Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation...

27
NUSOD 2007 Simulation of 2D Maxwell-Bloch Equations NUSOD – Sep. 24, 2007 Jingyi Xiong, Max Colice, Friso Schlottau, Kelvin Wagner Optoelectronic Computing Systems Center Department of Electrical and Computer Engineering Bengt Fornberg Department of Applied Mathematics University of Colorado at Boulder Material property Simulation schemes and results Experimental results Simulation of 2D Maxwell-Bloch Equations – p.1/20

Transcript of Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation...

Page 1: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

NUSOD 2007

Simulation of 2D Maxwell-Bloch EquationsNUSOD – Sep. 24, 2007

Jingyi Xiong, Max Colice, Friso Schlottau, Kelvin WagnerOptoelectronic Computing Systems Center

Department of Electrical and Computer Engineering

Bengt FornbergDepartment of Applied MathematicsUniversity of Colorado at Boulder

Material propertySimulation schemes and resultsExperimental results

Simulation of 2D Maxwell-Bloch Equations – p.1/20

Page 2: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Inhomogeneously broadened material

x

y

z

Inhomogeneousband

νΙ

νΗ

n k

Grid size: mxnxk

z(mm)

x(µm)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

−100−80−60−40−20

0

20

40

60

80100

Rare earthdoped crystal

m

Time domain parametersLife time T1 = 10msec

Decoherence time T2 = 5 µsecFrequency domain parameters

Inhomogeneous BW νI = 20GHz

Homogeneous BW νH = 25KHz

Number of bins N = νI/νH ≈ 106

ApplicationsData storage: 1016 bits/cm3

Signal processing: 20+GHz BW

Sun, et. al, J. of Luminescence, Vol.98, p281, 2002Simulation of 2D Maxwell-Bloch Equations – p.2/20

Page 3: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Two-level atoms

Inhomogeneous Bandwidth

(1/T = 20 GHz)

CW Excitation(793.3 nm)

*2

1>

0>

T1

0> Population

1> Population Bloch Sphere

Tm :YAG3+Simulation of 2D Maxwell-Bloch Equations – p.3/20

Page 4: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Bloch equations: Excitation

u: inphase component of Pv: in-quadrature component of Pw: population inversion

E : E-field∆: detuning frequencyT2: decoherence timeT1: population lifetime

Excitation du

dt= −

u

T2

− ∆ · v − κ={E}w

dv

dt= ∆ · u −

v

T2

+ κ<{E}w

dw

dt= κ={E}u − κ<{E}v +

w − 1

T1

Allen and Eberly, Optical resonance and two-level atoms, 1975Simulation of 2D Maxwell-Bloch Equations – p.4/20

Page 5: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Bloch equations: Detuning

u: inphase component of Pv: in-quadrature component of Pw: population inversion

E : E-field∆: detuning frequencyT2: decoherence timeT1: population lifetime

du

dt= −

u

T2

− ∆ · v − κ={E}w

dv

dt= ∆ · u −

v

T2

+ κ<{E}w

dw

dt= κ={E}u − κ<{E}v +

w − 1

T1

Free precession

Simulation of 2D Maxwell-Bloch Equations – p.5/20

Page 6: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Bloch equations: Decoherence

u: inphase component of Pv: in-quadrature component of Pw: population inversion

E : E-field∆: detuning frequencyT2: decoherence timeT1: population lifetime

du

dt= −

u

T2

− ∆ · v − κ={E}w

dv

dt= ∆ · u −

v

T2

+ κ<{E}w

dw

dt= κ={E}u − κ<{E}v +

w − 1

T1

Decoherence

Simulation of 2D Maxwell-Bloch Equations – p.6/20

Page 7: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Bloch equations: Population relaxation

u: inphase component of Pv: in-quadrature component of Pw: population inversion

E : E-field∆: detuning frequencyT2: decoherence timeT1: population lifetime

du

dt= −

u

T2

− ∆ · v − κ={E}w

dv

dt= ∆ · u −

v

T2

+ κ<{E}w

dw

dt= κ={E}u − κ<{E}v +

w − 1

T1

Population relaxation

Simulation of 2D Maxwell-Bloch Equations – p.7/20

Page 8: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Inhomogeneous band

Inhomogeneouslineshape g(∆)

Inhomogeneous averaging

P(t) = α

∫ +∞

−∞

g(∆)[u(t, ∆) + iv(t, ∆)]d∆

Simulation of 2D Maxwell-Bloch Equations – p.8/20

Page 9: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

2D Maxwell-Bloch equations

The 2D SEVA wave equation is driven by polarization,∂E(x, z, t)

∂z+

i

2k

∂2E(x, z, t)

∂x2= −i

µ0ω20

2kP(x, z, t)

Bloch equations under RWA driven by the E-field,

∂t

u

v

w

=

− 1

T2−∆ −κ={E}

∆ − 1

T2κ<{E}

κ={E} −κ<{E} 1

T1

u

v

w

+

0

0

− 1

T1

(1)

Polarization given by summation over the inhomogeneous band

P(x, z, t) = α

+∞

−∞

g(∆)[u(x, z, t, ∆) + iv(x, z, t, ∆)]d∆

Simulation of 2D Maxwell-Bloch Equations – p.9/20

Page 10: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Previous numerical solutions

Vector form: FDTD1,2

Slow: ∆z = λ100

∼ λ50

corresponding to < 0.1fsec

Scalar form (wave equation)Cornish3 simulated 1-DChang4 simulated two symmetric angled plane waves butdidn’t give specifics of numerical technique

2D spatial grid: 200µm(x) × 5mm(z) 108 spatial stepsTime span: 2µsec ⇒ 2 · 1010 time stepsSpectral lines: 250 250 lines

Using 2.25GHz computer, it would take about 3 × 104 years.

1. Ziolkowski, et. al, Phys. Rev., Vol 52, p3082, 19952. Schlottau, et. al, Optics Express, Vol. 13, p182, 20053. Cornish, Ph.D. thesis, University of Washington, 20004. Chang, et. al, J. of Luminescence, Vol. 107, p138, 2004

Simulation of 2D Maxwell-Bloch Equations – p.10/20

Page 11: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

FFT-BPM IThe 2D SEVA wave equation is driven by polarization,

∂E(x, z, t)

∂z+

i

2k

∂2E(x, z, t)

∂x2= −i

µ0ω20

2kP(x, z, t)

Expand E(x, z, t) and P(x, z, t) in Fourier domain,

E(x, z) =

∫ +∞

−∞

E(kx, z) exp(−ikxx)dkx,

P(x, z) =

∫ +∞

−∞

P(kx, z) exp(−ikxx)dkx

−k2xE(kx, z) − 2ik

dE(kx, z)

dz= −µ0ω

20P(kx, z)

Feit, M. D.et. al, Appl. Opt. Vol. 17 p3990, 1978Simulation of 2D Maxwell-Bloch Equations – p.11/20

Page 12: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

FFT-BPM II

SEVA wave equation we want to solve is∂E

∂z=

i

2k(k2

xE − µ0ω20P)

Use trapezoidal rule to evolve wave quation

- Since delayed source terms inconsistant with SS-BPM frame work

For an ODE y′ = f(x, y), the trapezoidal rule is

yn+1 = yn +1

2h [f(xn, yn) + f(xn + h, yn+1)]

Apply trapezoidal rule and solve for En+1,

En+1 =1

1 − i

4kk2

xdz

[(

1 +i

4kk2

xdz

)

En −i

4kdz · 2µ0ω

20Pn

]

Simulation of 2D Maxwell-Bloch Equations – p.12/20

Page 13: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Numerical scheme for Bloch equationsBloch equations under RWA driven by the E-field,

d

dt

u

v

w

=

− 1

T2

−∆ −κ={E}

∆ − 1

T2

κ<{E}

κ={E} −κ<{E} 1

T1

u

v

w

+

0

0

− 1

T1

(2)

Write in matrix-vector form, it becomes y′ = Ay + b

Applying the 4th order Runge-Kutta method,f1 = Ay

l,m,n,k+ b,

f2 = A(yl,m,n,k

+ f1

2) + b

f3 = A(yl,m,n,k

+ f2

2) + b,

f4 = A(yl,m,n,k

+ f3) + bz(mm)

x(µm

)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−100

−80

−60

−40

−20

0

20

40

60

80

100

Grid size: mxnxk

k

z n

mx

:y

l+1,m,n,k= y

l,m,n,k+ ∆t(f1 + 2f2 + 2f3 + f4)/6

l: time step, m: x sampling step, n: z step, k: spectral lines

Gross and Manassah, Opt. Lett., Vol.17, p340, 1992Simulation of 2D Maxwell-Bloch Equations – p.13/20

Page 14: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Bloch simulation results

w

2π/τ

τ τ time

3-pulse Echo

> T2

2-pulse Echo

τP P

Start animation

Simulation of 2D Maxwell-Bloch Equations – p.14/20

Page 15: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Advancing the Maxwell-Bloch equations

Initial Value Condition

0 ∆z z

0

∆t

E0,0

E0,1

2∆t

......

l∆t

E0,2

E0,l

......

2∆z ...... n∆z

E1,0 E2,0 En,0......

t

n∆z (n+1)∆zz

t

l∆t

(l+1)∆t

El,n

Pl,n+1

El,n+1 El+1,n

Calculate Maxwell’s equation

Propagate E-field from boundaryinto crystal

Simulation of 2D Maxwell-Bloch Equations – p.15/20

Page 16: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Advancing the Maxwell-Bloch equations

∆t later

0 ∆z z

0

∆t

E0,0

E0,1

2∆t

......

l∆t

E0,2

E0,l

......

2∆z ...... n∆z

P0,1

E1,0 E2,0 En,0

P1,1 P2,1 Pn,1

t

n∆z (n+1)∆zz

t

l∆t

(l+1)∆t

El,n

Pl,n+1

El,n+1 El+1,n

Calculate Bloch equation

E-field drives Bloch vectors to getpolarization

Simulation of 2D Maxwell-Bloch Equations – p.15/20

Page 17: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Advancing the Maxwell-Bloch equations

∆t later

0 ∆z z

0

∆t

E0,0

E0,1

2∆t

......

l∆t

E0,2

E0,l

......

2∆z ...... n∆z

P0,1

E1,0 E2,0 En,0

P1,1 P2,1 Pn,1

E1,1 E2,1

......

...... En,1

t

n∆z (n+1)∆zz

t

l∆t

(l+1)∆t

El,n

Pl,n+1

El,n+1 El+1,n

Calculate Maxwell’s equation

Contribute polarization to propa-gate E-field

Simulation of 2D Maxwell-Bloch Equations – p.15/20

Page 18: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Advancing the Maxwell-Bloch equations

2∆t later

0 ∆z z

0

∆t

E0,0

E0,1

2∆t

......

l∆t

E0,2

E0,l

......

2∆z ...... n∆z

P0,1

E1,0 E2,0 En,0

P1,1 P2,1 Pn,1

E1,1 E2,1

......

...... En,1

P0,2 P1,2 P2,2 Pn,2

t

n∆z (n+1)∆zz

t

l∆t

(l+1)∆t

El,n

Pl,n+1

El,n+1 El+1,n

Calculate Bloch equation

E-field drives Bloch vectors to getpolarization

Simulation of 2D Maxwell-Bloch Equations – p.15/20

Page 19: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Advancing the Maxwell-Bloch equations

2∆t later

0 ∆z z

0

∆t

E0,0

E0,1

2∆t

......

l∆t

E0,1

E0,l

......

2∆z ...... n∆z

P0,1

E1,0 E2,0 En,0

P1,1 P2,1 Pn,1

E1,1 E2,1

......

...... En,1

P0,2 P1,2 P2,2 Pn,2

E1,2 E2,2 ...... En,2

t

n∆z (n+1)∆zz

t

l∆t

(l+1)∆t

El,n

Pl,n+1

El,n+1 El+1,n

Calculate Maxwell’s equation

Contribute polarization to propa-gate E-field

Simulation of 2D Maxwell-Bloch Equations – p.15/20

Page 20: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Advancing the Maxwell-Bloch equations

m∆t later

0 ∆z z

0

∆t

E0,0

E0,1

2∆t

......

l∆t

E0,2

E0,l

......

2∆z ...... n∆z

P0,1

t

E1,0 E2,0 En,0

P1,1 P2,1 Pn,1

E1,1 E2,1

......

...... En,1

P0,2 P1,2 P2,2 Pn,2

E1,2 E2,2 ...... En,2

......

......

......

......

P0,l P1,l P2,l Pn,l

E1,l E2,l ...... En,l

n∆z (n+1)∆zz

t

l∆t

(l+1)∆t

El,n

Pl,n+1

El,n+1 El+1,n

Calculate Maxwell’s equation

Contribute polarization to propa-gate E-field

Simulation of 2D Maxwell-Bloch Equations – p.15/20

Page 21: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Maxwell-Bloch simulation setup200µm×5mm, 2.4µsec, 250 spectral lines, 100MHz of BW

z(mm)

x(µm

)1 2 3 4 5

−100

−50

0

50

100

1o

t-0.8

o

t

1.8µs

x(µm

)300ns

Firstpulse

Pulse 1 comes in at 1◦

Simulation of 2D Maxwell-Bloch Equations – p.16/20

Page 22: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Maxwell-Bloch simulation setup200µm×5mm, 2.4µsec, 250 spectral lines, 100MHz of BW

z(mm)

x(µm

)1 2 3 4 5

−100

−50

0

50

100

1o

t-0.8

o

t

x(µm

)300ns

Secondpulse

w

wPulse 1 and 2 write populationgrating at overlap region

Simulation of 2D Maxwell-Bloch Equations – p.16/20

Page 23: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Maxwell-Bloch simulation setup200µm×5mm, 2.4µsec, 250 spectral lines, 100MHz of BW

z(mm)

x(µm

)1 2 3 4 5

−100

−50

0

50

100

1.8µs300ns

1o

t-0.8

o

t

x(µm

)

Thirdpulse

Expect echo!

Pulse 3 comes in at pulse 1 direction

Population gating diffracts pulse 3 both in space and time

Echo is expected 300ns later in direction of pulse 2Simulation of 2D Maxwell-Bloch Equations – p.16/20

Page 24: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Angled beam photon echo

x(µm)

Sp

ectr

um

(MH

z)

−50 0 50

−20

−10

0

10

20

Volume population grating

Time(µsec)

Ang

le(d

eg)

0.3µs

0.3µs

0.3µs

2−pulse echo 3−pulse echo

0 0.5 1 1.5 2

−4

−2

0

2

4

Time-angle waterfall display

Simulation of 2D Maxwell-Bloch Equations – p.17/20

Page 25: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Chirped angled beam photon echoes

0 2x10−5 4x10−5 6x10−5

Time (sec)

−0.2

0

0.2

0.4

0.6

0.8

1

Inte

nsity

Am

plitu

de (

a.u.

)

Three Pulse Photon Echo − Chirp Correlation, BW = 25 MHz

Intensity

Frequency

Inte

nsity

(a.u

.)

Time (sec)

Chirp photon echo experimental tracesTime domain chirp setupk1

k2

t

t

τ1 τ2

τ1−τ2

τ1

Echo

0.5 1 1.5 2 2.5 30

1

2

3

4

x 107

Time(µsec)

Inte

nsi

ty(a

.u.)

Echo10×

Read Chirp

Echo Efficiency≈2%

CH1CH2

Time(µsec)

An

gle

(deg

)

Echo

0.5 1 1.5 2 2.5 3

−4

−2

0

2

4

Chirp 1

Chirp 2

Chirp 3

Time domain chirp result

Time-angle waterfall display

0 0.5 1 1.5 2 2.50.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Angle(deg)

Ech

o In

tens

ity (

a.u.

)

w0=60µm, αL=1.0

delay= 0.1µsdelay= 0.112µsdelay= 0.16µsdelay=0.2µs

Interaction angle vs. echo efficiency

Simulation of 2D Maxwell-Bloch Equations – p.18/20

Page 26: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Experimental results

0 1 2 3 4 5 6 7−50

0

50

100

150

200

250

300

350

400

450

angle(deg)

Inte

grat

ed e

cho

stre

ngth 20µsec

40µsec

60µsec

80µsec

100µsec120µsec

140µsec

Increasing time delays

0 1 2 3 4 5 6−50

0

50

100

150

200

250

300

350

400

450

500

angle(deg)

Inte

grat

ed e

cho

stre

ngth

20µsec

40µsec

60µsec

80µsec

100µsec

120µsec

140µsec

Increasing time delays

0 0.5 1 1.5 2 2.50.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Angle(deg)

Ech

o In

tens

ity (

a.u.

)

w0=60µm, αL=1.0

delay= 0.1µsdelay= 0.112µsdelay= 0.16µsdelay=0.2µs

Experimental Setup

Simulation ResultsExperimental ResultsSpot size: 40µm x 80µm

CH1

CH2

CH3

Arb ChannelsλGateAOM

APD

AOM

AOM

CH1

CH2 CH3

Cryo

SSHTo Scope

f

Simulation of 2D Maxwell-Bloch Equations – p.19/20

Page 27: Simulation of 2D Maxwell-Bloch Equations - NUSOD · 1> Population Bloch Sphere Tm :YAG3+ Simulation of 2D Maxwell-Bloch Equations Œ p.3/20. Bloch equations: ... Simulation of 2D

Conclusion

Spatial-spectral Maxwell-Bloch equations solved usingFFT-trapezoidal rule and RK-4

We are now working towardsIncrease the number of transverse samples for larger anglesSimulate many GHz of bandwidthSimulate realistic T2 (T1 effect for accumulation)

z(mm)

x(µm

)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−100

−80

−60

−40

−20

0

20

40

60

80

100

Grid size: 128x128x250

250

5mm128

128

200µ

m

:

:

100MH

z:

AcknowledgementThe authors would like to acknowledge the support from S. Papport underthe DARPA AOSP program. B. Fornberg acknowledges support by NSF DMS-0309803. We wish to thank Tiejun Chang for valuable discussions.

Simulation of 2D Maxwell-Bloch Equations – p.20/20