References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker,...

16
References 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’ Proceedings of IEEE 55(11), 1801–1809, 1967 2. W.F. Tinney, Some examples of sparse matrix methods for power system problems, Proceed- ings of Power Systems Computation Conference (PSCC), Rome, June 23–27, 1969 3. W.F. Tinney, V. Brandwajn, S.M. Chen, ‘‘Sparse vector methods,’’ IEEE Transactions on Power Apparatus and Systems, 104, 295–301, 1985 4. G.W. Stagg, A.H. El-Abiad, Computer Methods in Power Systems, McGraw Hill, New York, 1968 5. R.G. Andreich, H.E. Brown, H.H. Happ, C.E. Person, ‘‘The piecewise solution of the imped- ance matrix load flow,’’ IEEE Transactions on Power Apparatus and Systems, 87(10), 1877– 1882, 1968 6. W.F. Tinney, C.E. Hart, ‘‘Power flow solution by Newton’s method,’’ IEEE Transactions on Power Apparatus and Systems 86(4), 1449–1460, 1967 7. W.F. Tinney, ‘‘Compensation methods for network solutions by optimal ordered triangular factorization,’’ IEEE Transactions on Power Apparatus and Systems, 91(1), 123–127, 1972 8. B. Scott, O. Alsac, ‘‘Fast decoupled load flow,’’ IEEE Transactions on Power Apparatus and Systems, 93(3), 859–869, 1974 9. R. Van Amerongen, ‘‘A general-purpose version of the fast decoupled load flow,’’ IEEE Transactions on Power Systems, 4(2), 760–770, 1989 10. A. Monticeli, O.R. Savendra, ‘‘Fast decoupled load flow: Hypothesis, derivations, and test- ing,’’ IEEE Transactions on Power Systems, 5(4), 1425–1431, 1990 11. L. Wang, X. Rong Li, ‘‘Robust fast decoupled power flow,’’ IEEE Transactions on Power Systems, 15(1), 208–215, 2000 12. V.M. da Costa, N. Martins, J.L. Pereira, ‘‘Developments in the Newton Raphson power flow formulation based on current injections,’’ IEEE Transactions on Power Systems, 14(4), 1320–1326, 1999 13. A. Semlyen, F. de Leon, ‘‘Quasi-Newton power flow using partial Jacobian updates,’’ IEEE Transactions on Power Systems, 16(3), 332–339, 2001 14. V.H. Quintana, N. Muller, ‘‘Studies of load flow method in polar and rectangular coordinates,’’ Electric Power System Research, 20(1), 225–235, 1991 15. R.P. Klump, T. J. Overbye, ‘‘Techniques for improving power flow convergence,’’ Proceed- ings of PES Summer Meeting, Seattle, USA, vol. 1, July 2000 16. K.L. Lo, Y.J. Lin, W.H. Siew, ‘‘Fuzzy-logic method for adjustment of variable parameters in load flow calculation,’’ IEE Proceedings of Generation Transmission Distribution, 146(3), 276–282, 1999 17. W.L. Chan, A.T.P. So, L.L. Lai, ‘‘Initial applications of complex artificial neural networks to load-flow analysis,’’ IEE Proceedings of Generation Transmission Distribution, 147(6), 361–366, 2000 543

Transcript of References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker,...

Page 1: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

References

1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered

triangular factorization,’’ Proceedings of IEEE 55(11), 1801–1809, 1967

2. W.F. Tinney, Some examples of sparse matrix methods for power system problems, Proceed-ings of Power Systems Computation Conference (PSCC), Rome, June 23–27, 1969

3. W.F. Tinney, V. Brandwajn, S.M. Chen, ‘‘Sparse vector methods,’’ IEEE Transactions onPower Apparatus and Systems, 104, 295–301, 1985

4. G.W. Stagg, A.H. El-Abiad, Computer Methods in Power Systems, McGraw Hill, New York,

1968

5. R.G. Andreich, H.E. Brown, H.H. Happ, C.E. Person, ‘‘The piecewise solution of the imped-

ance matrix load flow,’’ IEEE Transactions on Power Apparatus and Systems, 87(10), 1877–1882, 1968

6. W.F. Tinney, C.E. Hart, ‘‘Power flow solution by Newton’s method,’’ IEEE Transactions onPower Apparatus and Systems 86(4), 1449–1460, 1967

7. W.F. Tinney, ‘‘Compensation methods for network solutions by optimal ordered triangular

factorization,’’ IEEE Transactions on Power Apparatus and Systems, 91(1), 123–127, 19728. B. Scott, O. Alsac, ‘‘Fast decoupled load flow,’’ IEEE Transactions on Power Apparatus and

Systems, 93(3), 859–869, 19749. R. Van Amerongen, ‘‘A general-purpose version of the fast decoupled load flow,’’ IEEE

Transactions on Power Systems, 4(2), 760–770, 198910. A. Monticeli, O.R. Savendra, ‘‘Fast decoupled load flow: Hypothesis, derivations, and test-

ing,’’ IEEE Transactions on Power Systems, 5(4), 1425–1431, 199011. L. Wang, X. Rong Li, ‘‘Robust fast decoupled power flow,’’ IEEE Transactions on Power

Systems, 15(1), 208–215, 200012. V.M. da Costa, N. Martins, J.L. Pereira, ‘‘Developments in the Newton Raphson power

flow formulation based on current injections,’’ IEEE Transactions on Power Systems, 14(4),1320–1326, 1999

13. A. Semlyen, F. de Leon, ‘‘Quasi-Newton power flow using partial Jacobian updates,’’ IEEETransactions on Power Systems, 16(3), 332–339, 2001

14. V.H. Quintana, N. Muller, ‘‘Studies of load flow method in polar and rectangular coordinates,’’

Electric Power System Research, 20(1), 225–235, 199115. R.P. Klump, T. J. Overbye, ‘‘Techniques for improving power flow convergence,’’ Proceed-

ings of PES Summer Meeting, Seattle, USA, vol. 1, July 2000

16. K.L. Lo, Y.J. Lin, W.H. Siew, ‘‘Fuzzy-logic method for adjustment of variable parameters in

load flow calculation,’’ IEE Proceedings of Generation Transmission Distribution, 146(3),276–282, 1999

17. W.L. Chan, A.T.P. So, L.L. Lai, ‘‘Initial applications of complex artificial neural networks to

load-flow analysis,’’ IEE Proceedings of Generation Transmission Distribution, 147(6),

361–366, 2000

543

Page 2: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

18. T. Nguyen, ‘‘Neural network load-flow,’’ IEE Proceedings of Generation TransmissionDistribution, 142(1), 51–58, 1995

19. K.P. Wong, A. Li, T.M.Y. Law, ‘‘Advanced constrained genetic algorithm load flow method,’’

Proceedings of Generation Transmission Distribution, 146(6), 609–616, 199920. P.K. Mannava, L. Teeslink, A.R. Hasan, ‘‘Evaluation of efficiency of parallelization of power

flow algorithms,’’ Proceedings of the 40th Midwest Symposium on Circuit and Systems,Sacramento, California, USA, August 1997, pp. 127–130

21. N. balu, T. Bertram, A. Bose, et al, ‘‘On-Line power system security analysis,’’ Proceedingsof the IEEE, 80, 262–282, 1992

22. J. Carpentier, ‘‘Static security assessment and control: A short survey,’’ IEEE/NTUA Athens

Power Tech Conference on Planning, Operation and Control of Today’s Electric Power

Systems’’, Athens, Greece, September 5–8, 1993, pp. 1–9

23. B. Stott, O. Alsac, F.L. Alvarado, ‘‘Analytical and computational improvement in perfor-

mance index raking algorithm for networks,’’ International Journal of Electrical Power andEnergy Systems, 7(3), 154–160, 1985

24. T.A. Mikolinas, B.F. Wollenberg, ‘‘An advanced contingency selection algorithm,’’ IEEETransactions on Power Apparatus and Systems, 100(2), 608–617, 1981

25. V. Brandwajn, ‘‘Efficient bounding method for linear contingency analysis,’’ IEEE Transac-tions on Power Systems, 3(2), 726–733, 1988

26. R. Bacher, W.F. Tinney, ‘‘Faster local power flow solutions: The zero mismatch approach,’’

IEEE Transactions on Power Systems, 4(4), 1345–1354, 198927. W.P. Luan, K.L. Lo, Y.X. Yu, ‘‘NN-based pattern recognition technique for power system

security assessment,’’ Proceedings of the International Conference on Electric Utility Dereg-ulation and Restructuring and Power Technologies, London, April 2000

28. Task Force on Probabilistic Aspects of Reliability Criteria of the IEEE PES Reliability, Risk

and Probability Applications Subcommittee, ‘‘Probabilistic security assessment for power

system operations’’, IEEE PES General Meeting, Denver, USA, June 6–10, 2004

29. A.M. Leite da Silva, L.C. Resende, L.A.F. Manso, et al, ‘‘Well-being analysis for composite

generation and transmission systems’’, IEEE Transactions on Power Systems, 19(4),

1763–1770, 2004

30. R. Billinton, R.N. Allan, Reliability evaluation of Large Electric Power Systems, Kluwer,Boston, 1988

31. R. Billinton, R. Allan, Reliability Evaluation of Power Systems, Plenum Press, New York,

1996

32. X. Wang, J. McDonald, Modern Power System Planning, McGraw-Hill, London, 1994, pp.

108–110

33. R. Billinton, W. Li, Reliability Evaluation of Electric Power Systems using Monte CarloMethods, Plenum Press, New York, 1994

34. A.M. Leite de Silva, S.M.P. Ribeiro, V.L. Arienti, et al., ‘‘Probabilistic load flow techniques

applied to power system expansion planning’’, IEEE Transactions on Power Systems, 5(4),1047–1053, 1990

35. P. Zhang, S.T. Lee, ‘‘Probabilistic load flow computation using the method of combined

cumulants and Gram-Charlier expansion’’, IEEE Transactions on Power Systems, 19(1),676–682, 2004

36. Z. Hu, X. Wang, ‘‘A probabilistic load flow method considering branch outages,’’ IEEETransactions on Power Systems, 21(2), 507–514, 2006

37. K. Maurice, S. Alan, The Advanced Theory of Statistics, vol. 1, Macmillan, USA, 1977

38. J.C. Spall, ‘‘Estimation via Markov chain Monte Carlo,’’ IEEE Control System Magazine, 23(2), 35–45, 2003

39. R. Chen, J.S. Liu, X. Wang, ‘‘Convergence analyses and comparisons of Markov chain Monte

Carlo algorithms in digital communications,’’ IEEE Transactions on Signal Processing, 50(2),255–270, 2002

544 References

Page 3: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

40. Reliability Test System Task Force, ‘‘IEEE reliability test system,’’ IEEE Transactions onPower System, 14(3), 1010–1020, 1999

41. R. Von Mises,Mathematical Theory of Probability and Statistics, Academic Press, New York,

1964

42. P.A. Jensen, J.W. Barnes, Network-Flow Programming, Wiley, New York, 1980

43. Y.K. Lin, ‘‘Reliability of a stochastic flow network with unreliable branches and nodes, under

budget constraints,’’ IEEE Transactions on Reliability, 53(3), 381–387, 200444. D. Maagee, A. Refsum, ‘‘RESIN, A desktop-computer program for finding cut set’’, IEEE

Transactions on Reliability, 30(5), 407–410, 198145. K. Kobayashi, H. Yamamoto, ‘‘A new algorithm in enumerating all minimal paths in a sparse

network’’, Reliability Engineering and System Safety, 65(1), 11–15, 199946. S. Ross, Introduction to Probability Models, Academic Press, NewYork, 2006

47. X. Wang, C. Pottle, ‘‘A concise frequency and duration approach to generating system

reliability studies’’, IEEE Transactions on Power Amplifier Symposium, 102(8), 2521–2530,

1983

48. F.A. Rahimi, A. Vojdani, ‘‘Meet the emerging transmission market segments’’, IEEE

Computer Application in Power, 12(1), 26–32, 1999

49. F.C. Schweppe, M.C. Caramanis, R.D. Tabors, et al, Spot Pricing of Electricity, Kluwer,Boston, 1988

50. J. Carpentier, ‘‘Contribution a’1’etude du dispatching economique,’’ Bulletin de la Societe

Francaise des Electricients, 3, 431–447, 1962

51. H.W. Dommel, W.F. Tinney, ‘‘Optimal power flow solutions,’’ IEEE Transactions on PowerApparatus and Systems, 87(12), 1866–1876, 1968

52. A.M. Sasson, ‘‘Combined use of the parallel and fletcher-powell non-linear programming

methods for optimal load flows,’’ IEEE Transactions on Power Apparatus and Systems, 88(10), 1530–1537, 1969

53. A.M. Sasson, ‘‘Decomposition technique applied to the non-linear programming load flow

method,’’ IEEE Transactions on Power Apparatus and Systems, 89(1), 78–82, 197054. R. Divi, H.K. Kesavan, ‘‘A shifted penalty function approach for optimal power flow,’’ IEEE

Transactions on Power Apparatus and Systems, 101(9), 3502–3512, 198255. S.N. Talukdar, T.C. Giras, V.K. Kalyan, ‘‘Decompositions for optimal power flows,’’ IEEE

Transactions on Power Apparatus and Systems, 102(12), 3877–3884, 198356. G.F. Reid, L. Hasdorf, ‘‘Economic dispatch using quadratic programming,’’ IEEE Transac-

tions on Power Apparatus and Systems, 92, 2015–2023, 197357. R.C. Burchett, H.H. Happ, D.R. Vierath, ‘‘Quadratically convergent optimal power flow,’’

IEEE Transactions on Power Apparatus and Systems, 103, 3267–3276, 198458. D.W. Wells, ‘‘Method for economic secure loading of a power systems,’’ Proceedings of

IEEE, 115(8), 606–614, 196859. C.M. Shen, M.A. Laughton, ‘‘Power system load scheduling with security constraints using

dual linear programming,’’ Proceedings of IEEE, 117(1), 2117–2127, 197060. N. Nabona, L.L. Ferris, ‘‘Optimization of economic dispatch through quadratic and linear

programming,’’ Proceedings of IEEE, 120(5), 197361. Z. Yan, N.D. Xiang, B.M. Zhang, et al, ‘‘A hybrid decoupled approach to optimal power

flow,’’ IEEE on Power Systems, 11(2), 947–954, 199662. K.R. Frish, ‘‘Principles of linear programming: The double gradient form of the logarithmic

potential method,’’ Memorandum, Institute of Economics, University of Oslo, Oslo, Norway,

1954

63. P. Huard, ‘‘Resolution of mathematical programming with nonlinear constraints by the

method of centers,’’ Nonlinear Programming, 209–219, 196764. I.I. Dikin, ‘‘Iterative solution of problems of linear and quadratic programming,’’ Soviet

Mathematics, 8, 674–675, 196765. N. Karmarkar, ‘‘A new polynomial-time algorithm for linear programming,’’ Combinatorica,

4, 373–395, 1984

References 545

Page 4: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

66. P.E. Gill, W. Murray, M.A. Saunders, et al, ‘‘On the projected newton barrier methods for

linear programming and an equivalence to karmarkar’s projective method,’’ MathematicalProgramming, 36, 183–209, 1986

67. X. Guan, W.H. Edwin Liu, A.D. Papalexopoulos, ‘‘Application of a fuzzy set method in an

optimal power flow,’’ Electric Power Systems Research, 34(1), 11–18, 199568. Y.T. Hsiao, C.C. Liu, H.D. Chiang, et al, ‘‘A new approach for optimal VAR sources planning

in large scale electric power systems,’’ IEEE Transactions on Power Systems, 8(3), 988–996,1993

69. K.R. Frisch, ‘‘The Logarithmic Potential Method for Convex Programming,’’ Memorandum,

Institute of Economics, University of Oslo, Norway, May, 1955

70. A.V. Fiacco, G.P. MoCormic, Nonlinear Programming: Sequential Unconstrained Minimiza-tion Techniques, Wiley, New York, 1968

71. H. Wei, H. Sasaki, J. Kubokawa, et al, ‘‘An interior point nonlinear programming for optimal

power flow problems with a novel data structure,’’ IEEE Transactions on Power Systems, 13(3), 870–877, 1998

72. F.C. Schweppe, M.C. Caramanis, R.D. Tabors, et al, ‘‘Spot Pricing of Electricity,’’ Kluwer,Boston, 1988

73. M.C. Carmanis, R.E. Bohn, F.C. Schweppe, ‘‘Optimal spot pricing: Practice and theory,’’

IEEE Transactions on Power Apparatus and Systems, 101(9), 3234–3245, 198274. M.C. Carmanis, R.E. Bohn, F.C. Schweppe, ‘‘The costs of wheeling and optimal wheeling

rates,’’ IEEE Transactions on Power Systems, 1(1), 63–73, 198675. D. Ray, F. Alvarado, ‘‘Use of an engineering model for economic analysis in the electricity

utility industry,’’ The Advanced Workshop on Regulation and Public Utility Economics,Rutgers University, New Jersey, May 25–27, 1988

76. M.L. Baughman, S.N. Siddiqi, ‘‘Real time pricing of reactive power: theory and case study

result,’’ IEEE Transactions on Power Systems, 6(1), 23–29, 199177. S.N. Siddiqi, M.L. Baughman, ‘‘Reliability differentiated pricing of spinning reserve,’’ IEEE

Transactions on Power Systems, 10(3), 1211–1218, 199378. A. Zobian, M.D. llic, ‘‘Unbundling of transmission and ancillary services,’’ IEEE Transactions

on Power systems, 12(2), 539–558, 199779. M.L. Baughman, S.N. Siddiqi, J.M. Zarnikau, ‘‘Advanced pricing in electrical system. Part 1:

Theory,’’ IEEE Transactions on Power Systems, 12(1), 489–495, 199780. M.L. Baughman, S.N. Siddiqi, J.M. Zarnikau, ‘‘Advanced pricing in electrical system. Part 2:

Implication,’’ IEEE Transactions on Power Systems, 12(1), 496–502, 199781. K. Xie, Y.H. Song, J. Stonham, et al, ‘‘Decomposition model and interior point methods for

optimal spot pricing of electricity in deregulation environments,’’ IEEE Transactions onPower Systems, 15(1), 39–50, 2000

82. C.N. Yu, M.D. Ilic, ‘‘An algorithm for implementing transmission rights in competitive power

industry,’’ IEEE Power Engineering Society Winter Meeting, 3, 1708–1714, 200083. X. Wang, Y.H. Song, Q. Lu, et al, ‘‘Series FACTS devices in financial transmission rights

auction for congestion management,’’ IEEE Power Engineering Review, 21(11), 41–44, 200184. R. Bacher, H. Glavitsch, ‘‘Loss reduction by network switching,’’ IEEE Transactions on

Power Systems, 3(2), 447–454, 198885. R. Baldick, E. Kahn, ‘‘Contract paths, phase shifters and efficient electricity trade,’’ IEEE

Power Engineering Society Winter Meeting, 2, 968–974, 200086. S.Y. Ge, T.S. Chung, Y.K. Wong, ‘‘A new method to incorporate FACTS devices in optimal

power flow,’’ Proceedings of International Conference on Energy Management and PowerDelivery, 1, 122–271, 1998

87. X. Wang, Y.H. Song, Q. Lu, ‘‘Primal-dual interior point linear programming optimal power

flow for real-time congestion management,’’ IEEE Power Engineering Society WinterMeeting, 3, 1643–1649, 2000

88. G. Hamoud, ‘‘Assessment of available transfer capability of transmission system,’’ IEEETransactions on Power System, 15(1), 27–32, 2000

546 References

Page 5: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

89. X. Luo, A.D. Patton, C. Singh, ‘‘Real power transfer capability calculations using multi-layer

feed-forward neutral networks,’’ IEEE Transactions on Power Systems, 15(2), 903–908,2000

90. M. Pavella, D. Ruiz-Vega, J. Giri, et al, ‘‘An integrated scheme for on-line static and transient

stability constrained ATC calculations,’’ IEEE Power Engineering Society Summer Meeting,1, 273–276, 1999

91. D.S. Kirschen, R.N. Allan, G. Strbac, ‘‘Contributions of individual generators to loads and

flows’’, IEEE Transactions on Power Systems, 12(1), 52–60, 199792. X. Wang, X. Wang, ‘‘On current trace problem’’, Science in China (E), 30(3), 405–412, 200093. J. Bialek, ‘‘Topological generation and load distribution factors for supplement cost allocation

in transmission open access’’, IEEE Transactions on Power Systems, 12(3), 1185–1193, 199794. D.S. Kirschen, G. Strbac, ‘‘Tracing active and reactive power between generators and

loads using real and imaginary currents,’’ IEEE Transactions on Power Systems, 14(4),1312–1319, 1999

95. Reliability Test System Task Force, ‘‘IEEE reliability test system-1996,’’ IEEE Transactionson Power Systems, 14(3), 1010–1020, 1999

96. Federal Energy Regulatory Commission, ‘‘Open access same-time information system (For-

merly Real-time Information Networks) and standards of conduct,’’ Docket no. RM95-9-000,

Order 889, 1996

97. North American Electric Reliability Council, ‘‘Available transfer capability definition and

determination’’, NERC Planning Standards, June 1996

98. G. Hamoud, ‘‘Assessment of available transfer capability of transmission system,’’ IEEETransactions on Power Systems, 15(1), 27–32, 2000

99. G.C. Ejebe, J.G. Waight, M. Sanots-Nieto, et al, ‘‘Available transfer capability calculations,’’

IEEE Transactions on Power Systems, 13(4), 1521–1527, 1998100. X. Luo, A.D. Patton, C. Singh, ‘‘Real power transfer capability calculations using multi-layer

feed-forward neural networks,’’ IEEE Transactions on Power Systems, 15(2), 903–908, 2000101. G.C. Ejebe, J.G. Waight, M.S. Nieto, W.F. Tinney, ‘‘Fast calculation of linear available

transfer capability,’’ IEEE Transactions on Power Systems, 15(3), 1112–1116, 2000102. M. Shaaban, Y. Ni, F. Wu, ‘‘Total transfer capability calculations for competitive power

networks using genetic algorithms,’’ Proceedings of International Conference on DRPT, CityUniversity, London, April 4–7, 2000

103. A.R. Vojdani, ‘‘Computing available transmission capability using trace,’’ EPRI PowerSystem Planning and Operation News, 1, 1, 1995

104. Y. Xiao, Y.H. Song, ‘‘Available transfer capability (ATC) evaluation by stochastic program-

ming,’’ IEEE Power Engineering Review, 20(9), 50–52, 2000105. F. Xia, A.P.S. Meliopoulos, ‘‘A methodology for probabilistic simultaneous transfer capability

analysis,’’ IEEE Transactions on Power Systems, 11(3), 1269–1278, 1996106. A.B. Rodrigues, M.G. Da Silva, ‘‘Solution of simultaneous transfer capability problem by

means of Monte Carlo simulation and primal-dual interior-point method,’’ Proceedings of

PowerCon International Conference, 2, 1047–1052, 2000

107. X.F. Wang, C.J. Cao, Z.C. Zhou, Experiment on fractional frequency transmission system,

IEEE Transactions on Power Systems, 21(1), 372–377, 2006108. N.G. Higorani, ‘‘Power electronics in electric utilities: Role of power electronics in future

power systems,’’ Proceedings of IEEE, 76(4), 481–482, 1988

109. L. Gyugyi, ‘‘Dynamic compensation of AC transmission lines by solid-state synchronous

voltage source,’’ IEEE Transactions on Power Delivery, 9(2), 904–911, 1994110. A.A. Edris, R. Aapa, M.H. Baker, et al, ‘‘Proposed terms and definitions for flexible AC

transmission system (FACTS),’’ IEEE Transactions on Power Delivery, 12(4), 1848–1853,1997

111. D.A. Braunagel, L.A. Kraft, J.L. Whysong, ‘‘Inclusion of DC converter and transmission

equation directly in a Newton power flow,’’ IEEE Transactions on Power Apparatus andSystems, 95(1), 76–88, 1976

References 547

Page 6: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

112. J. Arrillaga, P. Bodger, ‘‘Integration of HVDC links with fast decoupled load flow solutions,’’

Proceedings of IEE, 124(5), 463–468, 1977113. J. Arrillaga, B. Smith, AC-DC Power System Analysis, The Institute of Electrical Engineers,

UK, 1998

114. J. Reeve, G. Fahmy, B. Stott, ‘‘Versatile load flow method for multiterminal HVDC sys-

tems,’’ IEEE Transactions on Power Apparatus and Systems, 96(3), 925–932, 1977115. H. Fudeh, C.M. Ong, ‘‘A simple and efficient AC-DC load flow method for miltiterminal DC

systems,’’ IEEE Transactions on Power Apparatus and Systems, 100(11), 4389–4396, 1981116. J. Arrillaga, C.P. Arnold, B.J. Harker, Computer Modeling of Electrical Power Systems,

Wiley, New York, 1983

117. T. Smed, G. Andersson, G.B. Sheble, L.L. Grigsby, ‘‘A new approach to AC/DC power

flow,’’ IEEE Transactions on Power Systems, 6(3), 1238–1244, 1991118. G.D. Breuer, J.F. Luini, C.C. Young, ‘‘Studies of large AC/DC systems on the digital

computer,’’ IEEE Transactions on Power Apparatus and Systems, 85(11), 1107–1115, 1966119. J.F. Clifford, A.H. Schmidt, ‘‘Digital representation of a DC transmission system and its

control,’’ IEEE Transactions on Power Apparatus and Systems, 89(1), 97–105, 1970120. N. Sato, N.V. David, S.M. Chan, A.L. Burn, J.J. Vithayathil, ‘‘Multiterminal HVDC system

representation in a transient stability program,’’ IEEE Transactions on Power Apparatus andSystems, 99(5), 1927–1936, 1980

121. Working Group 38–01, Task Force no. 2 on SVC, CIGRE Report, Static Var Compensators,Ed. by I.A. Erimnez, CIGRE, UK, 1986

122. IEEE Special Stability Controls Working Group, ‘‘Static var compensator models for power

flow and dynamic performance simulation’’, IEEE Transactions on Power Systems, 9(1),229–240, 1994

123. L. Gyugyi, N.G. Hinggorani, P.R. Nannery, et al, ‘‘Advanced static var compensator using

gate turn-off thyristors for utilities applications,’’ CIGRE Session, 1990, pp. 23–203124. Y. Sumi, Y. Harumoto, T. Hasegawa, et al, ‘‘New static var control using force-commutated

inverters,’’ IEEE Transactions on Power Apparatus and Systems, 100(9), 4216–4224, 1981125. C.W. Edwards, P.R. Nannery, ‘‘Advanced static var generator employing GTO thyristors,’’

IEEE Transactions on Power Delivery, 3(4), 1622–1627, 1988126. C. Schauder, M. Gernhardt, E. Stacey, et al, ‘‘Development of a �100Mvar static condensor

for voltage control of transmission systems,’’ IEEE Transactions on Power Delivery, 10(3),1486–1496, 1995

127. E.V. Larsen, K. Clark, S.A. Miske Jr., J. Urbanek, ‘‘Characteristics and rating consideration

of thyristor controlled series compensation,’’ IEEE Transactions on Power Delivery, 9(2),992–1000, 1994

128. G.G. Karady, T.H. Ortmeyer, B.R. Pilvelait, et al, ‘‘Continuously regulated series capacitor,’’

IEEE Transactions on Power Delivery, 8(3), 1348–1355, 1993129. L. Gyugyi, C.D. Schauder, K.K. Sen, ‘‘Static synchronous series compensator: A solid-state

approach to the series compensation of transmission lines,’’ IEEE Transactions on PowerDelivery, 12(1), 406–417, 1997

130. Y.H. Song, A.T. Johns, Flexible AC transmission Systems (FACTS), IEE Press, London, 1999

131. S. Nyati, M. Eitzmann, J. Kappenmann, et al, ‘‘Design issues for a single core transformer

thyristor controlled phase-angle regulator,’’ IEEE Transactions on Power Delivery, 10(4),2013–2019, 1995

132. L. Gyugyi, ‘‘A unified power flow control concept for flexible AC transmission system,’’

Fifth International Conference on AC and DC Power Transmission, London, Sept’17–20,

1991

133. A. Nabavi-Niaki, M.R. Iravani, ‘‘Steady-state and dynamic models of unified power flow

controller (UPFC) for power system studies’’, IEEE Transactions on Power Systems, 11(4),1937–1943, 1996

134. Z.X. Han, ‘‘Phase shift and power flow control’’, IEEE Transactions on Power Apparatusand Systems, 101(10), 3790–3795, 1982

548 References

Page 7: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

135. D.J. Gotham, G.T. Heydt, ‘‘Power flow control and studies for systems with FACTS

devices,’’ IEEE Transactions on Power Systems, 13(1), 60–65, 1998136. C.R. Fuerte-Esquivel, E. Acha, H. Ambriz-Prez, ‘‘A thyristor controlled series compensator

model for the power flow solution of practical power networks,’’ IEEE Transactions onPower Systems, 15(1), 58–64, 2000

137. C.R. Fuerte-Esquivel, E. Acha, H. Ambriz-Prez, ‘‘A comprehensive Newton-Raphson UPFC

for the quadratic power flow solution of practical power networks,’’ IEEE Transactions onPower Systems, 15(1), 102–109, 2000

138. H. Ambriz-Prez, E. Acha, C.R. Fuerte-Esquivel, ‘‘Advanced SVC models for Newton-

Raphson load flow and Newton optimal power flow studies,’’ IEEE Transactions on PowerSystems, 15(1), 129–946, 2000

139. C.R. Fuerte-Esquivel, E. Acha, ‘‘A Newton-type algorithm for the controlpower flow in

electrical power networks,’’ IEEE Transactions on Power Systems, 12(4), 1474–1480, 1997140. C.R. Fuerte-Esquivel, E. Acha, ‘‘Newton-Raphson algorithm for the reliable solution of

large power networks with embedded FACTS devices,’’ IEE Proceedings of Generation,Transmission and Distribution, 143(5), 447–454, 1996

141. S. Arabi, P. Kundur, ‘‘A versatile FACTS device model for power flow and stability

simulations,’’ IEEE Transactions on Power Systems, 11(4), 1944–1950, 1996142. C.R. Fuerte-Esquivel, E. Acha, ‘‘United power flow controller: A critical comparison of

Newton-Raphson UPFC algorithm in power flow studies,’’ IEE Proceedings of Generation,Transmission and Distribution, 144(5), 437–444, 1997

143. J.Y. Liu, Y.H. Song, ‘‘Strategies for handling UPFC constraints in steady-state power flow

and voltage control,’’ IEEE Transactions on Power Systems, 15(2), 566–571, 2000144. W. Fang, H.W. Ngan, ‘‘Control setting of unified power flow controllers through a robust

load flow calculation’’, Proceedings of Generation, Transmission and Distribution, 146(4),365–369, 1999

145. H. Sun, D.C. Yu, C. Luo, ‘‘A novel method of power flow analysis with Unified Power Flow

Controller (UPFC),’’ IEEE Power Engineering Society Winter Meeting, 4, 2800–2805, 2000

146. A. Blondel, ‘‘The two-reaction method for study of oscillatory phenomena in coupled

alternators’’, Revue Generale de Lelectricite, 13, 235–251, February 1923; 515–531,

March 1923

147. R.E. Doherty, C.A. Nickle, ‘‘Synchronous machines I and II’’, AIEE Transactions, 45,912–942, 1926

148. R.H. Park, ‘‘Two-reaction theory of synchronous machines: Generalized method of analysis -

Part I’’, AIEE Transactions, 48, 716–727, 1929; Part II, 52, 352–355, 1933149. C. Concordia, Synchronous Machine, Wiley, New york, 1951

150. G. Shackshaft, P.B. Henser, ‘‘Model of generator saturation for use in power system studies’’,

Proceedings of IEE, 126(8), 759–763, 1979

151. G.R. Slemon, Magnetoelectric Devices, Wiley, New York, 1966

152. A.E. Fitzgerald, C. Kingsley, Electric Machinery, 2nd Edn., McGraw-Hill, New York, 1961

153. P. Kunder, Power System Stability and Control, McGraw-Hill, New York, 1994

154. D.W. Olive, ‘‘Digital simulation of synchronous machine transients’’, IEEE Transactions onPower Apparatus and Systems, 87(8), 1968

155. M.K. El-Sherbiny, A.M. El-Serafi, ‘‘Analysis of dynamic performance of saturated machine

and analog simulation’’, IEEE Transactions on Power Apparatus and Systems, 101(7), 1899–1906, 1982

156. D.W. Olive, ‘‘New techniques for the calculation of dynamic stability’’, IEEE Transactionson Power Apparatus and Systems, 85(7), 767–777, 1966

157. T.J. Hammons, D.J. Winning, ‘‘Comparisons of synchronous machine models in the study of

the transient behaviour of electrical power systems’’, Proceedings of IEE, 118, 1442–1458,1971

158. J. Arrillage, C.P. Arnold, B.J. Harker, Computer Modeling of Electrical Power Systems,Wiley, Chichester, 1983

References 549

Page 8: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

159. IEEE Committee Report, ‘‘First benchmark model for computer simulation of subsynchro-

nous resonance’’, IEEE Transactions on Power Apparatus and Systems, 96(5), 1565–1572,1977

160. IEEE Power Engineering Society, IEEE Recommended Practice for Excitation SystemModels for Power System Stability Studies, IEEE Standards Board, New York, 1992

161. IEEE Working Group Report, ‘‘Hydraulic turbine and turbine control models for system

dynamic studies’’, IEEE Transactions on Power Systems, PWRS-7(1), 167–179, 1992

162. D.G. Ramey, J.W. Skooglund, ‘‘Detailed hydrogovernor representation for system stability

studies’’, IEEE Transactions on Power Apparatus and Systems, 89, 106–112, 1970163. M. Leum, ‘‘The development and field experience of a transistor eletric governor for hydro

turbines’’, IEEE Transactions on Power Apparatus and Systems, 85, 393–400, 1966164. IEEEWorking Group Report, ‘‘Dynamic models for fossil fueled steam units inpower system

studies’’, IEEE Transactions on Power Systems, PWRS-6(2), 753–761, 1991

165. IEEE Committee Report, ‘‘Dynamic models for steam and hydro turbines in power system

studies’’, IEEE Transactions on Power Apparatus and Systems, 92(6), 1904–1915, 1973166. P. Kundur, D.C. Lee, J.P. Bayne, ‘‘Impact of turbine generator overspeed controls on unit

performance under system disturbance conditions’’, IEEE Transactions on Power Apparatusand Systems, 104, 1262–1267, 1985

167. M.S. Baldwin, D.P. McFadden, ‘‘Power systems performance as affected by turbine-generator

controls response during frequency disturbance’’, IEEE Transactions on Power Apparatus andSystems, 100, 2846–2494, 1981

168. IEEE Task Force on Load Representation for Dynamic Performance, ‘‘Standard load models

for power flow and dynamic performance simulation’’, IEEE Transactions on PowerSystems, 10(3), 1302–1313, 1995

169. IEEE Task Force on Load Representation for Dynamic Performance, ‘‘Load representation

for dynamic performance analysis’’, IEEE Transactions on Power Systems, 8(2), 472–482,1993

170. IEEE Task Force on Load Representation for Dynamic Performance System Dynamic

Performance Subcommittee, Power System Engineering Committee, ‘‘Bibliography on

load model for power flow and dynamic performance simulation’’, IEEE Transactions onPower Systems, 10(1), 523–538, 1995

171. T. Dovan, T.S. Dillon, C.S. Berger, K.E. Forward,‘‘A microcomputer based on-line identifi-

cation approach to power system dynamic load modelling’’, IEEE Transactions on PowerSystems, 2(3), 529–536, 1987

172. C.W. Talor, ‘‘Concepts of under-voltage load shedding for voltage stability’’, IEEE Transac-tions on Power Delivery, 7(2), 480–488, 1982

173. W.S. Kao, C.J. Lin, C.T. Huang, et al, ‘‘Comparison of simulated power system dynamics

applying various load models with actual recorded data’’, IEEE Power Engineering SocietyWinter Meeting, 172–177, 1993

174. W.S. Kao, ‘‘The effect of load models on unstable low-frequency oscillation damping in

taipower system experience w/wo power system stabilizers’’, IEEE Transactions on PowerSystems, 16(3), 463–472, 2001

175. A. Borghetti, R. Caldon, A. Mari, et al, ‘‘On dynamic load models for voltage stability

studies’’, IEEE Transactions on Power Systems, 12(1), 293–303, 1997176. F. Nozari, M.D. Kankam, W.W. Price, ‘‘Aggregation of induction motors for transient

stability load modeling’’, IEEE Transactions on Power systems, 2(4), 1096–1103, 1987177. P. Kunder, Power System Stability and Control, McGraw-Hill, New York, 1994

178. P.M. Anderson, A.A. Fouad, Power System Control and Stability, The Iowa State UniversityPress, Iowa, 1977

179. J. Arrillaga, C.P. Arnold, Computer Analysis of Power Systems, Wiley, New York, 1990

180. Y.H. Song, A.T. Johns, Flexible AC Transmission Systems (FACTS), The Institution of

Electrical Engineers, London, 1999

550 References

Page 9: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

181. J.A. Momoh, M.E. El-Hawary, Electric Systems, Dynamics, and Stability with ArtificialIntelligence Applications, Marcel Dekker, New York, 2000

182. W.L. Brogan, Modern Control Theory, Prentice Hall, New Jersey, 1991

183. J.J.E. Slotine, W. Li, Applied Nonlinear Control, Prentice Hall, New Jersey, 1991

184. C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, PrenticeHall, New Jersey, 1971

185. L. Lapidus, J.H. Seinfeld, Numerical Solution of Ordinary Differential Equations, Academic

Press, New York, 1971

186. J.D. Lambert, Computational Methods in Ordinary Differential Equations, Wiley, New

York, 1973

187. J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965

188. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd Edn., The Johns Hopkins University

Press, 1996

189. G. Rogers, Power System Oscillations, Kluwer, Dordecht, 2000190. P. Kundur, G.J. Rogers, D.Y. Wong, et al, ‘‘A comprehensive computer program package for

small signal stability analysis of power systems’’, IEEE Transactions on Power Systems, 5(4), 1076–1083, 1990

191. S. Aribi, G.J. Rogers, D.Y. Wong, et al, ‘‘Small signal stability analysis of SVC and HVDC in

AC power systems’’, IEEE Transactions on Power Systems, 6(3), 1147–1153, 1991192. I.J. Perez-Arriaga, G.C. Verghese, F.C. Schweppe, ‘‘Selective modal analysis with applica-

tions to electric power systems, Part I: Heuristic introduction, Part II: The dynamic stability

problem’’, IEEE Transactions on Power Apparatus and Systems, 101(9), 3117–3134, 1982193. J.L. Sancha, I.J. Perez-Arriaga, ‘‘Selective modal analysis of electric power system

oscillatory instability’’, IEEE Transactions on Power Systems, 3(2), 429–438, 1988194. R.T. Byerly, R.J. Bennon, D.E. Sherman, ‘‘Eigenvalue analysis of synchronizing power flow

oscillations in large electric power systems’’, IEEE Transactions on Power Apparatus andSystems, 101(1), 235–243, 1982

195. N. Martins, ‘‘Efficient eigenvalue and frequency response methods applied to power system

small-signal stability studies’’, IEEE Transactions on Power Systems, 1(1), 217–226, 1986196. D.Y. Wong, G.J. Rogers, B. Porretta, P. Kundur, ‘‘Eigenvalue analysis of very large power

systems’’, IEEE Transactions on Power Systems, 3(2), 472–480, 1988197. P.W. Sauer, C. Rajagopalan, M.P. Pai, ‘‘An explanation and generalization of the AESOPS

and PEALS algorithms’’, IEEE Transactions on Power Systems, 6(1), 293–299, 1991198. N. Uchida, T. Nagao, ‘‘A new Eigen-analysis method of steady-state stability studies for

large power systems: S matrix method’’, IEEE Transactions on Power Systems, 3(2), 706–714, 1988

199. W.J. Stewart, A. Jennings, ‘‘A simultaneous iteration algorithm for real matrices’’, ACMTransactions on Mathematical Software, 7(2), 184–198, 1981

200. S. Duff, J.A. Scott, ‘‘Computing selected eigenvalues of sparse unsymmetric matrices using

subspace iteration’’, ACM Transactions on Mathematical Software, 19(2), 137–159, 1993201. J.A. Scott, ‘‘An Arnoldi code for computing selected Eigenvalues of sparse, real, unsym-

metric matrices’’, ACM Transactions on Mathematical Software, 21(4), 432–475, 1995202. A. Semlyen, L. Wang, ‘‘Sequential computation of the complete eigensystem for the study

zone in small signal stability analysis of large power systems’’, IEEE Transactions on PowerSystems, 3(2), 715–725, 1988

203. L. Wang, A. Semlyen, ‘‘Application of sparse eigenvalue techniques to the small signal

stability analysis of large power systems’’, IEEE Transactions on Power Systems, 5(4),635–642, 1990

204. D.J. Stadnicki, J.E. Van Ness, ‘‘Invariant subspace method for eigenvalue computation’’,

IEEE Transactions on Power Systems, 8(2), 572–580, 1993205. N. Mori, J. Kanno, S. Tsuzuki, ‘‘A sparsed–oriented techniques for power system small

signal stability analysis with a precondition conjugate residual method’’, IEEE Transactionson Power Systems, 8(3), 1150–1158, 1993

References 551

Page 10: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

206. G. Angelidis, A. Semlyen, ‘‘Efficient calculation of critical eigenvalue clusters in the small

signal stability analysis of large power systems’’, IEEE Transactions on Power Systems, 10(1), 427–432, 1995

207. L.T.G. Lima, L.H. Bezerra, C. Tomei, N. Martins, ‘‘New methods for fast small-signal

stability assessment of large scale power systems’’, IEEE Transactions on Power Systems,10(4), 1979–1985, 1995

208. G. Angelidis, A. Semlyen, ‘‘Improved methodologies for the calculation of critical eigenvalues

in small signal stability analysis’’, IEEE Transactions on Power Systems, 11(3), 1209–1217,1996

209. J.M. Campagnolo, N. Martins, D.M. Falcao, ‘‘Refactored bi-Iteration: A high performance

eigensolution method for large power system matrices’’, IEEE Transactions on PowerSystems, 11(3), 1228–1235, 1996

210. N. Martins, L.T.G. Lima, H.J.C.P. Pinto, ‘‘Computing dominant poles of power system

transfer functions’’, IEEE Transactions on Power Systems, 11(1), 162–1170, 1996211. N. Martins, ‘‘The dominant pole spectrum eigenslover’’, IEEE Transactions on Power

Systems, 12(1), 245–254, 1997212. J.M. Campagnolo, N. Martins, J.L.R. Pereira, et al, ‘‘Fast small-signal stability assessment

using parallel processing’’, IEEE Transactions on Power Systems, 9(2), 949–956, 1994213. J.M. Campagnolo, N. Martins, D.M. Falcao, ‘‘An efficient and robust eigenvalue method for

small-signal stability assessment in parallel computers’’, IEEE Transactions on PowerSystems, 10(1), 506–511, 1995

214. V. Ajjarapu, ‘‘Reducibility and eigenvalue sensitivity for identifying critical generations in

multimachine power systems’’, IEEE Transactions on Power Systems, 5(3), 712–719, 1990215. T. Smed, ‘‘Feasible eigenvalue sensitivity for large power systems’’, IEEE Transactions on

Power Systems, 8(2), 555–563, 1993216. H.K. Nam, Y.K. Kim, ‘‘A new eigen-sensitivity theory of augmented matrix and its applica-

tions to power system stability’’, IEEE Transactions on Power Systems, 15(1), 363–369,2000

217. K.W. Wang, C.Y. Chung, ‘‘Multimachine eigenvalue sensitivities of power system para-

meters’’, IEEE Transactions on Power Systems, 15(2), 741–747, 2000218. F.P. Demello, C. Concordia, ‘‘Concepts of synchronous machine stability as affected by

excitation control’’, IEEE Transactions on Power Apparatus and Systems, 88(4), 316–329,1969

219. P. Kunder, D.C. Lee, H.M. Zein-el-din, ‘‘Power system stabilizers for thermal units: Analyt-

ical techniques and on-site validation’’, IEEE Transactions on Power Apparatus and Sys-tems, 100(1), 81–89, 1981

220. M. Klein, G.J. Rogers, P. Kundur, ‘‘A fundamental study of inter-area oscillations in power

systems’’, IEEE Transactions on Power Systems, 6(3), 914–921, 1991221. G. Rogers, ‘‘Demystifying power system oscillations’’, IEEE Computer Application in

Power, 9(3), 30–35, 1996222. J. Hauer, D. Trudnowski, G. Rogers, et al, ‘‘Keeping an eye on power system dynamics’’,

IEEE Computer Application in Power, 10(4), 50–54, 1997223. G. Rogers, ‘‘Power system structure and oscillations’’, IEEE Computer Application in Power,

12(2), 14,16,18,20,21, 1999

224. S.K. Starrett, A.A. Fouad, ‘‘Nonlinear measures of mode-machine participation’’, IEEETransactions on Power Systems, 13(2), 389–394, 1998

225. F.L. Pagola, I.J.P. Arriaga, G.C. Verghese, ‘‘On sensitivity, residues and participations:

applications to oscillatory stability analysis and control’’, IEEE Transactions on PowerSystems, 4(1), 278–285, 1989

226. M. Klein, G.J. Rogers, S. Moorty, P. Kundur, ‘‘Analytical investigation of factors influencing

power system stabilizers performance’’, IEEE Transactions on Energy Conversion, 7(3),382–390, 1992

552 References

Page 11: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

227. P. Kundur, M. Klein, G.J. Rogers, M.S. Zywno, ‘‘Application of power system stabilizers

for enhancement of overall system stability’’, IEEE Transactions on Power Systems, 4(2),614–626, 1989

228. L. Xu, S. Ahmed-Zaid, ‘‘Tuning of power system controllers using symbolic eigensensitivity

analysis and linear programming’’, IEEE Transactions on Power Systems, 10(1), 314–322,1995

229. J.F. Hauer, F. Vakili, ‘‘A oscillation detector used in the bpa power system disturbance

monitor’’, IEEE Transactions on Power Systems, 5(1), 74–79, 1990

References 553

Page 12: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

Index

AC exciter, 365, 369, 371–374, 379–380

Alternate solution method, 425–427

Ancillary services, 193, 195, 221, 224

Artificial intelligence methods, 201, 202

ASVG, 308–312

Asymptotically stable, 490, 492, 509

ATC1, 248–250, 252–253

ATC2, 248–250

Augmented matrix, 23–26, 67, 93, 98

Automatic generation control (AGC), 76,

250, 251, 406, 534

Automatic voltage regulator (AVR), 333,

352, 357, 363, 375, 377, 378, 534–536

Available transfer capabilities (ATC), 196,

222–224, 241–249, 253

Axiomatic definitions of probability, 131

Bayes’ formula, 132

Binomial distribution, 136, 244, 245

Bipolar system, 258

Blackout, 114, 129, 152, 178, 179, 191

Branch addition method, 56, 57, 64, 65

BX algorithm, 106

Cascading outages, 179–180

CBM, 242

Characteristic equation, 520

Characteristic polynomial, 520

Classical model, 351, 352, 384, 399, 425,

434, 454, 457, 459, 463, 511

Common mode failures, 114

Compensation method, 38, 113–119, 460

Conditional probability, 131, 139, 158

Congestion management, 196, 218, 222–223

Constant e0q model, 351, 352

Contingency ranking, 123–124, 127

Continuation power flow (CPF), 243

Continuous random variable, 132–137, 162,

173, 244

Convergence characteristic, 73, 89, 106,

112, 216

Convergence condition, 89, 104, 109, 112

Convergence of the Monte Carlo simulation,

146

Convergence property, 100, 112, 113

Converter, 258–262, 264–270, 272, 273,

276–286, 289, 294–301, 326, 329, 331,

392, 479, 480, 505, 507

Converter basic equations, 261, 267, 278,

282, 283, 285, 289

Converter bridge, 259, 260, 280

Converter control, 260, 279, 285, 289, 297

Converter equivalent circuits, 273–276

Converter transformer, 259, 261, 267,

276–286, 294, 296–298

Convolution of random variable, 135

Coordinate transformation, 338, 432, 448,

494, 496, 499

Correction equations, 81, 83, 87, 89, 94,

103–106, 109

Correction equations of fast decoupled

method, 104–107

Critically stable, 490, 492

Cumulant method, 162

Cumulative probability, 141–144, 154, 188

Current decomposition, 229, 230, 234

Damping ratio, 523, 536, 537, 540

Damping winding, 335–336, 351, 352, 354,

356, 370, 536

555

Page 13: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

d axis open-circuit sub-transient time

constant, 346, 347, 349, 350, 359,

465–467, 494

d axis open-circuit transient time

constant, 346

d axis subtransient reactance, 344–351,

356, 359, 360, 363, 432, 465–467, 475,

485, 494

d axis synchronous reactance, 344–351,

356, 358, 359, 401, 431, 432, 453, 465

d axis transient reactance, 344, 345,

347–352, 356, 359, 370, 374, 401,

432–434, 448, 453, 454, 465–467,

475, 494

DC exciter, 365–367, 369, 370, 378,

379, 494

DC load flow, 114, 119–127, 150, 154

DC network equations, 285, 286, 297

Decaying mode, 523

Decremental bidding prices, 224

Difference equations, 419–423, 464, 466,

470, 472, 474, 475, 483, 484, 487

Differential-algebraic equations, 407, 425,

427–429, 454, 472, 492, 530

Discrete random variable, 132–135,

163, 173

Distribution factor, 229, 230, 235–238, 240,

241, 243

Distribution function, 132–135, 137, 138,

141, 149, 166, 172, 173, 178, 245

Dominant eigenvalue, 527–529

dq0 coordinate system, 335

dq0 transformation, 338

Dynamic load model, 397–403

Dynamic ordering scheme, 46–48

Edgeworth series, 162, 166, 167

Effect of saturation, 357

Eigensolution, 489, 492, 493, 510, 519, 521,

526, 527, 530, 531

Eigensolution analysis, 489, 492, 519

Eigenvalue sensitivity, 524–525,

531–534, 541

Eigenvalue sensitivity analysis,

533–534

Electromagnetic torque, 361–363

Electromechanical oscillations, 492, 493,

536, 540

Energy management system (EMS), 243,

457

Enumeration method, 159, 183, 244

Equilibrium point, 490–492, 509

Equivalent circuits of transformer, 9–11

ETC, 242

Euler method, 409, 412–417, 419, 421, 422,

424, 425, 447, 450, 452

Excitation system, 334, 363–365, 375–381,

407, 430, 446, 463, 464, 469, 472, 473,

494, 495, 498, 511, 535, 536, 540

Expected energy not supplied (EENS), 152,

155, 156, 159

Extended OPF problems, 224

Factor table, 27–31, 34–37, 39, 40, 42–44,

105, 108–111, 114–116, 118, 292, 295

FACTS, 9, 222, 224, 255–258, 260,

301–302, 325, 407, 436, 463, 464, 475,

502, 510, 534

Fast decoupled method, 72, 77, 88, 101–113,

118, 120

Feasible solution, 182–189, 199, 202, 256

Field winding, 335, 336, 350–352, 359, 363,

364, 369–371, 398, 400

Financial transmission right (FTR), 222

Firing angle, 260, 262, 264–269, 271–274,

279, 280, 299–302, 304, 305, 314, 316,

318, 372, 374, 476

Flat start, 89, 289

Fractional frequency transmission system

(FFTS), 255

Gauss elimination, 22–27, 31, 43, 44, 89, 93,

94, 434, 447, 448, 450

Genetic algorithm (GA), 73, 201, 243

Gibbs sampler, 157–159

Governing system, 361, 362, 381, 382,

386–389, 391–393, 407, 430, 446, 463,

464, 472, 473, 475, 496, 498

Gram-Charlier series expansion, 162, 166,

170, 173

Harmonic voltages, 259, 260

Hermite polynomial, 167, 168

Hessenberg matrix, 527

Homopolar connection, 258

Householder matrix, 528, 529

556 Index

Page 14: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

HVDC, 255, 256, 258–261, 272, 276, 279,

281, 299, 300, 341, 372, 430, 436, 437,

464, 475, 479, 485–487, 493, 503, 510,

534, 535

HVDC dynamic mathematical models,

299–301

Hydraulic turbine, 381–388, 406, 496

Ideal synchronous generator, 336–338

Implicit integration methods, 419–424

Incidence matrix, 4–7, 9, 122, 247

Incremental bidding price, 224

Independent operator (ISO), 193–196, 222,

223, 226, 227

Independent power producers (IPPs), 228,

235

Initial condition, 143, 157, 234, 315,

354, 408

Initial value problem, 407, 420, 421, 425

Interarea oscillation, 535, 536, 541

Interior point method (IPM), 200–202, 207,

208, 216, 219

Inverse power method, 529–532

Inverter, 259, 260, 266, 272–274, 279, 280,

284–286, 289, 299, 301, 308–310, 319,

320, 326, 437, 438, 481, 483, 484, 503,

504, 506, 507

Jacobean, 72

Jacobean matrix, 72

Lagrangian function, 187, 204

Lagrangian multipliers, 202, 207, 216, 221

Linear optimal excitation controller

(LOEC), 364

Linear programming, 151, 198–200,

223, 243

Load flow, 71–127, 130, 150, 151, 154,

155, 161–162, 168–173, 175, 176,

178, 189

Load model, 140, 141, 394–397, 399, 400,

403, 500, 501

Local-mode oscillation, 535, 536

Location marginal price (LMP), 222

Loop current method, 2

Loss allocation, 229, 231–235, 238, 240

Loss of load probability (LOLP), 145, 151,

155, 159–161

Lower boundary point, 186, 188

Lyapunov linearized method, 489–491

Market clearing price (MCP), 195

Markov chain, 139, 156, 157, 159, 160

Markov chain Monte Carlo (MCMC)

simulation, 156–159

Markov process, 138–140

Mathematical expectation, 134, 173

Mean value, 134, 137

Memory requirement, 71, 72, 89, 149

Midterm and long-term stability, 405

Mixed programming, 198, 200

Modal analysis, 523, 537

Model of load curtailment, 150–151, 153

Modified Euler’s method, 412–417, 421,

425, 447, 450, 452

Monopolar system, 258

Monte Carlo simulation, 130, 145–149, 152,

153, 155, 157, 159, 244–248, 250

MSC, 306

Multi-fold outages, 114

Multiple bridge, 276

Multistep or multivalue algorithms, 411

Mutual admittance, 3, 4, 14, 19, 21

Mutual inductance, 337, 338, 340, 343,

357, 366

Newton-Raphson method, 22, 72, 76,

79, 81, 87–90, 93, 100, 172, 173,

175, 198

N-l checking, 123–124

Nodal admittance matrix, 1, 4, 7, 13–22,

48–50, 72, 104, 247

Nodal impedance matrix, 1, 48–64, 72,

122, 123

Nodal self-admittance, 3, 4

Node power equations, 76–78, 284

Node voltage method, 2

Nondamping winding model, 351, 352

Nonlinear algebraic equation, 71, 426

Nonlinear optimal excitation controller

(NOEC), 364

Nonlinear programming, 196, 198–199

Nonoscillatory mode, 523

Non-periodic instability, 523

Normal distribution, 137–138, 140–141,

146, 167, 168, 244–246, 250

Index 557

Page 15: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

Numeral characteristics of random variable,

133–135

Numerical stability, 421, 424, 425, 430, 462

One-step transition probability, 139, 140

Open access same-time information system

(OASIS), 243–244

Operation risk, 129

Optimal ordering schemes, 43

Optimal power flow (OPF), 1, 38, 196–203,

207, 209, 216–224, 226, 227, 243, 257

Ordinary differential equations, 299, 407,

408, 424

Orthogonal matrix, 499, 526, 527

Oscillation analysis, 493, 534, 537, 540

Outage analysis, 122, 123, 127

Outage table, 142–144, 150, 188

Parallel computing algorithms, 73

Park’s transformation, 335, 338–340

Participation factor, 525–526, 541

Participation matrix, 525

Per unit equations, 282, 340–341, 343, 401

Phase shifting transformer, 1, 11, 13, 16, 18,

20, 38, 301, 322, 325

Piecewise solution method, 72

Polar form of the nodal power

equations, 77

Potier voltage, 357, 360

Power exchange (PX), 193–195, 252, 309,

535

Power flow tracing, 196, 228–241

Power market, 114, 129, 193–196,

222–224, 241, 242, 248, 253, 256

Power method, 527–532

Power rectifier, 371, 373, 379, 380

Power system stabilizers (PSS), 364, 365,

377, 407, 468, 469, 471, 495, 533, 535,

541

P-Q decoupled method, 72, 73, 107, 113,

290, 291, 294

PQ nodes, 76, 85, 90, 109, 111

Predictor-corrector method, 462

Prime mover, 142, 360–362, 381, 382, 406,

407, 430, 446–448, 463, 466, 472,

473, 496

Probabilistic load flow, 130, 161–178

Probabilistic model of load, 140–141

Probabilistic models of transformer and

generator, 142

Probability density function, 133–135, 137,

138, 171, 177–179

Probability of stochastic events, 130–132

Proportional-integral-differential (PID),

364, 388, 392

Pseudo-random numbers, 149

12-pulse converter, 277, 278

PV nodes, 76, 83, 85, 88, 105, 109, 110

q axis sub-transient reactance, 344

q axis synchronous reactance, 340, 344

q axis transient reactance, 344, 356

QR method, 511, 518, 526–527, 531

Quadratic programming, 198, 199

Quasi-steady state model, 480–484, 493

Random process, 138, 139, 159

Random variable, 130, 132–139, 143,

145–148, 151, 162–164, 166–168,

170–173, 244, 245

Random variable’s moment, 163

Real-time balancing market (RBM), 223,

224

Rectangular form of the nodal power

equations, 78

Recursive formula, 143, 144, 410, 411,

419–421

Reliability of transmission system, 188–191

Right eigenvector, 520, 521, 523–525, 531,

533, 537–540

Rotor motion equation, 352, 360–362,

398–400, 464

Round-off error, 412, 424

Round rotor generator, 335, 336, 338, 340

Runge-Kutta method, 417–419, 421,

425, 464

Salient-pole generator, 335, 336, 340, 351

Sampling, 145, 147–150, 152, 155,

157–160, 253, 254

Saturation effect, 336, 337, 359, 366, 369

Saturation factor, 355, 366, 369, 370, 379

Schur decomposition, 526, 527

Self inductance, 337, 338, 340, 365, 366

Semi-dynamic ordering Scheme, 45, 46

Sensitivity method, 114, 246

558 Index

Page 16: References - link.springer.com3A978-0-387-72853-7%2F1.pdf · 1. W.F. Tinney, I.W. Waiker, ‘‘Direct solutions of sparse network equation by optimal ordered triangular factorization,’’

Simplified models for transient stability, 446

Simultaneous solution method, 425, 427

Single-step algorithm, 411

Slack node, 76, 83, 85, 90, 94, 174, 216,

247, 250

Small-signal stability, 489–493, 500,

506–518, 530, 536

Smoothing reactor, 259, 260, 264, 480

Sparse vector method, 22, 38–43, 460, 461

Sparsity techniques, 1

Spot pricing, 195, 196, 219–221

SPWM, 326

SSSC, 301, 302, 319–322, 326, 329, 331

STATCOM, 301, 302, 308–312, 319, 326,

329, 331

State matrix, 492, 509–511, 518, 519, 533

State space, 139, 145, 150

Static load model, 394–397, 399, 400, 500

Static ordering scheme, 44–46

Static security analysis, 73, 113–114, 189

Stationary exciter, 374, 375

Steady-state equations, 354, 356, 360,

437, 438

Steam turbine, 362, 381, 382, 389–393,

492, 493

Step-by-step integration, 408, 409

Step size, 143, 199, 408, 409, 411, 412,

420, 421, 423–426, 428, 454, 462–464,

466, 467

Stiff differential equations, 425

Stiff rotor, 360–362

Stochastic programming, 244

Stormer and Numerov integration formula,

462

Sub-synchronous oscillation, 493

Sub-transient parameter, 335, 344

SVR, 301, 302

Symmetric, 13, 16, 19, 32, 34, 38, 51, 102,

104, 105, 125, 261, 299, 308, 314

Synchronous generator, 334–340, 343, 344,

347–363, 365, 369–372, 398, 400–402,

493–496, 498, 500, 535

Synthesized impedance matrix, 440, 441,

444, 446, 486

System contingency, 124

System performance index, 124, 126, 127

Taylor series, 79, 81, 84, 86, 168, 169

TCPST, 301, 302, 322, 323, 325, 329

TCR. See Thyristor controlled reactors

TCSC, 301, 302, 313, 314, 316–319, 322,

325, 436, 437, 464, 477–479, 485, 487,

502, 503, 507, 508, 510

Telegen’s theorem, 124

Three rotor winding model, 351

Three-winding transformer, 10, 11

Thyristor controlled reactors, 302–307, 313,

316, 476, 478

Thyristor switched capacitors, 302

Time domain, 522

Torsional oscillations, 365, 492, 493

Torsional torque, 493

Transformation matrix, 170, 335, 340

Transient parameter, 335, 344

Transient stability, 357, 362, 400,

405–407, 425, 427–431, 435, 444, 446,

447, 450, 453, 457, 459, 463, 464, 480,

484, 537

Transmission open access, 193, 221

Transmission right, 222, 224

Trapezoidal rule, 419–421, 425–427,

464, 466, 470, 471, 474, 477–479,

482, 483

Triangular decomposition, 27–34,

530–532

TRM, 242

TSC, 302, 303, 305, 306

TTC, 224, 242, 243

Two winding model, 351–352

Uniform distribution, 136–137, 148–150,

154, 158, 251

UPFC, 301, 302, 325–331

Usage sharing problem, 234

Variance, 134–137, 140, 141, 145–147,

155, 157, 159, 160, 168, 245,

246, 394

Voltage regulators (AVR), 333, 352, 357,

363, 375, 377, 378, 534–536

XB algorithm, 106

Index 559