(H);

W (A)[h] = 1dimHTr(Aπ[h−1 ]).

Kernel of Weil Rep’nK : Sp × V → C,

K (g , v) = W (ρ(g))[v ].

1 π[K (g , ·)] := ∑v∈V

K (g , v)π(v) = ρ(g).

2 K (g1, ·) ∗K (g2, ·) = K (g1g2, ·).3 Formula: On U = g ∈ Sp; det(g − I ) 6= 0

K (g , v) =1qn· σ[(−1)n det(g − I )] · ψ[Ω(g + I

g − I v , v)].

Proof. Geometric Weil Rep’n.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 12 / 19

Page 42: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Weil Rep’n - FORMULA

Formula for A ∈ End(H)?Weyl Transform

∗C(H,ψ−1)

πW

End(H);

W (A)[h] = 1dimHTr(Aπ[h−1 ]).

Kernel of Weil Rep’nK : Sp × V → C,

K (g , v) = W (ρ(g))[v ].

1 π[K (g , ·)] := ∑v∈V

K (g , v)π(v) = ρ(g).

2 K (g1, ·) ∗K (g2, ·) = K (g1g2, ·).3 Formula: On U = g ∈ Sp; det(g − I ) 6= 0

K (g , v) =1qn· σ[(−1)n det(g − I )] · ψ[Ω(g + I

g − I v , v)].

Proof. Geometric Weil Rep’n.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 12 / 19

Page 43: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Weil Rep’n - FORMULA

Formula for A ∈ End(H)?Weyl Transform

∗C(H,ψ−1)

πW

End(H);

W (A)[h] = 1dimHTr(Aπ[h−1 ]).

Kernel of Weil Rep’nK : Sp × V → C,

K (g , v) = W (ρ(g))[v ].

1 π[K (g , ·)] := ∑v∈V

K (g , v)π(v) = ρ(g).

2 K (g1, ·) ∗K (g2, ·) = K (g1g2, ·).

3 Formula: On U = g ∈ Sp; det(g − I ) 6= 0

K (g , v) =1qn· σ[(−1)n det(g − I )] · ψ[Ω(g + I

g − I v , v)].

Proof. Geometric Weil Rep’n.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 12 / 19

Page 44: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Weil Rep’n - FORMULA

Formula for A ∈ End(H)?Weyl Transform

∗C(H,ψ−1)

πW

End(H);

W (A)[h] = 1dimHTr(Aπ[h−1 ]).

Kernel of Weil Rep’nK : Sp × V → C,

K (g , v) = W (ρ(g))[v ].

1 π[K (g , ·)] := ∑v∈V

K (g , v)π(v) = ρ(g).

2 K (g1, ·) ∗K (g2, ·) = K (g1g2, ·).3 Formula: On U = g ∈ Sp; det(g − I ) 6= 0

K (g , v) =1qn· σ[(−1)n det(g − I )] · ψ[Ω(g + I

g − I v , v)].

Proof. Geometric Weil Rep’n.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 12 / 19

Page 45: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Weil Rep’n - FORMULA

Formula for A ∈ End(H)?Weyl Transform

∗C(H,ψ−1)

πW

End(H);

W (A)[h] = 1dimHTr(Aπ[h−1 ]).

Kernel of Weil Rep’nK : Sp × V → C,

K (g , v) = W (ρ(g))[v ].

1 π[K (g , ·)] := ∑v∈V

K (g , v)π(v) = ρ(g).

2 K (g1, ·) ∗K (g2, ·) = K (g1g2, ·).3 Formula: On U = g ∈ Sp; det(g − I ) 6= 0

K (g , v) =1qn· σ[(−1)n det(g − I )] · ψ[Ω(g + I

g − I v , v)].

Proof. Geometric Weil Rep’n.Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 12 / 19

Page 46: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(II) Geometric Weil Rep’n - GEOMETRIZATION

Geometrization (Grothendieck)

Nice set

X —Algebraic variety over k = Fq .

Fr y X.X = XFr = X(k).

Nice function

Fr y`-adic Weil sheaf

F↓X

−−−−−− >sheaf-to-function

f F : X → C.

Fr : Fx →FFr (x ).

f F (x) = Tr (Fr y Fx ), x ∈ X .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 13 / 19

Page 47: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(II) Geometric Weil Rep’n - GEOMETRIZATION

Geometrization (Grothendieck)

Nice set

X —Algebraic variety over k = Fq .

Fr y X.X = XFr = X(k).

Nice function

Fr y`-adic Weil sheaf

F↓X

−−−−−− >sheaf-to-function

f F : X → C.

Fr : Fx →FFr (x ).

f F (x) = Tr (Fr y Fx ), x ∈ X .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 13 / 19

Page 48: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(II) Geometric Weil Rep’n - GEOMETRIZATION

Geometrization (Grothendieck)

Nice set

X —Algebraic variety over k = Fq .

Fr y X.X = XFr = X(k).

Nice function

Fr y`-adic Weil sheaf

F↓X

−−−−−− >sheaf-to-function

f F : X → C.

Fr : Fx →FFr (x ).

f F (x) = Tr (Fr y Fx ), x ∈ X .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 13 / 19

Page 49: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(II) Geometric Weil Rep’n - GEOMETRIZATION

Geometrization (Grothendieck)

Nice set

X —Algebraic variety over k = Fq .

Fr y X.

X = XFr = X(k).

Nice function

Fr y`-adic Weil sheaf

F↓X

−−−−−− >sheaf-to-function

f F : X → C.

Fr : Fx →FFr (x ).

f F (x) = Tr (Fr y Fx ), x ∈ X .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 13 / 19

Page 50: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(II) Geometric Weil Rep’n - GEOMETRIZATION

Geometrization (Grothendieck)

Nice set

X —Algebraic variety over k = Fq .

Fr y X.X = XFr = X(k).

Nice function

Fr y`-adic Weil sheaf

F↓X

−−−−−− >sheaf-to-function

f F : X → C.

Fr : Fx →FFr (x ).

f F (x) = Tr (Fr y Fx ), x ∈ X .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 13 / 19

Page 51: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(II) Geometric Weil Rep’n - GEOMETRIZATION

Geometrization (Grothendieck)

Nice set

X —Algebraic variety over k = Fq .

Fr y X.X = XFr = X(k).

Nice function

Fr y`-adic Weil sheaf

F↓X

−−−−−− >sheaf-to-function

f F : X → C.

Fr : Fx →FFr (x ).

f F (x) = Tr (Fr y Fx ), x ∈ X .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 13 / 19

Page 52: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(II) Geometric Weil Rep’n - GEOMETRIZATION

Geometrization (Grothendieck)

Nice set

X —Algebraic variety over k = Fq .

Fr y X.X = XFr = X(k).

Nice function

Fr y`-adic Weil sheaf

F↓X

−−−−−− >sheaf-to-function

f F : X → C.

Fr : Fx →FFr (x ).

f F (x) = Tr (Fr y Fx ), x ∈ X .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 13 / 19

Page 53: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(II) Geometric Weil Rep’n - GEOMETRIZATION

Geometrization (Grothendieck)

Nice set

X —Algebraic variety over k = Fq .

Fr y X.X = XFr = X(k).

Nice function

Fr y`-adic Weil sheaf

F↓X

−−−−−− >sheaf-to-function

f F : X → C.

Fr : Fx →FFr (x ).

f F (x) = Tr (Fr y Fx ), x ∈ X .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 13 / 19

Page 54: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(II) Geometric Weil Rep’n - GEOMETRIZATION

Geometrization (Grothendieck)

Nice set

X —Algebraic variety over k = Fq .

Fr y X.X = XFr = X(k).

Nice function

Fr y`-adic Weil sheaf

F↓X

−−−−−− >sheaf-to-function

f F : X → C.

Fr : Fx →FFr (x ).

f F (x) = Tr (Fr y Fx ), x ∈ X .

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 13 / 19

Page 55: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Geometrization - EXAMPLES

Examples

1 X =A1, Fr(x) = xq , A1(k) = k, ψ : k → C∗ —additive character,

Fr y

Artin—Schreier sheafLψ

↓A1

−−−−−− >sheaf-to-function

f Lψ = ψ.

2 X =Gm , Fr(x) = xq , Gm(k) = k∗, χ : k∗ → C∗ —multiplicativecharacter,

Fr y

Kummer sheafLχ

↓Gm

−−−−−− >sheaf-to-function

f Lχ = χ.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 14 / 19

Page 56: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Geometrization - EXAMPLES

Examples1 X =A1, Fr(x) = xq , A1(k) = k, ψ : k → C∗ —additive character,

Fr y

Artin—Schreier sheafLψ

↓A1

−−−−−− >sheaf-to-function

f Lψ = ψ.

2 X =Gm , Fr(x) = xq , Gm(k) = k∗, χ : k∗ → C∗ —multiplicativecharacter,

Fr y

Kummer sheafLχ

↓Gm

−−−−−− >sheaf-to-function

f Lχ = χ.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 14 / 19

Page 57: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Geometrization - EXAMPLES

Examples1 X =A1, Fr(x) = xq , A1(k) = k, ψ : k → C∗ —additive character,

Fr y

Artin—Schreier sheafLψ

↓A1

−−−−−− >sheaf-to-function

f Lψ = ψ.

2 X =Gm , Fr(x) = xq , Gm(k) = k∗, χ : k∗ → C∗ —multiplicativecharacter,

Fr y

Kummer sheafLχ

↓Gm

−−−−−− >sheaf-to-function

f Lχ = χ.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 14 / 19

Page 58: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

GEOMETRIC WEIL REP’N

Weil rep’n kernel

K :

Sp×V(k )︷ ︸︸ ︷Sp × V → C.

Theorem (Geometri Weil Repn)

∃ geometrically irreducible [dimSp]-perverse Weil sheaf K on Sp×V ofpure weight zero with

1 Multiplicativity. Canonical isomorphism θ : K(g1, ·)∗ K(g2, ·)→K(g1g2, ·).2 Function. f K = K .

3 Formula. On U×V

K(g , v) = Lσ[(−1)n det(g−I ))] ⊗Lψ[Ω( g+Ig−I v ,v )][2n](n).

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 15 / 19

Page 59: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

GEOMETRIC WEIL REP’N

Weil rep’n kernel

K :

Sp×V(k )︷ ︸︸ ︷Sp × V → C.

Theorem (Geometri Weil Repn)

∃ geometrically irreducible [dimSp]-perverse Weil sheaf K on Sp×V ofpure weight zero with

1 Multiplicativity. Canonical isomorphism θ : K(g1, ·)∗ K(g2, ·)→K(g1g2, ·).2 Function. f K = K .

3 Formula. On U×V

K(g , v) = Lσ[(−1)n det(g−I ))] ⊗Lψ[Ω( g+Ig−I v ,v )][2n](n).

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 15 / 19

Page 60: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

GEOMETRIC WEIL REP’N

Weil rep’n kernel

K :

Sp×V(k )︷ ︸︸ ︷Sp × V → C.

Theorem (Geometri Weil Repn)

∃ geometrically irreducible [dimSp]-perverse Weil sheaf K on Sp×V ofpure weight zero with

1 Multiplicativity. Canonical isomorphism θ : K(g1, ·)∗ K(g2, ·)→K(g1g2, ·).

2 Function. f K = K .

3 Formula. On U×V

K(g , v) = Lσ[(−1)n det(g−I ))] ⊗Lψ[Ω( g+Ig−I v ,v )][2n](n).

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 15 / 19

Page 61: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

GEOMETRIC WEIL REP’N

Weil rep’n kernel

K :

Sp×V(k )︷ ︸︸ ︷Sp × V → C.

Theorem (Geometri Weil Repn)

∃ geometrically irreducible [dimSp]-perverse Weil sheaf K on Sp×V ofpure weight zero with

1 Multiplicativity. Canonical isomorphism θ : K(g1, ·)∗ K(g2, ·)→K(g1g2, ·).2 Function. f K = K .

3 Formula. On U×V

K(g , v) = Lσ[(−1)n det(g−I ))] ⊗Lψ[Ω( g+Ig−I v ,v )][2n](n).

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 15 / 19

Page 62: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

GEOMETRIC WEIL REP’N

Weil rep’n kernel

K :

Sp×V(k )︷ ︸︸ ︷Sp × V → C.

Theorem (Geometri Weil Repn)

∃ geometrically irreducible [dimSp]-perverse Weil sheaf K on Sp×V ofpure weight zero with

1 Multiplicativity. Canonical isomorphism θ : K(g1, ·)∗ K(g2, ·)→K(g1g2, ·).2 Function. f K = K .

3 Formula. On U×V

K(g , v) = Lσ[(−1)n det(g−I ))] ⊗Lψ[Ω( g+Ig−I v ,v )][2n](n).

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 15 / 19

Page 63: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(III) APPLICATION —Pseudo-Randomness of WeilSequences

ρ : SL2(k)→ GL(H), H = C(k).

T ⊂ SL2(k) torus

ρ : T y H = ⊕χ:T→C∗

Hχ.

dimHχ = 1, ϕχ ∈ Hχ,∥∥∥ϕχ

∥∥∥ = 1.

Theorem (Pseudo-randomness)

For v 6= 0 we have ∣∣∣⟨ϕχ, π(v)ϕχ

⟩∣∣∣ ≤ 2√q.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 16 / 19

Page 64: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(III) APPLICATION —Pseudo-Randomness of WeilSequences

ρ : SL2(k)→ GL(H), H = C(k).

T ⊂ SL2(k) torus

ρ : T y H = ⊕χ:T→C∗

Hχ.

dimHχ = 1, ϕχ ∈ Hχ,∥∥∥ϕχ

∥∥∥ = 1.

Theorem (Pseudo-randomness)

For v 6= 0 we have ∣∣∣⟨ϕχ, π(v)ϕχ

⟩∣∣∣ ≤ 2√q.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 16 / 19

Page 65: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(III) APPLICATION —Pseudo-Randomness of WeilSequences

ρ : SL2(k)→ GL(H), H = C(k).

T ⊂ SL2(k) torus

ρ : T y H = ⊕χ:T→C∗

Hχ.

dimHχ = 1, ϕχ ∈ Hχ,∥∥∥ϕχ

∥∥∥ = 1.

Theorem (Pseudo-randomness)

For v 6= 0 we have ∣∣∣⟨ϕχ, π(v)ϕχ

⟩∣∣∣ ≤ 2√q.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 16 / 19

Page 66: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

(III) APPLICATION —Pseudo-Randomness of WeilSequences

ρ : SL2(k)→ GL(H), H = C(k).

T ⊂ SL2(k) torus

ρ : T y H = ⊕χ:T→C∗

Hχ.

dimHχ = 1, ϕχ ∈ Hχ,∥∥∥ϕχ

∥∥∥ = 1.Theorem (Pseudo-randomness)

For v 6= 0 we have ∣∣∣⟨ϕχ, π(v)ϕχ

⟩∣∣∣ ≤ 2√q.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 16 / 19

Page 67: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Pseudo-Randomness —PROOF

(1) Linear algebra.

Pχ =1#T ∑

g∈Tχ(g−1)ρ(g) —Projector onto Hχ.⟨

ϕχ, π(v)ϕχ

⟩= Tr(Pχπ(v)) = 1

q±1 ∑g∈T

χ(g−1)Tr(ρ(g)π(v)).

Show ∣∣∣∣∣∣∣∣ ∑g∈T

χ(g−1)K|T (g , v)︸ ︷︷ ︸F , |F |=1

∣∣∣∣∣∣∣∣ ≤ 2√q.

(2) Geometric Weil rep’n.

F = f F , F = Lχ ⊗K|T - explicit line bundle on T with flatconnection.

F has weight zero.F has non-trivial monodromy.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 17 / 19

Page 68: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Pseudo-Randomness —PROOF

(1) Linear algebra.

Pχ =1#T ∑

g∈Tχ(g−1)ρ(g) —Projector onto Hχ.

⟨ϕχ, π(v)ϕχ

⟩= Tr(Pχπ(v)) = 1

q±1 ∑g∈T

χ(g−1)Tr(ρ(g)π(v)).

Show ∣∣∣∣∣∣∣∣ ∑g∈T

χ(g−1)K|T (g , v)︸ ︷︷ ︸F , |F |=1

∣∣∣∣∣∣∣∣ ≤ 2√q.

(2) Geometric Weil rep’n.

F = f F , F = Lχ ⊗K|T - explicit line bundle on T with flatconnection.

F has weight zero.F has non-trivial monodromy.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 17 / 19

Page 69: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Pseudo-Randomness —PROOF

(1) Linear algebra.

Pχ =1#T ∑

g∈Tχ(g−1)ρ(g) —Projector onto Hχ.⟨

ϕχ, π(v)ϕχ

⟩= Tr(Pχπ(v)) = 1

q±1 ∑g∈T

χ(g−1)Tr(ρ(g)π(v)).

Show ∣∣∣∣∣∣∣∣ ∑g∈T

χ(g−1)K|T (g , v)︸ ︷︷ ︸F , |F |=1

∣∣∣∣∣∣∣∣ ≤ 2√q.

(2) Geometric Weil rep’n.

F = f F , F = Lχ ⊗K|T - explicit line bundle on T with flatconnection.

F has weight zero.F has non-trivial monodromy.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 17 / 19

Page 70: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Pseudo-Randomness —PROOF

(1) Linear algebra.

Pχ =1#T ∑

g∈Tχ(g−1)ρ(g) —Projector onto Hχ.⟨

ϕχ, π(v)ϕχ

⟩= Tr(Pχπ(v)) = 1

q±1 ∑g∈T

χ(g−1)Tr(ρ(g)π(v)).

Show ∣∣∣∣∣∣∣∣ ∑g∈T

χ(g−1)K|T (g , v)︸ ︷︷ ︸F , |F |=1

∣∣∣∣∣∣∣∣ ≤ 2√q.

(2) Geometric Weil rep’n.

F = f F , F = Lχ ⊗K|T - explicit line bundle on T with flatconnection.

F has weight zero.F has non-trivial monodromy.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 17 / 19

Page 71: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Pseudo-Randomness —PROOF

(1) Linear algebra.

Pχ =1#T ∑

g∈Tχ(g−1)ρ(g) —Projector onto Hχ.⟨

ϕχ, π(v)ϕχ

⟩= Tr(Pχπ(v)) = 1

q±1 ∑g∈T

χ(g−1)Tr(ρ(g)π(v)).

Show ∣∣∣∣∣∣∣∣ ∑g∈T

χ(g−1)K|T (g , v)︸ ︷︷ ︸F , |F |=1

∣∣∣∣∣∣∣∣ ≤ 2√q.

(2) Geometric Weil rep’n.

F = f F , F = Lχ ⊗K|T - explicit line bundle on T with flatconnection.

F has weight zero.F has non-trivial monodromy.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 17 / 19

Page 72: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Pseudo-Randomness —PROOF

(1) Linear algebra.

Pχ =1#T ∑

g∈Tχ(g−1)ρ(g) —Projector onto Hχ.⟨

ϕχ, π(v)ϕχ

⟩= Tr(Pχπ(v)) = 1

q±1 ∑g∈T

χ(g−1)Tr(ρ(g)π(v)).

Show ∣∣∣∣∣∣∣∣ ∑g∈T

χ(g−1)K|T (g , v)︸ ︷︷ ︸F , |F |=1

∣∣∣∣∣∣∣∣ ≤ 2√q.

(2) Geometric Weil rep’n.

F = f F , F = Lχ ⊗K|T - explicit line bundle on T with flatconnection.

F has weight zero.F has non-trivial monodromy.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 17 / 19

Page 73: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Pseudo-Randomness —PROOF

(1) Linear algebra.

Pχ =1#T ∑

g∈Tχ(g−1)ρ(g) —Projector onto Hχ.⟨

ϕχ, π(v)ϕχ

⟩= Tr(Pχπ(v)) = 1

q±1 ∑g∈T

χ(g−1)Tr(ρ(g)π(v)).

Show ∣∣∣∣∣∣∣∣ ∑g∈T

χ(g−1)K|T (g , v)︸ ︷︷ ︸F , |F |=1

∣∣∣∣∣∣∣∣ ≤ 2√q.

(2) Geometric Weil rep’n.

F = f F , F = Lχ ⊗K|T - explicit line bundle on T with flatconnection.

F has weight zero.

F has non-trivial monodromy.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 17 / 19

Page 74: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Pseudo-Randomness —PROOF

(1) Linear algebra.

Pχ =1#T ∑

g∈Tχ(g−1)ρ(g) —Projector onto Hχ.⟨

ϕχ, π(v)ϕχ

⟩= Tr(Pχπ(v)) = 1

q±1 ∑g∈T

χ(g−1)Tr(ρ(g)π(v)).

Show ∣∣∣∣∣∣∣∣ ∑g∈T

χ(g−1)K|T (g , v)︸ ︷︷ ︸F , |F |=1

∣∣∣∣∣∣∣∣ ≤ 2√q.

(2) Geometric Weil rep’n.

F = f F , F = Lχ ⊗K|T - explicit line bundle on T with flatconnection.

F has weight zero.F has non-trivial monodromy.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 17 / 19

Page 75: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Pseudo-Randomness —PROOF

(3) Topology.

Theorem (Deligne, Weil Conjectures II)

X/Fq , dimX =1, (F ,5) Weil line bundle with flat connection andweight zero. Then ∣∣∣∣ ∑

x∈Xf F (x)

∣∣∣∣ ≤ c · √q,iff F has non-trivial monodromy.

In our case F is explicit. Can compute c = 2. Done!

Figure:⟨

ϕχ, π(τ,ω)ϕχ

⟩, q = 199.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 18 / 19

Page 76: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Pseudo-Randomness —PROOF

(3) Topology.

Theorem (Deligne, Weil Conjectures II)

X/Fq , dimX =1, (F ,5) Weil line bundle with flat connection andweight zero. Then ∣∣∣∣ ∑

x∈Xf F (x)

∣∣∣∣ ≤ c · √q,iff F has non-trivial monodromy.

In our case F is explicit. Can compute c = 2. Done!

Figure:⟨

ϕχ, π(τ,ω)ϕχ

⟩, q = 199.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 18 / 19

Page 77: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

Pseudo-Randomness —PROOF

(3) Topology.

Theorem (Deligne, Weil Conjectures II)

X/Fq , dimX =1, (F ,5) Weil line bundle with flat connection andweight zero. Then ∣∣∣∣ ∑

x∈Xf F (x)

∣∣∣∣ ≤ c · √q,iff F has non-trivial monodromy.

In our case F is explicit. Can compute c = 2. Done!

Figure:⟨

ϕχ, π(τ,ω)ϕχ

⟩, q = 199.

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 18 / 19

Page 78: The Geometric Weil Representation and Pseudo-Random Vectors 3_GWR_PR... · 2014. 8. 5. · Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 1 / 19 (0) MOTIVATION - GPS

THANK YOU

Thank You!

Shamgar Gurevich (Madison) GWR and PR Vectors August 5, 2014 19 / 19