Tema 1: Tecnologías de red. - grc.upv.es · Tema 1: Tecnologías de red. Estructura de Internet...

96
Transmisión de Datos Multimedia – http://www.grc.upv.es/docencia/tdm – Master IC 2007/2008 Tema 1: Tecnologías de red. Tema 1: Tecnologías de red. Estructura de Internet Redes “core” SONET DWDM Redes de acceso Redes cableadas: Ethernet et al. Redes inalámbricas: IEEE 802.11, UMTS et al.

Transcript of Tema 1: Tecnologías de red. - grc.upv.es · Tema 1: Tecnologías de red. Estructura de Internet...

Transmisión de Datos Multimedia – http://www.grc.upv.es/docencia/tdm – Master IC 2007/2008

Tema 1: Tecnologías de red.Tema 1: Tecnologías de red.

�Estructura de Internet

�Redes “core”� SONET

� DWDM

�Redes de acceso� Redes cableadas: Ethernet et al.

� Redes inalámbricas: IEEE 802.11, UMTS et al.

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

2

What’s the Internet: “nuts and bolts” view

� End systems

� Host computer

� Network applications

� Access networks

� Local area networks

� communication links

� Network core:

� routers

� network of networks

local ISP

companynetwork

regional ISP

router workstation

servermobile

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

3

Internet structure: network of networks

� roughly hierarchical

� at center: “tier-1” ISPs (e.g., MCI, Sprint, AT&T, Cable and Wireless), national/international coverage

� treat each other as equals

Tier 1 ISP

Tier 1 ISP

Tier 1 ISP

Tier-1 providers interconnect (peer) privately

NAP

Tier-1 providers also interconnect at public network access points (NAPs)

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

4

Tier-1 ISP: e.g., Sprint

Sprint US backbone network

Seattle

Atlanta

Chicago

Roachdale

Stockton

San Jose

Anaheim

Fort Worth

Orlando

Kansas City

CheyenneNew York

PennsaukenRelayWash. DC

Tacoma

DS3 (45 Mbps)

OC3 (155 Mbps)

OC12 (622 Mbps)

OC48 (2.4 Gbps)

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

5

Internet structure: network of networks

� “Tier-2” ISPs: smaller (often regional) ISPs

� Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

Tier 1 ISP

Tier 1 ISP

Tier 1 ISP

NAP

Tier-2 ISPTier-2 ISP

Tier-2 ISP Tier-2 ISP

Tier-2 ISP

Tier-2 ISP pays tier-1 ISP for connectivity to rest of Internet� tier-2 ISP is customer oftier-1 provider

Tier-2 ISPs also peer privately with each other, interconnect at NAP

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

6

Internet structure: network of networks

� “Tier-3” ISPs and local ISPs

� last hop (“access”) network (closest to end systems)

Tier 1 ISP

Tier 1 ISP

Tier 1 ISP

NAP

Tier-2 ISPTier-2 ISP

Tier-2 ISP Tier-2 ISP

Tier-2 ISP

localISPlocal

ISPlocalISP

localISP

localISP Tier 3

ISP

localISP

localISP

localISP

Local and tier-3 ISPs are customers ofhigher tier ISPsconnecting them to rest of Internet

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

7

Internet structure: network of networks

� a packet passes through many networks!

Tier 1 ISP

Tier 1 ISP

Tier 1 ISP

NAP

Tier-2 ISPTier-2 ISP

Tier-2 ISP Tier-2 ISP

Tier-2 ISP

localISPlocal

ISPlocalISP

localISP

localISP Tier 3

ISP

localISP

localISP

localISP

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

8

Network Access Points (NAPs)

Source: Boardwatch.com

Note: Peers in this context are commercial backbones..droh

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

9Source: www.lightreading.com

MCI/WorldCom/UUNET Global Backbone

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

1

0

The situation in Europe

See: http://www.geant2.net/server/show/nav.1368

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

1

1

Standards

� Mandatory vs. voluntary

� Allowed to use vs. likely to sell

� Example: health & safety standards �UL listing for electrical appliances, fire codes

� Telecommunications and networking always focus of standardization

� 1865: International Telegraph Union (ITU)

� 1956: International Telephone and Telegraph Consultative Committee (CCITT)

� Five major organizations:

� ITU for lower layers, multimedia collaboration

� IEEE for LAN standards (802.x)

� IETF for network, transport & some applications

� W3C for web-related technology (XML, SOAP)

� ISO for media content (MPEG)

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

1

2

Who makes the rules? - ITU

� ITU = ITU-T (telecom standardization) + ITU-R (radio) + development

� http://www.itu.int

� 14 study groups

� produce Recommendations:

� E: overall network operation, telephone service (E.164)

� G: transmission system and media, digital systems and networks (G.711)

� H: audiovisual and multimedia systems (H.323)

� I: integrated services digital network (I.210); includes ATM

� V: data communications over the telephone network (V.24)

� X: Data networks and open system communications

� Y: Global information infrastructure and internet protocol aspects

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

1

3

ITU

� Initially, national delegations

� Members: state, sector, associate

� Membership fees (> 10,500 SFr)

� Now, mostly industry groups doing work

� Initially, mostly (international) telephone services

� Now, transition from circuit-switched to packet-switched universe & lower network layers (optical)

� Documents cost SFr, but can get three freebies for each email address

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

1

4

IETF

� IETF (Internet Engineering Task Force)

� see RFC 3233 (“Defining the IETF”)

� Formed 1986, but earlier predecessor organizations (1979-)

� RFCs date back to 1969

� Initially, largely research organizations and universities, now mostly R&D labs of equipment vendors and ISPs

� International, but 2/3 United States

� meetings every four months

� about 300 companies participating in meetings

� but Cisco, Ericsson, Lucent, Nokia, etc. send large delegations

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

1

5

IETF

� Supposed to be engineering, i.e., translation of well-understood technology � standards

� make choices, ensure interoperability

� reality: often not so well defined

� Most development work gets done in working groups (WGs)

� specific task, then dissolved (but may last 10 years…)

� typically, small clusters of authors, with large peanut gallery

� open mailing list discussion for specific problems

� interim meetings (1-2 days) and IETF meetings (few hours)

� published as Internet Drafts (I-Ds)

� anybody can publish draft-somebody-my-new-protocol

� also official working group documents (draft-ietf-wg-*)

� versioned (e.g., draft-ietf-avt-rtp-10.txt)

� automatically disappear (expire) after 6 months

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

1

6

IETF process

� WG develops � WG last call � IETF last call � approval (or not) by IESG � publication as RFC

� IESG (Internet Engineering Steering Group) consists of area directors – they vote on proposals

� areas = applications, general, Internet, operations and management, routing, security, sub-IP, transport

� Also, Internet Architecture Board (IAB)

� provides architectural guidance

� approves new working groups

� process appeals

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

1

7

IETF activities

� general (3): ipr, nomcom, problem� applications (25): crisp, geopriv, impp, ldapbis, lemonade, opes,

provreg, simple, tn3270e, usefor, vpim, webdav, xmpp� internet (18) = IPv4, IPv6, DNS, DHCP: dhc, dnsext, ipoib, itrace,

mip4, nemo, pana, zeroconf� oam (22) = SNMP, RADIUS, DIAMETER: aaa, v6ops, netconf, …� routing (13): forces, ospf, ssm, udlr, …� security (18): idwg, ipsec, openpgp, sasl, smime, syslog, tls,

xmldsig, …� subip (5) = “layer 2.5”: ccamp, ipo, mpls, tewg� transport (26): avt (RTP), dccp, enum, ieprep, iptel, megaco,

mmusic (RTSP), nsis, rohc, sip, sipping (SIP), spirits, tsvwg

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

1

8

RFCs

� Originally, “Request for Comment”

� now, mostly standards documents that are well settled

� published RFCs never change

� always ASCII (plain text), sometimes PostScript

� anybody can submit RFC, but may be delayed by review (“end run avoidance”)

� see April 1 RFCs (RFC 1149, 3251, 3252)

� accessible at http://www.ietf.org/rfc/ and http://www.rfc-editor.org/

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

1

9

IETF process issues

� Can take several years to publish a standard

� see draft-ietf-problem-issue-statement

� Relies on authors and editors to keep moving

� often, busy people with “day jobs” � spurts three times a year

� Lots of opportunities for small groups to delay things

� Original idea of RFC standards-track progression:

� Proposed Standard (PS) = kind of works

� Draft Standard (DS) = solid, interoperability tested (2 interoperable implementations for each feature), but not necessarily widely used

� Standard (S) = well tested, widely deployed

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

2

0

IETF process issues

� Reality: very few protocols progress beyond PS

� and some widely-used protocols are only I-Ds

� In addition: Informational, Best Current Practice (BCP), Experimental, Historic

� Early IETF: simple protocols, stand-alone

� TCP, HTTP, DNS, BGP, …

� Now: systems of protocols, with security, management, configuration and scaling

� lots of dependencies � wait for others to do their job

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

2

1

Other Internet standards organizations

� ISOC (Internet Society)

� legal umbrella for IETF, development work

� IANA (Internet Assigned Numbers Authority)

� assigns protocol constants

� NANOG (North American Network Operators Group) (http://www.nanog.org)

� operational issues

� holds nice workshop with measurement and “real world” papers

� RIPE, ARIN, APNIC

� regional IP address registries � dole out chunks of address space to ISPs

� routing table management

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

2

2

ICANN

� Internet Corporation for Assigned Names and Numbers

� manages IP address space (at top level)

� DNS top-level domains (TLD)

� ccTLD: country codes (.us, .uk, …)

� gTLDs (.com, .edu, .gov, .int, .mil, .net, and .org)

� uTLD (unsponsored): .biz, .info, .name, and .pro

� sTLD (sponsored): .aero, .coop, and .museum

� actual domains handled by registrars

Transmisión de Datos Multimedia – http://www.grc.upv.es/docencia/tdm – Master IC 2007/2008

Tema 1: Tecnologías de red.Tema 1: Tecnologías de red.

�Estructura de Internet

�Redes “core”� SONET

� DWDM

�Redes de acceso� Redes cableadas: Ethernet et al.

� Redes inalámbricas: IEEE 802.11, UMTS et al.

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

2

4

IP and Traditional Transport

� In the 80’s, software based routers were interconnected via relatively slow links

� 56K (early 80’s),

� to fractional T1, to full T1,

� to T3

� This was layered over core TDM infrastructure

� Which was intended for voice and circuits

� Generally, data folks ignored TDM folks, and vice versa

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

2

5

Time Division Multiplexing

Multiplexed Bit Stream

Sum of sources = Total MUX’d bit stream

MUX TimeSlot1

TimeSlot2

TimeSlot4

TimeSlot3

TimeSlot6

TimeSlot1

TimeSlot5

TimeSlot2

SyncBit

SyncBit

Source 1

Source 2

Source 3

Source 4

Source 5

Source 6

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

2

6

SONET & SDH

� SONET - Synchronous Optical NETwork

� ANSI/Bellcore standard

� SDH - Synchronous Digital Hierarchy

� ITU (European) standard

� Both standards are practically identical

� Standards for a synchronous digital transmission system of TDM traffic over fiber networks.

� Standards based system for data rates above a T3.

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

2

7

SONET/SDH Hierarchy

� STS - Synchronous Transport Signals

� 51.84Mbps - base level of SONET hierarchy

� STM - Synchronous Transport Module

� 155.52Mbps - base level of SDH hierarchy

� Exactly equal to STS-3

STS OC STM

Bit Rate

(Mbps)STS-1 OC-1 51.84

STS-3 OC-3 STM-1 155.52

STS-12 OC-12 STM-4 622.08

STS-48 OC-48 STM-16 2488.32

STS-192 OC-192 STM-64 9953.28

STS-768 OC-768 STM-256 39813.12

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

2

8

STS/OC/STM

� STS-n and OC-n are identical -

� OC-n names are used for optical interconnects

� STS-n names are used for electrical interconnects

� OC-n is exactly n times the rate of an OC-1 signal.

� STM-1 signal is exactly 3 times the rate of an STS-1 signal

� STM-n is exactly n times the rate of an STM-1 signal

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

2

9

ADM, Terminal, Repeater

� SONET/SDH terminal - a mux/demux that creates a SONET signal and terminates paths.

� SONET/SDH ADM (Add/Drop Multiplexer) - a mux/demux that can separate individual STS-n signals from a higher level signal.

� SONET/SDH repeater- a physical level regenerator that also terminates section level overhead to allow section level management.

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

3

0

SONET/SDH - Path/Section/Line

� In Sonet/SDH systems a strong designation of levels of overhead are kept.

� Section is lowest level

� Repeater to repeater

� Line is middle layer

� Path is top/longest layer

� from entrance to SONET system to exit of SONET system

Repeater

Add/Drop

Multiplexer

Add/Drop

Multiplexer

Terminal

Multiplexer

Terminal

Multiplexer

Repeater

Section Section Section Section Section

Line Line Line

Path

T3

T3

T3

T3

OC-n OC-n OC-n OC-n OC-n

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

3

1

SONET/SDH - Section & Line Overhead

� The section overhead is the first 3 rows of the first 3 columns (9 bytes) per frame.

� The line overhead is the lower 6 rows of the first 3 columns (18bytes) per frame.

� An STS-1 frame consists of 810 bytes (octets) sent in 125µs.

� 810 * 8 * 8000 = 51.84Mbps

� The 810 bytes are arranged as 90 columns x 9 rows

� 3 columns are overhead

� 87 columns are actual data

STS-1 Payload

87 columnsA1 A2 C1

B1 E1 F1

D1 D2 D3

H1 H2 H3

B2 K1 K2

D4 D5 D6

D7 D8 D9

D10 D11 D12

Z1 Z2 Z3

Section

Overhead

Line

Overhead

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

3

2

STS concatenated signals

� Multiple STS-1s can be grouped together into a single higher bit rate facility.

� Extra overhead bytes are ignored.

� Technically, any number of STS-1s can be grouped, but the only groupings normally supported are:

� STS-3C, STS-12C, STS-48C

� Generally a grouping must fall on a boundary of the same size inside of the OC-n carrier

� A STS-3C must fall on a boundary of 3

� STS-12C must fall on a boundary of 12

� Typically used for situations where ATM or Packets are sent over a SONET network.

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

3

3

Traditional View of Routers and Links

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

3

4

Terminal Multiplexer

SONET/SDHADM

SONET/SDHADM

SONET/SDHADM

SONET/SDHADM

SONET/SDHDCS

SONET/SDHDCS

SONET/SDHDCS

Terminal Multiplexer

Terminal Multiplexer

Terminal Multiplexer

Terminal Multiplexer Terminal

Multiplexer

SONET/SDHADM

SONET/SDHADM

Reality has always been more complex

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

3

5

Optical Fiber Evolution

� Fiber is better than copper wire

� Purity – low attenuation and distortion

� Longer distances, lower bit error rates

� Higher frequency signals – massive bandwidth

� Different wavelengths – massive bandwidth

� Immunity to noise

� Security – difficult to tap

� Small size and weight

� Easier installation

� Bundles of fibers in same space as copper wire

� Multimode fiber� Low cost – LEDs, not lasers

� Many wavelengths (modes)

� Dispersion – limits bandwidth and distance� Light pulses spread out

� Intramodal – different delay per mode

� Typically 2 km maximum distance

� Large diameter cores – for multiple modes� Initially flat profile

� Stepped end improves performance

� Single-mode fiber� One wavelength – small core

� Less interference and loss� Greater distance (up to 100 km)

� More expensive components – lasers

� Minimized dispersion point at 1310 nm� Not suitable for EDFA (Erbium Doped Fiber-optic

Amplifier)

� Non-zero dispersion shifted fiber� Optimized for longer distances

� Optimized for higher bandwidth

� Minimized dispersion point shifted to 1550 nm� Suitable for Erbium-based optical amplifiers

� Silica-based fibers have lowest attenuation at 1550 nm, not 1310

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

3

6

SONET/SDH ADM SONET/SDH ADM

WDM Node WDM Node

From One Wavelength Per

Fiber to Many

ADM

Single Fiber

SONET/SDH ADM

Single Fiber

Wave Division Multiplexing

OT = Optical Transponder

OT

ADM

ADM

ADM

ADM

ADM

ADM

ADM

OT

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

3

7

WDM System Elements

SONET/SDH ADM

SONET/SDH ADM

SONET/SDH ADM

SONET/SDH ADM

SONET/SDH ADM

SONET/SDH ADM

= Regenerators

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

3

8

TDM and WDM Relationship

λλλλ1 … λλλλn

TDM generates output from sum of inputs into a single

bit stream

Laser Output

λλλλλλλλnn

λλλλ1

WDM changes TDM bit stream into wavelengths between 1532 nm and

1560 nm

OT

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

3

9

EDFA = Erbium Doped Fiber-optic Amplifier

Dense and Ultra Dense WDM

λλλλ8

WDM 8 Lambdas

2.5 Gbps per lambda

λλλλ1 λλλλ1

λλλλ8

EDFA = Erbium Doped Fiber-optic Amplifier

λλλλ2 λλλλ2

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

4

0

Dense and Ultra Dense WDM

λλλλ1

λλλλ39

λλλλ1

DWDM 40 Lambdas

λλλλ40

10 Gbps per lambda

λλλλ2 λλλλ2

λλλλ39

λλλλ40EDFA = Erbium Doped Fiber-optic Amplifier

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

4

1

λλλλ190

UDWDM 192 Lambdas

λλλλ191

40 Gbps per lambda

λλλλ3

λλλλ192

λλλλ3

λλλλ190

λλλλ191

λλλλ192

Dense and Ultra Dense WDM

EDFA = Erbium Doped Fiber-optic Amplifier

λλλλ1 λλλλ1

λλλλ2 λλλλ2

Transmisión de Datos Multimedia – http://www.grc.upv.es/docencia/tdm – Master IC 2007/2008

Tema 1: Tecnologías de red.Tema 1: Tecnologías de red.

�Estructura de Internet

�Redes “core”� SONET

� DWDM

�Redes de acceso� Redes cableadas: Ethernet et al.

� Redes inalámbricas: IEEE 802.11, UMTS et al.

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

4

3

Los estándares 802.3 de IEEE

Múltiples spanning trees 802.1s

Cambios y mejoras en el spanning tree 802.1w

Bridging en 802.1D

10 Gbase-T (en draft)802.3an

Ethernet in First Mile 2004802.3ah

PoE (Power over Ethernet). Hasta 15W2003802.3af

10 GE 2002802.3ae

link aggregation 2000802.3ad

Extensiones de trama (hasta 1522 bytes) para VLANs1998802.3ac

1000Base-T (GE sobre par trenzado)1999802.3ab

1000Base-X (Gigabit Ethernet)1998802.3z

operación full duplex 1997802.3x e 802.3y

100Mbps Ethernet 1995802.3u

10Base-F Ethernet sobre fibra1993802.3j

10Base-T Ethernet sobre par trenzado de cobre1990802.3i

FOIRL (enlace de fibra)1987802.3d

Especificaciones de repetidores1986802.3c

Original 802.3: 10BASE-5 10BASE-2 10BROAD-361985802.3a

descripciónañosuplemento

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

4

4

IEEE 802 standard

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

4

5

Estándares de ethernet sobre optico

� ITU-T G.7041 Generic Framing Procedure (GFP)

� ITU-T X.86 Link Access Protocol (LAPS)

� ITU-T H.707 Virtual Concatenation (VCAT)

� ITU-T G.7042 Link Capacity Adjustment Scheme (LCAS)

� Otros:

� IEEE 802.1X Port Based Network Access Control

� IEEE 802.1D Ethernet switching

� IEEE 802.1Q Virtual LAN (VLAN)

� IEEE 802.1P Priorización de tráfico a nivel 2

� IETF: MPLS Multi-Protocol Label Switching

� IEEE 802.17 Resilient Packet Ring (RPR)

� Ver:� http://grouper.ieee.org/groups/802/3/

� http://grouper.ieee.org/groups/802/1/

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

4

6

Trama ethernet

� Los datos trasmitidos se encapsulan en un contenedor, que se llama trama

� Este formato de trama DEFINE Ethernet

� Históricamente, existen dos tipos de tramas:

� »802.3 Framing usa en campo de longitud de trama (Length) despues del campo de Source Address

� »Ethernet II (DIX) Framing usa(ba) el campo de tipo de trama (type) despues del campo Source Address

� Ambos tipos de tramas están definidos y soportados dentro de IEEE 802.3

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

4

7

Trama ethernet

� El tamaño de trama varía desde 64 a 1518 Bytes, excepto cuando se usa el identificador (tag) de VLAN

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

4

8

802.1Q/P

� User Priority- Defines user priority, giving eight (2^3) priority levels. IEEE 802.1P defines theoperation for these 3 user priority bits.

� CFI- Canonical Format Indicator is always set to zero for Ethernet switches. CFI is used forcompatibility reason between Ethernet type network and Token Ring type network. If a framereceived at an Ethernet port has a CFI set to 1, then that frame should not be forwarded as it isto an untagged port.

� VID- VLAN ID is the identification of the VLAN, which is basically used by the standard 802.1Q. It has 12 bits and allow the identification of 4096 (2^12) VLANs. Of the 4096 possible VIDs, a VID of 0 is used to identify priority frames and value 4095 (FFF) is reserved, so the maximumpossible VLAN configurations are 4,094.

� Length/Type- 2 bytes. This field indicates either the number of MAC-client data bytes that are contained in the data field of the frame, or the frame type ID if the frame is assembled using anoptional format.

� Data- Is a sequence of nbytes (48=< n =<1500) of any value. The total frame minimum is64bytes.

� Frame check sequence (FCS)- 4 bytes. This sequence contains a 32-bit cyclic redundancycheck (CRC) value, which is created by the sending MAC and is recalculated by the receiving MAC to check for damaged frames.

User Priority CFI Bits of VLAN ID (VIDI) to identify possible VLANs

3 1 12

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

4

9

Servicios Metropolitanos

� Algunos servicios son:

� Conectividad Internet

� Transparent LAN service (punto a punto LAN to LAN)

� L2VPN (punto a punto o multipunto a multipunto LAN to LAN)

� Extranet

� LAN a Frame Relay/ATM VPN

� Conectividad a centro de backup

� Storage area networks (SANs)

� Metro transport (backhaul)

� VoIP

� Algunos se están ofreciendo desde hace años. La diferencia está en que ahora se ofrecen usando conectividad Ethernet !!

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

5

0

Evolución de Ethernet

Optical EthernetEoMPLS

VPLSEoRPR

NG-SONET(EoS)Metro DWDM

Optical EthernetEoMPLS

VPLSRPR

NG-SONET(EoS)Metro DWDM

IP ADSLIP VDSLEPONEFM

Optical EthernetEoRPR

NG-SONET(EoS)

Acceso Distribución Metro Metro Core

GlobalInternet

ATMSONET/SDH

ATMSONET/SDH

ATM ADSLT1/E1

FRATM

GlobalInternet

Casa

MDU

STU

MTU

Resid

en

cia

lE

mp

resa

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

5

1

Servicio Ethernet – Modelo de referencia

� Customer Equipment (CE) se conecta a través de UNI

� CE puede ser un

� router

� Bridge IEEE 802.1Q (switch)

� UNI (User Network Interface)

� Standard IEEE 802.3 Ethernet PHY and MAC

� 10Mbps, 100Mbps, 1Gbps or 10Gbps

� Soporte de varias clases de servicio (QoS)

� Metro Ethernet Network (MEN)

� Puede usar distintas tecnologías de transportey de provisión de servicio

� SONET/SDH, WDM, PON, RPR, MAC-in-MAC, QiQ (VLAN stack), MPLS

CE

CE

CE

UNI

Metro Metro Ethernet Ethernet Network Network (MEN)(MEN)

UNI

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

5

2

Servicio Ethernet – Modelo (2)

� Sobre el anterior modelo, se añade un cuarto ingrediente: una Ethernet Virtual Connection (EVC)

� EVC: es una asociación entre dos o más UNI

� Es creada por el proveedor del servicio para un cliente

� Una trama enviada en un EVC puede ser enviada a uno o más UNIs del EVC:

� Nunca será enviada de vuelta al UNI de entrada.

� Nunca será enviada a un UNI que no pertenezca al EVC.

� Las EVC´s pueden ser:

� Punto a punto (E-Line)

� Multipunto a multipunto (E-LAN)

� Cada tipo de servicio ethernet tiene un conjunto de atributos de servicio y sus correspondientes parámetros que definen las capacidades del servicio.

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

5

3

Atributos de un servicio en particular Ethernet

� Multiplexación de servicios

� Asocia una UNI con varias EVC. Puede ser:

� Hay varios clientes en una sóla puerta (ej. En un POP UNI)

� Hay varias conexiones de servicios distintos para un solo cliente

� Transparencia de VLAN

� Significa que proveedor del servico no cambia el identificador de la VLAN ( el MEN aparece como un gran switch)

� En el servicio de acceso a Internet tiene poco importancia

� “Bundling”

� Más de una VLAN de cliente está asociada al EVC en una UNI

� Etc.

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

5

4

Atributos

� Atributos de UNI:

� identificador, tipo de medio, velocidad, duplex, etc

� Atributo de soporte de VLAN tag

� Atributo de multiplexación de servicio

� Bundling attribute

� Security filters attribute

� etc

� Atributos de EVC:

� Parámetros de tráfico (CIR, PIR, in, out, etc)

� Parámetros de prestaciones (delay, jitter, etc)

� Parámetros de Clase de Servicio (VLAN-ID, valor de .1p, etc)

� Atributo de Service frame delivery

� Unicast frame delivery

� Multicast frame delivery

� etc

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

5

5

Servicio Ethernet Line (E-Line)

Data

UNI

CE

CE

CE

Point-to-Point Ethernet Virtual Circuits

(EVC)

Metro Ethernet Network

1 or more UNIs

UNI

Video

IP PBX

Servers

Data

IP Voice

IP Voice

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

5

6

Servicio Ethernet Line (E-Line)

� Una E-Line puede operar con ancho de banda dedicado ó con un ancho de banda compartido.

� EPL: Ethernet Private Line� Es un servicio EVC punto a punto con un ancho de banda dedicado

� El cliente siempre dispone del CIR

� Normalmente en canales SDH (en NGN) ó en redes MPLS

� Es como una línea en TDM, pero con una interfaz ethernet

� EVPL:Ethernet Virtual Private Line� En este caso hay un CIR y un EIR y una métrica para el soporte de

SLA´s

� Es similar al FR

� Se suele implementar con canales TDM compartidos ó con redes de conmutación de paquetes usando SW´s y/o routers

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

5

7

Servicio Ethernet LAN (E-LAN)

CE

CE

CE

Metro Ethernet Network

CE

Multipoint-to-Multipoint Ethernet Virtual Circuit

(EVC)

UNI

UNI

UNI

UNI

IP PBX

Servers

Data

Data

Data

IP Voice

IP Voice

IP Voice

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

5

8

Servicio Ethernet LAN (E-LAN)

� Una E-LAN puede operar con ancho de banda dedicado ó con un ancho de banda compartido.

� EPLan: Ethernet Private LAN

� Suministra una conectividad multipunto entre dos o más UNI´s, con un ancho de banda dedicado.

� EVPLan: Ethernet Virtual Private LAN

� Otros nombres:

� VPLS: Virtual Private Lan Service

� TLS: Transparent Lan Service

� VPSN: Virtual Private Switched Network

� La separación de clientes vía encapsulación: las etiquetas de VLAN´sdel proveedor no son suficientes (4096)

� Es el servicio más rentable desde el punto de vista del proveedor.

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

5

9

Metro tecnologías...

� Los servicios Metro Ethernet services no necesitan que toda la red de nivel 2 sea ethernet; tambien puede ser:

� Ethernet over SONET/SDH (EOS)

� Resilient Packet Ring (RPR)

� Ethernet Transport

� Ethernet sobre MPLS

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

6

0

Implementaciones de los EVC (Ethernet Virtual Conn.)

� Virtual Private LAN Services(VPLS)

� Es un tipo de VPN de nivel 2

� La red del proveedor emula la función de un conmutador de LAN ó bridge, para conectar todos los UNI del cliente, para formar una única VLAN

� Los requerimientos en el CE son distintos a los de antes

� Cada PE debe actuar como un bridge de ethernet

� Se puede implementar poniendo ethernet en MPLS óbien, haciendo stack de VLAN usando Q-in-Q

� Ver http://vpls.org

Transmisión de Datos Multimedia – http://www.grc.upv.es/docencia/tdm – Master IC 2007/2008

Tema 1: Tecnologías de red.Tema 1: Tecnologías de red.

�Estructura de Internet

�Redes “core”� SONET

� DWDM

�Redes de acceso� Redes cableadas: Ethernet et al.

� Redes inalámbricas: IEEE 802.11, UMTS et al.

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

6

2

Taxonomy

WirelessNetworking

Multi-hop

Infrastructure-less(ad-hoc)

Infrastructure-based(Hybrid)

Infrastructure-less(MANET)

SingleHop

CellularNetworks Wireless Sensor

NetworksWireless Mesh

Networks

Car-to-car Networks(VANETs)

Infrastructure-based(hub&spoke)

802.11 802.16 Bluetooth802.11

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

6

3

WLANs, El estándar IEEE 802.11

� En el 1997 nace el:

� IEEE Working Group for WLAN Standards:http://grouper.ieee.org/groups/802/11/index.html

� Se define el MAC y tres diferentes niveles físicos, que operan a 1Mbps y 2Mbps:

� Infrarrojos (IR) en banda base

� Frequency hopping spread spectrum (FHSS), banda de 2,4 GHz

� Direct sequence spread spectrum (DSSS), banda de 2,4 GHz

� IEEE Std 802.11a (diciembre 1999):

� Otro estándar de nivel físico: Orthogonal frequency domain multiplexing(OFDM)

� Hasta 54 Mbps

� IEEE Std 802.11b (enero 2000):

� Extensión de DSSS; hasta 11 Mbps

� IEEE Std 802.11g (Junio 2003)

� Etc.

Data Link

Network

IEEE 802.2. LLC

ISO 8802.2

IEEE

802.3

ISO

8802.3

Network

Data

Link

Physical

L

L

C

M

A

C

Ethernet

v2.0IEEE

802.11

ISO

8802.11

http://standards.ieee.org/getieee802/802.11.html

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

6

4

Arquitectura 802.11

infrastructure Basic Service Set (BSS)Componentes:

�Estación (STA)

�Access Point (AP)

�Basic Service Set (BSS)

�Extended Service Set (ESS)

Independent Basic Service Set (IBSS)�Estructura descentralizada

�Flexible:

�Redes pequeñas y grandes,

�Redes transitorias y permanentes

�Control del consumo de potencia

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

6

5

El MAC: entrega de datos fiable

� CSMA/CA con binaryexponential backoff

� El protocolo mínimo consiste de dos tramas: DATOS+ACK

� El standard propone RTS-CTS-DATOS-ACK

PointCoordinationFunction (PCF)

Distributed CoordinationFunction (DCF)

MAC

Servicios sin contienda Servicios con contienda

DIFS DIFS

PIFS

SIFS

ventana de contienda

defer access

busy medium

slo

t

Los 5 valores de timing:• Slot time• SIFS: short interframe space• PIFS: PCF interframe space (=SIFS+1slot)• DIFS: DCF interframe space (=SIFS+2slots)• EIFS: extended interframe space

Los 5 valores de timing:• Slot time• SIFS: short interframe space• PIFS: PCF interframe space (=SIFS+1slot)• DIFS: DCF interframe space (=SIFS+2slots)• EIFS: extended interframe space

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

6

6

Mecanismo de detección de portadora

� Se basa en el network allocation vector (NAV)

RTS

DIFS

CTS

SIFS

data

ACK

SIFS SIFS

DIFS

NAV (RTS)

NAV (CTS)

fuente

destino

otro STA

defer access

ventana de contienda

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

6

7

QoS: 802.11e and WMM™

� QoS needed for audio, voice, video

� Original Wi-Fi® didn’t have QoS

� IEEE 802.11e is new QoS standard

� Still in process after more than 4 years

� Both “prioritized” and “guaranteed” QoS

� WMM (Wi-Fi Multimedia)

� Prioritized QoS subset of 802.11e draft

� Widely accepted by 802.11e members

� Added to Wi-Fi certification in September 2004

� Already included in some products

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

6

8

WMM™ for Video

Source: Wi-Fi Alliance

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

6

9

Bluetooth Specifications

� Bluetooth is a system solution comprising hardware, software andinteroperability requirements. The Bluetooth specifications specify the complete system.

� De facto standard - open specifications.� Two part document - Volume 1:Core and Volume 2:Profiles.� Bluetooth specs developed by Bluetooth SIG.

� February 1998: The Bluetooth SIG is formed� promoter company group: Ericsson, IBM, Intel, Nokia, Toshiba

� May 1998: The Bluetooth SIG goes “public”� July 1999: 1.0A spec (>1,500 pages) is published� December 1999: ver. 1.0B is released� December 1999: The promoter group increases to 9

�3Com, Lucent, Microsoft, Motorola

� February 2000: There are 1,500+ adopters

� 0.7 ---> 0.9 ---> 1.0A ---> 1.0B ---> 1.1 --> � November 2003: release 1.2� Currently (November 2004), release 2.0

� (aka EDR or Extended Data Rate) triples the data rate up to about 2 Mb/s

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

7

0

release 2.0: the new partitioning

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

7

1

Bluetooth usage

� Low-cost, low-power, short range radio � a cable replacement technology� Common (File transfer, synchronisation, internet bridge, conference

table)

� Hidden computing (background synchronisation, audio/video player)

� Future (PC login, remote control)

� Why not use Wireless LANs?� power

� cost

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

7

2

Bluetooth RF

� 1 Mb/s symbol rate� Normal range 10m (0dBm)� Optional range 100m (+20dBm)� Normal transmission power 0dBm (1mW)� Optional transmission power -30 to +20dBm (100mW)� Receiver sensitivity -70dBm� Frequency band 2.4Ghz ISM band� Gross data rate 1Mbit/s� Max data transfer 721+56kbps/3 voice channels� Power consumption 30uA(max), 300uA(standby), ~50uA(hold/park)� Packet switching protocol based on frequency hop scheme with

1600 hops/s

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

7

3

Bluetooth Power Class Table

30m10m0dBm1mWClass 3

50m16m4dBm2.5mWClass 2

300m42m20dBm100mWClass 1

Range inFree Space

Expected RangeMax Output PowerMax Output PowerPower Class

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

7

4

Bluetooth Network Topology

� Bluetooth devices have the ability to work as a slave or a master in an ad hoc network. The types of network configurations for Bluetooth devices can be three.

� Single point-to-point (Piconet): In this topology the network consists of one master and one slave device.

� Multipoint (Piconet): Such a topology combines one master device and up to seven slave devices in an ad hoc network.

o Scatternet: A Scatternet is a group of Piconets linked via a slave device in one Piconet which plays master role in other Piconet.

M

S

i) Piconet (Point-to-Point)

M

SS

S

S

ii) Piconet (Multipoint)

M

S S S

M

S S

Master/Slave

iii) Scatternet

The Bluetooth standard does not describe any routing protocol for scatternets and most of the hardware available today has no capability of forming scatternets. Some even lack the ability to communicate between slaves of one piconet or to be a member of two piconets at the same time.

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

7

5

Bluetooth stack: short version

RF

Baseband

Link Manager

L2CAP

SDPRFCOMM

Applications

HCI

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

7

6

Transport Protocol Group (contd.)

� Radio Frequency (RF)

� Sending and receiving modulated bit streams

� Baseband

� Defines the timing, framing

� Flow control on the link.� Link Manager

� Managing the connection states.

� Enforcing Fairness among slaves.

� Power Management � Logical Link Control & Adaptation Protocol

� Handles multiplexing of higher level protocols

� Segmentation & reassembly of large packets

� Device discovery & QoS

� The Radio, Baseband and Link Manager are on firmware.

� The higher layers could be in software.

� The interface is then through the Host Controller (firmware and driver).

� The HCI interfaces defined for Bluetooth are UART, RS232 and USB.

Source: Farinaz Edalat, Ganesh Gopal, Saswat Misra, Deepti Rao

BLUETOOTH SPECIFICATION, Core Version 1.1 page 543

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

7

7

Physical Link Definition

� Synchronous Connection-Oriented (SCO) Link� circuit switching

� symmetric, synchronous services

� slot reservation at fixed intervals

� Asynchronous Connection-Less (ACL) Link� packet switching

� (a)symmetric,

� asynchronous services

� polling access scheme

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

7

8

Packet type Name Symmetric (kbps)

Asymmetric (kbps)

1 slot + FEC DM1 108.8 108.8 108.8

1 slot DH1 172.8 172.8 172.8

3 slot + FEC DM3 256.0 384.0 54.4

3 slot DH3 384.0 576.0 86.4

5 slot + FEC DM5 286.7 477.8 36.3

5 slot DH5 432.6 721.0 57.6

ACL data rates

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

7

9

Single slot

Three slot

Five slot

fn fn+1 fn+2 fn+3 fn+4 fn+5

Multi-slot packets

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

8

0

fn fn+1 fn+2 fn+3 fn+4 fn+5 fn+6 fn+7 fn+8 fn+9 fn+10 fn+11 fn+12

Master

Slave

Symmetric single slot

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

8

1

MASTER

SLAVE 1

SLAVE 2

SLAVE 3

ACL ACLSCO SCO SCO SCO ACLACL

Mixed Link Example

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

8

2

Bluetooth Connection States

� There are four Connection states on Bluetooth Radio:

� Active: Both master and slave participate actively on the channel by transmitting or receiving the packets (A,B,E,F,H)

� Sniff: In this mode slave rather than listening on every slot for master's message for that slave, sniffs on specified time slots for its messages. Hence the slave can go to sleep in the free slots thus saving power (C)

� Hold: In this mode, a device can temporarily not support ACL packets and go to low power sleep mode to make the channel available for things like paging, scanning etc (G)

� Park: Slave stays synchronized but not participating in the Piconet, then the device is given a Parking Member Address (PMA) and it loses its Active Member Address (AMA) (D,I)

E

A

G

H

C

D

I

H

C

B

F

Master

Bluetooth Connection States

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

8

3

Bluetooth Forming a Piconet

� Inquiry: Inquiry is used to find the identity of the Bluetooth devices in the close range.

� Inquiry Scan: In this state, devices are listening for inquiries from other devices.

� Inquiry Response: The slave responds with a packet that contains the slave's device access code, native clock and some other slave information.

� Page: Master sends page messages by transmitting slave's device access code (DAC) in different hop channels.

� Page Scan: The slave listens at a single hop frequency (derived from its page hopping sequence) in this scan window.

� Slave Response: Slave responds to master's page message

� Master Response: Master reaches this substate after it receives slave's response to its page message for it.

Master

Inquiry

Inquiry Scan

Inquiry Response

Page

Page Scan

Slave Response

Master Response

Connection

Connection

Slave

3

2

4

1

5

7

6

Forming a Piconet Procedures

Transmisión de Datos Multimedia – http://www.grc.upv.es/docencia/tdm – Master IC 2007/2008

Tema 1: Tecnologías de red.Tema 1: Tecnologías de red.

�Estructura de Internet

�Redes “core”� SONET

� DWDM

�Redes de acceso� Redes cableadas: Ethernet et al.

� Redes inalámbricas: IEEE 802.11, UMTS et al.

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

8

5

2G: Technology Summary

� TDMA: Time Division Multiple Access

� Standardized in 1990 as IS-54

� Provides 3-6 times capacity increase over AMPS (1G)

� Peak data rate of 14.4kpbs (can bundle up to 8 channels)

� Introduced authentication and encryption for security

� GSM: Global System of Mobile communications

� Standardized in 1992, based on TMDA technology

� Improved battery life over TDMA

� GPRS peak data rates of 140 kbps; EDGE data rates of 180kbps

� CDMA: Code Division Multiple Access

� Standardized in 1993 as IS-95

� Provides 1.5-2 times capacity increase over TDMA

� Peak data rate of 14.4kpbs (can bundle up to 8 channels)

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

8

6

2G: Winners & Losers

� TDMA

� Marginally better capacity than GSM, marginally worse battery life

� No evolution path beyond 2G – DEAD END !!

� CDMA

� Lots of hype on capacity, delivered on upwards of 2x capacity improvement over TDMA/GSM

� Clear evolution to 3G

� GSM

� International Roaming and Compatibility

� Clear evolution to 3G

� Defacto Global Standard

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

8

7

Evolution to 3GDrivers: Capacity, Data Speed, Cost

cdmaOnecdmaOne

GSMGSM

TDMA TDMA

2G

PDC PDC

CDMA2000

1x

CDMA2000

1x

First Step into 3G

GPRSGPRS 90%

10%

EDGEEDGE

WCDMAWCDMA

3G phase 1 Evolved 3G

3GPP

Core

Network

CDMA2000

1x EV/DO

CDMA2000

1x EV/DO

HSDPA/HSUPAHSDPA/HSUPA

Expected market share

EDGE

Evolution

EDGE

Evolution

CDMA2000

EV/DO Rev A

CDMA2000

EV/DO Rev A

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

8

8

Mobile Networks Evolution

GPRS

EDGE

UMTS

HSDPA

2G2G

3G3G

19951995 20152015

4G4G

20052005

Download

Speed

1-10 Mbps

250-384 kbps

90-180 kbps

40 kbps

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

8

9

GSM

HLR

GSM/GPRS

Radio network

BSC

2G MSC

External

voice

network

GMSC

Packet switched

Core network

External IP

network

GGSN

PCU

2G SGSN

GPRS

3G = new network

UMTS/HSDPA

Radio network

RNC

UMTS/

HSDPA

3G MSC

3G SGSN

Circuit switched

Core network

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

9

0

3G Network = The Future

� New network

� No voice overload

� Increased capacity by Spectrum efficiency

� Better performances

� Higher throughput Faster download (Max 384kbps)

� Lower latency Faster browsing

� Better Services

� Seamless hand-over to GPRS (service continuity)

� New way to design applications

� Video

� Future proof technology : HSDPA

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

9

1

3G/HSDPA for business innovation

Text messaging

Voice

Push email

Photo & Picture

Messaging

Customized

infotainment

High speed internet access

High speed LAN access

3G / HSDPA

Video Telephony

Mobile TV

Full track music

Enhanced email

2G/EDGE

SPEED

text picture video

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

9

2

…and Beyond

� Technology Convergence on OFDM (Orthogonal Frequency Division Multiple Access)

� WIMAX

� Standardized by IEEE 802.16, evolution of 802.11 (Wi-Fi)

� Improved bandwidth, encryption and coverage over WiFi

� Theoretical peak data rates of 70Mbps (practical peak ~2Mbps)

� Improved QoS better enables applications such as VoIP or IPTV

� Ideal application is for “last mile” connectivity to the home or business

� Intel plans to embed WiMAX chips as part of ‘Intel Inside’

� L3GTE/HSOPA

� Early standardization work starts in 3GPP R8

� Improved bandwidth, latency over UMTS/HSxPA

� Radio technology based on MIMO-OFDM, peak data rates of up to 70Mbps

� Network simplification

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

9

3

Market Segments

Cordless

WiMAX 16eHSDPA to OFDMEV-DO to OFDM

WiFi

Local

Fixed

Voice Broadband

Cellular

WiMAX 16dDSL / CablePOTS

802.11a/b/g802.11n MIMO

Mesh

Dialup

2.5G

Mobile

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

9

4

Service Control

Presence / GLMS

Applications

R4CDMAPSTN

Media Resources

TDM & Packet Interworking

PDF

HSS/AAA

Peer IPNetwork

Access Network

IP/MPLS Core

MultimediaServices

MessagingServices

Web / WAPServices

StreamingServices

MG15000

MGCF(CS2000)

CallSession

Controller

MRF

Audio/Video

PDG

WLAN

ASN

CSN

ASNWiMAX

GGSN

GPRSUMTS

EASGWEASGWEASGWEASGW

ASGHSOPAOFDM/MIMO

BRAS

PDG

GGSN

ASN

CSN

ASGWASGWASGWASGW

Network Convergence - IMS

Unlicensed Mobile Access (UMA) and the IP Multimedia Subsystem (IMS) -- two standard architectures under the 3GPP

umbrella -- both support fixed-mobile convergence (FMC). But their approaches to FMC have little in common. UMA is a

highly constrained approach to a single service -- dual-mode access to GSM networks -- while IMS is an open platform for

all types of services and all types of networks. UMA offers mobile network operators (MNOs) a quick fix, but IMS promises

profitable new services and sustainable growth for all service providers.

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

9

5

Market Trends

� Media Convergence – Multiple Play

� Dual Play: High-Speed Internet & Fixed Line

� Triple Play: Dual Play + TV

� Quadruple Play: Triple Play + Wireless

� Challenge: Consolidated Invoice and Price Points

� Fixed Mobile Convergence

� Dual Mode connectivity

� Cellular / Cordless (DECT, ADSL/Bluetooth)

� WLAN / WWAN

� Challenge: Technology standardization

� MVNO – Mobile Virtual Network Operator

� Wireless Service Reseller, wholesales access from wireless operators

� Discount & Lifestyle MVNO’s

� Segment, Product, Utilization Driven

� Challenge: Market Saturation & Service Differentiation

Tra

nsm

isió

n d

e D

ato

s M

ultim

edia

-M

ast

er

IC 2

007/2

008

9

6

Market Trends (continued)

� Multimedia – use of several media types to convey information

� Effective information delivery across many disciplines: art, education, telecommunications, medicine

� IMS enables multimedia services for mobile users

� VoIP

� Challenge: User Interface, Form Factor, lack of “killer app”

� Presence – Always on, always connected

� Combine Mobility & Reachability

� Effectively bring Popularity of IM to mobile phones (AOL, Yahoo!, MSN, Skype)

� Opportunity for standardization & interworking based on SIP/SIMPLE

� Challenge: Standardization & always on connectivity