Shaul Mukamel

61
Superoperator TDDFT Density Mat,rix Approach to Spontaneous Density Fluctuations and N onlinear Shaul Mukamel Department oí Chemistry U niversity oí California Irvine, CA 92697-2025 Response 1

Transcript of Shaul Mukamel

Page 1: Shaul Mukamel

Superoperator TDDFT Density

Mat,rix Approach to Spontaneous

Density Fluctuations and N onlinear

Shaul MukamelDepartment oí Chemistry U niversity oí California

Irvine, CA 92697-2025

Response

1

Page 2: Shaul Mukamel

. Superoperator (Liouville space

dependent density functional theory (TDDFT).

. Develop a real-space analysis of nonlinear response

functions in terms of quasiparticles, collective elec-

tronic oscillators (CEO).

. Unified discription of spontaneous density fluctua-

tions and nonlinear response functions.

Expand charge ftuctuations and intermolecular

forces in CEO modes using generalized response

functions (G RF).

.

. Resolve the causality paradox oí TDDFT in Liou-

vine space.

. Connections to non-equilibrium (Keldysh) Green

functions, GW approach and open systems.

Goals

formulation of time

1

Page 3: Shaul Mukamel

PRINCIPLES OF

Nonlinear Oplical Spectroscopy

Shaul Mukamel

O., fo (I.p

fA fEILgt1c k

Q )'JIJ>¡V. y"

(I~f1f1)

Page 4: Shaul Mukamel

. Kohn-Sham

HKS(n)(r, t)

\72 .

~ ~ Kinetic Energy,2m

j dr,n(r', t)Ir - r'l

Uxc( n( r, t)) -7 Exchange Correlation Potential

. Second quantization: Field operators 1jJ(r):

'lj;(r) -

with wavefunctions cPa(r).a

. Anticommutation relations (Fermions):

[Ca, c¡]+ = 8ab, [cl, c¡]+ = [Ca, Cb]+

['ljJt(r), 'ljJ(r')] + 8(r r'), ['ljJt(r), 'ljJt(r')]+=['ljJ(r), 'ljJ(r')]+=O

(KS) Hamiltonian ..

Jdr' n(r', t)Ir - r'l-- + Uo(r)

2mUxc(n(r, t)) + Uex(r,t)

+-

Uo (r) ---+ Nuclear Potential

Uex(r, t) -+ Ext. Pote--+ Hartree Pot.,

a particle in state

o

4

Page 5: Shaul Mukamel

. Red uced single-electron density matrix:

< >

= p(r, r, t). n(r, t)

Diagonal

density.

. p(r, r'), r =f r'

Off-diagonal elements represent the elec-

tronic coherences.

. p9(rI, r2) = (gl7,bt(r)7,b(r') Ig)

Densi ty Matrix o btained

statinary Kohn-Sham equations

p ( r, r', t) = (~t ( r, t) ~ ( r', t))

Trace Over the Ground State.

elements represent the charge

Ground State

by solving the

[fhs,fJ9]o-

5

Page 6: Shaul Mukamel

. Change in density matrix induced by a time

dependent external field

8p(rl, r2, t) == p(rl, r2, t) - pg(rl, r2)

. Time dependent 81111Ji8ld KS equations

of motion for p

[HKS(n), p].82 8t (j p =

. TDDFT gives the ordinary (causal) re-

sponse of charge density to the external po-

tential Uex.

A A

UeXP + pU

6

~

Page 7: Shaul Mukamel

Coupled Electronic Oscillator

( CEO) Representation of the

. TDDFT density

to a many-electron wavefunction given by a

single Slater determinant at all times.

. U sing the ground state Kohn-Sham orbital

basis it can be divided into four blocks.

Inter band

'"

~-

density matrix

matrix, p(t), corresponds

~

8p(t) =

( e- h ) Intraband (e-e,e-h)

~~

oT(~) -

o

~(t) T ( ~) ( t )8p(t) +-

7

Page 8: Shaul Mukamel

A

.~

. Idempotent property:

T() = ~(j - 2f;9) {j - Vi - 4}=?

The e - e and h - h part

T(~) = (1 - 2,8g)[~~

A. 8 P can be expressed solely in terms of ~.

The elements of ~ (but not of 8jJ) constitute

independent coordinates for the electronic

structure and can be viewed as classical os-

cillators.

~ = [[6 p, pg], pg]

(¡JJ + 6p)2 = (pg + ¿jp)

(T)A

~

~~~~ + oo.]

is uniquely

8

Page 9: Shaul Mukamel

. Eigenmodes of the linearized TD D FT equa-

tion for the density matrix

Linearized Liouville spaceA A A KS - A .A KS Ag

L~a = [Ha (n), ~a] + [Hl (~a)' p ]

Ground State Charge Densityn-+

. fIKS and f¡KS. o 1obtained by linearizing the KS Hamiltonian

in 8n.H!!S(ñ)(rl,r2) = 8(rl - r2)H{!S(n) (rl)

KS .

)H1 (~a)(rI, r2

A A A

L~a = r2a~a

operator( L):

are diagonal (local) matrices

8(rl--

.+ ~a(r3, r3)!xc(rz, r3)

f xc(rl, r2)-

9

Page 10: Shaul Mukamel

. Each mode, represented by a matrix (~a)'

describes an electronic transition between

the ground state and an electronically ex.

cited state (0:).

. ~a come in pairs labled by positive and neg-

ative values of a. n-a =

Each.

palr.electronic oscillator (CEO).

1,;/ ~ CY.Qa =

. Scalar product of two interband matrices:

(~I1}) =::::}

Adopt the following normalization:"t "

(~al~J3) = 8a(3,

usual: N orm is zeroUn,

" - "t-Den ~-a-~ .

of modes represents a collective

r¿J2 (~a - ~~a)+ ~~Q) Pr-

a

= Tr{¡J9[tt, r]]}(~I7})(7}t I~t) *

( ~ I ~t) o--

(~QI~Jj) o-

10

Page 11: Shaul Mukamel

'"

~ can be expanded in CEO modes,.

Using our scalar product

Za( t) =

Density matrix (8p =

CEO amplitudes (za):

.

Jp(rI, r2, t)= LJ.la(rl, r2)Za( t) + 2a

1+ 3 L I-LO:(J,/(rl, r211)zo:(t)z(J(t)z,/(t)...

aj3,

AII coefficients are expressed in terms of

~

~(t)'"

Za(t)~aLa=:f:l,:i:2,..

-

.

.

(!I(t))

T ( t) )'"

expanded in~

1L J-la,/3( rl, r2)Za( t )Zj3( t)

a,¡J

'"

~Q

...

~Q

(2pg

A

{la

A

{la/3A

{la/3,

-

- 1) (~a~(3 + ~(3~Q)-

. -~a (~{3~1 + ~1~{3)

11

Page 12: Shaul Mukamel

. Equations of motion for Za are obtained by

projecting the TDDFT equation anta the

interband space (¿ = [[6,8, ,89], ,89]) and using

the normalization of the eigenmodes.

.dza( t)r¿ dt

K-a(t)

K-a{3(t)

K -a{3, (t)

v --af3,

- A KS . A KSV(~a)(rl)~J1 = Hl (~a)(rl)~J1 + H2 (~a~J1)(rl)pg

= r2aZa(t) + K-a(t) + K -a{3 ( t ) Z {3 ( t)

-a{3-y1i (t) zj3( t) z-y( t) ZIi( t) + . . .

drlU(rl, t)JL-o:(rl)

drlU(rl, t)JL-a¡3(rl)

-

-

Jdrl U (rl, t) ~-Q;{3,( rl)-

~Tr {¡1a(3V(~'Y) + ¡1(3'YV(~a) + M'Ya V(~¡3)}

12

Page 13: Shaul Mukamel

is obtained by expanding KS Hamilto-nKS2.

nlan

.to second arder in bn.

H!jS(~a, ~J1)(rl)=

. Each electronic excitation can be viewed as

a classical oscillator with variables Za and

z~, and frequency OQ8

. The system

tronic anharmonic oscillators.

-

fxc( r2, r3) ) ~a(r3, r3)

JJ~2~3~C(rl,r2,r3)~(r2,r2)~(r3,r3)

9xc(rl,r2,r3) =ñ

elec-

13

Page 14: Shaul Mukamel

. Classical Hamiltonian (to third arder):

H(z(t)) -

+ Uex(t)6p(z)

Poisson brackets:

A A At At{~a' ~JJ} = {~a' ~~} = O,

{Za, Z~} = iba/3,

{Za, Z,aZ,}

classical Hamilton equations give the

TDDFT equations of motion for the oscil-

lator amplitude

1+~

3¿ Va¡3,Za(t)Z¡3(t)z,(t)¿ ~aZa(t)Z-a(t)

a>O a/3,

At A

{~a,~J3} i6a{3

{Za, ZJ1} = -{ZJ1, Za}

ZjJ{Za, Z"(}{Za, Z¡1}Z¡ +-

Za.

14

Page 15: Shaul Mukamel

CEO Representati

. Expand Za = Z(l) + Z(2) +

To linear arder:

<5p(r, r, t)

Zil)(t) = r¿sa:

Ga(t - r)

+1

-1

So:-

-

on of N onlinear

Response Functions

in powers of Uex. .

Zil) (t)/-la(r)La=:f:l,::t2,..

Ón(r, t) -

1: dr J r)drU(r, r)J-l-a(r)Ga(t -

r) exp { -iDa(t - T)}=.8(t -

For Positive Modes (a > O)

For Negative Modes (a < O)

15

Page 16: Shaul Mukamel

. The linear density response function, X(1):

Ón(r, t) = 1: dr J

X(l) (rt, r't')

. In frequency domain:

X(l) (rlWI, r2W2) = 8(Wl + W2) L

. Higher arder response

computed similarly.

drIU(r/, r)x(l)(rt, r/T)

t')L isal-la(r)l-l-a(r')Ga(t --a

SaMa (rI) M-a (r2)'-VI - Da + it

a

functions can be

16

Page 17: Shaul Mukamel

. The second arder response function:

X(2) (rltI, r2t2, r3t3)

LSaS/3J-L-a/3(rl) J-la(r2) J-L-¡3( r3)Ga( tI

a,/3

LSaS/3J-La/3(rl)J-L-a( r2) J-L-/3( r3)Ga( tI

a,¡3

-2

+i

drGa(tl - r)Gj3(r - t2)G,(r - t3)x

. In frequency domain:

X(2) (rlúJI, r2úJ2, r3, úJ3)

-

1¿a.{3

+-2

1+-

2¿a:{3

La.j3

-2

- t2)G/3(t2 - t3)

- t2)G (3( tI - t3)

-0.,/3,"'(

sQS/3¡.tQ(rl)¡.t-o:j3(r2)¡.t~/3(r3)Ó(Wl + w2 + w3)(W2 + W3 + Da - it)(w3 + DjJ - iE)

SaSj3J.La(rl)J.L-cxj3(r3)J-l-/3(r2)6(Wl + W2 + W3)

(W2 +W3 + Da - i)(W2 + rlj3 - iE)

sQs/3J1Q/3(rl)J1-Q:(r2)J1~/3(r3)¿j(f.J.Jl + '-V2 + '-V3)(W2 + 0('( - i)(f.J.J3 + 0/3 - i)

17

Page 18: Shaul Mukamel

. Third arder response function:

- iP-a/3(r)p-/Jy(rl)Pa(r2)p-"((r3)Ga(t - tl)G/3(tl - t2)

G"((t2 - t3) +2 LP-a/3(r)V~/3"(óPa(rl)p-"((r2)p-Ó(r3)sÓ

,5

(tdrGa(t - tl)G/3(tl - T)G"((r - t2)GÓ(r - t3)Jt3iP-a/3"((r)Pa(rl)p-/3(r2)p-"((r3)Ga(t - tl)G/3(tl - t2)G"((tl

x

x

drGa(t - r)G/3( r - tl)G1( 1" ~ t2)G(j(t2 - t3)

x Ga(t - 7JG(3( 7 - tl)G"{( 7 - 7')GJ( 7' ~ t2)Gr¡( 7' - t3)

+

x

+ 2ipCt{3(r)p-{3,./rl)p-Ct(r2)p-~,/r3)GCt(t - tl)G{3( 'T - t2)G"((t2 - t3)

x

6¿SaSj3S'"'(-a. /31

t3)

{t {r drdr'Jt3 Jt3

17

Page 19: Shaul Mukamel

Liouville Space

Generalized

. Hilbert space N x N operators such as p(t),

are viewed as vectors oí length N2 in Liou-

ville space.

. Operators of N2 x N2 dimension in Liouville.space are superoperators.

. With each Hilbert space operator A we can

associate two superoperators AL (left) and

( right ) :AR

ALX = AX

Hilbert Space (Ordinaryx

~

Superoperators and

ARX=XAand

Operator

18

Page 20: Shaul Mukamel

. Symmetric and antisymmetric combina-

tions:

1-(AL2

-

. The commutator and anticommutator op-

erations in Hilbert space can be imple~

mented with a single multiplication by a "-"

and "+" superoperators, respectively.

. Superoperator algebra:

For two operators A and B:

(AB)L = ALBL,

1(AB)+X=2(ALBLX

(AB) _x = (ALBL-

=> (AB)+

(AB) -

(AL+AR) and A- -

(AB)R == ARBR

1== (A+B+ + -A_B_)X

4~ + ARBRX) == (A+B+ + ~A_B-

4. ARBR)X = (A+B- + A_B+)X

1= A+B+ + - A_B-

4= A+B- + A_B+A+B- + A_B+

19

Page 21: Shaul Mukamel

In Hilbert Space:.

sjn) (t)

I'l/Jjm) (t))-+ Wavefunction to m'th order in E

. In Liouville Space:

To n' th arder in E:

p(n)(t)

=} S(t)

Expectation val ue of A

L Pj(1/Jj(t) I

J

S(t) -

L Pjsjn)(t)),n

S(t) -

n

L(~Jm)m=O

(t) IAI~)n-m) (t))-

Tr {Ap(t)}S(t) -

n

LPjLj m=O

¿Tr{

-

n

58

Page 22: Shaul Mukamel

. Backward propagation of the bra:

Ud (t, to)

uJ (t, to)

-T Hilbert Space Anti- Time Ordering

Operator

U(t, to)

ut(t, to)

(~j(to)I[!J(t, lo)

(~j(to)I[!J(t, lo)

~dTHo(

dT Hint

(~J(t)1

(~j(t)1

-

}~1t. {t

~ lto

-Texp )T-

}-

(T)T

Forward

Backward Propagation

60

Page 23: Shaul Mukamel

Dynamics in Liouville Space

. Liouville equation:

8 i8tP(t) = ñ (HT(t), p(t)]

e evolution of density matrix:

p(t) = Q(t, to)p(to)

g(t, lo) = T exp { - ~ it t:,(r)dr }

. Tim

Q(t) ~Liouville Space Time Evolution

¡:, ~ Liouville Operator for H T

. U nlike Hilbert space, Liouville space expec-

tation values only require propagating the

density matrix forward in time.

~~~~

61

Page 24: Shaul Mukamel

Linear response.

Hilbert Space

X(I)(t2' tI)

Liouville Space

. X(I)(t2' tI) = Tr [ALQ(t2, tl)ALPeq] + C.C.

.

.

.~ L Pj(1jJjIUt(t2' tI)

JAU(t2, tl)AI~j) + c. c.-

63

Page 25: Shaul Mukamel

. Third arder response:( .) 3 4

X{31(t4, t3, t2, tI) = ~ ~~ PjX~3)(t4' t3, t2, tI)+C.C.

Hilbert Space

Xi3) = (~jIUt(t2' tl)AUt(t3, t2)AUt(t4' t3)AU(t4, tl)AI~j)

X~3) = (~jIU(t2, tl)AUt(t3, tl)AUt(t4, t3)AU(t4, t2)AI~j)

X~3) = (~jIU(t3, tl)AUt(t2, tl)AUt(t4' t2)AU(t4, t3)AI~j)

(3) IX4 = ('lf¡jIUt(t4' tl)AU(t4, t3)AU(t3, t2)AU(t2, tl)AI'lf¡Ú

Liouville Space

XP) = Tr[ALQ(t4, t3)ARQ(t3, t2)AR9(t2, tl)ALPeq]

X~3) = Tr[ALQ(t4, t3)ARQ(t3, t2)ALQ(t2, tl)ARPeq]

X~3) = Tr[ALQ(t4, t3)ALQ(t3, t2)ARQ(t2, tl)ARPeq]

Xi3) = Tr[ALQ(t4, t3)ALQ(t3, t2)ALQ(t2, tl)ALPeq]

64

Page 26: Shaul Mukamel

. Liouville space time ordering operator T

T

v== +/- or L/ R

. Expectation (A+(t)) ---+ Tr{A+(t)Peq} Causal-

ity in Liouvile Space:

. (B_(t')A+(t)) = Tr{B_(t')A+(t)Peq}

1= 2 Tr{[B(t'), (A(t)Peq + PeqA(t))]}

= O (Trace of a cornmutator)

. Expectation value of the product A+B_:

(7 A+(t)B_(t'))

(7 A+(t)B_(t')) is

.

.

AvCTl)B¡t( 1"2) T2 < TI

B¡.¿( 72)Av( 71) TI < T2

~[Av( 71) B/-l ( 71) + B/-l( Tl)Av( TI)] 72 -1"1

tI < t

tI> t

(A+( t)B~( tI))

(B~(tl)A+(t)) = O

-

causal, vanishes

20

for t' > t.

Page 27: Shaul Mukamel

. The p'th arder response function

(p)( ) - (- ")p "x. Xp+ 1, ..., Xl - r¿ ~

x(p) describes the response generated at

point rp+ltp+l to p fields interacting with

.

the system at points rl tl...r p tp and n is the

charge-density operator.

. The step functions 8(t) keep track of time

ordering and guarantee causality tl...tp <

tp+l. pFrm is a sum ayer the' p! permutations

of Xl"'Xp.

r, t):(: -x

o L B( tp+l - tp) . . . B( t2 - tI)

perm

[[n(Xp+l), n(xp)] ,n( Xp-l)]... f¿(Xl)])([ .

21

Page 28: Shaul Mukamel

Superoperator

(p)( )X Xp+ 1 . . . Xp

.

-

. p'th arder generalized response functions

(GRF):

X1/p+l...1/1 (Xp+l

Superoperator Index (+ or -)l/p

p' N umber

Vp+b Vp, .., VI

of response:representaion

= (-i)P (Tñ+(xp+l)ñ- (Xp)...ñ-(Xl))

1

2(nL"'~ '" '"n == nL - nR+ nR),

( -i)pl (7 ñVp+l (Xp+l) . . . ñVl (Xl)).

indices in the setof "-"

22

Page 29: Shaul Mukamel

. Ordinary (causal)

correspond to GRF with one "+" and p "-".f

r "'superoperator indices (x+ ~ ~ ... ~) .

. Other functions (with more than one "+"

index) represent the correlations of sponta-

neous fluctuations or their response to the

external potential.

.GRF Sn.A..

r "'(x - - -. . .

(x(p))response functions

indicesall " "-with vanish

O).-

23

Page 30: Shaul Mukamel

+ 1), p'th arder generalized re-

sponse functions with n = 0,1, ..., p "minus"

. There are (p

indices.

Linear GRFs (p=l):

X++(x,x/) = (Tñ+(x)f¿+(x/)) (Density Fluctuations)

X+-(x, x') = -i(Tñ+(x)ñ-(x/)) (Density Response)

.

. x+- is causal: For t' > t

X+-(X, X')

=> X+-(X, X') = -i()(t - t') (ñ+(x)ñ+(x'))

. x++ is non-causal:

x++(X, X') = 8(t - t') (ñ+(x)ñ+(x/))

+ 8(t' - t)(ñ+(x/)ñ+(x))

Tr{n-(x')n+(x)p}-

Tr{[n(x'), n(x)p + pn(x)]} == o

24

Page 31: Shaul Mukamel

. Linear G RF x++ and x+- are not indepen-

dent. They are related by the fluctuation-

dissipation (FD)

x+-(rI, r2, t)

x++(rl, r2, t)

a++(rl, r2, LV)

. Classical, high temperature, limit of FD:

* x+-(r¡, tI, r2, tI + t) =

relation .

r¿100 +- -il.AJt

a (r1, r2, ~)e d~1r -00

ñ j oo . . - a ++(r r W)e-u.lJtdw2 1, 2,

1r -00

-

-

(¡3~) a+-(rl,r2,úJ)coth-

)({31iwcoth f",.J

()(t) d- KBT dtx++(r1, t1, r2, t1 + t)

25

Page 32: Shaul Mukamel

. p'th arder GRF is a combination oí 2p+l Li-

ouville space pathways(LSP) with different

number of "left" and "right" operators.

Four LSP contribute to the linear G RF:.XLL(Xl, X2) = (TnL(Xl)nL(X2))

XRR(Xl, X2) = (7 nR(Xl)nR(X2))

. XLR(Xl, X2) = (TnL(Xl)nR(X2))

XRL(Xl, X2) = (TnR(Xl)nL(X2))

X++(Xl, X2)

X+-(Xl, X2)

-

26

Page 33: Shaul Mukamel

. AII LSP are non-causal and symmetric with

respect to the change of their superoperator

and space-time arguments.

. Ordinary response

nation of 2p+l LSP. Other combinations rep-

resent spontaneous fluctuations and their

responses to external field.

(x(p)) is a specific combi-

27

Page 34: Shaul Mukamel

Dynamical Approach toIntermolecular Forces U sing

Generalized

. Two well separated coupled molecules ( a

b):and

N o Charge Over lap, No Exchange=>

H = Ha + Hb + AHab,

. Electrostatic interaction:

Hab

Charge Density of Molecule a

Charge Fluctuation of Molecule

na

Óna

Functions

0>'\>1

¡¡drdr'na(r )nb(r')J(lr r'/)- -

e2J(lr r'l) =

na ( r )

Ir - r'l

ña+ Óna-

a

28

Page 35: Shaul Mukamel

. Hellmann-Feynmann Theorem:

. Interaction

w=

w(O)

W(I) --

+

W(II)

~

8HA8>"

\Ir»)(WA-

energy:

11d>"(Hab) A- E(A = O) :=

r')ña (r )nb(r')

r') [na(r) (Ónb(r'));\J(r ~dA

,

11 dA J J drdr' J(r - r') (óna(r )8nb(r')) A

29

Page 36: Shaul Mukamel

. McLachlan's (196:

Waals interaction:

For T = O

WML = 2 roo~JL'illf- 2ñ J-oo ]

(};b(r'l, r'2, w)coth.

(}:a(rl, r2, úJ) --* Linear Polarizability of

For T > o

WML-

J(rln

21rn//3ñúJn -

963) express ion for van der

f(t

(drlJe

¡J~)

j dr' 2Üa (r¡, r2, (.¡))

r'r)J(r2 - r'2) I

dw dr1

J(rl

Molecule a

aa(rln, r2n, iwn)ab(r'rn, r/2n, iwn)

r' 2n)ln)J(r2n -

Matsubara Frequencies

30

Page 37: Shaul Mukamel

. In superoperator notation:

(c5na(r )c5nb(r')) A

. In the interaction picture, ground state

density matrix of interacting system (Peq) is

generated from the non-interacting density

matrix (Po = p( -00 )) by Adiabatic switching

of interactions.

Peq

Expectation value of an operator A(x):.(A+(x)) = Tr {A+(x)p}

(8n~(r )8nt(r')) A

. f a- ~ -00 }{ drV-(T)Texp Po-

= (r A+(x) exp {~ ¡~ drV-(r)} )0

A+(x) = Qo(t)A+(x)Qo(t)

Qo(t) = B(t) exp { - h'Hüt}

31

Page 38: Shaul Mukamel

. In superoperator notation:

(8na(r )8nb(r')) A

. In the interaction picture, ground state

density matrix of interacting system (Peq) is

generated from the non-interacting density

matrix (Po = p( -00 )) by Adiabatic switching

of interactions.

Peq == T exp

. Expectation value of an operator A(x):

(A+(x)) = Tr {A+(x)p}

(8n~ (r )8nt (r/)) A

}r¿

{-

drV-Cr) Po1i

O ¡ f

~ -00 }){\ drV-(T)}i+(x)T exp-o

A+(x) = Qo(t)A+(x)Qo(t)

Qo(t) = O(t) exp { - ~1tot}

31

Page 39: Shaul Mukamel

. Superoperator Rules: For ordinary opera-

tors A and B

Hab thus contains n; and nt:.Hab(r, r', t) = [ña(t, t)ñb(r', t)]-

Response of the coupled system is recast in

terms of GRFs of individual molecules:

R(n)(t, tI, ..., tn) =

1A+ B+ + -A- B-

4

(AB) +

(AB)-

-

A+B- +A-B+

= nd"(r, t}n¡;(r', t) + n;;(r, t)nt(r', t)

n-m mn ~~

'""""X+.. . + - . . . -(t t t )L ,.¡ a , 1, ..., n

m=Om n-m

~~+...+ (t t t )Xb ' 1,.. ., . nx

33

Page 40: Shaul Mukamel

. The expectation value (c5na(r)) A can be ex-

panded perturbatively in A and expressed

in terms of the n'th arder joint response

function:

R(n)(t, tI, ..., tn)

< >0,--+.. .-

liñ, Hab

. The ground state density matrix :

., in) = (-i)n(T8ñ+(t)Hab(tl)' ..., Hab(tn))O

-+ Trace ayer ground state (A = O)

In interaction picture

-

fJ9 = p~pg

32

Page 41: Shaul Mukamel

. Interaction energy (W) depends on all

GRFs of individual molecules. Tú sixth or-

der in charge fiuctuations

w(n) ~ Contribution

Charge Fluctuation

W(l) o-

W(2)= -1

Xd-(XI, X2)J(rl - r'1)J(r2 - r'2)

¡ tI =~L

6ñ2 p -00

J(rl ~ r'1)J(r2 - r'2)J(r3

X~--(Xl' X2, x3)ñb(r'2)ñb(r'3)

W(3)

x

x

6

L w(n)w -n=l

From

~ ¡t~dt2 J J J J drldr' ldr2dr' 2fib(r'l)fib(r' 2)

dt{t!t3 J J J J J J drl dr' 1 dr2dr;dr3dr~1

r'3)nb(r\)~

34

Page 42: Shaul Mukamel

. McLachlan expression:

(tI~ Loo dt2

J(rl - r'¡)J(r2 - r'2)Xd+(Xl, X2)Xt-(X'I, X'2)

6~2 ~ 1: dt{: dt3j j j j j j drl dr'¡ dr2dr' 2dr3dr~

J(rl - r'¡)J(r2 - r'2)J(r3 ~ r'3)

[na(r2)nb(r'3)X~-(Xl' X3)Xt-(X'r, X'2)

+ nb(r'r)na(r3)X~-(Xl, X2)Xt-(X'2, X'3)]

W(4) -

x

+

x

x

. First term of W(4) reproduces McLachlan's

result for van der Waals interaction. This

can be expressed in terms of x+- alone since

x++ and x+- are related through FD theo-

reme

J J J J drl dr\ dr2dr' 21

35

Page 43: Shaul Mukamel

. Fifth and Sixth arder terms:

W(5) = 6~~ ¡t~p j-C(

W(5) = 6~~p ~¡~t1~t3J J J J J ftrl dr'l dr2dr' 2dr3drí

x J(rl - r'¡)J(r2 - r'2)J(r3 - r'3) { xt-- (x\, X'2, X'3)

x [ña(r1)X~+(X2, X3) + ña(r2)X~+(XI, X3)

+ ña(r3)X;+(XI, X2) + ña(rl)X~-(XI, X3)]

++- ( ' , , )[- ( ) +- ( )+ Xb x 1, X 2, X 3 na r2 Xa Xl, X3

J(rl - r'r)J(r2x

x

+

ñb(r'3)xt-(X't, X'2)] }+

w( 6) = 6~j)p : ¡~ti~t3J J J J J frl dr\ dr2dr' 2(

X J(rl - r'I)J(r2 - r'2)J(r3 - r'3)

[ +++( ) +-- ( ' , ' )X Xa Xl, X2, X3 Xb X 1, X 2, X 3

++- ( ) ++- ( ' , ' )]+ Xa XI,X2,X3 Xb XI,X2,X3

>' ~ Sum ayer Single Permutation Xn ~ x' nJ

x

x

¿p

I

r[ / /. /}drldr ldr2dr 2dr3dr3

~

36

Page 44: Shaul Mukamel

. Complete set of ordinary causal) response

functions CX+ ) is not sufficient to calcu-

late intermolecular interaction.

AII GRFs are required

hysical Reason:

uctuations are not described by ordinary

Mathematical Reason:

(na(r )nb(r'))-

.

Correlated spontaneous

functions.

n;(r)nt(r')nd(r)nb(r')-

37

Page 45: Shaul Mukamel

Computing Generalized Response

. TDDFT equation for density matrix can be

generalized as: p

a

. The system is coupled to two external po-

tentials, "left" UL acting on the ket and

"right" UR acting on the bra.

. In superoperator notation:

i :l(rl, r2, t) = 1íKSp(rl, r2, t) - U-(rl, r2, t)p(rl, r2, t)

HKsjJ=[HKS, jJ], U- jJ=[U+, jJ], U+jJ=[U_, jJ]

Functions by TDDFT

A A

ULp - URp[HKs(n), ,8]i 8t óíJ +-

- U+(rl, r2, t)p(rl, r2, t)

38

Page 46: Shaul Mukamel

. When UL = U R, P is the density matrix. The

complete set of GRF can be obtained by

allowing U L 'and U R to be different.

Ordinary, for example,

function x+- represents

sponse of the system to an applied poten-

tial that couples to charge density through

a commutator.

x++ can be formally obtained as the re-

sponse to an artificial external potential,

U+, that couples to the charge density

through

linear response

the density re-

ti commutatoran an .

39

Page 47: Shaul Mukamel

. Interband matrix

. Za is expanded in external potential Uv:

- (t) - vI + vI v2+Za - Za Za ...,

ZVl...Vp ---t p'th arder term in

Linear..8Z~1 (t)r¿ 8t .

K-a(t) =

"'-

/.La:-

A

is expanded in ~a:A

~

L taza(t)A

~(t) =

a=:t:::l,:!:2..

Vn == +

U 1/1 . .. U 1/p .

-

tion:

QaZ~l ( t )

L

A+/-la

equa

VI == + or+ K-a(t)

drlUv(rl, t)fLV a(rl)

Aila=(2pg - I)~a.

--

Z/

and

40

Page 48: Shaul Mukamel

. Solution for z~ :

z¿ (tI)

Za (tI)

-

-

. Linear G RFs:

x++(rltl, r2t2) =

x+-(rltl, r2t2) = ~ie(tl - t2f2:ISaJJta(rl)¡J,~(}!(r2)e

. Frequency domain: ,x++(rlWl, r2W2) = i8(Wl + W2)

Pa(r2)P-a(W2 + Sta -

+ ~

X -(rlWl, r2W2) = 8(Wl + W2)x+-(rlWl, r2W2)

J dI

:t2 J

i 1: dt2

iBa {'x; dJ-oo

drlU+(rl, t2)[l-a(rl)Ga(tl - t2)

r drlU-(rl, t2)/La(rl)Ga(tl - t

.r¿

t2)dt2

t2) L [la (rl) p=fJ!(r2)e -iOQ(tl-t2)e (tI -a

e(t2 - tI) 2: [la(r2)[l-a(rI)eiD.a(tl -t2)

a

,-iOa(tl-t2)

a

[ fla(rl)fl-a( r.2)

w2 - Da + ~ELa

W2

t'

a

41

Page 49: Shaul Mukamel

. Second order G RF:

x+-- is the ordinary X(2) obtained from the

ordinary TDDFT density matrix equation.

~

x+++(rltl, r2t2, r3t3) =

L fl-{3(r3)Ga(tl - t2)

a,{3

- 2J.La/3(rl)[L-a(r2)G/3(tl - t3) ]1

~

[tL-a¡3(r2)fJa(rl)G¡3(t2 - t3)

l-la(rl)p-j3(r2)p-"((r3) V-a,j3,"(

d'T Ga(tl-'T) G/3(r-t2) G"((r-t3)

Sum ayer Permutation r jtj ~ rktk

42

Page 50: Shaul Mukamel

X++-(Xl, X2, X3) =

L0.,/3

SaS/3Jt-a/3(r2)Pa(rl)p-/3(r3)Ga(tl - t2)G{3(t2 - t3)

¿a,(3

-2

LL{XI,X2} aj3¡

+ 2i

1:

¿ ~ Sum ayer Permutation r jtj +-+ rktk

{Xj,Xk}

- t2)G/3(tl - t3)s /3/-la/3 (rl) íl-a( r2) tL~{3 (r3) G a (tI

Sa S1 f-la(rl)p-/3(r2)f-l-1(r3)V-a,/3,1

- t3)dT GoJt1 - T) G/3(T -

43

Page 51: Shaul Mukamel

. Secand arder G RF

x+--(rlúJl, r2úJ2, r3, úJ3)=

1La{3

8a8j3,

( 28, V-aj3, /-La (rl) /-L- /3 (r2) /-L-, (r3)(W3 + O, - i)

f-ta( rl) f-t-a(3( r2) f-t-(3( r3) f-ta( rl) f-t-a(3( r3) f-t-(3 ( r2) )('"-'3 + Dj3 - i) + ('"-'2 + Dj3 - iE)

/Lc«3(rl)/L-c,(r2)/L-(3(r3) -

](W2 + Oa - i)(W3 + 013 - i)

-2

x

+

frequency domain):

c5(Wl + W2 + w3)

44

Page 52: Shaul Mukamel

x+++(rlWl, r2W2, r3, W3)

+ J-tCt (r3)íl-{3(rl)íl-'Y (r2) ](W2+ W3- °'Y+ i) ("'-'2 + O{3- iE)(W3- O~/+ iE) 8(Wl + W2+ W3)

+~~a:{3

¡.ta{3( r2) fl-a(rl) fl-{3( r3)

(W2+ W3- na+ i)(W3+ n{3- i~)

¡.ta{3( r3) fl-a( r2) P-{3( rl)

(W2+ W3- na- i)(W2+ n{3- i)

-

f..la:p( rl) íl-a (r2) íl-/3( f3)

(w2+ Da- iE)(úJ3+ D/3- ie)

}8("'-"1 + "'-"2+ "'-"3)

42

Page 53: Shaul Mukamel

x++-(rlÚ)l, r2Ú)2, r3, ú)3) =

S, V-a{3,¡.ta(r2)íl-j3(rl)¡;,~,(r3)8{úJl + úJ2 + úJ3)(úJ2 - Da + i)("'-'2 + "'-'3 - O{3 + iE)(úJ3 + D, - iE)+

Sa¡.ta( rl) [¡.t-aj3( r3),u-j3( r2) - Sj3,u-aj3( r3)¡.t-j3( r2)]

(W2 + W3 + r2a - i)(W2 + r2¡1 - i)+

Sa~a(r2) [~-at3(r3)p--t3(rl) - St3P--at3 (r3)Jl-¡3 ( fl)]+ _u

("-'2 + (.V3 - r2t3 + i)("-'2 - [la + i)

s/3J.L-/3(r3) (~Q¡J(r2),ü-Q(rl)+ ("-'3 + r2/3 - i) ("-'2 + Oa - i)

+ J.La/3(rl)jl~a(r2)) ](""2 + ""3 - na + iE) 8((.¡)1 + (.¡)2 + (.¡)3)

Page 54: Shaul Mukamel

Expanding the Intermolecular

We have expressed intermolecular ener-

gies in terms of GRF which, in turn, are

computed using CEO múdese Combining

the two yields closed expressions for inter-

molecular energy (W) to any order in CEO

.

modes.

. To fourth arder charge fiuctuations:4

Lw(n)n 2

w=

1

-2ñLpW(2) -

L s c/ /-L-a' ( r't) /-La' ( r' 2)

ei Oalx

energy in CEO modes

drldr2dr'ldr'2

1111 rl)na(r2)Irl - r'l

46

Page 55: Shaul Mukamel

W(3) =

ña (rl)ña (r2)ña( r3)Sc/S {3'x

x

1W( 4) ---- 2ñ

x

x

[ña(rl)Jta(r2) + ña(r2)Jta(rl)]x

L 1J/J1J drl dr2dr3dr'l dr' 2dr' 3p Irl - r'll/r2 - r'211r3 - r'31

47

Page 56: Shaul Mukamel

Superoperators A utomatically

Resolve the TDDFT Causality

. Density as. a functional derivative of an ac-

tion:

. Is it impossible to construct this functional

. The paradox: We are in trouble !

[Gross, 1996]

6"2

8 v ( rt ) 8 v ( r' t')

. The RHS is the density response function

which must be causal i.e. vanish for t' > t,

whereas the LHS is symmetric to the inter-

change of its space and time arguments.

Paradox

.-

8A[v(r, t)]8v(rt)

n(rt) =

-A[v(rt)] 8n(rt)

8v (r' t')

( I IX rt, r t )-

48

Page 57: Shaul Mukamel

. Liouville space action:

A[VL, ~

( iñ)ln

VR]

: (~Texp{ -~J

. Liouville space pathways can be generated:

X~P+ll1p...lIl (Xp+l, Xp...Xl) =

.( -~ )P

!i

XC Connected LSP..There is no "causality paradox" since all

LSP are non-causal.

. AII causal and non-causal functions can be

constructed as

space pathways.

-

dX[VL (X)1ÍL (X) + VR(X)ñR(X)]})-

VL=VR=O

8p+l A[VL, VR]

8VVp+l (xp+l)8vllp(xp).. ,ÓVVl (Xl)

combinations of Liouville

50

Page 58: Shaul Mukamel

. n'th arder G RF:

Xlln+l...lIl (tn+l

. Generating functional for GRF:

S1(t)-O ¡ t

~ dñ -00

X lIn+looolll (t t )n+ 1. .. 1

< 000 >0 --+ Trace ayer Po

. Response functions (Xn) are calculated in

terms of known (trace over Po) quantities

x(n) (tn+b . . .tl) =

- - - - ,(T A+(tn+l)A-(tn)... A-(tl)V-(Tm)x

n

(TAj. tI) -l(tn+l) . . . AVl(tl)l/n + ]

}).2

~díV-( í)xo

T)A+(T))] )dr

o

Ón+lS( t)iñ óE"n+! (tn+i). ..El/! (ti) E+=E-=O-

00

Lm=O

( i ) m+l tn+l I j 'Tn+l I - d71. . . d7 m

ñ -00 -00

( -l)mm!

. . V- ( iD) o

69

Page 59: Shaul Mukamel

tI

qL (O)-

qR (O)

The Keldysh time loop. Going along the loop,we can arrange al! the operators in the properarder.

,.-,I

~t

q\.l~)t3

t4l~)'IR

t2

Page 60: Shaul Mukamel

[1] E. Runge and E. K. U. Gross, Phys. Rey. Lett. 52, 997 (1984).

[2] E. K. U. Gross, J. F. Dobson and M. Petersilka, in Density Functional Theory, edited

by R. F. Nalewajeski (Springer, Berlin, 1996) Vol. 181.

[3] W. Kohn, Y. Meir and D. E. Makarov, Phys. Rev. Lett. 19, 4153 (1998)

[4] R. Van Leeuwen, Phys. Rey. Lett. 80, 1280 (1998).

[5] O. Berman and S. Mukamel, Phys. Rey. A 67, 042503 (2003).

[6] O. Berman and S. Mukamel, Phys. Rey. B, 68, 104519 (2003).

[7] O. Berman and S. Mukamel, Phys. Rey. B, 69, 155401 (2004).

[8] O. Berman and S. Mukamel Phys. ReY. B, 69, 155430 (2004).

[9] U. Harbola and S. Mukamel,"Intermolecular Forces and Non-bonded Interactions:

Superoperator Non-linear TDDFT Response Approach", Phys. Rev A, (2004) (In

Press), .[10] S. Mukamel, "Generalized TDDFT Response Functions for Spontaneous Density

Fluctuations and Non-linear Response: Resolving the Causality Paradox in Real

Ti~e", Phys. Rev. Lett., (Submitted) (2004).

[1] A. Takahashi and.S. Mukamel, J. Chem. Phys. 100, 2366 (1994).

[2] S. M ukamel , A. Takahashi, H. X. Wang, and G. Chen, Science 266, 250 (1994).

[3] V. Chernyak and S. Mukamel, J. Chem. Phys. 103, 7640-7644 (1995).

[4] S. Tretiak, V. Chernyak and S. Mukamel, Phys. Rey. Lett. 77, 4659 (1996).

[5] V. Chernyak and S. Mukamel, J. Chem. Phys. 104, 444 (1996).

[6] S. Mukamel, S. Tretiak, T. Wagersreiter, and V. Chernyak, Science 277, 787

(1997).

[7] V. M. Axt and S. Mukamel, Rey. Mod. Phys. 70, 145 (1998).

[8] S. Tretiak, V. Chernyak and S. Mukamel, Int. J. Quan. Chem. 70, 711 (1998).

[9] V. Chernyak, and S. Mukamel, J. Chem. Phys. 112, 3572 (2000).

[10] T. Toury, J. Zyss, V. Chernyak and S. Mukamel, J. Phys. Chem A. 105, 5692

(2001)

[11] S. Tretiak, S. Mukamel, Chem. Rey. 102, 3171 (2002).

70

TDDFT

TDHF

Page 61: Shaul Mukamel

SuperoperatorsS. Mukarnel, PrincipIes 01 Nonlinear Optical Spectroscopy

New York, 1995).

V. Chernyak, N. Wang, and S. Mukamel, Physics Reports 263,

A. E. Caben and S. Mukamel,Phys. Rey. Lett.91, 233202 (2003)

A. E. Caben and S. Mukamel, J. Phys. Chem. 107, 3633 (2003).

S. Mukamel, Phys. Rey. E, 68, 021111, (2003).

U. Harbola, and S. Mukarnel,"Superoperator Many-body Theory

Currents: Non-equilibrium Greens Functions in Real Time", Phys.

mitted) (2004)

[1]

[2]

[3]

[4]

[5]

[6]

(Oxford University Press,

213 (1995).

of Molecular

Rey. B, (Sub-

71