REMME 20130709 ETP TIMES H2 Roadmap - Microsoft · 2019. 11. 27. · Microsoft PowerPoint - REMME...

20
Hydrogen Roadmap Analytical approach of the Analytical approach of the supply side modelling Uwe Remme © OECD/IEA 2013 Low-carbon energy technology roadmaps © OECD/IEA 2013 Lowcarbon energy technology roadmaps July 9, 2013

Transcript of REMME 20130709 ETP TIMES H2 Roadmap - Microsoft · 2019. 11. 27. · Microsoft PowerPoint - REMME...

  • Hydrogen Roadmap

    Analytical approach of theAnalytical approach of the supply side modelling

    Uwe Remme

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps© OECD/IEA 2013

    Low‐carbon energy technology roadmapsJuly 9, 2013

  • S l id d lliSupply‐side modellingETP‐TIMES

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps16‐Jul‐13

  • ETP modelling frameworkgEnergy costs

    Primary energy

    Conversion sectors

    Final energyEnd-use sectors

    End-use service demands

    Electricity production Material

    demands

    Fossil

    Renewables

    Refineries

    Synfuelplants

    ElectricityGasoline

    DieselNatural

    gas

    Industry

    Buildings

    demands

    Heating

    Cooling

    Passenger

    Nuclear

    p

    CHP and heat plants

    etc.

    gHeatetc.

    Transport

    Passengertravel

    Freight

    etc. MoMo

    Model horizon: 2009‐2050 (2075) in 5 year periods

    ETP-TIMES model

    MoMomodel

    Energy demand

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps16‐Jul‐13

  • Regional structure of ETP‐TIMESg

    • 28 model regions representing individual countries or aggregations of countries• Only one geographic point per model region; differentiation within a single region, e.g. through different resource categories

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps16‐Jul‐13

    g g

  • Structure of supply side model (ETP TIMES)(ETP‐TIMES)

    Fuel costs Technical and economic characteristics Electricity and heat demands

    H2

    Potentials

    Load curves

    2

    H2

    H2Electricity prices

    Fuel demand

    Emissions

    • Least‐cost optimisation approach• Methodology developed by ETSAP (Energy Technology Systems Analysis Programme) implementing 

    agreement of the IEA

    Generation mix, new capacities

    Electricity pricesAverage generation costs

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps16‐Jul‐13

    g

  • Hydrogen supply options

    Centralisedhydrogen production

    y g pp y p

    hydrogen production

    Pyrolysis/Gasifier/Reformer

    with and without CCS

    Natural gasHeavy fuel oilCoalBiomass

    H2 distribution

    Natural gas pipeline

    Natural gas use

    H2 use in transport,

    max. 10%

    Sulfur/Iodine cycle

    Electrolysis

    NuclearSolar

    Electricity

    H2 pipeline

    H2 storage

    transport,industry, buildings,electricity  generation,refining

    Decentralisedhydrogen production

    Electrolysis at fuel stationElectricity H2 gas storage

    Reformer at fuel stationNatural gas

    Reformer/Gasifierat refinery

    Natural gasHeavy fuel oil

    H2 use in refining

    LH2 storageH2 use in transport

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps16‐Jul‐13

  • Hydrogen supply costs in comparison t th f lto other fuels

    H2 electrolysisH2 electrolysis

    H2 l ith CCS

    H2 natural gas

    H2 natural gas with CCS

    H2 biomass

    H2 biomass with CCS

    2050 USD 150/tCO2

    H2 natural gas with CCS

    H2 biomass

    H2 biomass with CCS

    y

    BTL with CCS

    Lignocellulosic ethanol

    Lignocellulosic ethanol (CCS)

    H2 coal

    H2 coal with CCS

    2050 USD 100/tCO2

    2050 USD 50/tCO2H2 coal

    H2 coal with CCS

    H2 natural gas

    2050USD 150/tCO2

    CTL with CCS

    GTL

    GTL with CCS

    BTL

    BTL with CCS

    2050 USD 0/tCO2

    2050 USD 150/tCO2

    2050 USD 100/tCO2

    2050 USD 50/tCO2

    2050USD 0/tCO2

    0 50 100 150 200 250 300

    Diesel

    CTL

    2010 USD/bbl

    2010

    2050 USD 0/tCO2

    2010

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps

  • Global hydrogen supply in the 2DSy g pp y

    5

    3

    4Natural gas

    Electricity

    2

    3

    EJ

    Electricity

    Biomass with CCS

    0

    1

    2009 2020 2030 2040 2050

    Biomass

    N t C ti ti t fi i d h i l l t t i l d d

    Hydrogen may become an attractive storage option for surplus electricity from variable renewables by 2050

    Note: Captive  generation at refineries and chemical plants not included.

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps

  • Energy storage

    First hydrogen balloon flight by Jacques Charles  and Nicolas Robert in Paris on 1 December,  !783.

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps16‐Jul‐13

  • The way electricity is producedh i 2DSchanges in a 2DS

    40 00045 000 Other

    Wind 19%100%

    4DS

    15 00020 00025 00030 00035 000

    TWh

    WindSolarHydroNuclearBiomass and wasteOil

    67%

    3%

    13%

    12%

    36%

    40%

    60%

    80%RenewablesNuclearFossil w CCSFossil w/o CCS

    45 000 Other 100%

     05 00010 000

    2009 2020 2030 2040 2050

    OilGasCoal

    49%

    0%

    20%

    2009 2050

    20 00025 00030 00035 00040 000

    TWh

    WindSolarHydroNuclearBi d t

    13%

    19%

    57%

    40%

    60%

    80%RenewablesNuclearFossil w CCS

    2DS

     05 00010 00015 000

    2009 2020 2030 2040 2050

    Biomass and wasteOilGasCoal

    67%

    9%

    14%

    19%

    0%

    20%

    40%

    2009 2050

    Fossil w/o CCS

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps16‐Jul‐13

  • …but also electricity consumption hchanges

    Global LDV sales in the 2DS

    150

    200 FCEV

    Electricity

    Plug in hybrid diesel

    Fuel Cell Electric Vehicles

    llion

    )

    Global LDV sales in the 2DS

    100

    150 Plug-in hybrid diesel

    Plug-in hybrid gasoline

    Diesel hybrid

    V s

    ales

    (mil

    50

    Gasoline hybrid

    CNG/LPG

    Dieselseng

    er L

    DV

    02000 2010 2020 2030 2040 2050

    GasolinePas

    s

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps

  • Electricity generation Transport

    Rail

    EV/PHEV

    Elec

    Fossil

    Nuclear

    i bl blSystems 

    G2V

    V2G

    Heat

    H2 FC

    H2/SNG

    Industry

    Variable renewables

    Dispatchablerenewablesthinking is 

    needed N ti DSMCHP

    H2 FC

    CNG vehiclesH2/SNG

    y

    Chloralkali electrolysis

    Aluminium electrolysis

    Electric arc furnace

    neededElectricity storageP d t

    Positive DSM

    Negative DSMFossil

    Renewables

    Heat boiler

    Buildings

    Electric appliances

    Pumped storage

    CAES

    Heat storage Negative DSM

    Process steam

    Electric water boilers

    Heat pumps

    Positive DSM

    District heating

    Fuel productionElectrolysis

    Methanisation

    Gas boilers

    Desalination

    District heat boilers

    Fuel storageGas storage

    H2 storage

    g

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps

  • Storage technologies are differentg g

    1 year

    Hi h t thou

    rs

    1 month

    1 week

    1 day

    Hydrogen/gas storageCAES

    Pumped storage

    Lithium‐ion battery

    Lead‐acid battery

    High‐temperature  batteries

    age tim

    e in h 1 day

    1 hour

    Superconductive energy storage

    Double‐layer capacitor

    Flywheel storage

    Stora

    1 minute

    Source: Schegner, Vor‐ und Nachteile verschiedener Prinzipien der Speicherung elektrischer Energie, 2012

    Superconductive energy storagey g

    Installed capacity

    1 second

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps

    Speicherung elektrischer Energie, 2012

  • Comparison of storage cycle costs: D il iDaily operation

    1 GW for 8h (8 GWh), 1 cycle per day( ), y p y

    Hydrogen

    CAES(adiabatic)

    > 10 years todaytoday

    Pumped storage depending on location

    > 10 years

    Costs (Euro Cent/kWh)

    p g

    Source: VDE‐Study: Energy storage in power supply systems with a high share of renewable energy sources 

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps

  • Comparison of storage cycle costs: W kl iWeekly operation

    500 MW for 200h (100 GWh), 2 cycles per month( ), y p

    Hydrogen

    CAES(adiabatic)

    > 10 years today

    ( )

    Pumped storage

    > 10 years today

    depending on location

    Costs (Euro Cent/kWh)

    depending on location

    Source: VDE‐Study: Energy storage in power supply systems with a high share of renewable energy sources 

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps

  • Energy storage analysisgy g y

    • Enhanced ETP‐TIMES model (long‐term; horizon up to 2050):– 4h‐load segments for a typical day (6 per day, four typical days per year)– Large‐scale storage: electricity, thermal, hydrogen– Considering other flexibility options for the electricity system:

    • Flexible generation technologiesI l i f d d V2G• Inclusion of demand response, e.g. V2G

    – Investment decisions in generation technologies and first estimate on storage needs; better capturing impact of operational aspects on capacity needs

    • Dedicated TIMES model for operational analysis (short‐term; one year):– 1h‐timeslice resolution

    Analysing operation of electricity system within a year for specific region with– Analysing operation of electricity system within a year for specific region with investment decisions for generation technologies from long‐term model

    – Additional operational constraints (ramp‐up/‐down, min load, min up/down times)– Improved analysis on storage needs and role of competing flexibility options

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps

  • Fuel supply Electricity plants (only) Transmission and distribution

    l l l

    Transport        

    Rail

    Flexible generation Stronger grids

    Demand sidemanagement

    DSM

    Variable renewables

    Dispatchablerenewables

    Fossil supply

    Nuclear supply

    Transmission and distribution

    Fossil

    Nuclear

    Buildings       

    EV/PHEV

    Elec. appliances

    DSM

    Fossil

    Renewables

    Public CHP & heat plants

    Autoproducer CHP

    Renewable supply

    District heat grid

    Industry 

    Elec. water boiler + storage

    Heat pumps…

    DSM

    Fossil

    Renewables

    Autoproducer CHP and heat plants

    Chloralkali electrolysis

    Aluminium electrolysis

    Electric arc furnace

    Compressed air

    Process heat

    Electricity storagePumped storage

    CAES

    District heat storage

    P h t t

    Energy storage

    Modelling of the electricity sector

    Process heat storage

    H2 electrolysis + storage H2 uses

    Elec. DH boilersFlexible uses in conversion sector

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps

  • Challenges of the H2 analysis on the l idsupply side

    • Lack of complete information on captive (on‐site) generation at fi i d h i l l t t drefineries and chemical plants today

    • Development of H2‐related technologies in terms of their technical and economic characteristics as well as scale

    • H infrastructure: spatial and scale aspects only covered to some• H2 infrastructure: spatial and scale aspects only covered to some degree in global ETP‐TIMES model, possible approaches:– Expanding transport infrastructure model– Relying on existing national studiesRelying on existing national studies

    • H2 as flexibility option for the electricity sector: – Assessing synergies with storage needs for end‐use consumption– Role of natural gas infrastructure (power‐to‐gas) g (p g )– Competing options for flexibility (flexible generation, other storage 

    technologies, demand response, larger balancing area)

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps

  • Thank you!Thank you!

    Uwe Remme

    [email protected]

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps16‐Jul‐13

  • Example: Variability of windp y25

    Wh

    Wind generation in Germany in 2011d

    20

    GW Wind generation in Germany in 2011 Wind generation 2011

    Average annual wind generation

    Wind as base load incl. storage losses

    10

    15

    Transforming variable wind generation of 2011 in constant base load generation would require a

    5

    load generation would require a storage capacity of 3 TWh (largely based on long‐term H2 storage) 

    For comparison: around 0.040 TWhof pumped storage capacity today

    00 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

    HoursData source: EEX Transparency

    Theoretical example, as other flexibility options, notably flexible generation, are not considered

    © OECD/IEA 2013

    Low-carbon energy technology roadmaps16‐Jul‐13