Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

162
City University of New York (CUNY) City University of New York (CUNY) CUNY Academic Works CUNY Academic Works Dissertations, Theses, and Capstone Projects CUNY Graduate Center 9-2015 Pseudomonas Bacteriophage Phi6 as a Model for Virus Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence Emergence Brian Elwood Ford Graduate Center, City University of New York How does access to this work benefit you? Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/924 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected]

Transcript of Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

Page 1: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Dissertations, Theses, and Capstone Projects CUNY Graduate Center

9-2015

Pseudomonas Bacteriophage Phi6 as a Model for Virus Pseudomonas Bacteriophage Phi6 as a Model for Virus

Emergence Emergence

Brian Elwood Ford Graduate Center, City University of New York

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/gc_etds/924

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY). Contact: [email protected]

Page 2: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

             

PSEUDOMONAS  BACTERIOPHAGE  Φ6  AS  A  MODEL  FOR  VIRUS  EMERGENCE      by    

BRIAN  E.  FORD                                          

Academic  dissertation  submitted  to  the  Graduate  Faculty  in  Biology  in  partial  fulfillment  of  the  requirements  for  the  degree  of  Doctor  of  Philosophy,  The  City  University  of  New  York  

 2015  

   

Page 3: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  ii  

                                                                           

©  2015  BRIAN  E.  FORD  

All  Rights  Reserved.      

Page 4: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  iii  

           

This  manuscript  has  been  read  and  accepted  for  the  Graduate  Faculty  in  Biology  in  satisfaction  of  the  dissertation  

requirement  for  the  degree  of  Doctor  of  Philosophy.                  

Date   Chair  of  Examining  Committee     Dr.  John  J.  Dennehy  

     Date   Executive  Officer  

Dr.  Laurel  Eckhardt        

Dr.  John  J.  Dennehy,  Queens  College      

Dr.  Stéphane  Boissinot,  NYU  Abu  Dhabi    

Dr.  Nathalia  Glickman  Holtzman,  Queens  College      

Dr.  Paul  Gottlieb,  City  College  of  New  York      

Dr.  José  A.  Fernández-­‐Romero,  Population  Council    Supervisory  Committee  

     

THE  CITY  UNIVERSITY  OF  NEW  YORK        

Page 5: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  iv  

   

Abstract  

Bacteriophage  Φ6  as  a  Model  for  Virus  Emergence  

by  

Brian  E.  Ford  

 

Mentor:  John  J.  Dennehy  

 

The  Pseudomonas  bacteriophage  Φ6  has  a  long  and  well-­‐established  history  as  a  model  

organism.  Here  we  describe  a  set  of  experiments  to  extend  this  model  system  in  to  concepts  

previously  unclaimed.  Chapter  1  presents  a  brief  background  of  the  ecology  of  viruses  that  

infect  microorganisms.  Chapter  2  examines  genetic  mutations  allowing  for  host  range  

expansion.  Chapter  3  presents  a  novel  paired  strain  assay  to  study  how  a  non  genetic  host  

acquired  factor  affects  fitness  of  these  enveloped  viruses  on  subsequent  hosts.  Chapter  4  is  an  

extension  of  this  system  to  include  how  the  bacteria  host  is  affected  in  virus-­‐host  coevolution.  

   

Page 6: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  v  

ABSTRACT  .............................................................................................................................  IV  

LIST  OF  TABLES  ......................................................................................................................  XI  

LIST  OF  FIGURES  ...................................................................................................................  XII  

INTRODUCTION  ...................................................................................................................  XIV  

CHAPTER  1:  EVOLUTIONARY  ECOLOGY  OF  THE  VIRUSES  OF  MICROORGANISMS  .....................  1  

ABSTRACT  ......................................................................................................................................  2  

INTRODUCTION  ...............................................................................................................................  3  

VOM  ABUNDANCE,  BIODIVERSITY,  AND  BIOGEOGRAPHY  .........................................................................  3  

POPULATION  DYNAMICS  OF  VOMS  .....................................................................................................  6  

Factors  affecting  rates  of  VoM  population  growth.  .............................................................  7  

Predator-­‐prey  dynamics.  .....................................................................................................  11  

VOM  IMPACT  ON  HOST  POPULATIONS  AND  COMMUNITIES.  ....................................................................  12  

VoM-­‐host  coevolution  and  its  limitations.  ..........................................................................  12  

VoMs  as  drivers  of  host  biodiversity.  ..................................................................................  15  

VOM  ECOLOGICAL  ADAPTATION  ......................................................................................................  16  

Generation  time  as  an  optimizable  trait.  ............................................................................  16  

Coinfection,  competition  and  cheating.  ..............................................................................  18  

Productivity  versus  latency.  .................................................................................................  19  

VOM  GENOME  EVOLUTION  .............................................................................................................  21  

VoM  genomes.  .....................................................................................................................  22  

Horizontal  gene  transfer  and  genome  mosaicism.  .............................................................  23  

Page 7: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  vi  

VOM  IMPACT  ON  HOST  GENETICS  ....................................................................................................  24  

VOMS  AS  ECOSYSTEM  MODIFIERS  ....................................................................................................  26  

CLOSING  REMARKS  ........................................................................................................................  28  

ACKNOWLEDGEMENTS  ....................................................................................................................  28  

FIGURE  LEGENDS  ...........................................................................................................................  29  

REFERENCES  .................................................................................................................................  34  

CHAPTER  2:  FREQUENCY  AND  FITNESS  CONSEQUENCES  OF  BACTERIOPHAGE  Φ6  HOST  RANGE  

MUTATIONS  ..........................................................................................................................  49  

ABSTRACT  ....................................................................................................................................  50  

INTRODUCTION  .............................................................................................................................  51  

METHODS  AND  MATERIALS  .............................................................................................................  53  

Study  Organisms  and  Culture  Conditions  .............................................................................  53  

Virus  Stock  Preparation  ........................................................................................................  54  

Host  Range  Mutant  Frequency  .............................................................................................  54  

Host  Range  Mutant  Isolation  ...............................................................................................  55  

RNA  Extraction  and  Sequencing  ...........................................................................................  55  

Mutant  Characterization  ......................................................................................................  56  

Plaque  Size  Estimates  ...........................................................................................................  56  

Mutant  Fitness  on  Native  and  Novel  Hosts  ..........................................................................  57  

Attachment  Rate  Assays  .......................................................................................................  57  

RESULTS  ......................................................................................................................................  58  

Mutation  Frequency  .............................................................................................................  58  

Page 8: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  vii  

Mutation  Substitution  Frequency  .........................................................................................  59  

Phenotypic  Change  Analysis  .................................................................................................  60  

P3  3D  Structure  Prediction  ...................................................................................................  61  

Plaque  Size  ............................................................................................................................  62  

Mutant  Fitness  on  Original  and  Novel  Hosts  ........................................................................  63  

Attachment  Rate  ..................................................................................................................  64  

Data  Availability  ...................................................................................................................  65  

DISCUSSION  .................................................................................................................................  65  

Φ6  Host  Range  Mutation  Frequency  ....................................................................................  65  

Mutation  Hotspots  ...............................................................................................................  69  

Structural  Speculations  .........................................................................................................  70  

Fitness  on  Native  and  Novel  Hosts  .......................................................................................  71  

Attachment  to  Native  and  Novel  Hosts  ................................................................................  72  

Implications  for  Disease  Emergence  .....................................................................................  73  

ACKNOWLEDGEMENTS  ....................................................................................................................  74  

FIGURE  LEGENDS  ...........................................................................................................................  75  

FIGURES  ......................................................................................................................................  77  

REFERENCES  .................................................................................................................................  84  

CHAPTER  3:  HOST-­‐ACQUIRED  FACTOR  IMPACTS  FITNESS  ON  SUBSEQUENT  HOSTS  IN  AN  RNA  

VIRUS  ....................................................................................................................................  88  

ABSTRACT  ....................................................................................................................................  89  

INTRODUCTION  .............................................................................................................................  90  

Page 9: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  viii  

MATERIALS  AND  METHODS  .............................................................................................................  91  

Bacterial  Host  Strain  Determination  and  Selection  ..............................................................  91  

Paired  Bacteriophage  Strain  Preparation  .............................................................................  92  

Fitness  Assay  Conditions  .......................................................................................................  93  

Statistical  Analysis  ................................................................................................................  94  

RESULTS  ......................................................................................................................................  94  

Φ6  .........................................................................................................................................  94  

Φ9  .........................................................................................................................................  95  

Φ13  .......................................................................................................................................  95  

Φ14  .......................................................................................................................................  95  

DISCUSSION  .................................................................................................................................  97  

AUTHOR  CONTRIBUTIONS  .............................................................................................................  101  

CONFLICT  OF  INTEREST  STATEMENT  .................................................................................................  101  

ACKNOWLEDGEMENTS  ..................................................................................................................  101  

CAPTIONS  ..................................................................................................................................  102  

SUPPLEMENTAL  FIGURES  ...............................................................................................................  107  

REFERENCES  ...............................................................................................................................  112  

CHAPTER  4:  BENEFITS  OF  STICKING  TOGETHER:  FITNESS  REDUCED  IN  VIRUS-­‐CHALLENGED  

PSEUDOMONAS  SPECIES  FOLLOWING  SHIFT  TO  PLANKTONIC  PHENOTYPE  ..........................  114  

ABSTRACT  ..................................................................................................................................  115  

INTRODUCTION  ...........................................................................................................................  116  

MATERIALS  AND  METHODS  ...........................................................................................................  117  

Page 10: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  ix  

Bacteria  Culture  Preparation  ..............................................................................................  117  

Selection  for  planktonic  (non  clumping)  strain  ...................................................................  117  

Isolation  and  Verification  of  Non  Clumping  Phenotype  ......................................................  117  

Heat  Shock  Buoyancy  Test  ..................................................................................................  118  

Determination  of  Cell  Number  in  Clumps  ...........................................................................  118  

Colony  Size  Determination  .................................................................................................  119  

TEM  Analysis  of  Cell  Morphology  .......................................................................................  119  

Bacteriophage  Strain  Preparation  ......................................................................................  120  

Growth  Curve  Optical  Density  to  Cell  Number  Correlation  .................................................  120  

Flask  Fitness  Analysis  ..........................................................................................................  121  

High-­‐Throughput  Microplate  Fitness  Analysis  ....................................................................  122  

Statistics  .............................................................................................................................  122  

DNA  Preparation  for  Next  Generation  Sequencing  ............................................................  123  

RESULTS  ....................................................................................................................................  123  

1.1  Growth  ..........................................................................................................................  123  

1.2  Morphology  ..................................................................................................................  125  

1.3  Virus  Susceptibility  ........................................................................................................  126  

1.4  Comparisons  .................................................................................................................  127  

1.5  Genotyping  ...................................................................................................................  129  

DISCUSSION  ...............................................................................................................................  129  

AUTHOR  CONTRIBUTIONS  .............................................................................................................  131  

ACKNOWLEDGEMENTS  ..................................................................................................................  132  

Page 11: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  x  

CAPTIONS  ..................................................................................................................................  132  

FIGURES  ....................................................................................................................................  134  

SUPPLEMENTARY  TABLES  AND  FIGURES  ............................................................................................  139  

REFERENCES  ...............................................................................................................................  140  

CONCLUSION  .......................................................................................................................  143  

(INTRODUCTION)  REFERENCES  ............................................................................................  145  

   

Page 12: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  xi  

List  of  Tables  

Chapter  2  

TABLE  1.  PHAGE  Φ6  MUTATIONS  ALLOWING  INFECTION  OF  NOVEL  HOST  ERA  .............................................  80  

TABLE  2.  HOST  RANGE  SUBSTITUTION  HOTSPOTS  IN  Φ6  P3  PROTEIN  ..........................................................  81  

TABLE  3.  AMINO  ACID  SUBSTITUTIONS  ASSOCIATED  WITH  Φ6  HOST  RANGE  EXPANSION  ON  ERA  ......................  82  

TABLE  4  .  PHENOTYPIC  CHARACTERISTICS  OF  BACTERIOPHAGE  Φ  MUTANTS.  .................................................  83  

Chapter  3  

TABLE  1.  BACTERIAL  STRAINS  ...............................................................................................................  92  

TABLE  2.  RELATIVE  VIRUS  PRODUCTIVITY  ON  MISMATCHED  HOSTS  .............................................................  96  

SUPPLEMENTARY  TABLE  ST1.  CYSTOVIRIDAE  HOST  RANGE  ON  SELECT  HOST  STRAINS  ...................................  108  

SUPPLEMENTARY  TABLE  ST2.  ONE-­‐WAY  ANOVA  TABLES  FOR  THE  EFFECT  OF  VIRUS  LIPID  MEMBRANE  COMPOSITION  

ON  FITNESS  AT  15  HOURS  AS  MEASURED  BY  AREA  UNDER  CURVE  (AUC),  TIME  TO  INFECTION  (X-­‐MAX)  AND  

MAXIMUM  BACTERIAL  GROWTH  (Y-­‐MAX).  FITNESS  IS  MEASURED  FOR  EACH  PAIRED  STRAIN  ON  BOTH  BACTERIAL  

HOSTS.  ..................................................................................................................................  109  

SUPPLEMENTARY  TABLE  ST3.  ANOVA  POST-­‐HOC  TUKEY’S  MULTIPLE  COMPARISON  TEST  .............................  110  

Chapter  4  

TABLE  1.  HEAT  SHOCK  GROWTH  VERIFICATION  .....................................................................................  124  

SUPPLEMENTARY  TABLE  1.  MICROPLATE  FITNESS  (BACTERIA  VS  BACTERIA  +  PHAGE)  UNPAIRED  T-­‐TEST  SUMMARY

 ............................................................................................................................................  139  

Page 13: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  xii  

List  of  Figures  

Introduction  

FIGURE  1.  PSEUDOMONAS  BACTERIOPHAGE  Φ6.  .....................................................................................  XIV  

FIGURE  2:  SCHEMATIC  OF  THE  PSEUDOMONAS  PHAGE  Φ6  LIFE  CYCLE.  .........................................................  XV  

Chapter  1  

FIG.  1  POPULATION  GROWTH  OVER  TIME.  ..............................................................................................  31  

FIG.  2  VIRUSES  OF  MICROORGANISMS  SIGNIFICANTLY  IMPACT  THE  CYCLING  OF  ORGANIC  MATTER  AND  NUTRIENTS  IN  

THE  OCEAN.  ..............................................................................................................................  32  

FIG.  3  HORIZONTAL  GENE  TRANSFER  ACROSS  DOMAINS.  ..........................................................................  33  

Chapter  2  

FIG.  1  –  SPATIAL  MODELS  OF  Φ6  P3  PROTEIN  MUTANTS  ............................................................................  77  

FIG.  2  –  MUTANT  ABSOLUTE  FITNESS  ON  CANONICAL  AND  NOVEL  HOSTS  .......................................................  78  

FIG.  3  –  MEAN  ERA  ATTACHMENT  RATE  (K)  IS  PLOTTED  AGAINST  PHAGE  Φ6  FITNESS  ON  ERA  ..........................  79  

Chapter  3  

FIGURE  1.  EXPERIMENTAL  DESIGN  ......................................................................................................  104  

FIGURE  2.  PAIRED  FITNESS  ASSAYS  .....................................................................................................  105  

FIGURE  3.  HOST  LEGACY  EFFECT  INFECTION  DYNAMICS  ...........................................................................  106  

SUPPLEMENTARY  FIGURE  1.  PAIRED  FITNESS  ASSAY  SUMMARY  6H  (~TWO  INFECTION  CYCLES)  ......................  107  

Chapter  4  

FIGURE  1.  PLANKTONIC  SELECTION  SCHEME  .........................................................................................  134  

FIGURE  2.  PHENOTYPE,  CELLULAR  AND  COLONY  MORPHOLOGIES  ..............................................................  135  

Page 14: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  xiii  

FIGURE  3.  BACTERIAL  GROWTH  WITH  SURFACTANT  ................................................................................  136  

FIGURE  4.  COLONY  FORMING  UNIT  AREA  COMPARISON  ..........................................................................  137  

FIGURE  5.  SUSCEPTIBILITY  TO  BACTERIOPHAGE  INFECTION  .......................................................................  138  

SUPPLEMENTARY  FIGURE  1.  GROWTH  CURVE  AND  PLATING  NUMBER  ........................................................  139  

Conclusion  

FIGURE  1.  PSEUDOMONAS  PSEUDOALCALIGENES  EAST  RIVER  ISOLATE  A  (ERA).  ...........................................  143  

Page 15: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  xiv  

Introduction  

Isolated  in  1973  [1],  the  Pseudomonas  bacteriophage  Φ6  has  an  extremely  established  and  well  

characterized  history  as  a  model  system.  The  Cystoviridae  family  reference  strain  Φ6  (Figure  1)  

has  many  properties  making  it  an  ideal  candidate  to  carry  out  the  following  studies.  

 Figure  1.  Pseudomonas  bacteriophage  Φ6.  Electron  micrographs  of  (A)  Φ6  (magnification  =  30K  x)  and  (B)  Φ6  attached  to  pilus  of  PP  (magnification  =  40K  x).  Samples  were  negatively  stained  with  a  1%  UA  solution.  

 

Φ6  has  a  segmented  dsRNA  linear  tripartite  genome  with  its  segments  designated  small  (2.9kb),  

medium  (4.0kb)  and  large  (6.4kb).  [2,3]  Studies  have  demonstrated  a  lack  of  recombination  

between  the  segments.  [4,5]  The  Cystoviridae  family  has  nine  (Φ6,  Φ7,  Φ8,  Φ9,  Φ10,  Φ11,  

Φ12,  Φ13  and  Φ14*)  canonical  members  and  one  member  (Φ2954)  awaiting  classification.  

Family  members  Φ7,  Φ9,  Φ10  and  Φ11  are  classified  as  close  relatives  while  Φ8,  Φ12,  Φ13  and  

Φ14  are  considered  distant  relatives  to  Φ6  based  on  the  latter  group’s  adsorption  and  infection  

via  the  lipopolysaccharide  (LPS)  rather  than  the  pilus[2,6]  (Figure  2).  Previous  studies  have  

                                                                                                               *  Φ14  appears  as  a  member  of  the  Cystoviridae  family  in  the  2011  9th  report  of  the  International  Committee  on  Taxonomy  of  Viruses,  but  not  in  the  online  NCBI  database.  

A B

cba  Brian  E.  Ford,  The  Dennehy  Lab

Page 16: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  xv  

characterized  Φ8  as  the  most  distantly  related  relative  of  Φ6  in  the  Cystovirus  family[7,8]  and  

recent  evidence  suggests  that  segmented  RNA  genomes  are  packaged  into  capsids  more  

efficiently  than  are  nonsegmented  versions.  [4,9]  

 

 

Figure   2:   Schematic   of   the   Pseudomonas   phage  Φ6   life   cycle.   (A)   Adsorption.   (B)   Envelope  fusion.   (C)   Peptidoglycan   digestion.   (D–E)   Endocytotic   uptake   of   nucleocapsid.   (F)   Early  transcription.   (G)  Polymerase  complex  assembly.   (H)  ssRNA  packaging  and  replication.   (I)  Late  transcription.   (J)   Nucleocapsid   shell   assembly.   (K)   Translocation   of   the   viral   envelope   and  assembly  of  spikes.  (L)  Host  cell  lysis  and  release  of  mature  virions.    From  Virus   Taxonomy:   Ninth   Report   of   the   International   Committee   on   Taxonomy   of   Viruses  (Elsevier:  2011).  Reprinted  with  permission.    

While  the  Pseudomonas  bacteriophage  Φ6  is  most  closely  related  to  the  Reoviridae  (family  in  

which  the  medically  relevant  rotaviruses  fall),  it  is  also  related  to  both  the  hepatitis  C  virus  

(HCV)  and  the  flaviviruses.  [6,10]  Well  known  flaviviruses  include  West  Nile  virus  (WNV),  

Dengue  virus  (DENV)  and  Yellow  fever  virus.    A  similarly  segmented  virus,  the  influenza  virus,  is  

carefully  monitored  for  reassortment  as  that  results  in  antigenic  shift  and  opens  the  potential  

Page 17: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

  xvi  

for  pandemic  outbreaks.  Understanding  of  the  niche  breadth  of  a  pathogen  can  help  to  

accurately  predict  its  potential  for  host  emergence.  [9,11]  

 

Here,  we  extend  this  study  system  to  include:  1)  genetic  mutations  in  the  P3  attachment  

protein  permitting  host  range  expansion  to  a  novel  host,  supported  by  a  predicted  3D  model  

(Chapter  2);  2)  a  novel  paired  strain  assay  examining  a  non  genetic  host  factor’s  impact  on  

subsequent  infections  (Chapter  3);  and  3)  characterization  of  a  lab-­‐evolved  host  strain  

phenotype  with  improved  growth  characteristics  but  increased  susceptibility  to  bacteriophage  

infection.  

 

 

Page 18: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  1  

Chapter  1:  Evolutionary  Ecology  of  the  Viruses  of  Microorganisms  

 

Brian  E.  Ford1,2,  Marko  Baloh1  and  John  J.  Dennehy1,2,3  

 

1Department  of  Biology,  Queens  College,  Queens,  NY,  11367  

2The  Graduate  Center  of  the  City  University  of  New  York,  New  York  City,  NY,  10016  

3Corresponding  Author:  [email protected]  

 

 

Running  title:  Virus  Evolutionary  Ecology  

 

 

Accepted  for  publication  January  2014  in  Viruses  of  Microorganisms:  Diversity,  Molecular  

Biology  and  Applications.  Hyman  P  &  Abedon  ST  (eds.).  Poole,  UK:  Caister  Academic  Press.  

   

Page 19: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  2  

 Abstract  

With  estimated  numbers  greater  than  1031,  viruses  are  the  most  abundant  organisms  on  

the  planet,  and  are  found  in  all  habitats:  aquatic,  atmospheric  and  terrestrial.  No  cellular  

organisms  –  whether  animal,  plant  or  microbe  –  are  free  from  viral  parasitism.  Consequently,  

the  effects  and  influences  of  viruses  are  pervasive,  directly  or  indirectly  impacting  all  organisms,  

populations,  communities  and  ecosystems.  Here  we  consider  the  evolutionary  ecology  of  the  

viruses  of  microorganisms  (hereafter  VoMs)  which,  due  to  the  abundance  of  their  hosts,  

outnumber  all  other  types  of  viruses.  Subfields  of  evolutionary  ecology  include  life  history  

evolution,  population  biology,  biogeography,  and  community  ecology.  Like  blind  men  describing  

an  elephant,  each  approach  only  describes  a  facet  of  VoM  evolutionary  ecology.  Here  we  

describe  some  of  the  approaches  used  to  describe  VoM  evolutionary  ecology  in  hopes  that  a  

synthesis  will  allow  some  perception  of  the  whole.    

   

Page 20: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  3  

Introduction  

Whether  or  not  one  describes  viruses  as  organisms,  living  entities,  or  instead  simply  as  

infectious  agents,  viruses  nonetheless  both  evolve  (evolutionary  biology)  and  interact  with  

other  organisms  (ecology).  In  this  chapter  we  consider  the  evolutionary  biology  and  ecology  of  

the  viruses  of  microorganisms  or  VoMs,  which  include  bacteriophages  (the  viruses  of  bacteria),  

archaeal  viruses,  viruses  of  protists,  and  various  mycoviruses  (viruses  of  fungi).  In  addition,  we  

emphasize  the  “hybrid”  discipline  of  evolutionary  ecology,  which  covers  the  subdisciplines  of  

life  history  evolution,  population  biology,  biogeography,  and  community  ecology.  To  our  

knowledge,  this  is  the  first  publication  to  review  the  evolutionary  ecology  of  VoMs  as  a  group,  

though  previous  reviews  consider  these  subjects  as  they  apply  to  bacteriophages  or  archaeal  

viruses  (Brussow  and  Kutter  2005;  Abedon,  2008;  Abedon  2009;  Prangishvili  2013).  For  further  

discussion  especially  of  VoM  ecology,  see  the  chapters  (this  volume)  by  Weinbauer  on  aquatic  

VoMs  and  Williamson  on  soil  VoMs.  

 

VoM  Abundance,  Biodiversity,  and  Biogeography    

  The  viruses  of  microorganisms  may  be  the  most  numerous  organisms  on  Earth  (Bergh  et  

al.,  1989;  Suttle,  2005;  Angly  et  al.,  2006).  In  aquatic  and  soil  habitats,  viral  concentrations  

higher  than  108  per  milliliter  or  gram  have  been  reported  (Fuhrman,  1999;  Wommack  and  

Colwell,  2000;  Ashelford  et  al.,  2003;  Suttle,  2005;  Williamson  et  al.,  2005)  [see  also  Williamson,  

this  volume].  Even  the  Earth's  atmosphere  has  been  shown  to  harbor  relatively  high  

concentrations  of  viruses  (107  -­‐  108  m-­‐3)  (Whon  et  al.,  2012).    

Page 21: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  4  

Given  that  VoMs  exist  in  almost  unimaginable  numbers,  we  might  expect  a  

correspondingly  high  level  of  diversity.  Studying  VoM  diversity,  however,  is  complicated  by  the  

fact  that,  unlike  cellular  organisms,  VoMs  do  not  have  universal  ribosomal  DNA  sequences  that  

facilitate  the  identification  of  discrete  species  and  determine  the  phylogenetic  relationships  

between  these  species  (Rowher  and  Edwards,  2002).  Thus,  sampling  VoM  biodiversity  was  

approached  in  a  piecemeal  fashion  (i.e.,  laboratory  culturing  or  direct  observation)  until  the  

advent  of  direct  environmental  genomic  sampling  (i.e.,  metagenomics  [see  Vega  Thurber,  this  

volume]).  Metagenomic  estimates  of  VoM  diversity  entail  the  isolation  and  high-­‐throughput  

sequencing  of  all  viral  nucleic  acids  in  an  environmental  isolate  (e.g.,  water,  soil,  tissue,  feces).  

To  ensure  that  only  viral  genetic  material  is  sequenced,  environmental  isolates  are  ultra-­‐filtered  

and  nucleases  are  used  to  digest  non-­‐capsid  protected  prokaryotic  and  eukaryotic  nucleic  acids  

(Breitbart  et  al.,  2004a;  Delwart,  2007;  Thurber  et  al.,  2009).  Partial  genetic  fragments  obtained  

from  random  sequence  reads  are  computationally  aligned  and  assembled  into  contigs  

(consensus  sequences  based  on  overlapping  partial  fragments).  A  contig  spectrum  is  generated  

for  a  virome  by  counting  the  number  of  sequences  that  fall  into  each  contig  (Allen  et  al.,  2013).  

Abundant  VoM  types  are  inferred  by  the  presence  of  a  large  number  of  sequences  mapping  to  

any  particular  contig.      

By  comparing  the  genomic  sequences  newly  obtained  from  a  community  with  those  in  

existing  genetic  sequence  databases,  VoM  genetic  richness  and  diversity  can  be  estimated.  

Previously  unknown  VoM  sequences  (i.e.,  sequences  not  matching  those  in  existing  genetic  

databases)  can  be  identified  and  compared  among  different  communities  (Edwards  and  

Rohwer,  2005;  Suttle,  2007).  The  percentage  of  unknown  VoM  sequences  in  recent  studies  has  

Page 22: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  5  

ranged  from  60%  to  97%  (Angly  et  al.,  2006;  Desnues  et  al.,  2008;  Hurwitz  and  Sullivan,  2013).  

As  in  population  mark-­‐recapture  studies  (Pradel,  1996),  a  high  proportion  of  novel  types  

recovered  from  population  resampling  indicates  that  a  large  number  of  new  types  remain  

undiscovered.    

Some  of  the  first  metagenomic  estimates  of  VoM  diversity  were  conducted  on  marine  

and  human  virus  communities  by  Rohwer,  Breitbart,  and  colleagues  (Breitbart  et  al.,  2003;  

Breitbart  et  al.,  2002).  For  the  marine  communities,  mathematical  models  predicted  the  

existence  of  374  to  7,114  viral  types  in  the  oceans  off  the  California  coast  (Breitbart  et  al.,  

2002).  The  human  virome  has  been  estimated  to  contain  at  least  1,250  distinct  virus  types,  

most  of  which  are  VoMs  (Breitbart  et  al.,  2003).  In  retrospect,  large  as  they  may  be,  these  

numbers  may  be  significant  underestimates  (Allen  et  al.,  2011;  Angly  et  al.,  2006;  Culley  et  al.,  

2006;  Hurwitz  and  Sullivan,  2013;  Kristensen  et  al.,  2010;  Mokili  et  al.,  2012;  Rosario  and  

Breitbart,  2011;  Rosario  et  al.,  2009).  For  one,  these  estimates  do  not  include  RNA  virus  

diversity,  which  is  harder  to  analyze  due  to  the  difficulties  in  sequencing  RNA.  Distinct  VoM  

types  in  the  biosphere  may  number  in  the  millions  (Allen  et  al.,  2013).  

  Interestingly,  analyses  of  VoM  genetic  material  collected  from  geographically-­‐distinct  

environments  (i.e.,  freshwater,  marine,  terrestrial)  show  that  similar  VoM  genetic  sequences  

can  be  found  in  widely  separated  ecosystems,  indicating  that  VoMs  (or  at  least  their  genes)  are  

in  constant  motion  through  the  biosphere  (Breitbart  et  al.,  2004a;  Breitbart  et  al.,  2004b;  

Breitbart  and  Rohwer,  2005;  Hambly  and  Suttle,  2005;  Kunin  et  al.,  2008;  O'Keefe  et  al.,  2010;  

Sano  et  al.,  2004;  Short  and  Suttle,  2005).  Nonetheless,  host  habitat  requirements  may  play  a  

strong  role  in  the  distribution  of  VoMs.  For  example,  an  investigation  of  hot  spring  microbial  

Page 23: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  6  

communities  found  that  genetically  distinct  viral  populations  were  associated  with  each  local  

geothermal  region  (Held  and  Whitaker,  2009).  This  ties  into  Baas  Becking's  idea  that  

"everything  is  everywhere,  but,  the  environment  selects"  (Baas  Becking,  1934).  In  this  context,  

the  presence  of  hosts  is  the  key  aspect  of  the  “environment”  that  determines  whether  a  virus  is  

present  in  a  specific  habitat  (Angly  et  al.,  2006).  

  Habitat  specialization  and  isolation  can  have  far-­‐reaching  effects  on  VoM  evolution  

because  the  distribution  of  populations  across  space,  and  the  connections  between  them,  

govern  population  diversification.  Since  population  genetic  differentiation  is  usually  a  function  

of  gene  flow  between  populations,  connected  populations  will  tend  to  follow  more  similar  

evolutionary  trajectories,  whereas  isolated  populations  will  tend  to  diverge  as  they  become  

locally  adapted  (Kawecki  and  Ebert,  2004).  We  expect  that  VoM  distributions  will  be  highly  

contingent  on  chance  historical  events  and  the  specific  details  of  their  ecology.  Overall,  there  

appears  to  be  a  tremendous  diversity  of  VoMs,  and  they  tend  to  be  broadly,  but  unevenly,  

distributed  across  the  biosphere  (Thurber,  2009).    

 

Population  Dynamics  of  VoMs  

  The  number  of  VoMs  present  in  a  habitat  ultimately  depends  on  the  conditions  that  

assist  or  impede  VoM  reproduction.  Since  most  VoMs  move  between  hosts  as  particles  (except  

fungal  viruses  that  are  transmitted  intracellularly  during  cell  division  (Ghabrial  and  Suzuki  

2009)),  their  macroscale  movement  depends  on  the  physical  properties  of  the  medium  and  the  

forces  acting  upon  it  (i.e.,  bulk  flow  of  water/air).  At  the  microscale,  the  laws  of  random  

diffusion  by  Brownian  motion  govern  VoM  movement.  Infection  is  contingent  on  chance  

Page 24: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  7  

collisions  between  VoMs  and  hosts,  the  probabilities  of  which  may  be  quite  low  on  a  virus-­‐by-­‐

virus  basis.  Abedon  estimated  that  if  a  virus  were  the  size  of  the  Titanic,  then  a  milliliter  of  fluid  

would  be  analogous  to  the  volume  of  the  Earth  (Abedon,  2011).  If  it  were  not  for  the  enormous  

population  sizes  of  VoMs  and  their  hosts,  then  infection  events  would  be  improbable.    

There  is  a  growing  appreciation  of  how  VoM  morphology  may  affect  mobility  in  

different  environments,  thus  increasing  the  chances  of  encountering  a  host.  For  example,  rod-­‐

shaped  viruses  may  diffuse  faster  than  spherical  viruses  in  tissues  or  gels  (Lee  et  al.,  2013).  We  

would  expect  also  that  very  large  virus  particles  such  as  those  of  protists  that  have  been  

discovered  [see  La  Scola,  this  volume]  would  diffuse  at  slower  rates  than  small,  icosahedral  

single-­‐stranded  bacteriophages  [see  Lehman,  this  volume].  In  addition,  Barr  et  al.  (2013)  have  

documented  the  potential  of  bacteriophage  particles  to  adhere  reversibly  to  mucus.  We  expect  

that  further  investigations  of  the  relationship  between  the  ecological  milieu  of  VoM's  and  their  

morphologies  would  be  profitable.    

  Factors  affecting  rates  of  VoM  population  growth.  Because  of  VoM  random  diffusion,  

most  models  assume  that  VoM  population  dynamics  follow  mass  action  principles  where  host  

infection  rates  are  directly  proportional  to  the  concentrations  of  VoMs  and  their  hosts.  That  is,  

the  greater  the  concentration  of  VoMs  and  hosts  in  a  fluid,  the  greater  the  probability  of  

collisions  leading  to  infection.  Growth  of  a  population  of  size  N  can  be  described  by  a  

differential  equation  that  accounts  for  births  (b)  and  deaths  (d)  over  time:  

!"!#= 𝑏𝑏 − 𝑑𝑑 𝑁𝑁       (1)  

In  evolutionary  biology,  births  minus  deaths,  b  –  d,  over  short  intervals  is  termed  the  per  capita  

growth  rate,  r,  which  often  is  used  as  an  estimate  of  absolute  fitness,  a.k.a.,  reproductive  

Page 25: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  8  

capacity  (Fisher,  1930).  Population  growth  in  this  model  shows  a  characteristic  concave-­‐up  

curve,  commonly  termed  exponential  growth  (Fig.  1A).  

Each  of  the  major  VoM  life  history  patterns—lytic,  lysogenic  (or  equivalent),  and  chronic  

[see  Hyman  and  Abedon,  this  volume]—will  exhibit  exponential  growth,  but  at  varying  rates.  

Lytic  VoMs,  given  sufficient  environmental  densities  of  host  cells,  will  have  growth  rates  greatly  

exceeding  hosts.  By  contrast,  chronic  and  especially  lysogenic  VoMs  (existing  as  prophages  or  

proviruses)  will  grow  at  rates  more  closely  matching  those  of  their  hosts.  The  major  distinction  

between  these  modes  of  life  is  the  degree  of  host  exploitation  effected  by  VoMs.  Lytic  viruses  

are  parasitic,  while  proviruses  and  chronic  viruses  have  the  potential  to  be  mutualistic  with  

their  hosts.  For  instance,  it  has  long  been  known  that  bacteriophage  lysogens  can  carry  genes  

that  in  many  cases  are  likely  to  be  beneficial  to  host  fitness  (Andersson  and  Banfield,  2008).  

Examples  include  the  CTXφ  phage-­‐encoded  cholera  toxin  (Waldor  and  Mekalanos,  1996)  and  

the  bor  gene  of  phage  λ,  which  provides  serum  resistance  to  Escherichia  coli  (Barondess  and  

Beckwith,  1990;  1995).  In  addition,  prophages  often  confer  immunity  to  coinfection  to  their  

hosts,  and  may  enable  hosts  to  survive  environmentally  unfavorable  periods  (Brussow  et  al.,  

2004;  Paul,  2008).  

The  exponential  growth  model  shown  in  Equation  (1)  is  deterministic  since  the  only  

variables  are  initial  population  size  and  reproduction  rate.  In  reality,  VoM  population  dynamics  

depend  on  many  other  factors,  including  stochastic  influences.  An  additional  complication  not  

addressed  in  Equation  (1)  is  that  VoM  per  capita  growth  rate  can  depend  on  the  ratio  of  

adsorbed  VoMs  to  susceptible  hosts  found  within  a  system  (the  multiplicity  of  infection  or  

MOI).  For  many  bacteriophage,  growth  rates  are  lower  at  high  MOIs  (i.e.,  negative  density-­‐

Page 26: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  9  

dependence)  because  infected  bacteria  cannot  support  additional  phage  infections  while  

bacteria  that  are  not  yet  phage  infected  are  not  a  rapidly  renewed  resource.  Specifically,  at  

MOIs  <<  1,  uninfected  hosts  can  readily  replenish  themselves  via  replication,  whereas  at  MOIs  

>>  1  all  hosts  will  become  infected  which,  for  lytic  infections,  results  in  a  block  on  ability  of  a  

system  to  replenish  uninfected  cells.  Thus,  the  total  number  of  hosts  available  for  infection  over  

time  can  be  greater  when  MOIs  are  low,  but  ultimately  more  host  infections  over  the  same  

period  means  higher  phage  growth  rates  along  with  higher  resulting  MOIs.  

Surprisingly,  Pseudomonas  bacteriophage  ɸ6  shows  positive  density-­‐dependence  –  

greater  phage  growth  rates  at  higher  MOIs  under  certain  conditions  (Dennehy  et  al.,  2006).  

While  the  mechanism  for  this  growth  pattern  is  not  entirely  clear,  it  seems  to  stem  from  an  

enhancement  of  infection  when  multiple  viruses  attack  the  same  cell  (Joseph  et  al.,  2009).  Allee  

first  described  positive  density-­‐dependence  of  population  growth  with  reference  to  growth  

limitations  in  small  populations  due  to  limited  access  to  mates  (Allee,  1931).  Several  theoretical  

studies  suggest  that  positive  density-­‐dependence  may  be  an  important  factor  in  host-­‐parasite  

evolutionary  ecology  (Gerla  et  al.,  2013;  Regoes  et  al.,  2000;  Weitz  and  Dushoff,  2008).  

However,  while  positive  density-­‐dependent  growth  has  been  experimentally  observed  in  

several  host-­‐parasite  systems,  including  bacteria-­‐Daphnia  (Ebert  et  al.,  2000;  Little  and  Ebert,  

2000),  microsporidian-­‐mosquito  (Agnew  and  Koella,  1999),  prion-­‐mouse  (McLean  and  Bostock,  

2000),  ɸ6-­‐Pseudomonas  remains  the  only  virus-­‐host  system  where  positive  density-­‐dependent  

growth  has  been  observed  (Dennehy  et  al.,  2006).  Whether  this  is  due  to  an  intrinsic  property  

of  this  particular  phage,  or  simply  due  to  multiplicity  reactivation  or  its  genome  being  split  into  

different  virion  particles,  is  unknown.    

Page 27: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  10  

Another  complication  is  that  host  numbers  are  finite  for  reasons  that  are  independent  

of  virus  infection.  Limited  environmental  resources  ultimately  circumscribe  the  number  of  hosts  

that  a  habitat  can  support,  which,  more  formally,  is  referred  to  as  the  carrying  capacity.  The  

number  of  hosts  in  a  habitat  changes  over  time  also  due  to  factors  such  as  host  reproduction,  

environmentally-­‐induced  host  death  (including  VoM-­‐induced  host  lysis),  and  acquisition  of  

resistance  mechanisms  to  environmental  antagonists,  such  as  chemical  and  physical  

antagonists  but  also  predators  and  viruses,  which  can  have  the  effect  of  reducing,  for  example,  

host  replication  efficiency.  As  such,  VoM  population  dynamics  can  be  described  by  Verhulst-­‐

Pearl  logistic  models,  where  the  population  size  over  time  follows  a  sigmoid  or  S-­‐shaped  

function  (Gause,  1934;  Pearl,  1927;  Pearl  and  Reed,  1920).  This  model  can  be  formalized  using  

the  differential  equation:  

!"!#= 𝑟𝑟𝑁𝑁(,-"

,)  ,     (2)  

where  N  is  population  size  and  K  represents  the  maximal  possible  value  of  N  (Fig.  1B).    

Closer  inspection  of  growth  curves  derived  from  this  model  reveals  an  inherent  

asymmetry  between  host  and  VoM  growth  rates.  This  asymmetry  results  from  the  fact  that  

from  hosts  reproduce  by  binary  fission  while  VoMs  produce,  e.g.,  10-­‐100  progeny  per  cycle  of  

reproduction  over  similar  intervals.  It  is  clear  that  only  a  few  rounds  of  reproduction  are  

required  for  VoMs  to  outstrip  their  hosts.  This  observation  supports  reports  of  VoM  

superabundance  (~10:1)  in  marine  (Chibani-­‐Chennoufi  et  al.,  2004)  [see  also  Weinbauer,  this  

volume]  and  terrestrial  (Ashelford  et  al.,  2003)  [see  also  Williamson,  this  volume]  habitats.  

Alternatively,  the  VoM  growth  advantage  is  dependent  on  host  density,  with  a  high  VoM  

advantage  given  high  host  densities  (as  a  result  of  greater  similarity  between  VoM  and  host  

Page 28: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  11  

generation  times)  and  a  low  or  lower  VoM  advantage  at  low  host  densities  (where  VoM  

generation  times  can  be  potentially  much  greater  than  those  of  hosts  due  to  the  substantial  

extensions  of  the  virion  search  stages  of  VoM  life  cycles).  A  major  consequence  of  VoM  

superabundance,  when  it  occurs,  can  be  extreme  competition  among  VoMs  for  limited  hosts,  

exerting  strong  evolutionary  pressure  on  VoMs  to  optimize  infection  mechanics  and  host  

utilization.    

  Predator-­‐prey  dynamics.  While  interactions  among  VoMs  play  a  role  in  shaping  VoM  life  

history  traits,  the  influence  of  interactions  with  their  hosts  are  essential,  both  molecularly  and  

ecologically.  In  terms  of  ecology,  a  standard  means  of  considering  these  virus-­‐host  interactions  

is  in  terms  of  predator-­‐prey  dynamics.  The  first  explicit  models  of  predator-­‐prey  dynamics  were  

introduced  independently  by  Lotka  and  by  Volterra  (Lotka,  1925;  Volterra,  1926).  To  apply  

Lotka  and  Volterra's  model  to  VoMs,  assume  that  in  the  absence  of  VoMs,  hosts  increase  

exponentially  as  described  in  Eq.  1.  By  contrast,  VoMs  will  decline  in  the  absence  of  prey:    

!/!#= −𝑟𝑟0𝑃𝑃           (3)  

where  P  is  the  number  of  VoMs  and  r2  is  the  VoM  instantaneous  death  rate.  If  VoMs  and  hosts  

are  introduced  into  a  limited  space,  the  host  growth  rate,  r1,  will  be  reduced  by  a  factor  

dependent  on  VoM  density:    

!"!#= 𝑟𝑟2 − 𝛼𝛼𝑃𝑃 𝑁𝑁  ,       (4)  

where  α  is  the  adsorption  rate  and  N  is  the  number  of  hosts.  The  VoM  population  will  increase  

at  a  rate  dependent  on  host  density:    

!/!#= 𝛼𝛼𝛼𝛼𝑁𝑁 −  𝑟𝑟0 𝑃𝑃         (5)  

Page 29: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  12  

where  β  is  the  burst  size  or  number  of  progeny  produced  per  infection.  Under  these  simplistic  

conditions,  VoM  and  host  populations  will  oscillate  in  a  systematic  manner,  showing  a  high  

degree  of  stability  (Fig.  1C  ).  Extensions  of  the  basic  Lotka-­‐Volterra  model  have  included  

resource  limitations  on  host  density,  the  time  lag  due  to  VoM  latent  period  and  the  acquisition  

of  host  resistance  (Bohannan  and  Lenski,  1997;  Campbell,  1961;  Kerr  et  al.,  2008;  Lenski,  1988;  

Lenski  and  Levin,  1985;  Levin  et  al.,  1977;  Stopar  and  Abedon,  2008).    

  VoM  impact  on  host  populations  and  communities.    

Darwin  suggested  that  “mutual  relations”  among  organisms  drives  biological  diversification  

(Darwin,  1859).  It  is  easy  to  imagine  that  the  evolutionary  arms  race  among  VoMs  and  hosts  can  

splinter  populations  into  myriad  resistant  and  counter-­‐resistant  variants.  Indeed,  studies  have  

shown  that  diversification  is  a  frequent  occurrence  in  both  static  microcosms  (Buckling  and  

Rainey,  2002;  Buckling  et  al.,  2006;  Morgan  et  al.,  2009)  and  chemostat  communities  (Chao  et  

al.,  1977;  Marston  et  al.,  2012).  For  example,  at  least  4  cycles  of  adaptation-­‐counteradaptation  

between  the  cyanobacterium  Synechococcus  and  the  VoM  RIM8  were  observed  during  6-­‐month  

chemostat  experiments  (Fig.  1D)  (Marston  et  al.,  2012).  In  these  experiments,  up  to  13  newly-­‐

evolved  RIM8  and  11  Synechococcus  variants  appeared  in  coevolving  populations.  In  this  

section,  we  consider  two  associated  phenomena  stemming  from  these  mutual  relations.  The  

first  is  that  of  VoM-­‐host  coevolution—including  limitations  often  seen  on  that  coevolution,  

particularly  in  experiments  involving  bacteriophages—and  the  second  is  the  result  that  this  

coevolution  can  have  on  host  and  indeed  community  diversity.  

  VoM-­‐host  coevolution  and  its  limitations.  The  general  findings  of  predator-­‐prey  models  

are  that  1)  VoMs  will  limit  host  populations  below  the  carrying  capacity  provided  by  available  

Page 30: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  13  

resources,  2)  host  populations  can  fluctuate  in  a  cyclic  manner  and  3)  coexistence  can  occur  

over  long  periods.  Experimental  support  from  coevolution  studies  for  these  theoretical  

predictions  is  mixed.  Frequently  hosts  have  tended  to  stabilize  at  a  density  similar  to  that  of  

controls,  and  VoMs  persisted  at  a  relatively  low  density  (see  Dennehy,  2012,  for  review).  In  

other  cases,  VoMs  were  driven  to  extinction  outright.  The  most  likely  interpretation  of  the  

former  results  is  that,  although  resistant  hosts  came  to  dominate  the  habitat,  some  VoMs  were  

able  to  persist  due  to  the  continued  presence  of  a  small  number  of  sensitive  hosts  in  a  spatial  or  

numerical  refuge  (Chao  et  al.,  1977;  Schrag  and  Mittler,  1996).  The  main  point  here  is  that,  due  

to  the  rise  of  resistant  hosts,  demonstrations  of  repeated  cycles  of  host-­‐parasite  coevolution  in  

experimental  microcosms  have  been  somewhat  rare.    

This  lack  of  repeated  cycles  implies  a  lack  of  repeated  VoM  adaptation  and  host  

counter-­‐adaptation  during  VoM-­‐host  co-­‐cultivations,  or  at  least  that  such  dynamics  typically  are  

not  dominating  during  VoM  growth  within  microcosms.  One  reason  for  the  relative  lack  of  such  

arms  races  between  co-­‐cultured  VoMs  and  hosts  may  be  due  to  a  potential  asymmetry  in  VoM  

and  host  evolutionary  potential.  Because  of  their  high  mutation  rates  and  large  population  

sizes,  microbial  host  organisms  are  able  to  search  the  VoM-­‐resistance  sequence  space  relatively  

rapidly.  While  VoMs  can  have  even  greater  population  sizes  and  rates  of  mutation,  the  larger  

genomes  of  hosts  versus  VoMs  may  provide  hosts  with  greater  means  to  evolve  VoM  

resistance.  By  contrast,  the  relatively  small  VoM  genomes  may  be  less  well  equipped  to  

respond  to  challenges  of  host  resistance.  This  is  particularly  acute  when  hosts  can  modify  their  

resistance  to  VoMs  via  mutational  loss  of  information  (e.g.,  gene  inactivation).  Due  to  their  

limited  genomic  repertoire,  VoMs  often  must  mutationally  change  without  substantially  

Page 31: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  14  

impacting  gene  function,  though  VoMs  may  be  more  effective  during  VoM-­‐host  coevolution  if  

they  target,  for  virion  adsorption,  host  molecules  that  the  host  is  unable  to  do  without.  

VoM  genome  sizes  can  be  limited  by  the  capacities  of  their  capsids.  Hosts,  by  contrast,  

often  can  easily  assimilate  even  relatively  large  blocks  of  new  genetic  material  (e.g.,  as  genomic  

islands).  Study  of  this  asymmetry  may  be  exacerbated  by  the  long  history  of  laboratory  

culturing  of  the  hosts  and  parasites  typically  used  in  experimental  coevolution  studies  (e.g.  E.  

coli  and  its  phages  λ,  T4,  T7).  These  laboratory-­‐adapted  strains  may  lack  evolutionary  potential  

for  extensive  coevolution  because  they  have  been  selected  under  constrained  conditions  for  

hundreds  of  generations.  This  idea  is  supported  by  observations  of  repeated  rounds  of  

coevolution  among  hosts  and  parasites  recently  isolated  from  the  wild  (Barnet  et  al.,  1981;  

Buckling  and  Rainey,  2002;  Marston  et  al.,  2012).    

How  these  laboratory  studies  relate  to  host-­‐VoM  evolutionary  dynamics  in  the  wild  is  

poorly  understood.  Wild  populations  are  subject  to  much  greater  spatial,  environmental,  and  

biotic  heterogeneity,  significantly  impacting  community  structure.  Moreover,  VoM  resistance  

usually  incurs  fitness  costs  (Bohannan  and  Lenski,  2000;  Buckling  and  Rainey,  2002;  Chao  et  al.,  

1977;  Lenski,  1988;  Levin  et  al.,  1977;  Schrag  and  Mittler,  1996).  As  a  consequence,  while  

resistant  hosts  may  predominate  in  the  presence  of  VoMs,  they  will  be  outcompeted  by  VoM-­‐

sensitive  hosts  in  the  absence  of  VoMs.  This  can  ensure  that  any  shifts  in  host  susceptibility  to  

VoMs  may  be  transient.  As  long  as  some  VoMs  can  persist  during  the  fallow  period,  including  

non-­‐locally,  their  local  populations  may  be  able  to  recover  following  a  precipitous  drop  in  

population  size  due  to  host  resistance.  VoM-­‐host  coevolution  may  be  an  important  aspect  of  

Page 32: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  15  

VoM  ecology  where  extrapolating  from  laboratory  studies  to  dynamics  in  the  wild  may  require  

careful  consideration.    

  VoMs  as  drivers  of  host  biodiversity.  A  widely  held  notion  in  ecological  theory  is  that  

there  is  an  inherent  tradeoff  between  maximizing  reproduction  and  minimizing  predation  

(Ludwig  and  Rowe,  1990;  Pianka,  1976).  This  tension  should  promote  the  diversification  of  prey  

populations  into  competitive  and  defensive  specialists  (Winter  et  al.,  2010).  Such  frequency-­‐

dependent  selection  among  alternative  variants  is  commonly  referred  to  as  “killing  the  winner”  

(Thingstad,  2000;  Weinbauer  and  Rassoulzadegan,  2004).  When  predators  are  absent,  

competition  specialists  should  dominate  as  they  have  a  reproductive  advantage  over  defensive  

specialists.  However,  their  burgeoning  numbers  will  allow  for  the  propagation  of  predators,  

freeing  up  resources  for  survival-­‐maximizing  defensive  specialists.  Predators  under  these  

conditions  will  consequently  tend  to  decline  in  number,  allowing  the  return  of  competition  

specialists.  These  dynamics  should  encourage  an  increase  in  the  microbial  diversity  of  both  prey  

and  predator  species.    

Given  that  chemostats  are  used  to  create  minimally  varying  microhabitats,  we  might  

expect  coevolution  in  the  wild  to  result  in  much  greater  diversification  given  the  much  higher  

degree  of  environmental  heterogeneity.  This  notion  is  supported  by  the  geographic  mosaic  

theory  of  coevolution,  which  holds  that  populations  respond  to  ever-­‐changing  patterns  of  

interactions  across  space  and  time  (Thompson,  1994;  Thompson,  2012).  Here  fragmentation  of  

the  natural  landscape  allows  local  populations  of  one  species  to  adapt  to  local  populations  of  

other  species  in  a  genotype-­‐by-­‐genotype-­‐by-­‐environment  interaction.  As  these  interactions  

Page 33: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  16  

play  out  across  larger  spatial  and  temporal  scales,  and  as  different  subpopulations  interact  or  

fail  to  interact,  coevolutionary  changes  can  result  in  speciation  and  increased  biodiversity.    

 

VoM  Ecological  Adaptation  

 Like  all  organisms,  VoMs  are  a  collection  of  features  and  traits  shaped  by  natural  

selection,  but  the  story  of  evolution  is  not  simply  one  of  continual  small  improvements  in  each  

trait.  Rather,  selective  forces  on  organismal  traits  often  can  be  in  direct  opposition.  

Improvement  in  one  trait,  that  is,  can  entail  a  reduction  in  performance  of  another.  For  

example,  capsid  thickness  can  be  correlated  with  virus  survival,  but  inversely  correlated  with  

the  virus  multiplication  rate  (De  Paepe  and  Taddei,  2006;  García-­‐Villada  and  Drake,  2013).  

Natural  selection,  then,  will  favor  a  capsid  thickness  that  represents  the  optimal  tradeoff  

between  survival  and  reproduction  such  that  the  maximum  number  of  surviving  offspring  are  

produced  over  time  for  a  given  set  of  environmental  circumstances.  Since  environments  are  

often  changing,  natural  selection  is  continuously  recalibrating  the  optimal  balance  between  

specific  traits.  

  Generation  time  as  an  optimizable  trait.  Nowhere  is  this  issue  of  tradeoffs  in  the  

optimization  of  different  traits  more  apparent  than  in  the  fine-­‐tuning  of  lysis  timing.  A  general  

assumption  of  VoM  biology  is  that  progeny  are  assembled  at  a  linear  rate  (Wang  et  al.,  1996).  

Consequently,  an  early  lysis  time  will  result  in  fewer  offspring  produced  than  a  later  lysis  time,  

but  the  progeny  of  early  lysers  will  have  a  head  start  in  infecting  new  host  cells.  The  optimal  

lysis  time  therefore  depends  on  the  number  and  quality  of  hosts  available  for  infection  

(Abedon,  1989;  Wang  et  al.,  1996).  If  the  number  or  quality  of  available  hosts  is  low,  then  it  may  

Page 34: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  17  

be  advantageous  to  delay  lysis  and  produce  more  progeny.  By  contrast,  high  host  densities  will  

favor  shorter  latent  periods  and  faster  lysis.  Experimental  work  on  bacteriophage  lysis  timing  

has  generally  confirmed  the  predictions  of  optimality  models  (Abedon  et  al.,  2003;  Heineman  

and  Bull,  2007;  Shao  and  Wang,  2008),  but  has  revealed  that  the  evolution  of  optimal  

phenotypes  is  subject  to  genetic  and  physical  constraints  (Chantranupong  and  Heineman,  2012;  

Heineman  and  Bull,  2007).  Optimality  theory  provides  a  starting  point  to  develop  hypotheses  

regarding  the  evolution  of  organismal  traits,  but  consideration  should  be  paid  to  the  genetic  

details  and  physiological  constraints  of  the  system  under  study.  

A  salient  question  is,  when  conditions  change,  how  will  VoMs  adjust  lysis  timing,  and  by  

extension,  generation  time,  to  optimize  reproduction  in  the  new  environment?  Natural  

selection  has  several  potential  targets  that  could  be  manipulated  to  alter  generation  time:  1)  

the  adsorption  rate  could  be  adjusted,  2)  the  eclipse  period  (i.e.,  time  from  genome  

penetration  to  production  of  first  mature  progeny)  could  be  extended,  or  3)  the  rise  period  (i.e.,  

time  from  first  mature  progeny  until  lysis)  could  be  altered  (Chantranupong  and  Heineman,  

2012).  Time  spent  in  the  first  period  is  a  function  of  the  attachment  rate  constant  and  host  

concentration.  Naively,  one  might  expect  this  rate  to  be  maximized.  However,  high  attachments  

rates  may  be  deleterious  because  they  may  limit  the  number  of  hosts  encountered  per  burst,  

and  therefore  productivity  per  host  (Gallet  et  al.,  2011;  Gallet  et  al.,  2009).  Furthermore,  

mutations  increasing  attachment  rates  could  have  negative  pleiotropic  effects  (Pepin  et  al.,  

2006).  Finally,  high  attachment  rates  could  be  disadvantageous  when  there  are  high  levels  of  

stationary  phase  cells  or  cellular  debris  to  which  too  effectively  adsorbing  viruses  might  non-­‐

productively  adsorb  (Gallet  et  al.  2012).  On  the  other  hand,  low  attachment  rates  would  

Page 35: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  18  

prolong  search  times  and  expose  phages  to  increased  risks  of  environmentally-­‐induced  

inactivation.  These  constraints  suggest  that  attachment  rate  is  probably  not  adjusted  to  

optimize  lysis  time.      

During  the  eclipse  period,  the  phage  genome  is  being  replicated,  transcribed  and  

translated,  and  consequently  the  phage  is  in  its  most  vulnerable  state.  Death  of  the  host  cell  

would  entail  destruction  of  the  phage  thus  we  expect  this  period  to  be  minimized  across  all  

conditions.  This  leaves  the  rise  period  which  we  expect  to  be  the  most  evolutionarily  malleable.  

Evidence  from  evolution  experiments  manipulating  host  density  is  consistent  with  this  

conjecture.  In  these  studies,  mutations  tend  to  occur  in  regions  of  genome  associated  with  

genome  replication  and  lysis,  but  not  with  attachment  (Abedon  et  al.,  2003;  Heineman  and  Bull,  

2007,  but  see  Shao  and  Wang  2008).    

  Coinfection,  competition  and  cheating.  Describing  the  outcomes  of  competition  

between  organisms  is  an  essential  feature  of  evolutionary  ecology.  Similar  to  other  organisms,  

VoMs  compete  for  the  resources  required  to  replicate  additional  copies  of  themselves.  As  with  

any  competitive  interaction,  natural  selection  favors  VoMs  that  are  more  efficient  at  acquiring  

and  using  host  resources.  Notably  for  VoMs,  this  competition  occurs  not  only  extracellularly  as  

VoMs  compete  for  hosts,  but  also  intracellularly  as  VoMs  compete  for  host  resources  (Dennehy  

et  al.,  2013;  Preisig  et  al.,  1998;  Turner,  2005;  Yau  et  al.,  2011).  In  the  case  of  coinfection  or  a  

multiple/sequential  infection  (superinfection),  or  even  reactivation  of  a  latent  infection,  after  a  

VoM  introduces  its  genome  into  a  host  cell,  proteins  translated  from  a  VoM's  genome  enter  a  

common  pool  and  are  therefore  susceptible  to  co-­‐option  by  competing  genotypes  of  VoMs  

already  present  in  the  cell.  That  is,  some  virus  types  can  package  their  genomes  into  capsids  

Page 36: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  19  

containing  proteins  that  they  themselves  did  not  cause  to  be  produced.  This  parasitism  enables  

the  "cheating"  virus  to  specialize  on  other  facets  of  their  own  reproduction,  such  as  increasing  

genome  replication  speed  and  packaging  efficiency.  An  example  of  this  type  of  competition  

comes  from  coliphage  P2  and  its  satellite  P4  (Six  and  Klug,  1973).  P4  lacks  genes  for  head,  tail  

and  lysis  proteins,  but  is  able  to  package  its  genome  in  the  P2  capsid  (Deho  and  Ghisotti,  2006).  

As  such,  P4  is  able  to  concentrate  its  resources  on  genome  replication  while  parasitizing  capsids  

from  P2.    

Viruses  or  virus-­‐like  elements  that  require  other  "helper"  viruses  in  order  to  reproduce  

include  satellite  viruses  (Deho  and  Ghisotti,  2006;  Six  and  Klug,  1973),  viroids,  virusoids  

(Symons,  1991),  virophages  (Fischer  and  Suttle,  2011;  La  Scola  et  al.,  2008)  [see  Fischer,  this  

volume],  and  defective-­‐interfering  (DI)  particles  (Horiuchi,  1983;  Huang,  1973;  Roux  et  al.,  

1991).  As  a  rule,  these  types  of  parasitic  viruses  only  arise  when  coinfection  is  common.  

Consequently,  there  should  be  strong  selection  on  the  potentially  parasitized  virus  to  sequester  

a  host  and  limit  coinfection.  The  outcome  of  intense  ecological  competition  is  reflected  in  the  

numerous  mechanisms  of  resistance  to  superinfection  (Hyman  and  Abedon,  2010).  For  

example,  some  lambdoid  phages  bind  outer  membrane  protein  FhuA  to  infect  E.  coli  (Uc-­‐Mass  

et  al.,  2004).  Competing  phages  express  a  protein,  Cor,  that  blocks  FhuA-­‐mediated  ferrichrome  

uptake,  and  prevents  FhuA-­‐mediated  phage  infection  (Uc-­‐Mass  et  al.,  2004).  

  Productivity  versus  latency.  Some  VoMs  can  enter  long-­‐term  associations  with  host  

cells  such  as  by  integrating  their  genome  into  that  of  the  host,  which  for  bacteriophages  has  

been  described  as  lysogeny  but  more  generally  can  be  described  as  a  form  of  latent  infections.  

These  VoMs,  now  existing  as  proviruses  (and/or  prophages  in  the  case  of  bacteriophages)  only  

Page 37: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  20  

“replicate”  when  the  host  cell  replicates.  As  a  consequence,  and  if  uninfected  host  cells  are  

otherwise  fairly  prevalent  within  an  environment  ,  then  this  life  history  strategy  entails  a  

significant  reduction  in  reproductive  output  compared  to  the  lytic  strategy  (Abedon  et  al.,  

2001).  Since  natural  selection  typically  will  maximize  reproduction,  lysogeny  is  likely  the  

product  of  a  specific  selective  condition,  namely  where  the  probability  of  locating  a  new  host  is  

relatively  low  (Abedon  et  al.,  2001;  Wang  et  al.,  1996).    

The  best-­‐studied  lysis-­‐lysogeny  system  is  that  of  the  bacteriophage  λ  [see  Lehman,  this  

volume].  When  growth  conditions  are  favorable,  an  important  regulator  of  λ  gene  expression,  

CII,  is  rapidly  degraded  by  host  proteases,  and  the  likelihood  of  the  lytic  pathway  dominating  is  

high.  By  contrast,  when  growth  conditions  are  poor,  CII  accumulates,  increasing  the  probability  

of  entering  the  lysogenic  state  (Herskowitz  and  Hagen,  1980;  Oppenheim  et  al.,  2005  ).  

Ecologically,  this  decision  process  is  intuitive  because  the  essential  "life  decision"  a  lysogen  

must  make  is  whether  to  accept  a  low  rate  of  replication  in  exchange  for  shelter  or  instead  to  

potentially  risk  everything  by  infecting  lytically  for  the  potential  payoff  of  greater  replication  in  

new  hosts.    

There  are  at  least  two  sources  of  information  by  which  a  lysogen  can  base  this  

"decision":  host  physiology  and  the  presence  of  coinfecting  viruses.  A  favorable  host  

physiological  state  may  signal  the  likely  presence  of  available  hosts  for  progeny,  whereas  the  

opposite  condition  may  imply  that  suitable  hosts  are  in  short  supply.  Alternatively,  the  presence  

of  competing  VoMs  within  a  host  implies  that  VoMs  are  common  relative  to  hosts  and  

uninfected  hosts  may  not  be  available.  Indeed,  coinfection  can  reinforce  the  lysis  inhibition  

Page 38: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  21  

pathway,  another  bacteriophage-­‐associated  lysis-­‐delaying  phenomenon,  prolonging  infection  

state  (Abedon,  1990;  Abedon  et  al.,  2003;  Weitz  et  al.,  2008).    

Interestingly,  a  greater  penalty  probably  arises  from  not  retaining  infections  if  no  new  

host  cells  are  available  or  if  all  the  other  host  cells  are  occupied  versus  choosing  to  stay  in  place  

(retaining  infections)  when  permissive  hosts  are  available.  In  the  former,  a  bad  decision  results  

in  VoM  destruction,  whereas  in  the  latter,  the  cost  is  a  reduced  reproduction  rate  compared  to  

competing  genotypes.  This  asymmetry  should  have  interesting  implications  for  the  evolution  of  

control  mechanisms  dictating  the  lysis-­‐lysogeny  decision  that  occurs  at  the  start  of  infections  of  

phages  (or,  more  generally,  viruses)  that  are  able  to  choose  between  latent  or  productive  

infection.  Related  to  this,  exit  from  lysogeny  is  often  predicated  by  damage  to  the  host  DNA  by  

agents  like  UV  light  and  mitomycin  C  (Cochran  et  al.,  1998;  Weinbauer  and  Suttle,  1999).  As  an  

analogy,  if  one’s  house  were  on  fire,  one  would  attempt  escape  regardless  of  the  external  

conditions.  Since  death  in  the  former  is  assured,  lysis  pays  off  regardless  of  the  probability  of  

survival  outside  the  host.    

 

VoM  Genome  Evolution  

Microorganisms  span  the  three  domains  of  life  and  their  VoMs  reflect  this  breadth  in  

the  variety  of  their  genomes.  Out  of  the  seven  virus  classes  within  the  Baltimore  virus  

classification  system,  six  classes  are  known  to  parasitize  all  major  phyla  of  microorganisms  

while  only  one  (Group  7,  or  non-­‐retroviral  dsDNA  viruses  that  replicate  through  a  ssRNA  

intermediate)  does  not  contain  exemplars  that  infect  microorganisms.  Despite  this  great  

diversity,  not  all  virus  classes  are  represented  equally.  Almost  all  of  the  nearly  100  

Page 39: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  22  

characterized  viruses  infecting  archaea  hold  their  genetic  information  as  dsDNA  (Mochizuki  et  

al.,  2012;  Prangishvili  2013),  while  viruses  infecting  algae  have  genomes  ranging  from  ssRNA  to  

dsDNA  (Van  Etten  et  al.,  1991;  Short,  2012).  Viruses  of  fungi  tend  to  be  dsRNA  (Göker  et  al.,  

2011;  Vainio  et  al.,  2011),  while  representatives  of  at  least  four  types  can  be  found  among  the  

bacteriophages  (Calendar  and  Abedon,  2006).  In  this  section  we  provide  primers  on  VoM  

genomics  and  genome  evolution.  See  [Klumpp,  this  volume]  for  further  discussion  of  VoM  

genomics.  

VoM  genomes.  Virus  nucleic  acid  characteristics  can  have  a  large  effect  on  genomic  

attributes  such  as  overall  genome  size  and  mutation  rates.  Exemplifying  the  upper  limit  of  VoM  

genome  size  are  the  recently  discovered  amoeba  phages,  such  as  Mimiviridae,  Marseilleviridae  

and  Pandovirideae,  which  have  dsDNA  genomes  larger  than  2.5  Mb,  surpassing  even  some  

bacteria  (La  Scola  et  al.,  2003;  Monier  et  al.,  2008;  Colson  et  al.,  2013;  Philippe  et  al.,  2013)  [See  

also  La  Scola,  this  volume].  By  contrast,  some  ssRNA  phages  have  genomes  as  small  as  3.3  Kb  

(Hatfull  and  Hendrix,  2011),  a  758-­‐fold  difference.  Mutation  rates  show  tremendous  variation  

as  well,  with  values  ranging  from  1.1  ×  10–3  nucleotide  substitutions  per  site  per  cell  infection  

(s/n/c)  in  the  ssRNA  phage  Qβ  to  9.8  ×  10–8  s/n/c  for  the  bacteriophage  T2  (Sanjuán  et  al.,  

2010).    Generally,  VoMs  that  store  their  genetic  information  as  RNA  or  ssDNA  tend  to  have  

smaller  genomes  and  higher  mutation  rates,  while  dsDNA  VoMs  have  larger  genomes  and  lower  

mutation  rates.  These  differences  are  believed  to  reflect  differences  in  polymerase  fidelity  and  

nucleic  acid  stability  (Duffy  et  al.,  2008).    

  In  addition  to  size  and  stability,  VoM  genomes  show  considerable  structural  variation.  

Both  circular  and  linear  permutations  are  common,  and  do  not  seem  to  correlate  with  any  

Page 40: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  23  

obvious  factors.  In  addition,  ssDNA,  ssRNA  and  dsRNA  VoM  genomes  can  be  segmented  (Iranzo  

and  Manrubia,  2012;  Ojosnegros  et  al.,  2011).  Numerous  hypotheses  have  been  proposed  to  

explain  viral  segmentation,  including  increased  capsid  stability  (Iranzo  and  Manrubia,  2012;  

Ojosnegros  et  al.,  2011),  virus  sex  (Chao  et  al.,  1992),  and  copying  fidelity  (Pressing  and  

Reanney,  1984).  Though  a  consensus  is  not  available,  observations  show  that  the  reassortment  

of  virus  segments  can  be  an  important  factor  in  the  generation  of  virus  genetic  diversity  

(Marshall  et  al.,  2013;  O'Keefe  et  al.,  2010).  

Horizontal  gene  transfer  and  genome  mosaicism.  VoMs  are  extremely  successful  

mediators  of  gene  shuffling  (Fig.  3).  Regardless  of  reproductive  strategy  (lytic  vs.  latent  vs.  

chronic)  or  type  of  genetic  material  (RNA  versus  DNA),  many  VoM  genomes  contain  an  

amalgam  of  genetic  information  from  a  variety  of  sources,  commonly  referred  to  genomic  

mosaicism  (Casjens  and  Thuman-­‐Commike,  2011).  For  example,  the  tail  genes  of  phages  HK97  

and  λ  show  a  high  degree  of  sequence  similarity,  but  the  head  genes  are  wholly  dissimilar  

(Juhala  et  al.,  2000).  The  most  parsimonious  explanation  for  this  observation  is  that  the  head  

genes  of  HK97  and  λ,  but  not  the  tail  genes,  were  acquired  from  two  evolutionarily  divergent  

sources.    

The  life  history  circumstances  of  VoMs  may  predispose  them  to  genomic  mosaicism  

since  this  is  generated  through  recombination  or  reassortment  with  foreign  DNA.  As  obligate  

parasites,  VoMs  reproduce  inside  cells  containing  separate  and  distinct  genomes  as  well  as  

coinfecting  viruses,  transposons,  plasmids  and  even  transformed  foreign  DNA  (Desnues  et  al.,  

2012).  Given  this  proximity,  the  accidental  integration  of  foreign  DNA  into  VoM  genomes  is  not  

surprising.  While  capsid  size  can  limit  the  extent  of  integration  of  new  genetic  material,  

Page 41: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  24  

recombination  and  then  retention  of  similar  sized  genetic  fragments  may  be  relatively  common.  

In  fact,  it  is  frequently  suggested  that  the  modular  architecture  of  VoM  genomes  is  specifically  

evolved  to  allow  suites  of  genes  dedicated  to  a  common  function  to  be  traded  among  VoM  

populations,  creating  a  vast  meta-­‐gene  pool  (Campbell  and  Botstein,  1983;  Hendrix  et  al.,  

2000).  Some  authors  even  go  so  far  as  to  suggest  that  VoMs  and  their  hosts  constitute  a  

superorganism,  with  access  to  a  global  gene  pool  (Weinbauer  and  Rassoulzadegan,  2004).  

Consistent  with  expectations,  this  genomic  mixing  is  more  pronounced  in  generalists  –  that  is,  

VoMs  capable  of  infecting  greater  diversities  of  cellular  organisms  –  as  they  are  more  

promiscuous  in  host  range  than  specialists  (Born  et  al.,  2011).  A  non-­‐genetic  form  of  mosaicism  

may  also  arise  in  the  form  of  phenotypic  mixing,  when  coinfecting  VoMs  produce  proteins  that  

interact  (Loverdo  and  Lloyd-­‐Smith,  2013).  

 

VoM  Impact  on  Host  Genetics  

Horizontal  gene  transfer  and  genome  mosaicism  is  common  among  hosts  of  VoMs  as  

well.  It  has  been  best  studied  among  bacteria  (Baltrus,  2013;  McDaniel,  2012),  but  is  known  to  

occur  in  all  domains  (Bock,  2010;  Hotopp,  2011).  A  majority  of  all  sequenced  bacterial  genomes  

contain  prophages  (Canchaya  et  al.,  2003).  These  latent  viruses  comprise  up  to  20%  of  some  

bacterial  genomes  (Klumpp  et  al.,  2013)  and  a  significant  portion  of  the  total  planetary  phage  

genes  is  contained  by  prophages  (Forterre  and  Prangishvili,  2013).  There  are,  in  addition,  

numerous  examples  of  phage-­‐mediated  gene  transfer  with  significant  implications  for  public  

health  and  other  fields  (Brussow  et  al.,  2004;  Klumpp  and  Fuchs,  2007;  Chen  and  Novick,  2009;  

Imamovic  et  al.,  2009;  Saunders  et  al.,  2001).  For  example,  lysogenic  conversion  of  

Page 42: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  25  

Corynebacterium  diphtheriae  by  the  Corynebacteriophage  β  renders  the  bacterium  toxigenic  

(Freeman,  1951).  Antibiotic  resistance  genes  are  widespread  in  phage  DNA  obtained  from  

environmental  isolates,  and  Colomer-­‐Lluch  and  colleages  generated  resistant  clones  after  

transfection  with  phage  DNA  (Colomer-­‐Lluch  et  al.,  2011).  Clearly  VoMs  are  important  

components  of  microbial  horizontal  gene  transfer,  resulting  in  the  gain,  loss  or  reshuffling  host  

genes  (Andersson,  2009;  Filée  et  al.,  2002;  Rowher  and  Thurber,  2009;  Krupovic  et  al.,  2011).    

A  general  category  of  virus-­‐  and  especially  phage-­‐encoded  genes  that  appear  to  be  new  

additions  to  virus  genomes  and  which  often  affect  lysogenic  conversion,  that  is,  the  expression  

of  genes  by  prophages  during  lysogenic  cycles,  have  been  termed  morons.  Morons,  intriguingly  

so  named  because  they  add  “more  DNA”  to  phage  genomes,  often  contain  their  own  separately  

regulated  promoters  and  terminators.  Although  nonessential,  they  may  allow  prophages  to  

escape  deletion  from  host  populations  by  providing  to  hosts  beneficial  genes  such  as  virulence  

factors,  restriction  endonucleases,  superinfection  exclusion  proteins  and  toxin-­‐antitoxin  pairs  

(Cumby  et  al.,  2012).  For  example,  morons  encoding  superoxide  dismutases  confer  resistance  

to  Salmonella  against  reactive  oxygen  species  produced  by  the  mammalian  immune  system  

(Figueroa-­‐Bossi  and  Bossi,  1999).  

Morons,  once  acquired  by  a  bacterial  host,  can  also  form  pathogenicity  Islands  (PAIs),  

encoding  virulence  factors  (Hensel  and  Schmidt,  2008).  Present  in  pathogenic,  but  not  related  

non-­‐pathogenic  strains,  these  presumptive  phage-­‐  or  plasmid-­‐mediated  (pre-­‐)virulence  factors  

increase  bacterial  fitness  by  providing  adhesins,  toxins,  invasins  and  protein  secretion  systems  

used  in  host  infection  (Hacker  and  Kaper,  2000).  Recent  theoretical  modeling  predicts  that  

genes  contributed  by  viruses  can  increase  the  evolvability  of  their  hosts,  allowing  them  to  

Page 43: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  26  

better  explore  their  adaptive  landscape  (Williams,  2013).  In  doing  so,  there  is  no  doubt  that  

VoMs  play  a  role  in  shaping  microbial  communities  over  time  (Koskella  and  Meaden,  2013).  In  

some  cases,  coevolution  with  VoM  can  even  induce  a  host  to  change  its  genetic  code.  For  

example,  Taylor  and  colleagues  reported  several  yeast  strains  using  a  modified  genetic  code  

where  CUG  encoded  serine  (Taylor  et  al.,  2013).  Interestingly  these  authors  also  found  a  

Totivirus  which  possessed  only  one  CUG  codon  and  was  able  to  infect  these  yeast  strains.  

Presumably  this  Totivirus  adapted  to  the  yeast  by  avoiding  the  modified  codon  (Taylor  et  al.,  

2013).  

 

VoMs  as  Ecosystem  Modifiers    

Microorganisms,  such  as  heterotrophic  bacteria  and  phytoplankton,  form  the  

foundation  of  the  food  web  as  they  convert  solar  energy  and  dissolved  nutrients  into  

particulate  organic  matter  usable  by  higher  organisms.  Although  research  in  this  area  is  

nascent,  recent  work  indicates  that  more  than  90%  of  marine  biomass  is  composed  of  

microorganisms.  Amazingly,  VoM  lysis  reportedly  liberates  20-­‐55%  of  this  biomass  each  day  

(Suttle,  1994;  Suttle,  2007;  Winget  et  al.,  2011;  Wommack  and  Colwell,  2000).  The  destruction  

of  primary  producers  has  the  effect  of  reducing  the  total  available  resources  to  grazers  at  the  

next  trophic  level,  reducing  their  growth,  with  cascading  effects  at  all  higher  trophic  levels.  

Through  host  cell  lysis,  however,  VoMs  also  can  convert  organic  matter  from  a  particulate  form  

to  a  dissolved  form  consumable  only  by  osmotrophs  (organisms  that  acquire  nutrition  by  taking  

advantage  of  an  osmotic  gradient,  that  is  by  direct  uptake  of  dissolved  organic  molecules)  at  

the  very  bottom  of  the  food  chain  (Thingstad  et  al.,  2008;  Weinbauer  et  al.,  2011).  This  semi-­‐

Page 44: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  27  

closed  “viral  shunt”  may  reduce  the  flow  of  energy  between  the  primary  producers  and  

osmotrophs  and  the  higher  trophic  levels  (Bratbak  et  al.,  1992;  Fuhrman,  1999;  Suttle,  2007).  

Indeed,  as  much  as  25%  of  the  carbon  fixed  through  photosynthesis  may  cycle  through  the  viral  

shunt  (Wilhelm  and  Suttle,  1999).  

Due  to  the  viral  shunt,  VoMs  may  significantly  impact  'the  biological  pump',  a  process  

that  sequesters  CO2  and  other  nutrients  into  the  deep  ocean  as  a  result  of  the  death  and  sinking  

of  surface  water  microorganisms  (Suttle,  2007).  This  effect  plays  a  role  in  the  global  carbon  

cycle  and  any  alterations  of  this  mechanism  could  influence  climate  change  via  a  modification  

of  the  efficiency  of  this  sequestration  process,  though  the  exact  nature  of  this  impact  is  still  

unclear  (Danovaro  et  al.,  2011).  The  current  debate  on  the  ultimate  role  of  VoM-­‐mediated  lysis  

of  marine  biomass  on  a  global  scale  centers  on  several  possible  outcomes  (Brussaard  et  al.,  

2008).  First,  VoMs  may  short-­‐circuit  the  biological  pump  by  returning  nutrients  back  to  the  

dissolved  phase,  which  is  hypothesized  to  limit  their  transport  to  the  deep  ocean  (Poorvin  et  al.,  

2004).  Second,  VoMs  might  accelerate  the  biological  pump  cycling  by  promoting  the  sinking  of  

infected  host  cells  to  the  deep  ocean  (Lawrence  and  Suttle,  2004).  One  way  this  might  occur  is  

the  failure  of  flagella-­‐driven  motility  in  some  infected  microbes,  disabling  their  ability  to  

prevent  sinking  (Lawrence  and  Suttle,  2004).  Finally,  VoM-­‐mediated  lysis  may  drive  the  flow  of  

nutrients  to  the  deep  sea  via  the  aggregation  and  sinking  of  lysed  cellular  debris  (e.g.,  marine  

snow)  (Danovaro  et  al.,  2008;  Mari  et  al.,  2005).  These  nutrients  may  form  the  basis  of  the  food  

web  at  depths  where  the  available  sunlight  is  insufficient  to  allow  photosynthesis.    

  We  expect  that,  due  to  the  high  degrees  of  organismal  and  environmental  

heterogeneity,  the  activity  of  the  viral  shunt  and  the  biological  pump  will  exhibit  considerable  

Page 45: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  28  

temporal  and  spatial  variation.  Net  movement  of  nutrients  among  trophic  levels  and  habitats  

thereby  should  show  significant  context  dependency.  A  major  challenge  for  microbial  ecologists  

will  be  to  parse  major  trends  in  biogeochemical  dynamics  across  widespread  ecosystems.      

 

Closing  Remarks  

  Viruses  of  microorganisms  are  a  spectacularly  diverse,  influential  and  pervasive  group  of  

organisms,  but  our  understanding  of  their  biology  is  not  proportionate  to  their  impact.  They  

thus  may  be  described  as  the  dark  matter  of  the  biosphere  (Filée  et  al.,  2005);  the  hidden  world  

that  directly  or  indirectly  influences  every  living  organism.  Much  of  the  world's  genetic  

information  perhaps  also  is  contained  within  their  genomes.  VoMs  too  are  masters  of  shuttling  

genes,  manipulating  genomes,  and  either  generating  or  otherwise  increasing  biodiversity.  They  

alter  biogeographical  cycles,  communities,  ecosystems,  and  may  even  influence  global  climate  

and  its  change.  Understanding  how  these  influences  interact  to  produce  our  living  world  

requires  the  application  of  ecology  in  the  context  of  evolutionary  history.  Further  study  of  the  

evolution  and  ecology  of  VoMs  can  only  increase  our  appreciation  of  the  rich  and  wonderful  

fabric  of  life.    

 

Acknowledgements  

  The  authors  are  grateful  for  rewarding  discussions  with  James  Carpino,  Gregory  Lallos  

and  past  and  present  members  of  the  Dennehy  Laboratory.  Funding  was  provided  by  the  

National  Science  Foundation  Faculty  Early  Career  Award  (#1148879)  to  JJD.    

   

Page 46: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  29  

Figure  Legends  

Fig.  1  –  Population  growth  over  time  is  depicted  for  three  functions  (Panels  A-­‐C)  and  for  

experimental  data  (Panel  D).  In  panel  A,  the  characteristic  concave-­‐up  curve  of  

exponential  growth  is  shown  (solid  line).  The  shape  of  this  function  changes  with  

increasing  (dotted  line)  or  decreasing  (dashed  line)  growth  rates.  In  Panel  B,  the  

incorporation  of  resource  limitation  into  the  population  growth  model  tempers  growth  

rates  at  higher  densities,  giving  a  distinctive  S-­‐shaped  curve  (solid  line).  Increasing  

(dotted  line)  or  decreasing  dashed  line)  growth  rate  will  shift  the  curve  to  the  right  or  

left,  but  they  both  approach  the  same  maxima,  the  carrying  capacity.  Reducing  

resources  will  have  the  effect  of  reducing  maximal  carrying  capacity  (dash-­‐dot  line).  

Panel  C  shows  Lotka-­‐Volterra  style  predator  (dashed  line)  and  prey  (solid  line).  Predator  

numbers  usually  correspond  to  prey  numbers  with  a  slight  lag  and  a  reduced  magnitude.  

VoMs  behave  differently  in  that  their  numbers  usually  exceed  that  of  their  “prey.”  Panel  

D  (modified  from  Marston  et  al.,  2012)  shows  the  population  dynamics  of  a  bacterium,  

Synechococcus  (black  line),  and  a  virus,  RIM8  (grey  line),  in  a  chemostat  (top  third).  For  

reference,  the  dashed  line  is  bacterial  abundance  in  the  control,  virus-­‐free  chemostat.  

The  middle  and  bottom  panels  show  host  and  virus  phenotypes  found  at  six  time  points.  

Host  range  mutants  are  numbered  in  their  order  of  infectivity  (e.g.,  ϕ1–ϕ12),  with  

higher  numbers  indicating  the  ability  to  infect  a  greater  number  of  host  phenotypes.  

Host  phenotypes  are  labeled  by  their  ability  to  resist  infection  by  each  host  range  

mutant.  For  example,  S  (sensitive  to  RIM8)  is  the  ancestral  host,  and  R0–2  is  resistant  to  

ϕ0,  ϕ1,  and  ϕ2.  Dashed  lines  are  hypothetical  evolutionary  histories  based  on  the  most  

Page 47: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  30  

parsimonious  interpretation  of  the  data.  Reprinted  with  permission  from  Marston  et  al.,  

2012.  

Fig.  2  –  Viruses  of  microorganisms  significantly  impact  the  cycling  of  organic  matter  and  

nutrients  in  the  ocean.  The  shuttling  of  resources  among  trophic  levels  is  interrupted  by  

viruses  (virus  shunt).  In  addition,  viruses  impact  the  biological  pump  between  the  

surface  and  deep  ocean.    

Fig.  3  –Horizontal  Gene  Transfer  Across  Domains.  Phage-­‐dominate  (dotted  lines)  and  phage-­‐

influenced  (dashed  lines)  are  emphasized.    Reprinted  with  permission  from  Abedon,  

2009.  

 

 

   

Page 48: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  31  

Fig.  1  Population  growth  over  time.  

 

 

   

Page 49: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  32  

Fig.  2  Viruses  of  microorganisms  significantly  impact  the  cycling  of  organic  matter  and  nutrients  in  the  ocean.  

 

Page 50: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  33  

Fig.  3  Horizontal  Gene  Transfer  Across  Domains.  

   

   

Page 51: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  34  

References    

 Abedon,  S.T.  (1989).  Selection  for  bacteriophage  latent  period  length  by  bacterial  density  -­‐    a  theoretical  examination.  Microbial  Ecology  18,  79-­‐88.    Abedon,  S.T.  (1990).  Selection  for  lysis  inhibition  in  bacteriophage.  Journal  of  Theoretical  Biology  146,  501-­‐511.    Abedon,  S.T.  Bacteriophage  Ecology.  (2008).  Advances  in  Molecular  and  Cellular  Microbiology  (Book  15).  (Cambridge,  UK:  Cambridge  University  Press).      Abedon,  S.T.  (2009).  Phage  evolution  and  ecology.  Advances  in  Applied  Mircobiology  67,  1-­‐45.    Abedon,  S.T.  (2011).  Envisaging  bacteria  as  phage  targets.  Bacteriophage  1,  228-­‐230.    Abedon,  S.T.,  Herschler,  T.D.,  and  Stopar,  D.  (2001).  Bacteriophage  latent-­‐period  evolution  as  a  response  to  resource  availability.  Applied  and  Environmental  Microbiology  67,  4233-­‐4241.    Abedon,  S.T.,  Hyman,  P.,  and  Thomas,  C.  (2003).  Experimental  examination  of  bacteriophage  latent-­‐period  evolution  as  a  response  to  bacterial  availability.  Applied  and  Environmental  Microbiology  69,  7499-­‐7506.    Agnew,  P.,  and  Koella,  J.C.  (1999).  Life  history  interactions  with  environmental  conditions  in  a  host-­‐parasite  relationship  and  the  parasite's  mode  of  transmission.  Evolutionary  Ecology  13,  67-­‐89.    Allee,  W.C.  1931.  Animal  Aggregations.  A  Study  in  General  Sociology.  (Chicago:  University  of  Chicago  Press).    Allen,  H.K.,  Bunge,  J.,  Foster,  J.A.,  Bayles,  D.O.,  and  Stanton,  T.B.  (2013).  Estimation  of  viral  richness  from  shotgun  metagenomes  using  a  frequency  count  approach.  Microbiome  1,  2-­‐7.    Andersson,  A.F.,  and  Banfield,  J.F.  (2008).  Virus  population  dynamics  and  acquired  virus  resistance  in  natural  microbial  communities.  Science  320,  1047-­‐1050.    Andersson,  J.O.  (2009).  Gene  transfer  and  diversification  of  microbial  eukaryotes.  Annual  Review  of  Microbiology  63,  177-­‐93.    Angly,  F.E.,  Felts,  B.,  Breitbart,  M.,  Salamon,  P.,  Edwards,  R.A.,  Carlson,  C.,  Chan,  A.M.,  Haynes,  M.,  Kelley,  S.,  Liu,  H.,  et  al.  (2006).  The  marine  viromes  of  four  oceanic  regions.  PLoS  Biol  4,  e368.    

Page 52: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  35  

Ashelford,  K.E.,  Day,  M.J.,  and  Fry,  J.C.  (2003).  Elevated  abundance  of  bacteriophage  infecting  bacteria  in  soil.  Applied  and  Environmental  Microbiology  69,  285-­‐289.    Baas  Becking,  L.G.M.  (1934).  Geobiologie  of  inleiding  tot  de  milieukunde  (The  Hague,  the  Netherlands:  W.P.  Van  Stockum  &  Zoon).    Baltrus,  D.A.  (2013).  Exploring  the  costs  of  horizontal  gene  transfer.  Trends  in  Ecology  and  Evolution  28,  489-­‐495.    Barnet,  Y.M.,  Daft,  M.J.,  and  Stewart,  W.D.P.  (1981).  Cyanobacteria  -­‐  cyanophage  interactions  in  continuous  culture.  Journal  of  Applied  Bacteriology  51,  541-­‐552.    Barondess,  J.J.,  and  Beckwith,  J.  (1990).  A  bacterial  virulence  determinant  encoded  by  lysogenic  coliphage  lambda.  Nature  346,  871-­‐874.    Barondess,  J.J.,  and  Beckwith,  J.  (1995).  Bor  gene  of  phage  lambda,  involved  in  serum  resistance,  encodes  a  widely  conserved  outer-­‐membrane  lipoprotein.  Journal  of  Bacteriology  177,  1247-­‐1253    Bergh,  O.,  Borsheim,  K.Y.,  Bratbak,  G.,  and  Heldal,  M.  (1989).  High  abundance  of  viruses  found  in  aquatic  environments.  Nature  340,  467-­‐468.    Bock,  Ralph  (2010).  The  give-­‐and-­‐take  of  DNA:  horizontal  gene  transfer  in  plants.  Trends  in  Plant  Science,  15,  11-­‐22    Bohannan,  B.J.M.,  and  Lenski,  R.E.  (1997).  Effect  of  resource  enrichment  on  a  chemostat  community  of  bacteria  and  bacteriophage.  Ecology  78,  2303-­‐2315.    Bohannan,  B.J.M.,  and  Lenski,  R.  (2000).  Linking  genetic  change  to  community  evolution:  insights  from  studies  of  bacteria  and  bacteriophage.  Ecology  Letters,  362-­‐377.    Born,  Y.,  Fieseler,  L.,  Marazzi,  J.,  Lurz,  R.,  Duffy,  B.,  and  Loessner,  M.J.  (2011).  Novel  virulent  and  broad-­‐host-­‐range  Erwinia  amylovora  bacteriophages  reveal  a  high  degree  of  mosaicism  and  a  relationship  to  Enterobacteriaceae  phages.  Applied  and  Environmental  Microbiology  77,  5945-­‐5954.    Bratbak,  G.,  Heldal,  M.,  Thingstad,  T.F.,  Riemann,  B.,  and  Haslund,  O.H.  (1992).  Incorporation  of  viruses  into  the  budget  of  microbial  C-­‐transfer  -­‐  a  first  approach.  Marine  Ecology  Progress  Series  83,  273-­‐280.    Breitbart,  M.,  Felts,  B.,  Kelley,  S.,  Mahaffy,  J.M.,  Nulton,  J.,  Salamon,  P.,  and  Rohwer,  F.  (2004a).  Diversity  and  population  structure  of  a  near-­‐shore  marine-­‐sediment  viral  community.  Proceedings  of  the  Royal  Society  B-­‐Biological  Sciences  271,  565-­‐574.    

Page 53: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  36  

Breitbart,  M.,  Hewson,  I.,  Felts,  B.,  Mahaffy,  J.M.,  Nulton,  J.,  Salamon,  P.,  and  Rohwer,  F.  (2003).  Metagenomic  analyses  of  an  uncultured  viral  community  from  human  feces.  Journal  of  Bacteriology  185,  6220-­‐6223.    Breitbart,  M.,  Miyake,  J.H.,  and  Rohwer,  F.  (2004b).  Global  distribution  of  nearly  identical  phage-­‐encoded  DNA  sequences.  FEMS  Microbiology  Letters,  249–256.    Breitbart,  M.,  and  Rohwer,  F.  (2005).  Here  a  virus,  there  a  virus,  everywhere  the  same  virus?  Trends  in  Microbiology  13,  278-­‐284.      Breitbart,  M.,  Salamon,  P.,  Andresen,  B.,  Mahaffy,  J.M.,  Segall,  A.M.,  Mead,  D.,  Azam,  F.,  and  Rohwer,  F.  (2002).  Genomic  analysis  of  uncultured  marine  viral  communities.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  99,  14250-­‐14255.    Brussaard,  C.P.D.,  Wilhelm,  S.W.,  Thingstad,  F.,  Weinbauer,  M.G.,  Bratbak,  G.,  Heldal,  M.,  Kimmance,  S.A.,  Middelboe,  M.,  Nagasaki,  K.,  Paul,  J.H.,  et  al.  (2008).  Global-­‐scale  processes  with  a  nanoscale  drive:  the  role  of  marine  viruses.  ISME  Journal  2,  575-­‐578.    Brussow,  H.,  Canchaya,  C.,  and  Hardt,  W.D.  (2004).  Phages  and  the  evolution  of  bacterial  pathogens:  from  genomic  rearrangements  to  lysogenic  conversion.  Microbiology  and  Molecular  Biology  Reviews  68,  560-­‐602.    Brussow,  H.,  and  Cutter,  K.  2005.  Bacteriophage  ecology.  In  Bacteriophages,  E.  Kutter  and  A.  Sulakvelidze,  eds.  (Boca  Raton,  FL:  CRC  Press),  pp.  129-­‐164.    Buckling,  A.,  and  Rainey,  P.B.  (2002).  Antagonistic  coevolution  between  a  bacterium  and  a  bacteriophage.  Proceedings  of  the  Royal  Society  of  London  Series  B-­‐Biological  Sciences  269,  931-­‐936.    Buckling,  A.,  Wei,  Y.,  Massey,  R.C.,  Brockhurst,  M.A.,  and  Hochberg,  M.E.  (2006).  Antagonistic  coevolution  with  parasites  increases  the  cost  of  host  deleterious  mutations.  Proceedings  of  the  Royal  Society  B-­‐Biological  Sciences  273,  45-­‐49.    Calendar,  R.,  and  Abedon,  S.T.  (2006).  The  Bacteriophages  2/e.  (Oxford:  Oxford  University  Press).      Campbell,  A.  (1961).  Conditions  for  the  existence  of  bacteriophage.  Evolution  15,  153.    Campbell,  A.,  and  Botstein,  D.  (1983).  Evolution  of  the  lambdoid  phages.  In  Lambda  II,  R.W.  Hendrix,  ed.  (Cold  Spring  Harbor:  Cold  Spring  Harbor  Laboratory  Press),  pp.  pp.  365–380.    Canchaya,  C.,  Proux,  C.,  Fournous,  G.,  Bruttin,  A.,  and  Brussow,  H.  (2003).  Prophage  genomics.  Microbiology  and  Molecular  Biology  Review  67,  238-­‐276.      

Page 54: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  37  

Casjens,  S.R.,  and  Thuman-­‐Commike,  P.A.  (2011).  Evolution  of  mosaically-­‐related  tailed  bacteriophage  genomes  seen  through  the  lens  of  phage  P22  virion  assembly.  Virology  411,  393-­‐415.    Chantranupong,  L.,  and  Heineman,  R.H.  (2012).  A  common,  non-­‐optimal  phenotypic  endpoint  in  experimental  adaptations  of  bacteriophage  lysis  time.  BMC  Evolutionary  Biology  12.    Chao,  L.,  Levin,  B.R.,  and  Stewart,  F.M.  (1977).  Complex  community  in  a  simple  habitat  -­‐  experimental  studies  with  bacteria  and  phage.  Ecology  58,  369-­‐378.    Chao,  L.,  Tran,  T.R.,  and  Matthews,  C.  (1992).  Muller's  ratchet  and  the  advantage  of  sex  in  the  RNA  virus  φ6.  Evolution  46,  289-­‐299.    Chen,  J.,  and  Novick,  R.P.  (2009).  Phage-­‐mediated  intergeneric  transfer  of  toxin  genes.  Science  323,  139-­‐141.    Chibani-­‐Chennoufi,  S.,  Bruttin,  A.,  Dillmann,  M.L.,  and  Brussow,  H.  (2004).  Phage-­‐host  interaction:  an  ecological  perspective.  Journal  of  Bacteriology  186,  3677-­‐3686.    Cochran,  P.K.,  Kellogg,  C.A.,  and  Paul,  J.H.  (1998).  Prophage  induction  of  indigenous  marine  lysogenic  bacteria  by  environmental  pollutants.  Marine  Science  Faculty  Publications  64,  125-­‐133.      Colomer-­‐Lluch,  M.,  Jofre,  J.,  and  Muniesa,  M.  (2011).  Antibiotic  resistance  genes  in  the  bacteriophage  DNA  fraction  of  environmental  samples.  PLoS  ONE  6,  e17549.    Colson,  P.,  Pagnier,  I.,  Yoosuf,  N.,  Fournous,  G.,  La  Scola,  B.,  and  Raoult,  D.  (2013).  "Marseilleviridae",  a  new  family  of  giant  viruses  infecting  amoebae.  Archives  of  Virology  158,  915-­‐920.    Culley,  A.I.,  Lang,  A.S.,  and  Suttle,  C.A.  (2006).  Metagenomic  analysis  of  coastal  RNA  virus  communities.  Science  312,  1795-­‐1798.    Cumby,  N.,  Edwards,  A.M.,  Davidson,  A.R.,  and  Maxwell,  K.L.  (2012).  The  bacteriophage  HK97  gp15  moron  element  encodes  a  novel  superinfection  exclusion  protein.  Journal  of  Bacteriology  194,  5012-­‐5019.    Danovaro,  R.,  Corinaldesi,  C.,  Dell'Anno,  A.,  Fuhrman,  J.A.,  Middelburg,  J.J.,  Noble,  R.T.,  and  Suttle,  C.A.  (2011).  Marine  viruses  and  global  climate  change.  FEMS  Microbiology  Reviews  35,  993-­‐1034.    Danovaro,  R.,  Dell'Anno,  A.,  Corinaldesi,  C.,  Magagnini,  M.,  Noble,  R.,  Tamburini,  C.,  and  Weinbauer,  M.  (2008).  Major  viral  impact  on  the  functioning  of  benthic  deep-­‐sea  ecosystems.  Nature  454,  1084-­‐U1027.  

Page 55: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  38  

 Darwin,  C.  (1859).  On  The  Origin  of  Species  by  Means  of  Natural  Selection,  or  the  Preservation  fo  Favoured  Races  in  the  Struggle  for  Life  (London:  John  Murray).    Darwin,  C.  (1862).  On  the  Various  Contrivances  by  Which  British  and  Foreign  Orchids  Are  Fertilised  by  Insects  (London:  John  Murray).    De  Paepe,  M.,  and  Taddei,  F.  (2006).  Viruses'  life  history:  towards  a  mechanistic  basis  of  a  trade-­‐off  between  survival  and  reproduction  among  phages.  PLoS  Biology  4,  e193.    Deho,  G.,  and  Ghisotti,  D.  (2006).  The  satellite  phage  P4.  In  The  Bacteriophages  2/e.  R.L.  Calendar,  and  S.T.  Abedon,  eds.  (Oxford:  Oxford  University  Press),  pp.  391–408.    Delwart,  E.L.  (2007).  Viral  metagenomics.  Reviews  in  Medical  Virology  17,  115-­‐131.    Dennehy,  J.J.  (2012).  What  can  phages  tell  us  about  host-­‐pathogen  coevolution?  International  Journal  of  Evolutionary  Biology,  396165-­‐396165.    Dennehy,  J.J.,  Duffy,  S.,  O'Keefe,  K.J.,  Edwards,  S.,  and  Turner,  P.E.  (2013).  Frequent  coinfection  reduces  RNA  virus  population  genetic  diversity.  Journal  of  Heredity  104,  704-­‐712.    Dennehy,  J.J.,  Friedenberg,  N.A.,  Holt,  R.D.,  and  Turner,  P.E.  (2006).  Viral  ecology  and  the  maintenance  of  novel  host  use.  American  Naturalist  167,  429-­‐439.    Desnues,  C.,  B.  La  Scola,  N.  Yutin,  G.  Fournous,  C.  Robert  et  al.  (2012).  Provirophages  and  transpovirons  as  the  diverse  mobilome  of  giant  viruses.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  109,  18078-­‐18083.    Desnues,  C.,  Rodriguez-­‐Brito,  B.,  Rayhawk,  S.,  Kelley,  S.,  Tran,  T.,  Haynes,  M.,  Liu,  H.,  Furlan,  M.,  Wegley,  L.,  Chau,  B.,  et  al.  (2008).  Biodiversity  and  biogeography  of  phages  in  modern  stromatolites  and  thrombolites.  Nature  452,  340-­‐U345.    Duffy,  S.,  Shackelton,  L.A.,  and  Holmes,  E.C.  (2008).  Rates  of  evolutionary  change  in  viruses:  patterns  and  determinants.  Nature  Reviews  Genetics  9,  267-­‐276.    Ebert,  D.,  Zschokke-­‐Rohringer,  C.D.,  and  Carius,  H.J.  (2000).  Dose  effects  and  density-­‐dependent  regulation  of  two  microparasites  of  Daphnia  magna.  Oecologia  122,  200-­‐209.    Edwards,  R.A.,  and  Rohwer,  F.  (2005).  Viral  metagenomics.  Nature  Reviews  Microbiology  3,  504-­‐510.    Figueroa-­‐Bossi,  N.,  and  Bossi,  L.  (1999).  Inducible  prophages  contribute  to  Salmonella  virulence  in  mice.  Molecular  Microbiology  33,  167-­‐176.    

Page 56: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  39  

Filée,  J.,  Forterre,  P.,  Sen-­‐Lin,  T.,  and  Laurent,  J.  (2002).  Evolution  of  DNA  polymerase  families:  Evidences  for  multiple  gene  exchange  between  cellular  and  viral  proteins.  Journal  of  Molecular  Evolution  54,  763-­‐773.    Filée,  J.,  Tétart,  F.,  Suttle,  C.A.,  and  Krisch,  H.M.  (2005).  Marine  T4-­‐type  bacteriophages,  a  ubiquitous  component  of  the  dark  matter  of  the  biosphere.  Proceedings  of  the  National  Academy  of  Sciences  102,  12471-­‐12476.    Fischer,  M.G.,  and  Suttle,  C.A.  (2011).  A  virophage  at  the  origin  of  large  DNA  transposons.  Science  332,  231-­‐234.    Fisher,  R.A.  (1930).  The  Genetical  Theory  of  Natural  Selection  (Oxford:  Clarendon  Press).    Forterre,  P.,  and  Prangishvili,  D.  (2013).  The  major  role  of  viruses  in  cellular  evolution:  facts  and  hypotheses.  Currunt  Opinion  in  Virology  3,  558-­‐65.    Freeman,  V.J.  (1951).  Studies  on  the  virulence  of  bacteriophage-­‐infected  strains  of  Corynebacterium  diphtheriae.  Journal  of  Bacteriology  61,  675–688.    Fuhrman,  J.A.  (1999).  Marine  viruses  and  their  biogeochemical  and  ecological  effects.  Nature  399,  541-­‐548.    Gallet,  R.,  Lenormand,  T.,  and  Wang,  I.-­‐N.  (2012).  Phenotypic  stochasticity  protects  lytic  bacteriophage  populations  from  extinction  during  the  bacterial  stationary  phase.  Evolution  66,  3485–3494.    Gallet,  R.,  Kannoly,  S.,  and  Wang,  I.-­‐N.  (2011).  Effects  of  bacteriophage  traits  on  plaque  formation.  BMC  Microbiology  11.    Gallet,  R.,  Shao,  Y.P.,  and  Wang,  I.-­‐N.  (2009).  High  adsorption  rate  is  detrimental  to  bacteriophage  fitness  in  a  biofilm-­‐like  environment.  BMC  Evolutionary  Biology  9.    García-­‐Villada,  L.,  and  Drake,  J.W.  (2013).  Experimental  selection  reveals  a  trade-­‐off  between  fecundity  and  lifespan  in  the  coliphage  Qß.  Open  Biology  3.    Gause,  G.F.  (1934).  The  Struggle  for  Existence  (New  York:  Hafner).    Gerla,  D.J.,  Gsell,  A.S.,  Kooi,  B.W.,  Ibelings,  B.W.,  Van  Donk,  E.,  and  Mooij,  W.M.  (2013).  Alternative  states  and  population  crashes  in  a  resource-­‐susceptible-­‐infected  model  for  planktonic  parasites  and  hosts.  Freshwater  Biology  58,  538-­‐551.    Göker,  M.,  Scheuner,  C.,  Klenk,  H.-­‐P.,  Stielow,  J.B.,  and  Menzel,  W.  (2011).  Codivergence  of  mycoviruses  with  their  hosts.  PLoS  One  6.    

Page 57: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  40  

Hacker,  J.,  and  Kaper,  J.B.  (2000).  Pathogenicity  islands  and  the  evolution  of  microbes.  Annual  Review  of  Microbiology  54,  641-­‐679.    Hambly,  E.,  and  Suttle,  C.A.  (2005).  The  viriosphere,  diversity,  and  genetic  exchange  within  phage  communities.  Current  Opinion  in  Microbiology  8,  444-­‐450.    Hatfull,  G.F.,  and  Hendrix,  R.W.  (2011).  Bacteriophages  and  their  Genomes.  Current  Opinion  in  Virology  1,  298-­‐303    Heineman,  R.H.,  and  Bull,  J.J.  (2007).  Testing  optimality  with  experimental  evolution:  lysis  time  in  a  bacteriophage.  Evolution  61,  1695-­‐1709.    Held,  N.L.,  and  Whitaker,  R.J.  (2009).  Viral  biogeography  revealed  by  signatures  in  Sulfolobus  islandicus  genomes.  Environmental  Microbiology  11,  457-­‐466.    Hendrix,  R.W.,  Lawrence,  J.G.,  Hatfull,  G.F.,  and  Casjens,  S.  (2000).  The  origins  and  ongoing  evolution  of  viruses.  Trends  in  Microbiology  8,  504-­‐508.    Hensel,  M.,  and  Schmidt,  H.,  eds.  (2008).  Horizontal  gene  transfer  in  the  evolution  of  pathogenesis  (Cambridge:  Cambridge  University  Press).    Herskowitz,  I.,  and  Hagen,  D.  (1980).  The  lysis-­‐lysogeny  decision  of  phage  λ:  explicit  programming  and  responsiveness.  Annual  Review  of  Genetics,  399-­‐445.    Horiuchi,  K.  (1983).  Co-­‐evolution  of  a  filamentous  bacteriophage  and  its  defective  interfering  particles.  Journal  of  Molecular  Biology  169,  389-­‐407.    Hotopp,  J.C.D.  (2011).  Horizontal  gene  transfer  between  bacteria  and  animals.  Trends  in  Genetics  27,  157-­‐163.    Huang,  A.S.  (1973).  Defective  interfering  viruses.  Annual  Review  of  Microbiology  27,  101-­‐117.    Hurwitz,  B.L.,  and  Sullivan,  M.B.  (2013).  The  Pacific  Ocean  virome  (POV):  a  marine  viral  metagenomic  dataset  and  associated  protein  clusters  for  quantitative  viral  ecology.  PLoS  One  8.    Hyman,  P.,  and  Abedon,  S.T.  (2010).  Bacteriophage  host  range  and  bacterial  resistance.  Advances  in  Applied  Microbiology  70,  217-­‐248.    Imamovic,  L.,  Jofre,  J.,  Schmidt,  H.,  Serra-­‐Moreno,  R.,  and  Muniesa,  M.  (2009).  Phage-­‐mediated  Shiga  toxin  2  gene  transfer  in  food  and  water.  Applied  and  Environmental  Microbiology  75,  1764-­‐1768.    Iranzo,  J.,  and  Manrubia,  S.C.  (2012).  Evolutionary  dynamics  of  genome  segmentation  in  multipartite  viruses.  Proceedings  of  the  Royal  Society  B-­‐Biological  Sciences  279,  3812-­‐3819.  

Page 58: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  41  

 Joseph,  S.B.,  Hanley,  K.A.,  Chao,  L.,  and  Burch,  C.L.  (2009).  Coinfection  rates  in  φ6  bacteriophage  are  enhanced  by  virus-­‐induced  changes  in  host  cells.  Evolutionary  Applications  2,  24-­‐31.    Juhala,  R.J.,  Ford,  M.E.,  Duda,  R.L.,  Youlton,  A.,  Hatfull,  G.F.,  and  Hendrix,  R.W.  (2000).  Genomic  sequences  of  bacteriophages  HK97  and  HK022:  Pervasive  genetic  mosaicism  in  the  lambdoid  bacteriophages.  Journal  of  Molecular  Biology  299,  27-­‐51.    Kawecki,  T.  J.  and  Ebert,  D.  (2004),  Conceptual  issues  in  local  adaptation.  Ecology  Letters,  7:  1225–1241.      Kerr,  B.,  West,  J.,  and  Bohannan,  B.J.M.  (2008).  Bacteriophages:  models  for  exploring  basic  principles  of  ecology.  In  Bacteriophage  Ecology,  S.T.  Abedon,  ed.  (Cambridge:  Cambridge  University  Press),  pp.  31-­‐63.    Kerr,  P.J.  (2012).  Myxomatosis  in  Australia  and  Europe:  a  model  for  emerging  infectious  diseases.  Antiviral  Research  93,  387-­‐415.    Klumpp,  J.,  Fouts,  D.E.,  and  Sozhamannan,  S.  (2013).  Bacteriophage  functional  genomics  and  its  role  in  bacterial  pathogen  detection.  Briefings  in  Functional  Genomics  12,  354-­‐365.    Klumpp,  J.,  and  Fuchs,  T.M.  (2007).  Identification  of  novel  genes  in  genornic  islands  that  contribute  to  Salmonella  typhimurium  replication  in  macrophages.  Microbiology-­‐SGM  153,  1207-­‐1220.    Koskella,  B.,  and  Meaden,  S.  (2013).  Understanding  bacteriophage  specificity  in  natural  microbial  communities.  Viruses-­‐Basel  5,  806-­‐823.    Kristensen,  D.M.,  Mushegian,  A.R.,  Dolja,  V.V.,  and  Koonin,  E.V.  (2010).  New  dimensions  of  the  virus  world  discovered  through  metagenomics.  Trends  in  Microbiology  18,  11-­‐19.    Krupovic,  M.,  Prangishvili,  D.,  Hendrix,  R.W.,  and  Bamford,  D.H.  (2011).  Genomics  of  bacterial  and  archaeal  viruses:  dynamics  within  the  prokaryotic  virosphere.  Microbiology  and  Molecular  Biology  Reviews  75,  610.    Kunin,  V.,  He,  S.,  Warnecke,  F.,  Peterson,  S.B.,  Martin,  H.G.,  Haynes,  M.,  Ivanova,  N.,  Blackall,  L.L.,  Breitbart,  M.,  Rohwer,  F.,  et  al.  (2008).  A  bacterial  metapopulation  adapts  locally  to  phage  predation  despite  global  dispersal.  Genome  Research  18,  293-­‐297.    La  Scola,  B.,  Audic,  S.,  Robert,  C.,  Jungang,  L.,  de  Lamballerie,  X.,  Drancourt,  M.,  Birtles,  R.,  Claverie,  J.M.,  and  Raoult,  D.  (2003).  A  giant  virus  in  amoebae.  Science  299,  2033-­‐2033.    

Page 59: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  42  

La  Scola,  B.,  Desnues,  C.,  Pagnier,  I.,  Robert,  C.,  Barrassi,  L.,  Fournous,  G.,  Merchat,  M.,  Suzan-­‐Monti,  M.,  Forterre,  P.,  Koonin,  E.,  et  al.  (2008).  The  virophage  as  a  unique  parasite  of  the  giant  mimivirus.  Nature  455,  100-­‐U165.    Lawrence,  J.E.,  and  Suttle,  C.A.  (2004).  Effect  of  viral  infection  on  sinking  rates  of  Heterosigma  akashiwo  and  its  implications  for  bloom  termination.  Aquatic  Microbial  Ecology,  1-­‐7.    Lee,  K.L.,  Hubbard,  L.C.,  Hern,  S.,  Yildiz,  I.,  Gratzl,  M.,  and  Steinmetz,  N.F.  (2013).  Shape  matters:  the  diffusion  rates  of  TMV  rods  and  CPMV  icosahedrons  in  a  spheroid  model  of  extracellular  matrix  are  distinct.  Biomaterials  Science  1,  581-­‐588.    Lenski,  R.E.  (1984).  Coevolution  of  bacteria  and  phage  -­‐  are  there  endless  cycles  of  bacterial  defenses  and  phage  counterdefenses?  Journal  of  Theoretical  Biology  108,  319-­‐325.    Lenski,  R.E.  (1988).  Dynamics  of  interactions  between  bacteria  and  virulent  bacteriophage.  Advances  in  Microbial  Ecology  10,  1-­‐44.    Lenski,  R.E.,  and  Levin,  B.R.  (1985).  Constraints  on  the  coevolution  of  bacteria  and  virulent  phage  -­‐  a  model,  some  experiments,  and  predictions  for  natural  communities  American  Naturalist  125,  585-­‐602.    Levin,  B.R.,  Stewart,  F.M.,  and  Chao,  L.  (1977).  Resource  limited  growth,  competition,  and  predation  -­‐  A  model  and  experimental  studies  with  bacteria  and  bacteriophage  American  Naturalist  111,  3-­‐24.    Little,  T.J.,  and  Ebert,  D.  (2000).  The  cause  of  parasitic  infection  in  natural  populations  of  Daphnia  (Crustacea  :  Cladocera):  the  role  of  host  genetics.  Proceedings  of  the  Royal  Society  B-­‐Biological  Sciences  267,  2037-­‐2042.    Lotka,  A.J.  (1925).  Elements  of  physical  biology  (Baltimore:  Williams  and  Wilkins).    Loverdo,  C.,  and  Lloyd-­‐Smith,  J.O.  (2013).  Intergenerational  phenotypic  mixing  in  viral  evolution.  Evolution  67,  1815-­‐1822.    Ludwig,  D.,  and  Rowe,  L.  (1990).  Life  history  strategies  for  energy  gain  and  predator  avoidance  under  time  constraints.  American  Naturalist  135,  686-­‐707.    Mari,  X.,  Rassoulzadegan,  F.,  Brussaard,  C.P.D.,  and  Wassmann,  P.  (2005).  Dynamics  of  transparent  exopolymeric  particles  (TEP)  production  by  Phaeocystis  globosa  under  N-­‐  or  P-­‐limitation:  a  controlling  factor  of  the  retention/export  balance.  Harmful  Algae  4,  895-­‐914.    Marshall,  N.,  Priyamvada,  L.,  Ende,  Z.,  Steel,  J.,  and  Lowen,  A.C.  (2013).  Influenza  virus  reassortment  occurs  with  high  frequency  in  the  absence  of  segment  mismatch.  PLoS  Pathogens  9,  e1003421.  

Page 60: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  43  

 Marston,  M.F.,  Pierciey,  F.J.,  Jr.,  Shepard,  A.,  Gearin,  G.,  Qi,  J.,  Yandava,  C.,  Schuster,  S.C.,  Henn,  M.R.,  and  Martiny,  J.B.H.  (2012).  Rapid  diversification  of  coevolving  marine  Synechococcus  and  a  virus.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  109,  4544-­‐4549.    McDaniel,  L.D.  (2012).  High  frequency  of  horizontal  gene  transfer  in  the  oceans.  Science  337,  911-­‐911.    McLean,  A.R.,  and  Bostock,  C.J.  (2000).  Scrapie  infections  initiated  at  varying  doses:  an  analysis  of  117  titration  experiments.  Philosophical  Transactions  of  the  Royal  Society  of  London  Series  B-­‐Biological  Sciences  355,  1043-­‐1050.    Mochizuki,  T.,  Krupovic,  M.,  Pehau-­‐Arnaudet,  G.,  Sako,  Y.,  Forterre,  P.,  Prangishvili,  D.  (2012).  Archaeal  virus  with  exceptional  virion  architecture  and  the  largest  single-­‐stranded  DNA  genome.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  109,  13386–91.    Mokili,  J.L.,  Rohwer,  F.,  and  Dutilh,  B.E.  (2012).  Metagenomics  and  future  perspectives  in  virus  discovery.  Current  Opinion  in  Virology  2,  63-­‐77.    Monier,  A.,  Claverie,  J.-­‐M.,  and  Ogata,  H.  (2008).  Taxonomic  distribution  of  large  DNA  viruses  in  the  sea.  Genome  Biology  9.    Morgan,  A.D.,  Maclean,  R.C.,  and  Buckling,  A.  (2009).  Effects  of  antagonistic  coevolution  on  parasite-­‐mediated  host  coexistence.  Journal  of  Evolutionary  Biology  22,  287-­‐292.    O'Keefe,  K.J.,  Silander,  O.K.,  McCreery,  H.,  Weinreich,  D.M.,  Wright,  K.M.,  Chao,  L.,  Edwards,  S.V.,  Remold,  S.K.,  and  Turner,  P.E.  (2010).  Geographic  differences  in  sexual  reassortment  in  RNA  phage.  Evolution  64,  3010-­‐3023.    Ojosnegros,  S.,  Garcia-­‐Arriaza,  J.,  Escarmis,  C.,  Manrubia,  S.C.,  Perales,  C.,  Arias,  A.,  Garcia  Mateu,  M.,  and  Domingo,  E.  (2011).  Viral  genome  segmentation  can  result  from  a  trade-­‐off  between  genetic  content  and  particle  stability.  PLoS  Genetics  7.    Oppenheim,  A.B.,  Kobiler,  O.,  Stavans,  J.,  Court,  D.L.,  and  Adhya,  S.  (2005  ).  Switches  in  bacteriophage  λ  development.  Annual  Review  of  Genetics,  409-­‐429.    Paul,  J.H.  (2008).  Prophages  in  marine  bacteria:  dangerous  molecular  time  bombs  or  the  key  to  survival  in  the  seas?  The  ISME  Journal  2,  579-­‐589.    Pearl,  R.  (1927).  The  growth  of  populations.  Quarterly  Review  of  Biology  2,  532-­‐548.    

Page 61: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  44  

Pearl,  R.,  and  Reed,  L.J.  (1920).  On  the  rate  of  growth  of  the  population  of  the  united  states  since  1790  and  its  mathematical  representation.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  6,  275-­‐288.    Pepin,  K.M.,  Samuel,  M.A.,  and  Wichman,  H.A.  (2006).  Variable  pleiotropic  effects  from  mutations  at  the  same  locus  hamper  prediction  of  fitness  from  a  fitness  component.  Genetics  172,  2047-­‐2056.    Philippe,  N.,  Legendre,  M.,  Doutre,  G.,  Coute,  Y.,  Poirot,  O.,  Lescot,  M.,  Arslan,  D.,  Seltzer,  V.,  Bertaux,  L.,  Bruley,  C.,  et  al.  (2013).  Pandoraviruses:  amoeba  viruses  with  genomes  up  to  2.5  Mb  reaching  that  of  parasitic  eukaryotes.  Science  341,  281-­‐286.    Pianka  (1976).  Natural  selection  of  optimal  reproductive  tactics.  American  Zoologist  16,  775-­‐784.    Poorvin,  L.,  Rinta-­‐Kanto,  J.M.,  Hutchins,  D.A.,  and  Wilhelm,  S.W.  (2004).  Viral  release  of  iron  and  its  bioavailability  to  marine  plankton.  Limnology  and  Oceanography  49,  1734-­‐1741.    Pradel,  R.  (1996).  Utilization  of  capture-­‐mark-­‐recapture  for  the  study  of  recruitment  and  population  growth  rate.  Biometrics    52,  703-­‐709.    Prangishvili,  D.  (2013).  The  wonderful  world  of  archaeal  viruses.  Annual  Review  of  Microbiology  67,  565–85.      Preisig,  O.,  Wingfield,  B.D.,  and  Wingfield,  M.J.  (1998).  Coinfection  of  a  fungal  pathogen  by  two  distinct  double-­‐stranded  RNA  viruses.  Virology  252,  399-­‐406.    Pressing,  J.,  and  Reanney,  D.C.  (1984).  Divided  genomes  and  intrinsic  noise.  Journal  of  Molecular  Evolution  20,  135-­‐146.    Rapp,  F.  (1969).  Defective  DNA  animal  viruses.  Annual  Review  of  Microbiology  23,  293-­‐316.  Regoes,  R.R.,  Nowak,  M.A.,  and  Bonhoeffer,  S.  (2000).  Evolution  of  virulence  in  a  heterogeneous  host  population.  Evolution  54,  64-­‐71.    Roux,  L.,  Simon,  A.E.,  and  Holland,  J.J.  (1991).  Effects  of  defective  interfering  viruses  on  virus-­‐replication  and  pathogenesis  in  vitro  and  in  vivo.  Advances  in  Virus  Research  40,  181-­‐211.    Rohwer,  F.,  and  Edwards,  R.  (2002).  The  phage  proteomic  tree:  a  genome-­‐based  taxonomy  for  phage.  Journal  of  Bacteriology  184,  4529-­‐4535.    Rohwer,  F.,  and  Thurber,  R.V.  (2009).  Viruses  manipulate  the  marine  environment.  Nature  459,  207-­‐212.    

Page 62: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  45  

Rosario,  K.,  and  Breitbart,  M.  (2011).  Exploring  the  viral  world  through  metagenomics.  Current  Opinion  in  Virology  1,  289-­‐297.    Rosario,  K.,  Nilsson,  C.,  Lim,  Y.W.,  Ruan,  Y.,  and  Breitbart,  M.  (2009).  Metagenomic  analysis  of  viruses  in  reclaimed  water.  Environmental  Microbiology  11,  2806-­‐2820.    Sanjuán,  R.,  Nebot,  M.R.,  Chirico,  N.,  Mansky,  L.M.,  and  Belshaw,  R.  (2010).  Viral  mutation  rates.  Journal  of  Virology  84,  9733-­‐9748.    Sano,  E.,  Carlson,  S.,  Wegley,  L.,  and  Rohwer,  F.  (2004).  Movement  of  viruses  between  biomes.  Applied  and  Environmental  Microbiology  70,  5842-­‐5846.    Saunders,  J.R.,  Allison,  H.,  James,  C.E.,  McCarthy,  A.J.,  and  Sharp,  R.  (2001).  Phage-­‐mediated  transfer  of  virulence  genes.  Journal  of  Chemical  Technology  and  Biotechnology  76,  662-­‐666.    Schrag,  S.J.,  and  Mittler,  J.E.  (1996).  Host-­‐parasite  coexistence:  The  role  of  spatial  refuges  in  stabilizing  bacteria-­‐phage  interactions.  American  Naturalist  148,  348-­‐377.    Shao,  Y.P.,  and  Wang,  I.N.  (2008).  Bacteriophage  adsorption  rate  and  optimal  lysis  time.  Genetics  180,  471-­‐482.    Short,  C.M.,  and  Suttle,  C.A.  (2005).  Nearly  identical  bacteriophage  structural  gene  sequences  are  widely  distributed  in  both  marine  and  freshwater  environments.  Applied  and  Environmental  Microbiology  71,  480-­‐486.    Short,  S.M.  (2012).  The  ecology  of  viruses  that  infect  eukaryotic  algae.  Environmental  Microbiology  14,  2253-­‐2271.    Six,  E.W.,  and  Klug,  C.A.  (1973).  Bacteriophage  P4:  a  satellite  virus  depending  on  a  helper  such  as  prophage  P2.  Virology  51,  327-­‐344.    Stopar,  D.,  and  Abedon,  S.T.  (2008).  Modeling  bacteriophage  population  growth.  In  Bacteriophage  Ecology,  S.T.  Abedon,  ed.  (Cambridge:  Cambridge  University  Press).  pp.  389-­‐414.    Suttle,  C.A.  (1994).  The  significance  of  viruses  to  mortality  in  aquatic  microbial  communities.  Microbial  Ecology  28,  237-­‐243.    Suttle,  C.A.  (2007).  Marine  viruses  -­‐  major  players  in  the  global  ecosystem.  Nature  Reviews  Microbiology  5,  801-­‐812.    Symons,  R.H.  (1991).  The  intriguing  viroids  and  virusoids  -­‐  what  is  their  information  content  and  how  did  they  evolve?  .  Molecular  Plant-­‐Microbe  Interactions  4,  111-­‐121.    

Page 63: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  46  

Derek  J.  Taylor,  D.J.,  Ballinger,  M.J.,  Bowman,  S.M.,  and  Bruenn,  J.A.  (2013).  Virus-­‐host  co-­‐evolution  under  a  modified  nuclear  genetic  code.  PeerJ.  1:  e50.    Thingstad,  T.F.  (2000).  Elements  of  a  theory  for  the  mechanisms  controlling  abundance,  diversity,  and  biogeochemical  role  of  lytic  bacterial  viruses  in  aquatic  systems.  Limnology  and  Oceanography  45,  1320-­‐1328.    Thingstad,  T.F.,  Bratbak,  G.,  and  Heldal,  M.  (2008).  Aquatic  phage  ecology.  In  Bacteriophage  Ecology,  S.T.  Abedon,  ed.  (Cambridge,  UK:  Cambridge  University  Press),  pp.  451-­‐480.    Thompson,  J.N.  (1994).  The  Coevolutionary  Process  (Chicago:  University  of  Chicago  Press).    Thompson,  J.N.  (2012).  The  role  of  coevolution.  Science  335,  410-­‐411.    Thurber,  R.V.,  Haynes,  M.,  Breitbart,  M.,  Wegley,  L.,  and  Rohwer,  F.  (2009).  Laboratory  procedures  to  generate  viral  metagenomes.  Nature  Protocols  4,  470-­‐483.    Turner,  P.E.  (2005).  Parasitism  between  co-­‐infecting  bacteriophages.  Advances  in  Ecological  Research,  37,  309-­‐332.    Uc-­‐Mass,  A.,  Loeza,  E.J.,  de  la  Garza,  M.,  Guarneros,  G.,  Hernandez-­‐Sanchez,  J.,  and  Kameyama,  L.  (2004).  An  orthologue  of  the  cor  gene  is  involved  in  the  exclusion  of  temperate  lambdoid  phages.  Evidence  that  Cor  inactivates  FhuA  receptor  functions.  Virology  329,  425-­‐433.    Vainio,  E.J.,  Hakanpää,  J.,  Dai,  Y.-­‐C.,  Hansen,  E.,  Korhonen,  K.  &  Hantula,  J.  2011.  Species  of  Heterobasidion  host  a  diverse  pool  of  partitiviruses  with  global  distribution  and  interspecies  transmission.  Fungal  Biology  115,  1234-­‐1243.    Van  Etten,  J.L.,  Lane,  L.C.,  and  Meints,  R.H.  (1991).  Viruses  and  virus-­‐like  particles  of  eukaryotic  algae.  Microbiological  Reviews  55,  586-­‐620.    van  Wolferen,  M.,  Ajon,  M.,  Driessen,  A.J.M.,  and  Albers,  S.V.  (2013).  How  hyperthermophiles  adapt  to  change  their  lives:  DNA  exchange  in  extreme  conditions.  Extremophiles  17,  545-­‐563.    Volterra,  V.  (1926).  Fluctuations  in  the  abundance  of  a  species  considered  mathematically.  Nature  118,  558-­‐560.    Wang,  I.-­‐N.,  Dykhuizen,  D.E.,  and  Slobodkin,  L.B.  (1996).  The  evolution  of  phage  lysis  timing.  Evolutionary  Ecology,  545-­‐558      Weinbauer,  M.G.,  Bonilla-­‐Findji,  O.,  Chan,  A.M.,  Dolan,  J.R.,  Short,  S.M.,  Simek,  K.,  Wilhelm,  S.W.,  and  Suttle,  C.A.  (2011).  Synechococcus  growth  in  the  ocean  may  depend  on  the  lysis  of  heterotrophic  bacteria.  Journal  of  Plankton  Research  33,  1465-­‐1476.    

Page 64: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  47  

Waldor,  M.K.,  and  Mekalanos,  J.J.  (1996).  Lysogenic  conversion  by  a  filamentous  phage  encoding  cholera  toxin.  Science  272,  1910-­‐1914.    Weinbauer,  M.G.,  and  Rassoulzadegan,  F.  (2004).  Are  viruses  driving  microbial  diversification  and  diversity?  Environmental  Microbiology  6,  1-­‐11.    Weinbauer,  M.G.,  and  Suttle,  C.A.  (1999).  Lysogeny  and  prophage  induction  in  coastal  and  offshore  bacterial  communities.  Aquatic  Microbial  Ecology,  217-­‐225.    Weinbauer,  M.G.,  and  Thingstad,  T.F.  (2010).  Trade-­‐offs  between  competition  and  defense  specialists  among  unicellular  planktonic  organisms:  the  "killing  the  winner"  hypothesis  revisited.  Microbiology  and  Molecular  Biology  Reviews  74,  42-­‐57.Weitz,  J.S.,  and  Dushoff,  J.  (2008).  Alternative  stable  states  in  host-­‐phage  dynamics.  Theoretical  Ecology  1,  13-­‐19.    Weitz,  J.S.,  Mileyko,  Y.,  Joh,  R.I.,  and  Voit,  E.O.  (2008).  Collective  decision  making  in  bacterial  viruses.  Biophysical  Journal  95,  2673-­‐2680.    Whon,  T.  W.,  Kim,  M.-­‐S.,  Roh,  S.  W.,  Shin,  N.-­‐R.,  Lee,  H.-­‐W.,  et  al.  (2012).  Metagenomic  characterization  of  airborne  viral  DNA  diversity  in  the  near-­‐surface  atmosphere.  Journal  of  Virology  86,  8221-­‐8231.    Williams,  H.T.P.  (2013).  Phage-­‐induced  diversification  improves  host  evolvability.  BMC  Evolutionary  Biology  13,  17.    Wilhelm,  S.W.,  and  Suttle,  C.A.  (1999).  Viruses  and  nutrient  cycles  in  the  sea  -­‐  viruses  play  critical  roles  in  the  structure  and  function  of  aquatic  food  webs.  Bioscience  49,  781-­‐788.    Winget,  D.M.,  Helton,  R.R.,  Williamson,  K.E.,  Bench,  S.R.,  Williamson,  S.J.,  and  Wommack,K.E.  (2011).    Repeating  patterns  of  virioplankton  production  within  an  estuarine  ecosystem.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  108,  11506-­‐11511.  Winter,  C.,  Bouvier,  T.    Winter,  C.,  Bouvier,  T.,  Weinbauer,  M.G.,  Thingstad,  T.F.  (2010).  Trade-­‐offs  between  competition  and  defense  specialists  among  unicellular  planktonic  organisms:  the  "killing  the  winner"  hypothesis  revisited.  Microbiology  and  Molecular  Biology  Review  2010  74,  42-­‐57.    Wommack,  K.E.,  and  Colwell,  R.R.  (2000).  Virioplankton:  viruses  in  aquatic  ecosystems.  Microbiology  Molecular  Biology  Review  64,  69  -­‐  114.    Yau,  S.,  Lauro,  F.M.,  DeMaere,  M.Z.,  Brown,  M.V.,  Thomas,  T.,  Raftery,  M.J.,  Andrews-­‐Pfannkoch,  C.,  Lewis,  M.,  Hoffman,  J.M.,  Gibson,  J.A.,  et  al.  (2011).  Virophage  control  of  

Page 65: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  48  

antarctic  algal  host-­‐virus  dynamics.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  108,  6163-­‐6168.    

Page 66: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  49  

Chapter  2:  Frequency  and  Fitness  Consequences  of  Bacteriophage  Φ6  Host  Range  Mutations  

 Brian  E.  Ford1,2,3,  Bruce  Sun1,2,4,  James  Carpino1,3,  Elizabeth  S.  Chapler1,  Jane  Ching1,5,  Yoon  

Choi1,6,  Kevin  Jhun1,7,  Jung  D.  Kim1,8,  Gregory  G.  Lallos1,  Rachelle  Morgenstern1,9,  Shalini  Singh1,  Sai  Theja1,  and  John  J.  Dennehy1,3,10    

 1Biology  Department,  Queens  College  of  the  City  University  of  New  York,  Queens,  New  York,  11367    2Co-­‐first  authors      3The  Graduate  Center  of  the  City  University  of  New  York,  New  York,  NY,  10016    4Current  affiliation:  Department  of  Surgery,  Columbia  University  Medical  Center,  New  York,  NY  10032    5Current  affiliation:  University  of  Maryland  School  of  Pharmacy,  Baltimore,  Maryland  21201      6Current  affiliation:  Smilow  Research  Center,  New  York  University  Medical  Center,  522  First  Avenue,  New  York,  NY  10016    7Current  affiliation:  Icahn  School  of  Medicine  at  Mount  Sinai,  New  York,  NY  10029    8Current  affiliation:  Epidemiology  and  Public  Health,  CUNY  School  of  Public  Health,  New  York,  NY  10065    9Current  affiliation:  Mailman  School  of  Public  Health,  Columbia  University,  New  York,  NY  10032    10Corresponding  author:  [email protected]    Running  Head:  Phage  Host  Range  Mutation  Frequency    Key  Words:  emerging  infectious  disease,  virus  emergence,  host  range  expansion,  antagonistic      pleiotropy,  host  attachment  protein    Research  Article  publish  in  PLoS  ONE  

Page 67: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  50  

Abstract    

Viruses  readily  mutate  and  gain  the  ability  infect  novel  hosts,  but  few  data  are  available  

regarding  the  number  of  possible  host  range-­‐expanding  mutations  allowing  infection  of  any  

given  novel  host,  and  the  fitness  consequences  of  these  mutations  on  original  and  novel  hosts.  

To  gain  insight  into  the  process  of  host  range  expansion,  we  isolated  and  sequenced  69  

independent  mutants  of  the  dsRNA  bacteriophage  φ6  able  to  infect  the  novel  host,  

Pseudomonas  pseudoalcaligenes.  In  total,  we  found  at  least  17  unique  suites  of  mutations  

among  these  69  mutants.  We  assayed  fitness  for  13  of  17  mutant  genotypes  on  P.  

pseudoalcaligenes  and  the  standard  laboratory  host,  P.  phaseolicola.  Mutants  exhibited  

significantly  lower  fitnesses  on  P.  pseudoalcaligenes  compared  to  P.  phaseolicola.  Furthermore,  

12  of  the  13  assayed  mutants  showed  reduced  fitness  on  P.  phaseolicola  compared  to  wildtype  

φ6,  confirming  the  prevalence  of  antagonistic  pleiotropy  during  host  range  expansion.  Further  

experiments  revealed  that  the  mechanistic  basis  of  these  fitness  differences  was  likely  variation  

in  host  attachment  ability.  In  addition,  using  computational  protein  modeling,  we  show  that  

host-­‐range  expanding  mutations  occurred  in  hotspots  on  the  surface  of  the  phage's  host  

attachment  protein  opposite  a  putative  hydrophobic  anchoring  domain.    

   

Page 68: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  51  

Introduction  

After  a  long  period  of  steady  decline,  mortality  due  to  infectious  disease  increased  over  

the  past  several  decades,  largely  because  of  the  emergence  of  new  infectious  diseases  including  

HIV  [1,2].  Of  these  new  diseases,  a  disproportionate  number  have  been  viruses  [3,4].  Because  

of  their  high  mutation  rates  and  vast  population  sizes,  viruses  have  higher  probabilities  of  

acquiring  the  requisite  mutation(s)  allowing  infection  of  novel  hosts  than  do  other  types  of  

pathogens  [5].  A  common  fear  is  that  a  highly  transmissible  and  virulent  virus  will  spread  

pandemically  among  humans,  causing  widespread  mortality  and  economic  damage.  Thus,  there  

is  a  strong  motivation  to  understand  and  predict  virus  emergence.    

Virus  emergence  is  a  two-­‐step  process.  A  virus  first  mutates  to  gain  the  ability  to  infect  a  

new  host,  and  then  fully  emerges  by  achieving  positive  population  growth  on  that  host  via  

adaptation  [6].  Theoretical  modeling  has  shown  that  emergence  probabilities  are  highly  

sensitive  towards  the  type  of  mutation(s)  required  to  productively  infect  a  novel  host  [7].  

Emergence  events  requiring  single  nucleotide  substitutions  are  far  more  likely  to  occur  than  

those  that  require  several  simultaneous  point  mutations  or  recombination  [8].  While  mutations  

altering  virus  host  specificity  can  involve  large-­‐scale  genomic  rearrangements,  most  virus  host  

shifts  likely  entail  the  modification  of  a  small  number  of  virus  receptor  amino  acid  residues  [9].  

In  fact,  single  nucleotide  substitutions  are  often  sufficient  to  expand  a  virus’s  host  range  [10].  If  

this  mechanism  of  host  range  expansion  were  common,  the  number  of  host  range  expanding  

mutations  and  their  frequency  of  appearance  would  be  important  parameters  governing  the  

probability  of  emergence  of  a  potential  human  pathogen.    

Page 69: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  52  

Few  studies  have  systematically  determined  the  type,  number,  frequency  and  fitness  

consequences  of  host  range  expanding  mutations  for  any  particular  virus-­‐host  combination  

[11].    Such  data  can  aid  the  parameterization  of  evolutionary  ecological  model  of  virus  

emergence.  Factoring  in  other  parameters,  such  as  transmission  rates  and  population  densities,  

may  allow  quantitative  predictions  of  the  likelihood  a  particular  virus  is  able  to  emerge  on  a  

new  host.  This  type  of  prioritization  is  critical  before  allocating  resources  to  interdict  potential  

pathogenic  viruses  before  they  emerge.    

 Here  we  use  an  experimental  model  system,  the  bacteriophage  (phage)  φ6,  to  

determine  number,  frequency,  fitness  and  structural  consequences  of  mutations  allowing  

infection  of  a  novel  host.  Phage  φ6  (family  Cystoviridae)  is  a  dsRNA  virus  with  a  tripartite  

genome  divided  into  Small  (2,948  bp),  Medium  (4,061  bp)  and  Large  (6,374  bp)  segments  [12-­‐

14].  Mutations  allowing  φ6  to  infect  novel  hosts  have  been  localized  to  the  gene  encoding  the  

P3  protein  on  the  Medium  segment  [11,15].    

Two  previous  studies  have  systematically  examined  φ6  host  range  expansion  [11,15].  

Duffy  et  al.  isolated  10  φ6  host  range  mutants  on  each  of  three  different  Pseudomonas  host  

strains  including  Pseudomonas  pseudoalcaligenes  [15].  Genetic  sequencing  revealed  that  all  

mutations  occurred  in  the  P3  attachment  protein.  Moreover,  the  authors  reported  that  7  of  the  

9  host  range  mutations  imposed  a  fitness  cost  on  the  canonical  host.  Ferris  et  al.  isolated  40  φ6  

host  range  mutants,  of  which  16  contained  novel  mutations  [11].  The  authors  used  a  statistical  

approach  to  predict  the  existence  of  a  further  39  mutations  that  were  missed  by  their  screen.  In  

addition,  they  observed  broad  fitness  costs  on  the  canonical  host  in  agreement  with  Duffy  et  al.  

[11,15].    

Page 70: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  53  

Our  study  builds  on  each  of  these  earlier  studies  in  order  to  present  a  more  complete  

picture  of  host  range  expansion  in  φ6.  We  isolated  69  independent  φ6  mutants  able  to  infect  

the  novel  host,  P.  pseudoalcaligenes,  and  sequenced  the  entire  P3  gene  for  each  of  them  in  

order  to  determine  the  number,  location  and  frequency  of  host  range  expanding  genotypes.  For  

a  subset  of  unique  mutant  genotype,  we  quantified  plaque  size  on  P.  pseudoalcaligenes,  and  

reproductive  capacity  (fitness)  and  host  attachment  rate  on  canonical  host  P.  phaseolicola  and  

P.  pseudoalcaligenes.  Finally,  we  used  protein  structural  modeling  to  predict  the  effects  of  host  

range  mutations  on  P3  attachment  protein  structure.    

Methods  and  Materials  

Study  Organisms  and  Culture  Conditions  

Cystovirus  φ6  used  in  these  experiments  is  a  descendant  of  the  strain  originally  isolated  

from  bean  straw  in  1973  [16].  φ6’s  host  of  isolation  was  the  Gram-­‐negative  bacterium,  P.  

syringae  pathovar  phaseolicola  (ATCC  #  21781;  hereafter  PP)  [16].  In  our  study,  we  used  a  

nonpermissive  host,  P.  pseudoalcaligenes  East  River  isolate  A  (hereafter  ERA),  to  isolate  φ6  host  

range  mutants  (HRMs).  The  ERA  receptor  to  which  φ6  binds  has  not  been  determined,  but  is  

likely  the  ERA  pili.  Two  other  nonpermissive  hosts,  P.  syringae  pv.  tomato  (hereafter  TOM)  and  

P.  syringae  pv.  atrofaciens  (hereafter  ATRO),  were  used  in  some  assays.  All  bacteria  and  virus  

stocks  were  obtained  from  Paul  Turner,  Yale  University,  New  Haven,  CT.    

  All  phages  and  bacteria  were  propagated  in  lysogeny  broth  (LB:  10  g  NaCl,  10  g  Bacto™  

tryptone,  and  5  g  Bacto™  yeast  extract  per  liter  of  water)  at  pH  7.  Bacterial  cultures  were  

initiated  by  transferring  a  single  colony  from  a  streak  plate  into  10  mL  LB  in  a  sterile  50  mL  flask  

Page 71: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  54  

capped  with  a  20  mL  beaker.  Culture  flasks  were  incubated  with  shaking  (120  rpm)  at  25  °C  for  

18  hours,  allowing  bacteria  to  attain  stationary-­‐phase  density  (~6  x  109  cells  mL-­‐1).    

Virus  Stock  Preparation  

High-­‐titer  phage  lysates  were  prepared  by  adding  1  μL  stock  lysate  and  bacteria  (200  μL  

of  PP/ATRO/TOM  or  20  μL  ERA)  to  3  mL  top  agar  (LB  with  0.7%  Bacto™  agar;  stored  as  liquid  at  

45  °C,  solidifies  at  25  °C),  and  pouring  onto  35  mL  bottom  agar  (LB  with  1.5%  Bacto™  agar)  in  a  

sterile  Petri  dish.  After  24  hours  at  25  °C,  the  resulting  plaques  were  harvested  and  

resuspended  in  4  mL  of  LB,  followed  by  10  min  centrifugation  at  RCF  =  1400  x  g  to  pellet  agar  

and  bacterial  debris.  Bacteria-­‐free  lysates  were  obtained  by  filtering  the  supernatant  through  a  

0.22  μm  filter  (Durapore®;  Millipore,  Bedford,  MA).  Phage  particles  per  mL  in  the  lysates  were  

quantified  via  serial  dilution  and  titering.  Plaques  were  counted  on  plates  where  30  -­‐  500  

plaques  were  visible.  The  number  of  plaque  forming  units  per  mL  (pfu  mL-­‐1)  in  the  original  

lysate  was  obtained  by  multiplying  the  number  of  plaques  times  the  dilution  factor.  Lysates  

were  mixed  1:1  (v/v)  with  80%  glycerol  and  were  stored  at  -­‐20  °C.    

Host  Range  Mutant  Frequency  

  The  frequency  of  HRMs  in  a  phage  population  was  estimated  by  plating  a  known  

number  of  wildtype  φ6  on  a  lawn  of  a  nonpermissive  host  and  counting  the  resulting  number  of  

plaques.  Each  plaque  represents  the  descendants  of  a  single  HRM  in  the  parent  population.  To  

perform  this  assay,  a  single  plaque  was  picked  off  a  lawn  of  PP  and  placed  in  1  mL  LB.  This  

mixture  was  serially  diluted  and  plated  on  PP  to  estimate  phage  pfu  mL-­‐1.  Subsequently,  107  or  

(108  for  TOM)  phages  were  plated  on  lawns  of  the  nonpermissive  hosts,  ERA,  TOM  and  ATRO.  

Typically,  a  φ6  plaque  contains  ~  5  x  108  pfu/mL  so  sufficient  phage  for  plating  were  easily  

Page 72: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  55  

obtained  [17].  Following  48  hrs  growth,  plaques  were  counted  to  estimate  the  number  of  

spontaneous  HRMs  among  the  descendants  of  a  single  phage.  This  assay  was  repeated  at  least  

twenty  times  per  nonpermissive  host  strain.  Mutant  frequency  was  calculated  by  dividing  the  

number  of  plaques  observed  by  the  initial  inocula.  The  resulting  data  were  analyzed  using  a  

one-­‐way  analysis  of  variance  (ANOVA)  model.  A  Tukey-­‐Kramer  honest  significant  difference  test  

was  applied  post-­‐hoc  to  ascertain  significant  differences  among  mean  mutant  frequencies  on  

each  host  type.    

Host  Range  Mutant  Isolation  

Each  HRM  was  isolated  independently  to  minimize  bias  due  a  “jackpot  effect”  where  

multiple  descendants  of  the  same  mutational  event  appear  in  a  population  [18].  A  φ6  lysate  

was  serially  diluted  and  plated  on  a  PP  lawn  such  that  only  a  few  widely  spaced  plaques  

appeared  on  the  bacterial  lawn.  A  single  plaque  was  picked  at  random  and  placed  in  1  mL  LB.  

After  vortexing,  100  µL  of  the  plaque  suspension  was  added  to  20  µL  ERA  and  3  mL  top  agar  and  

plated.  Following  48  hrs  growth,  a  single  HRM  plaque  was  picked  from  the  ERA  lawn  and  

suspended  in  500  µL  LB.  10  µL  from  this  solution  was  plated  on  an  ERA  lawn  to  obtain  phage  

lysate  for  RNA  extraction.  500  µL  80%  glycerol  was  added  to  the  remainder  which  was  then  

stored  at  -­‐20  °C.  This  protocol  was  repeated  69  times  to  obtain  69  independent  HRM  isolates.    

RNA  Extraction  and  Sequencing  

To  sequence  the  region  of  the  Medium  segment  encoding  the  P3  protein,  3  mL  phage  

lysate  from  each  mutant  was  concentrated  by  centrifuging  at  RCF  =  100,000  x  g  for  3  hrs  at  4  °C  

using  a  Beckman  TL-­‐100  ultracentrifuge.  The  supernatant  was  discarded  and  the  pellet  was  

resuspended  in  150  µL  nuclease-­‐free  water.  RNA  was  extracted  using  a  QIAamp®  Viral  RNA  Mini  

Page 73: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  56  

Kit  (QIAGEN,  Valencia,  CA).  Phage  RNA  was  reverse  transcribed  using  random  hexamer  primers  

and  Superscript®  III  reverse  transcriptase  (Life  Technologies,  Grand  Island,  NY),  and  the  resulting  

cDNA  was  used  as  template  for  PCR.  Three  sets  of  oligonucleotide  primers  corresponding  to  

bases  1298–2142,  2042–3052,  and  2877–3873  of  φ6’s  Medium  segment  were  used  for  the  PCR  

amplification  of  the  region  encoding  the  P3  host  attachment  protein.  PCR  product  was  purified  

for  sequencing  using  ExoSAP-­‐It®  (Affymetrix,  Santa  Clara,  CA).  PCR  product  was  sequenced  in  

both  directions  with  a  minimum  of  3-­‐fold  replication  (6-­‐fold  coverage).  Sequencing  was  

performed  at  the  DNA  Analysis  Facility  on  Science  Hill  at  Yale  University.  Sequence  data  were  

analyzed  using  Geneious  Pro  Ver.  5.4  [19]  and  MEGA  Ver.  5.05  [20].  Chromatograms  were  

verified  via  MacVector  Ver.  12.5.1  bioinformatics  software.  

Mutant  Characterization  

  We  phenotypically  characterized  HRM  genotypes  by  determining  plaque  size  on  ERA,  

and  by  assaying  reproductive  capacity  (fitness)  and  attachment  rates  on  ERA  and  PP.  Of  our  

unique  mutant  genotypes,  we  did  not  assay  the  three  mutants  whose  mutations  were  not  

identified  (see  Table  1).  Furthermore,  we  only  assayed  one  mutant  in  situations  where  

differences  between  genotypes  were  attributable  to  synonymous  amino  acid  substitutions.  

Finally,  for  one  mutant,  stored  frozen  lysate  degraded  due  to  a  freezer  failure  following  

sequencing,  and  viable  phage  could  not  be  recovered  for  phenotypic  characterization.  In  sum,  

we  phenotypically  characterized  13  of  our  17  unique  HRM  genotypes.    

Plaque  Size  Estimates  

Plaque  sizes  for  13  HRM  genotypes  were  estimated  from  digital  photographs  of  plaques  

formed  on  ERA.  All  LB  plates  used  for  plaque  assays  were  poured  at  the  same  time  and  were  

Page 74: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  57  

weighed  to  maintain  consistency.  Each  mutant’s  lysate  was  diluted  and  plated  such  that  

between  20  to  100  plaques  formed  on  the  ERA  lawn  after  48  hrs  growth.  Digital  photographs  

were  taken  using  a  Kodak  Gel  Logic®  440  digital  imaging  system.  ImageJ  software  (NIH,  

Bethesda,  MD;  http://rsb.info.nih.gov/ij/)  was  used  to  estimate  the  total  area  of  the  plaque.  For  

each  genotype,  at  least  35  plaque  size  estimates  were  made  across  3  plates.    

Mutant  Fitness  on  Native  and  Novel  Hosts  

  We  assayed  absolute  fitness  for  13  of  our  φ6  mutants  and  the  wildtype  on  native  and  

novel  hosts  using  traditional  plating  methods.  Here  105  phages  were  added  to  3  x  108  host  cells  

in  10  mL  LB  and  incubated  at  25  °C  with  rotary  shaking  (120  rpm)  for  24  hrs.  All  assays  were  

replicated  5x.  Bacteria-­‐free  lysates  were  obtained  by  centrifuging  3  mL  culture  at  RCF  =  2.75  x  g  

for  10  min  to  pellet  bacterial  debris,  then  passing  the  supernatant  through  a  0.22  µm  filter.  

Phage  particles  per  mL  in  the  lysates  were  quantified  via  serial  dilution  and  titering  on  host  

lawns.  For  each  assayed  mutant  genotype,  we  estimated  absolute  fitness  using  the  

equation,𝑊𝑊 = 𝑙𝑙𝑙𝑙 "8"9

,  where  Ni  is  the  starting  number  of  phage  and  Nt  is  the  total  number  of  

progeny  phage  produced  during  the  infection  period.    

Attachment  Rate  Assays  

The  rate  of  attachment  to  native  and  novel  hosts  of  13  mutant  HRM  genotypes  was  

measured  using  a  centrifugation  method.  This  method  relies  on  the  fact  that,  following  

centrifugation,  attached  phages  are  pelleted  with  host  cells,  while  unattached  phages  remain  in  

the  supernatant.  The  decline  of  unattached  phage  over  time  is  quantified  to  give  the  rate  of  

phage  attachment  to  host  cells.  In  this  assay,  103  phages,  which  were  titered  on  the  same  host  

as  the  assay  host,  were  mixed  with  5  ×  109  exponentially  growing  host  cells  in  10  mL  LB  with  3-­‐

Page 75: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  58  

fold  replication.  The  mixture  was  incubated  with  orbital  shaking  for  40  min.  Immediately  after  

mixing  and  every  10  min  thereafter,  a  1  mL  sample  from  the  mixture  was  centrifuged  (RCF  =  

1,700  x  g)  for  1  min  to  pellet  the  cells  then  100  µL  from  the  supernatant  was  plated  on  a  PP  

lawn.  The  attachment  rate  constant  (k)  is  calculated  as    

 

where  Ni  is  the  total  number  of  phage  added,  Nf  is  the  number  of  unattached  phage,  C  is  the  

concentration  of  bacteria,  and  t  is  the  incubation  time  in  minutes.    

Attachment  Protein  P3  3D  Structure  Prediction  

Three-­‐dimensional  structures  of  canonical  bacteriophage  φ6  ancestral  strain  P3  

attachment  protein  was  predicted  by  homologue  modeling  based  on  nucleotide  sequences  

submitted  to  the  online  I-­‐TASSER  server  [21,22].  I-­‐TASSER  generates  three-­‐dimensional  (3D)  

atomic  models  from  multiple  threading  alignments  and  iterative  structural  assembly  

simulations.    

Results  

Mutation  Frequency    

φ6  HRMs  were  readily  isolated  by  plating  wildtype  phages  on  lawns  of  the  

nonpermissive  hosts,  ERA,  TOM  and  ATRO.  The  frequency  in  which  ERA-­‐infective  HRMs  

appeared  in  populations  of  φ6  phages  was  1.15  x  10-­‐6  (n  =  21,  SD  ±  5.219  x  10-­‐7).  This  value  is  

only  slightly  lower  than  φ6’s  spontaneous  mutation  rate,  2.7  x  10-­‐6  [23].  Rates  on  TOM  and  

were  1.39  x  10-­‐7  (n  =21,  SD  ±  1.489  x  10-­‐8)  and  4.45  x  10-­‐7  (n  =21,  SD±  1.001  x  10-­‐7)  respectively.  

We  conducted  a  one-­‐way  ANOVA  on  log10  mutant  frequency  with  bacterial  host  strain  as  a  

CtNiNf

k)ln(

=

Page 76: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  59  

factor,  and  found  significant  differences  in  mutant  frequency  across  different  host  strains  (F  =  

198.54,  DF  =  2,  P  <  0.0001).  A  Tukey-­‐Kramer  post  hoc  test  with  α  =  0.05  revealed  that  all  

compared  means  were  significantly  different  from  each  other.  Interestingly,  HRMs  appeared  

more  readily  on  the  phylogenetic  outgroup  P.  pseudoalcaligenes  ERA  than  they  do  on  other  

conspecific  P.  syringae  pathovars  such  as  P.  syringae  atrofaciens  and  P.  syringae  tomato  [24].  

We  found  at  least  17  unique  genotypes  among  the  69  ERA  HRMs  isolated  and  partially  

sequenced  (Table  1).  Three  HRMs  had  no  mutations  in  the  sequenced  region  of  the  genome,  

thus  we  count  them  as,  at  a  minimum,  one  unique  genotype.  Out  of  a  combined  78  identified  

mutations  from  three  studies,  the  majority  resulted  in  nonsynonymous  substitutions  in  the  P3  

amino  acid  sequence.  Only  2  synonymous  substitutions  were  identified  (Table  1).  This  result  

conforms  to  Duffy  et  al.’s  report  of  only  1  synonymous  substitution  among  31  mutations  [15].  

Synonymous  substitution  frequencies  were  similar  among  the  two  studies  (2.5%  vs.  3.2%).  

Mutation  Substitution  Frequency    

Among  all  nucleotide  substitutions  identified  by  our  screen,    the  estimated  

transition/transversion  bias  R  was  1.90.  At  the  8th  residue,  at  least  5  possible  substitutions  

(G22A,  A23G,  A23C,  G24T  and  G24C)  allow  infection  of  ERA.  However,  of  all  substitutions  

observed,  the  majority  were  transitions  (51  vs.  9).  These  results  suggest  that  host  range  

mutations  allowing  infection  of  ERA  are  heavily  biased  towards  transitional  substitutions.  The  

significance  of  this  finding  is  not  clear,  and  may  simply  be  a  consequence  of  spontaneous  

deamination.    

  87%  (60  of  69)  of  all  mutants  possessed  a  mutation  at  the  8th  amino  acid  residue  in  the  

P3  protein.  Only  9  mutants  (4  single,  1  double,  1  triple  and  3  unknowns)  did  not  show  a  

Page 77: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  60  

mutation  at  the  8th  residue.  This  imbalance  is  higher  than  was  observed  in  Duffy  et  al.’s  study,  

where  only  14  of  30  mutants  isolated  on  ERA  possessed  mutations  at  the  8th  residue  [15].  

However,  we  note  that  Duffy  et  al.’s  study  did  not  control  for  the  “jackpot  effect”  and  20  of  30  

mutants  were  isolated  from  hosts  other  than  ERA.  The  dominance  of  a  single  residue  is  not  

unprecedented.  Ferris  et  al.  reported  that  12  of  40  mutants  isolated  on  P.  glycinea  showed  a  

mutation  at  the  554th  residue  [11].  Across  all  3  studies  and  5  different  hosts,  there  seems  to  be  

3  “hotspots”  for  host  range  mutations  in  φ6.  85.4%  of  all  amino  acid  substitutions  occurred  

close  to  the  8th  (54.7%),  138th  (16.7%)  and  544th  (14%)  residues  (Fig.  1A;  Table  2).    

Phenotypic  Change  Analysis  

  Changes  in  mass,  electrical  charge  and  hydrophobicity  presumably  can  alter  host  

receptor  binding  by  changing  the  protein’s  tertiary  structure  and  altering  protein-­‐protein  

interactions.  In  Table  3,  we  compiled  the  phenotypic  characteristics  of  all  amino  acid  

substitutions  allowing  infection  of  ERA  observed  in  this  study  and  in  Duffy  et  al.  [15].  Using  this  

data,  we  performed  a  paired  t-­‐test  on  amino  acid  mass  for  each  mutation  with  strain  type  

(wildtype  or  mutant)  as  a  factor.  Both  factors  had  significant  effects  on  amino  acid  mass.  

Substituted  amino  acids  in  mutants  had  significantly  less  mass  than  the  original  amino  acids  in  

the  wildtype  strain  (t  =  6.73,  DF  =  77,  P  <  0.0001).  This  effect  was  most  pronounced  in  mutation  

hotspots  (F  =  7.25,  DF  =  71,  P  <  0.0001).  Perhaps  lower  mass  substitutions  permit  greater  

flexibility  at  the  host  binding  site.    

Electrostatic  interactions  between  host  and  phage  proteins  are  most  likely  the  basis  of  

phage  attachment.  If  so,  we  expect  that  charge  changes  incurred  by  host  range  mutations  

should  be  consistently  in  the  same  direction.  A  Χ2  test  was  used  to  determine  whether  chemical  

Page 78: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  61  

properties  of  substituted  amino  acids  differed  significantly  from  the  random  expectation  based  

on  the  amino  acid  composition  of  the  P3:  9.16%  acidic,  8.69%  basic,  24.53%  hydrophilic,  and  

57.45%  hydrophobic.  We  found  that  mutant  amino  acids  were  significantly  more  likely  to  be  

basic  or  hydrophilic  than  expected  by  chance  (Χ2  =  110.008,  DF  =  3,  P  <  0.0001).  Furthermore,  

the  frequency  of  mutations  occurring  at  acidic  residues  was  disproportionately  high  (81/106  or  

76%).  Ferris  et  al.  also  observed  a  greater  than  expected  number  of  loss  of  charge  mutations  

[11].  We  speculate  that  these  chemical  changes  make  the  P3  protein's  host-­‐binding  site  more  

permissive  for  binding  host  receptors.    

P3  3D  Structure  Prediction  

Little  is  known  regarding  how  host  range  expanding  amino  acid  substitutions  affect  

phage  attachment  protein  structure.  We  used  I-­‐TASSER  

(http://zhanglab.ccmb.med.umich.edu/I-­‐TASSER)  [21,22]  and  DAS  modeling  software  

(http://www.sbc.su.se/~miklos/DAS/maindas.html)  [25]  to  predict  structural  features  of  the  P3  

protein.  I-­‐TASSER  generates  three-­‐dimensional  atomic  models  from  multiple  threading  

alignments  and  iterative  structural  assembly  simulations  based  on  homology  to  solved  

structures  (Fig.  1B).  The  predicted  model’s  confidence  score  (C-­‐score)  was  -­‐2.12,  which  is  

intermediate  confidence  where  scores  range  from  high  (2)  to  low  (-­‐5)  confidence.  When  

predicting  known  structures,  and  using  a  C-­‐score  cutoff  >  -­‐1.5  for  the  models  of  correct  

topology,  both  false  positive  and  false  negative  rates  are  below  0.1  [21].  While  our  C-­‐score  did  

not  meet  this  threshold,  we  are  confident  that  the  probability  of  an  incorrect  structure  is  still  

low.  Our  view  is  supported  by  the  ability  of  the  predicted  structure  to  provide  a  biologically  

plausible  interpretation  of  the  mechanistic  basis  of  host  range  expansion.  

Page 79: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  62  

DAS  modeling  software  predicts  transmembrane  protein  segments  based  on  low-­‐

stringency  dot-­‐plots  of  query  sequences  against  a  collection  of  non-­‐homologous  membrane  

proteins  using  a  previously  derived,  scoring  matrix.  Although  P3  is  soluble  [26],  DAS  predicted  a  

21  amino  acid  hydrophobic  membrane-­‐interactive  domain  at  residues  271  to  291.  Based  on  the  

fact  that,  on  the  predicted  structure,  this  domain  extends  out  from  the  P3  core  (Fig.  1B),  we  

venture  that  domain  likely  anchors  the  P3  protein  to  the  integral  membrane  protein  P6    [27],  

thus  we  will  refer  to  it  as  the  hydrophobic  anchoring  domain,  or  HAD.  All  host  range  mutations  

occurred  on  the  face  opposite  the  HAD,  suggesting  that  the  opposite  surface  binds  the  host  

receptor,  and  that  mutations  in  this  region  allow  infection  of  novel  hosts.  However,  this  

hypothesis  assumes  that  amino  acid  substitutions  do  not  substantially  alter  the  protein  shape,  

and  that  residues  on  this  face  in  the  ancestor  would  remain  on  this  face  in  the  mutant.  Figure  

1C  suggests  our  conjecture  is  valid  as  the  E8G  mutant’s  predicted  structure  does  not  show  

major  structural  rearrangements  compared  to  the  wildtype.  Interestingly,  the  most  common  

host  range  mutations  found  in  our  study  alter  the  surface  charge  at  this  location  from  negative  

to  neutral,  hinting  at  a  proximate  mechanism  for  host  range  expansion  (Fig.  1C).    

Plaque  Size  

We  isolated  HRMs  by  visually  identifying  and  picking  plaques  off  lawns  of  the  

nonpermissive  host,  ERA.  Our  results  showed  that  host  range  mutations  were  heavily  biased  

towards  the  8th  residue.  One  possible  criticism  of  our  mutant  isolation  process  is  that  it  may  

have  been  biased  towards  certain  mutations  simply  because  these  mutants  formed  larger  

plaques  that  were  more  likely  to  be  spotted  by  the  sampler.  To  test  this  hypothesis,  we  

determined  from  digital  photographs  the  average  plaque  size  for  13  of  17  of  our  identified  

Page 80: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  63  

HRMs.  Mean  plaque  size  for  our  mutants  ranged  from  3.5  to  10.3  mm2  (Table  4).  We  performed  

an  ANOVA  of  mean  plaque  size  with  mutant  frequency  as  a  factor,  and  the  results  confirmed  

that  plaque  size  did  not  predict  mutant  frequency.  While  we  did  find  significant  differences  in  

plaque  size  among  genotypes,  the  two  most  frequent  genotypes  found  by  our  study  (E8K  and  

E8G)  ranked  4th  and  9th  respectively  in  mean  plaque  size.  These  data  imply  that  mutant  

sampling  was  not  biased.  Furthermore,  we  did  not  observe  any  correlation  between  fitness  and  

plaque  size.    

Mutant  Fitness  on  Original  and  Novel  Hosts  

The  fitness  consequences  of  host  range  expanding  mutations  will  play  a  large  role  in  the  ability  

of  these  mutants  to  persist  in  host  populations  [28].  With  this  in  mind,  we  estimated  the  

absolute  fitness  of  13  of  our  mutant  genotypes  on  the  canonical  host,  PP,  and  the  novel  host,  

ERA  (Table  4).  A  one-­‐way  ANOVA  of  absolute  fitness  with  strain  as  a  factor  revealed  significant  

differences  among  strain  fitness  on  both  ERA  (Fig.  2A;  F  =  40.64,  DF  =  12,  P    <  0.0001  )  and  PP  

(Fig.  2B;  F  =  3.515,  DF  =  12,  P  =  0.0008),  but  mean  fitness  on  ERA  was  not  correlated  with  mean  

fitness  on  PP  nor  was  fitness  on  ERA  correlated  with  the  number  of  mutations  a  mutant  

possessed.  In  fact,  genotypes  containing  multiple  mutations  tended  to  be  less  fit  than  those  

with  single  mutations,  although  this  trend  was  not  significant.  Matching  previous  results,  fitness  

on  PP  was,  in  all  but  once  case,  less  than  that  of  the  ancestor  [11,15].  These  results  are  

indicative  of  antagonistic  pleiotropy,  implying  a  tradeoff  in  fitness  between  infection  of  PP  and  

ERA.  In  addition,  the  coefficient  of  variation  (i.e.  standard  deviation/mean;  CV)  in  mutant  

fitness  was  considerably  greater  on  ERA  as  opposed  to  PP  (CV:  0.402  versus  0.015).  This  

Page 81: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  64  

suggests  that  mutations  expanding  the  host  range  have  a  much  wider  range  of  fitness  effects  

on  the  novel  host.    

Attachment  Rate  

Bacteriophages  initiate  infections  of  host  cells  by  binding  to  receptors  on  the  surface  of  

the  bacterial  outer  membrane.  As  such,  the  host  attachment  rate  is  a  critical  factor  in  the  

ecological  success  of  a  phage.  We  measured  the  rate  of  phage  attachment  to  the  original  and  

novel  hosts  for  13  mutant  genotypes  (Table  4).  A  one-­‐way  ANOVA  of  the  rate  of  attachment  to  

ERA  with  mutant  genotype  as  a  factor  revealed  significant  differences  among  the  strains  (F  =  

10.17,  DF  =  12,  P  <  0.0001).  In  addition,  we  regressed  attachment  rate  against  mutant  fitness  on  

ERA  to  determine  if  the  two  were  correlated.  Since  our  HRMs  most  likely  differ  only  by  

mutations  in  the  P3  host  attachment  protein,  we  expected  that  improved  attachment  would  

lead  to  increased  fitness.  Indeed,  for  13  mutant  strains  whose  fitnesses  and  attachment  rates  

were  estimated,  fitnesses  on  ERA  were  correlated  with  ERA  attachment  rates  (Fig.  3;  F  =  11.91,  

DF  =  1,  P  =  0.0062).  However,  the  linear  regression  model  accounted  for  roughly  half  of  the  

variance  in  attachment  rate  (R2  =  0.54).  These  results  are  not  surprising  given  the  difficulty  of  

precisely  estimating  the  φ6  attachment  rate.  Nevertheless,  the  results  conform  to  our  

expectation  of  a  positive  correlation  between  fitness  and  host  binding  ability.  By  contrast,  

attachment  rates  of  the  various  mutants  to  PP  were  not  significantly  different,  nor  were  they  

correlated  with  mutant  fitnesses  on  this  host.  These  results  might  be  expected  given  the  

relatively  narrow  range  of  fitness  differences  on  PP  (Fig.  2;  Table  4).  

The  rates  of  attachment  to  PP  were  significantly  greater  than  attachment  rates  to  ERA  

(One-­‐way  ANOVA:  F  =  216.7,  DF  =  1,  P  <0.0001).  This  latter  result  matches  expectations  since  

Page 82: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  65  

mutant  fitness  on  PP  is  approximately  an  order  of  magnitude  greater  than  that  on  ERA  [17].    

Presumably,  the  switching  of  receptor  types  and  the  lack  of  adaptation  to  an  ERA  receptor  may  

account  for  the  significant  differences  in  mutant  fitness  on  the  different  host  types.  However,  

attachment  rates  to  PP  and  ERA  were  not  correlated,  implying  that  mutations  that  increase  

binding  to  ERA  do  not  necessarily  increase  or  decrease  binding  to  PP.    

Data  Availability  

All  genetic  sequences  were  deposited  with  Genbank  (Accession  numbers  KF027227  -­‐  

KF027297).  Data  files  are  available  via  datadryad.org  .    

Discussion    

Φ6  Host  Range  Mutation  Frequency    

Understanding  the  genetic  basis  of  virus  host  range  expansion  is  critical  to  predicting  the  

emergence  of  potentially  dangerous  viruses.  The  genetic  distance  a  virus  must  cross  to  gain  the  

ability  to  infect  a  novel  host  may  be  a  dominant  factor  determining  the  probability  of  

emergence.  Not  all  viruses  readily  infect  novel  hosts  [29].  For  example,  many  

mycobacteriophages  isolated  on  Mycobacterium  smegmatis  are  unable  to  infect  M.  

tuberculosis,  even  when  large  numbers  of  phage  are  plated  [30].  Presumably  infection  of  M.  

tuberculosis  requires  several  simultaneous  mutations  or  even  the  recombination  of  whole  

genes  or  gene  systems.  By  contrast,  many  viruses  are  able  to  infect  novel  hosts  via  single  

nucleotide  substitutions  [10,31-­‐36].  This  minimal  genetic  distance  can  easily  be  traversed  

because  viral  population  sizes  and  mutation  rates  allow  them  to  search  available  sequence  

space  rapidly.  The  phage  φ6  is  an  excellent  model  to  study  virus  emergence  via  single  

Page 83: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  66  

nucleotide  substitutions  because  such  HRMs  are  easily  isolated,  sequenced,  and  characterized  

in  the  laboratory  [11,15].    

In  this  study,  we  found  that  φ6  HRMs  appear  on  ERA  at  a  rate  (1.17  x  10-­‐6)  slightly  lower  

the  estimated  φ6  mutation  rate  of  2.7  x  10-­‐6  per  nucleotide  per  generation.  Thus  our  figure  

seems  somewhat  low  given  that  there  are  multiple  possible  mutations  allowing  host  range  

expansion  in  the  φ6  genome  (Table  1).  However,  Chao  et  al.’s  estimate  was  derived  from  the  

frequency  of  revertants  from  an  amber  mutation  (sus297),  and  it  was  assumed  that  there  was  

only  one  way  to  revert  [23].  If  there  are  multiple  ways  to  revert  from  Chao’s  et  al.’s  amber  

mutation,  then  theirs  is  an  overestimate  of  the  mutation  rate.  Moreover,  Chao  et  al.  estimated  

the  mutation  rate  at  a  single  locus,  but  the  mutation  rate  may  vary  across  the  genome  [37,38].  

At  any  rate,  it  is  clear  that,  given  their  potentially  enormous  population  sizes,  φ6  HRMs  can  be  

isolated  relatively  easily.    

Our  results  indicate  that  there  is  considerable  variation  in  the  ability  of  φ6  to  mutate  to  

infect  nonpermissive  host  strains.  While  there  are  certainly  strong  coarse-­‐grained  trends  in  

infectivity,  e.g.,  φ6  seems  mainly  restricted  to  the  pseudomonads  [39],  infectivity  within  this  

group  is  currently  unpredictable.  Phage  φ6  is  better  able  to  mutate  to  infect  P.  

pseudoalcaligenes  ERA,  a  distant  relative  of  P.  syringae  pv  phaseolicola  [24],  than  two  

pathovars  from  the  same  species,  P.  syringae  pv  tomato  and  P.  syringae  pv  atrofaciens  [40].  

Duffy  et  al.  and  Cuppels  et  al.  found  many  examples  of  other  P.syringae  pathovars  

nonpermissive  for  φ6  even  at  high  plating  densities  [15,39].  For  example,  Duffy  et  al.  were  

unable  to  isolate  HRMs  on  at  least  8  P.  syringae  pathovars  despite  plating  over  1010  φ6  phages  

on  each  pathovar  [15].  Similar  results  were  obtained  by  Cuppels  et  al.  [39].    It  would  appear  

Page 84: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  67  

that  phylogeny  is  a  poor  predictor  of  infectivity  at  least  at  the  fine  scale  level  within  the  

pseudomonads.  φ6’s  ability  to  expand  its  host  range  appears  to  be  somewhat  idiosyncratic,  

which  is  to  be  expected  given  myriad  possible  outcomes  for  parasite-­‐host  coevolution  [41].  It  

may  be  that  the  P.  syringae  strains  have  experience  recent  coevolution  with  φ6  or  its  close  

relatives,  and  thus  have  acquired  resistance  to  infection  to  these  phages.    

The  frequency  of  mutants  lacking  mutations  in  the  P3  (4.3%)  was  similar  to  that  found  in  

Ferris  et  al.’s  study  (2.5%)  [11].  These  results  provide  strong  evidence  that  the  P3  sequence  is  

the  primary,  but  not  exclusive,  determinant  of  host  range  among  phage  φ6  [42].  While  it  is  

tempting  to  speculate  that  additional  host  range  mutations  might  be  found  in  membrane  fusion  

protein  P6,  Duffy  et  al.  sequenced  the  P6  for  30  φ6  HRMs  and  found  no  mutations  [15].  As  of  

publication,  no  other  candidate  genes  for  host  range  expansion  on  ERA  have  been  explicitly  

identified  in  φ6;  however  one  study  has  reported  that  a  mutation  allowing  infection  of  ERA  was  

localized  to  the  large  segment  [43].  This  segment  contains  a  gene  encoding  an  RNA-­‐dependent  

RNA  polymerase  and  genes  associated  with  RNA  packaging  and  procapsid  assembly  [12].  

The  number  of  ways  a  virus  can  mutate  to  infect  a  novel  host  is  an  important  parameter  

in  predicting  its  potential  for  emergence  [44].  Using  a  method  based  on  the  coupon  collector’s  

problem  of  statistical  theory,  Ferris  et  al.  estimated  the  total  number  of  possible  mutations  that  

allow  φ6  to  infect  a  novel  host,  P.  glycinea  [11].    The  coupon  collector’s  problem  can  be  

informally  stated  as:  Given  n  coupons,  how  many  coupons  will  need  to  be  sampled  before  each  

coupon  is  observed  at  least  once  [45]?  One  assumption  of  the  coupon  collector’s  problem  is  

that  all  coupons  are  equally  likely.  This  assumption  does  not  hold  for  genetic  mutations  as  some  

types  are  more  likely  than  others  are.  Ferris  et  al.  accommodate  this  simplification  by  adjusting  

Page 85: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  68  

the  equation  to  account  for  differences  in  the  probabilities  of  transitions  and  transversions.  

Since  they  found  19  distinct  genotypes  among  their  40  independent  samples,  they  estimated  

that  further  sampling  would  uncover  an  additional  36  mutations  [11].  If  Ferris  et  al.’s  estimates  

are  correct,  it  would  mean  that  1.3%  of  all  possible  nonsynonymous  substitutions  in  P3  confer  

the  ability  to  infect  ERA  (i.e.,  55  of  4,380  potential  nonsynonymous  changes  expand  host  

range).    

Although  their  HRMs  were  isolated  on  a  different  host,  P.  glycinea,  both  their  study  and  

ours  found  similar  frequencies  of  transitions  among  all  mutations  (90%  in  Ferris  et  al.,  84%  in  

our  study).  However,  out  of  69  HRMs,  we  found  only  17  distinct  genotypes.  Ferris  et  al.  isolated  

almost  the  same  number  of  distinct  genotypes  in  half  as  many  samples  [11],  which  may  be  a  

consequence  of  the  different  hosts  of  isolation.  Since  Duffy  et  al.  observed  10  unique  genotypes  

out  of  30  isolates  (33%  unique)  [15]  and  we  observed  at  least  17  unique  genotypes  out  of  69  

(26%  unique),  the  implication  is  that  more  unique  genotypes  would  be  found  with  further  

sampling.  However,  a  closer  inspection  of  our  data  suggests  otherwise.  8  of  17  of  our  unique  

genotypes  were  only  unique  because  of  second-­‐  or  third-­‐site  mutations.  If  we  consider  only  

those  mutations  that  are  sensu  stricto  necessary  for  infection  of  ERA,  we  only  find  a  combined  

13/99  (13%)  unique  genotypes  among  our  and  Duffy  et  al.’s  study  [15].  In  fact,  we  only  found  3  

unique  sensu  stricto  substitutions  not  found  by  Duffy  et  al.  study  and  they  found  6  not  

identified  in  ours.    

If  1.3%  of  all  possible  nonsynonymous  substitutions  allowed  φ6  to  infect  ERA,  we  would  

expect  to  see  more  unique  genotypes  among  our  isolates.  Our  results  also  indicate  that  some  

mutations  occur  far  more  frequently  than  expected  by  chance  even  if  differences  in  transitions  

Page 86: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  69  

and  transversions  are  accounted  for.  One  possibility  is  that  low  fitness  HRMs  are  eliminated  by  

within  plaque  selection  and  consequently  are  not  represented  in  the  mutant  collection  

sampled.  We  have  no  means  to  ascertain  the  validity  of  this  hypothesis  at  this  point,  but  it  

could  be  an  interesting  question  to  approach  by  deep  sequencing  of  single  HRM  plaques.  

However,  at  the  same  time,  it  seems  likely  that  additional  factors  that  are  not  currently  well  

understood,  such  as  RNA  structure,  codon  bias  and  variation  in  the  mutation  rate  across  the  

genome,  influence  the  probability  of  mutation  at  any  particular  locus.  Nonetheless,  Ferris  et  

al.’s  method  is  a  valuable  step  forward  towards  the  estimation  of  an  important  parameter  

relevant  to  virus  emergence.    

Mutation  Hotspots  

  We  found  that  mutations  expanding  the  host  range  of  phage  φ6  were  more  likely  to  

appear  in  certain  regions  of  the  P3  gene  than  others.  Such  mutation  hotspots  are  have  been  

observed  among  virus  drug  resistance  [46-­‐48],  host  range  [49,50],  hemagglutinin  [51],  capsid  

[52],  and  core  antigen  genes  [53]  among  others.  Mutation  hotspots  are  evidence  of  strong  

positive  selection  for  substitutions  that  provide  an  adaptive  advantage  in  a  particular  

environment  [54,55].  Growth  on  a  novel  host  should  impose  strong  positive  selection  for  

nonsynonymous  substitutions  at  loci  associated  with  host  range  expansion.  Thus,  we  can  use  

the  frequency  of  mutations  found  in  our  survey  to  identify  regions  of  the  P3  protein  that  are  

important  in  attachment  to  a  host  receptor.  85.4%  of  all  mutations  identified  by  our  study  and  

by  Duffy  et  al.  [15]  were  found  in  just  three  regions  (near  8th,  133rd  and  554th  residues)  of  the  P3  

gene  (Fig.  1A;  Table  2).  We  venture  that  these  hotspots  on  the  P3  protein  are  important  in  host  

range  determination  among  φ6  phages.    

Page 87: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  70  

Structural  Speculations  

  We  used  the  structural  modeling  software  I-­‐TASSER  [21,22]  to  predict  the  structure  of  

the  P3  protein  from  its  amino  acid  sequence.  The  resulting  structure  showed  homology  to  

bacterial  alcohol  dehydrogenase  quinoproteins  [56-­‐58].  Interestingly,  in  the  best-­‐fit  model,  our  

putative  mutation  hotspots  were  located  close  together  on  one  face  of  the  ~60  Å  diameter  P3  

protein  (Fig.  1B).  Residues  8  and  130  were  located  at  the  surface  18  Å  from  each  other,  and  

residue  554  was  located  subsurface  about  15  Å  from  residue  8  and  23  Å  from  residue  130.  

Other  less  frequently  observed  mutations  also  occur  near  this  region  (Fig.  1B).  We  propose  that  

this  region  of  the  P3  protein  is  a  host-­‐binding  domain  and  directly  interacts  with  host  receptors.  

This  supposition  is  supported  by  the  fact  that  the  host  binding  domain  is  diametrically  opposite  

the  hydrophobic  anchoring  domain  (residues  271-­‐291)  predicted  by  DAS  (Fig.  1B).  The  most  

parsimonious  explanation  is  that  this  domain  serves  to  anchor  the  P3  to  the  integral  membrane  

protein  P6  [27],  which  leaves  the  putative  host  binding  domain  exposed  to  the  environment.    

Mutations  allowing  infection  of  ERA  may  not  significantly  alter  the  tertiary  structure  of  

the  P3  protein.  I-­‐TASSER  structural  modeling  did  not  show  any  major  structural  rearrangements  

in  predicted  structures  for  mutant  strains.  Rather  mutations  may  alter  the  host-­‐binding  

domain’s  electrical  charge  from  negative  to  positive  or  neutral  (Fig.  1C).  This  difference  in  

electrical  charge  may  allow  mutant  φ6  to  bind  the  ERA  host  receptor.  The  presumptive  ERA  

receptor  is  its  pilus,  but  this  has  not  been  definitively  determined.  If  the  ERA  receptor  were  

indeed  the  pilus,  it  would  be  interesting  to  know  if  its  electrical  properties  are  appreciably  

different  than  those  of  the  pilus  of  PP.  Moreover,  it  is  plausible  that  neutral  or  positive  electric  

charges  and  smaller  mass  amino  acids  confer  more  flexibility  to  the  binding  region,  allowing  a  

Page 88: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  71  

greater  variety  of  structures  to  be  bound  [59]  It  would  be  interesting  to  determine  if  host  range  

expanding  mutations  more  frequently  result  in  the  substitution  of  small  for  large  amino  acids  or  

alter  the  charge  of  the  binding  site.          

Fitness  on  Native  and  Novel  Hosts  

Fitness  on  native  and  novel  hosts  was  assessed  using  standard  flask  productivity  assays.  

Phage  φ6  HRMs  showed  a  broad  range  of  fitness  values  on  ERA,  some  of  which  were  

significantly  different  from  the  others  (Fig.  2A).  Mutant  fitnesses  on  the  native  host,  PP,  were  

much  greater  than  those  on  ERA  (Fig.  2B).  Since  φ6  is  presumably  well  adapted  to  native  but  

not  novel  hosts,  these  results  meet  our  expectations.  Supporting  these  results,  we  found  that  

the  coefficient  of  variation  (CV)  of  mutant  fitnesses  on  PP  was  much  lower  than  CV  of  mutant  

fitnesses  on  ERA.  These  results  conform  to  theoretical  expectations  that  there  should  be  less  

variation  in  fitness  values  close  to  a  fitness  peak  on  an  adaptive  landscape  [60].  Directional  

selection  should  erode  the  variation  in  fitness  as  a  population  increases  in  fitness  in  a  particular  

environment.  Thus,  a  virus  that  is  adapted  to  a  particular  host  should  have  lower  variation  in  

fitness  on  that  host  as  opposed  to  a  host  to  which  it  is  not  well  adapted.    

  We  found  that,  in  concert  with  previous  studies  [11,15],  mutations  expanding  the  φ6  

host  range  usually  reduced  fitness  on  the  original  host,  PP.  On  average,  HRM  fitness  on  PP  was  

reduced  about  2.5%  compared  to  the  wildtype.  Negative  genetic  associations  between  host  

types  is  an  example  of  antagonistic  pleiotropy  [61,62].  The  adage  that  “a  jack  of  all  trades  is  a  

master  of  none”  is  well  supported,  at  least  among  φ6  host  infections.  However,  the  ultimate  

cause  of  host  specialism  or  generalism  remains  opaque.  Intuitively  one  would  imagine  that  a  

broader  host  range  would  produce  greater  returns  than  a  narrow  one  as  long  as  the  reduction  

Page 89: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  72  

in  productivity  on  a  single  host  was  offset  by  an  increase  in  overall  productivity  [63].  With  

regard  to  the  present  system,  it  seems  unlikely  that  the  relatively  minor  cost  in  fitness  on  the  

original  host  imposed  by  host  range  expansion  should  outweigh  the  benefits  of  an  expanded  

host  range.  Moreoever,  we  isolated  one  mutant  (S28)  whose  fitness  on  the  canonical  host  

actually  increased  following  the  acquisition  of  a  mutation  permitting  infection  of  ERA.  Why  then  

are  broad  host  range  phages  relatively  rare?  The  rarity  of  generalism  may  be  a  result  of  the  

interaction  of  widespread  habitat  patchiness,  reduced  dispersal  and  the  ubiquity  of  local  

adaptation  [64].  If  these  general  trends  hold,  competition  within  a  patch  should  favor  the  

evolution  of  specialism.  This  hypothesis  should  be  amenable  to  testing  via  experimental  

evolution  studies.    

As  a  general  rule,  we  might  expect  that  novel  hosts  will  present  a  greater  challenge  to  

virus  reproduction  than  native  hosts,  a  conclusion  that  is  supported  by  many  examples  in  the  

literature  [65-­‐67].  Novel  hosts  may  represent  ecological  sinks,  defined  as  habitats  where  the  

basic  reproductive  rate  is  <  1.  Our  fitness  results  support  this  conjecture,  and  suggest  that  φ6  

probably  experiences  a  broader  range  of  sink  conditions  on  ERA  than  it  does  on  PP.  

Consequently,  φ6  population  extinction  is  more  likely  in  a  habitat  populated  by  ERA  than  one  

populated  by  PP  [17].  Given  the  many  HRM  genotypes  over  a  broad  range  of  fitness  values,  φ6  

should  be  a  valuable  system  to  test  hypotheses  regarding  virus  emergence  [44].    

Attachment  to  Native  and  Novel  Hosts  

  With  the  exception  of  the  three  non-­‐P3  mutants,  the  mutant  strains  are  most  likely  

isogenic  outside  the  host  attachment  protein  region.  The  differences  in  fitness  are  expected  to  

result  mainly  from  differences  in  binding  efficiency  to  the  host  receptor.  Our  results  indicate  

Page 90: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  73  

that  different  suites  of  mutations  had  highly  divergent  attachment  rates  and  fitnesses  on  the  

novel  host  (Fig.  2  and  3).  Nonetheless,  a  regression  of  phage  fitness  on  ERA  against  attachment  

rate  to  ERA  revealed  a  significant  positive  correlation.  Ferris  et  al.  reported  a  similar  result  for  

φ6  infecting  P.  glycinea  [11].  These  results  make  intuitive  sense  as  mutants  that  are  better  able  

to  bind  to  the  host  are  expected  to  reproduce  at  a  higher  rate.  Moreover,  attachment  to  ERA  

was  significantly  lower  than  to  PP,  which  is  also  reflected  in  the  large  differences  in  fitness.    

Implications  for  Disease  Emergence  

  This  study  and  other  recent  studies  of  φ6  host  range  expansion  suggest  several  

generalizations.  First,  phylogeny  may  only  allow  relatively  coarse-­‐grained  predictions  of  virus  

host  range.  Phage  φ6’s  ability  to  mutate  to  infect  close  relatives  was  frequently  worse  than  its  

ability  to  infect  distant  relatives.  Second,  nonsynonymous  substitutions  allowing  host  range  

expansion  may  occur  at  hotspots  in  the  host  attachment  protein.  This  prediction  makes  

intuitive  sense  as  host  attachment  relies  on  binding  affinity  between  host  and  virus  proteins.  In  

addition,  many  host  range-­‐expanding  mutations  may  not  result  in  large  structural  

rearrangements  in  host  attachment  proteins.  Rather,  amino  acid  substitutions  may  result  in  

more  subtle  changes  in  protein  surface  charges,  allowing  binding  to  different  host  proteins.  

Furthermore,  the  number  of  nonsynonymous  substitutions  allowing  host  range  expansion  is  

probably  relatively  small  considering  the  number  of  possible  substitutions.  Nonetheless,  the  

relatively  high  virus  mutation  rate  allows  viruses  to  rapidly  acquire  host  range  expanding  

mutations  despite  their  relative  rarity.  Finally,  initial  fitness  on  a  novel  host  is  usually  much  less  

than  that  on  the  original  host,  and  antagonistic  pleiotropy  among  host  range  mutations  is  

Page 91: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  74  

common.  This  generalization  conforms  to  our  expectations  since  evolutionary  tradeoffs  in  

different  habitats  are  anticipated  to  be  ubiquitous.    

 

 

Acknowledgements  

We  thank  Paul  Turner  for  providing  phage  and  bacterial  strains  and  Tim  Short  for  technical  

advice.  Constructive  criticism  from  Paul  Gottlieb  and  three  anonymous  reviewers  was  much  

appreciated.  This  work  was  completed  in  part  using  equipment  in  the  Core  Facility  for  Imaging,  

Cellular  and  Molecular  Biology  at  Queens  College.  

 

Page 92: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  75  

Figure  Legends  

 

Fig.  1  –  Spatial  models  of  φ6  P3  protein  mutants  

Panel  A:  Three  host  range  mutation  hotspots  (accounting  for  86%  of  all  mutations)  are  

highlighted  in  this  linear  representation  of  the  648  amino  acid  sequence  of  the  φ6  P3  gene.  The  

remaining  14%  of  mutations  are  not  shown.  Panel  B:  Space-­‐filling  representations  of  the  φ6  P3  

protein  are  shown  as  predicted  by  I-­‐TASSER.  Colored  regions  correspond  to  the  mutation  

hotspots  depicted  in  Panel  A.  A  putative  hydrophobic  anchoring  domain  (HAD)  is  shown  in  

orange.  In  our  model,  the  hydrophobic  anchoring  domain  penetrates  φ6’s  outer  lipid  

membrane  to  bind  inner  membrane  protein  P6.  Panel  C:  Surface  electrical  charges  of  E8G  

mutant  contrasted  with  ancestor.  Space-­‐filling  representations  showing  predicted  surface  

electrical  charges  for  the  φ6  E8G  host  range  mutant  and  its  ancestor  were  estimated  using  I-­‐

TASSER.  Positively-­‐  and  negatively-­‐charged  regions  are  depicted  in  blue  and  red  respectively.  

Arrows  indicate  the  predicted  location  of  the  mutated  8th  residue.  The  most  prominent  

difference  between  the  mutant  and  the  ancestor  is  the  greater  surface  positive  charge  at  the  

presumed  host  binding  domain.  

 

Fig.  2  –  Mutant  absolute  fitness  on  canonical  and  novel  hosts  

Panel  A:  Absolute  fitness  of  13  φ6  host  range  mutants  on  the  novel  host,  ERA.  Each  point  is  the  

mean  of  5  replicate  measurements  of  fitness.  Bars  are  ±1SE.  Panel  B:  Absolute  fitness  of  13  φ6  

host  range  mutants  on  the  canonical  host,  PP.  Each  point  is  the  mean  of  5  replicate  

Page 93: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  76  

measurements  of  fitness.  Fitness  of  wildtype  φ6  is  shown  by  the  dotted  line  for  comparison.  

Bars  are  ±1SE.    

 

 

Fig.  3  –  Mean  ERA  attachment  rate  (k)  is  plotted  against  phage  φ6  fitness  on  ERA  

Attachment  to  ERA  was  correlated  with  fitness  on  ERA  for  φ6  host  range  mutants.  Each  point  is  

the  mean  of  3  replicate  measurements.  Dotted  lines  show  95%  confidence  intervals.      

   

Page 94: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  77  

Figures  

 Fig.  1  –  Spatial  models  of  φ6  P3  protein  mutants      

Page 95: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  78  

 Fig.  2  –  Mutant  absolute  fitness  on  canonical  and  novel  hosts        

Page 96: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  79  

 Fig.  3  –  Mean  ERA  attachment  rate  (k)  is  plotted  against  phage  φ6  fitness  on  ERA        

Page 97: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  80  

 Table  1.  Phage  φ6  Mutations  Allowing  Infection  of  Novel  Host  ERA  In  this  table,  the  columns  show  the  nucleotide  and  amino  acid  substitutions  found  it  all  69  ERA  host  range  mutants.  Rows  show  unique  genotypes.  N  is  the  number  of  mutants  with  a  particular  genotype.  The  penultimate  row  shows  number  of  times  a  given  mutation  appears  among  all  mutants.  The  last  row  shows  the  frequency  in  which  one  amino  acid  residue  is  replaced  by  others  in  amino-­‐acid  sequences  of  the  same  protein  from  different  organisms  [59].  Mutations  at  the  same  amino  acid  residue  are  shaded  together.  Transitions  are  indicated  by  closed  squares,  transversions  with  open  squares,  synonymous  substitutions  with  open  circles  and  unknown  changes  with  a  filled  triangle.    Nucleic  Acid  

Amino  Acid  

N  

G22A

 E8

K  

A23G

 E8

G  

A23C

 E8

A  

G24T  

E8D  

G24C

 E8

D  

T137C  

F46S

 

T138A  

F46L  

T177C  

D59D

 A3

89G  

Q13

0R  

T481C  

S161

P  

C896G  

S299

W  

C1588T  

L530

L  

A1661G

 D5

54G  

A1661C

 D5

54A  

C1663T  

L555

F  

Non

 P3  

Single  (n=56)  

20   n                                24     n                              4       ☐                            3         ☐                          1           ☐                        1                   n                2                           n        1                             ☐      

Double  (n=8)  

1   n           n                      1   n                 n                1   n                         n        1       ☐         ☐                    3     n               n                

  1                   n     ☐            Triple  (n=2)  

1     n               n       ¢          1                 ¢     n           n    

Unknown   3                                 ▲ Total  #  

Observed   69   23   28   5   3   1   1   1   1   7   1   1   1   3   1   1   3  

Petsko  Frequency   —   10   11   27   83   83   4   17   —   12   27   2   —   16   15   17   —  

     

Page 98: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  81  

 Table  2.  Host  Range  Substitution  Hotspots  in  φ6  P3  Proteina    Amino  acid  substitutions  close  together  in  the  primary  sequence  are  grouped  together.  We  combine  data  from  this  study  with  two  other  studies  of  φ6  host  range  expansion.  N  is  total  number  of  times  a  substitution  was  observed  across  all  studies.  Frequency  is  percentage  of  total  substitutions  a  particular  substitution  was  observed.  Combined  frequency  is  percentage  of  total  substitutions  constituted  by  substitutions  in  a  particular  region  of  the  primary  sequence.  Others  category  includes  substitutions  found  outside  substitution  hotspots.    

Substitution   This  Study   Duffy   Ferris   N   Frequencyb   Combined  

Frequencyb  G5S       2   2   1.3%  

54.7%  E8K   23   4   1   28   18.7%  E8G   28   9   5   42   28%    E8D   4       4   2.7%    E8A   5   1     6   4%  

Q130R   7       7   4.7%  

16.7%  A133V     9     9   6.0%  D145G       3   3   2.0%  N146S       6   6   3.9%  D533A       1   1   0.7%  

14.0%  

D535N       1   1   0.7%  D554G   3   1   8   12   8.0%  D554A   1     1   2   1.3%  D554V       1   1   0.7%  D554N       2   2   1.3%  L555F   1     1   2   1.3%  Others   9   6   7   22   14.7%   14.7%  Total   81   30   39   150   100%   100%  

       

aData  compiled  from  this  study,  Duffy  et  al.  2006  and  Ferris  et  al.  2007  [11,15].  bSome  frequencies  rounded  off  to  nearest  tenth  percent.          

Page 99: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  82  

Table  3.  Amino  Acid  Substitutions  Associated  with  φ6  Host  Range  Expansion  on  ERA  Amino  acid  substitutions  found  to  allow  φ6  infection  of  Pseudomonas  pseudoalcaligenes  ERA  from  data  obtained  by  two  separate  studies.  N  is  number  of  times  substitution  was  observed  across  the  two  studies.  Average  mass  is  residue  weight  of  the  original  and  substituted  amino  acid  [68].  Hydrophobicity  index  was  obtained  from  Kyte  and  Doolittle  [69].  Negative  numbers  are  more  hydrophilic;  positive  numbers  are  more  hydrophobic.    

Amino  Acid  Substitution   TSa   Dub   N  

Average  Mass   Electrochemical    Properties  

Hydrophobicity  Index  

Wildtype   Mutant   Wildtype   Mutant   Wildtype   Mutant  Glutamic  Acid  to  

Lysine  (E8K)   23   4  27   129.1   128.2   Acidic  (-­‐)  

Polar  Basic  (+)  Polar   -­‐3.5   -­‐3.9  

Glutamic  Acid  to  Glycine  (E8G)   28   9  

37   129.1   57.1   Acidic  (-­‐)  

Polar  Neutral  Nonpolar   -­‐3.5   -­‐0.4  

Glutamic  Acid  to  Aspartic  Acid  (E8D)   4     4   129.1   115.1   Acidic  (-­‐)  

Polar  Acidic  (-­‐)  Polar   -­‐3.5   -­‐3.5  

Glutamic  Acid  to  Alanine  (E8A)   5   1   6   129.1   71.1   Acidic  (-­‐)    

Polar  Neutral    Nonpolar   -­‐3.5   1.8  

Aspartic  Acid  to  Alanine  (D35A)     2   2   115.1   71.1   Acidic  (-­‐)    

Polar  Neutral    Nonpolar   -­‐3.5   1.8  

Phenylalanine  to  Serine  (F46S)   1     1   147.2   87.1   Neutral    

Nonpolar  Neutral    Polar   2.8   -­‐0.8  

Phenylalanine  to  Leucine  (F46L)   1     1   147.2   113.2   Neutral    

Nonpolar  Neutral    Nonpolar   2.8   3.8  

Glutamine  to  Arginine  (Q130R)   7     7   128.1   156.2   Neutral  

Polar  Basic  (+)    Polar   -­‐3.5   -­‐4.5  

Alanine  to  Valine  (A133V)     9   9   71.1   99.1   Neutral    

Nonpolar  Neutral    Nonpolar   1.8   4.2  

Serine  to  Proline  (S161P)   1     1   87.1   97.1   Neutral    

Polar  Neutral    Nonpolar   -­‐0.8   -­‐1.6  

Serine  to  Threonine  (S246T)     2   2   87.1   101.0   Neutral    

Polar  Neutral    Polar   -­‐0.8   -­‐0.7  

Serine  to  Tryptophan  (S299W)  

1     1   87.1   186.2   Neutral    Polar  

Neutral    Slightly  Polar  

-­‐0.8   -­‐0.9  

Lysine  to  Threonine(K311T)     1   1   128.2   101.0   Basic  (+)    

Polar  Neutral    Polar   -­‐3.9   -­‐0.7  

Glycine  to  Serine  (G515S)   1     1   57.1   87.1   Neutral    

Nonpolar  Neutral    Polar   -­‐0.4   -­‐0.8  

Aspartic  Acid  to  Glycine  (D554G)   3   1   4   115.1   57.1   Acidic  (-­‐)    

Polar  Neutral    Nonpolar   -­‐3.5   -­‐0.4  

Aspartic  Acid  to  Alanine  (D554A)   1     1   115.1   71.1   Acidic  (-­‐)    

Polar  Neutral    Nonpolar   -­‐3.5   1.8  

Leucine  to  Phenylalanine  

(L555F)  1     1   113.1   147.2   Neutral    

Nonpolar  Neutral    nonpolar   3.8   2.8  

a  =  This  study;  b  =  Duffy  et  al.  2006  [15].      

Page 100: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  83  

Table  4  .  Phenotypic  Characteristics  of  Bacteriophage  φ  Mutants.  Strain   Mutation   Frequency  

of  Mutant  Fitness  ERA  

Fitness  PP  

Plaque  Size  ERA  

Attachment  ERA  

Attachment  PP  

S8   D554G   2   3.31   14.73   6.89   2.58  x  10-­‐11   4.79  x  10-­‐11  S68   E8D   4   1.97   14.61   5.69   2.22  x  10-­‐11   4.72  x  10-­‐11  S53   E8A     4   3.97   14.57   7.8   4.80  x  10-­‐11   4.68  x  10-­‐11  S46   Q130R/S299W   1   0.98   14.80   9.26   1.68  x  10-­‐11   5.05  x  10-­‐11  S42   S161P/L555F   1   2.20   14.93   9.17   2.40  x  10-­‐11   5.31  x  10-­‐11  S4   Q130R   1   1.27   14.74   6.28   2.05  x  10-­‐11   5.41  x  10-­‐11  S30   E8K/Q130R   1   2.51   14.62   3.54   2.49  x  10-­‐11   5.71  x  10-­‐11  S28   E8A/F46L   1   2.47   15.21   5.94   2.53  x  10-­‐11   5.63  x  10-­‐11  S26   D554A   1   4.47   14.77   7.85   2.39  x  10-­‐11   5.63  x  10-­‐11  S154   E8G   24   4.12   14.92   6.29   2.59  x  10-­‐11   5.33  x  10-­‐11  S14   E8K/D554G   1   2.08   14.79   6.56   2.09  x  10-­‐11   4.50  x  10-­‐11  S13   E8K/F46S   1   3.16   14.85   10.25   2.24  x  10-­‐11   4.60  x  10-­‐11  S117   E8K   20   3.91   14.66   8.93   2.51  x  10-­‐11   4.39  x  10-­‐11  φ6  WT   n/a   n/a   n/a   15.07   n/a   n/a   4.91  x  10-­‐11  

     

Page 101: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  84  

References  

1.  Christensen  KLY,  Holman  RC,  Steiner  CA,  Sejvar  JJ,  Stoll  BJ,  et  al.  (2009)  Infectious  Disease  Hospitalizations  in  the  United  States.  Clinical  Infectious  Diseases  49:  1025-­‐1035.  

2.  Armstrong  GL,  Conn  LA,  Pinner  RW  (1999)  Trends  in  infectious  disease  mortality  in  the  United  States  during  the  20th  century.  Jama-­‐Journal  of  the  American  Medical  Association  281:  61-­‐66.  

3.  Woolhouse  M,  Gaunt  E  (2007)  Ecological  origins  of  novel  human  pathogens.  Critical  Reviews  in  Microbiology  33:  231-­‐242.  

4.  Cleaveland  S,  Laurenson  MK,  Taylor  LH  (2001)  Diseases  of  humans  and  their  domestic  mammals:  pathogen  characteristics,  host  range  and  the  risk  of  emergence.  Philosophical  Transactions  of  the  Royal  Society  of  London  Series  B-­‐Biological  Sciences  356:  991-­‐999.  

5.  Woolhouse  MEJ,  Haydon  DT,  Antia  R  (2005)  Emerging  pathogens:  the  epidemiology  and  evolution  of  species  jumps.  Trends  in  Ecology  &  Evolution  20:  238-­‐244.  

6.  Antia  R,  Regoes  RR,  Koella  JC,  Bergstrom  CT  (2003)  The  role  of  evolution  in  the  emergence  of  infectious  diseases.  Nature  426:  658-­‐661.  

7.  Gandon  S,  Hochberg  ME,  Holt  RD,  Day  T  (2012)  What  limits  the  evolutionary  emergence  of  pathogens?  Philosophical  Transactions  of  the  Royal  Society  of  London  Series  B-­‐Biological  Sciences  368.  

8.  Alexander  HK,  Day  T  (2010)  Risk  factors  for  the  evolutionary  emergence  of  pathogens.  Journal  of  the  Royal  Society  Interface  7:  1455-­‐1474.  

9.  Holmes  EC,  Drummond  AJ  (2007)  The  evolutionary  genetics  of  viral  emergence.  Wildlife  and  Emerging  Zoonotic  Diseases:  the  Biology,  Circumstances  and  Consequences  of  Cross-­‐Species  Transmission  315:  51-­‐66.  

10.  Baranowski  E,  Ruiz-­‐Jarabo  CM,  Pariente  N,  Verdaguer  N,  Domingo  E  (2003)  Evolution  of  cell  recognition  by  viruses:  A  source  of  biological  novelty  with  medical  implications.  Advances  in  Virus  Research,  Vol  62  62:  19-­‐111.  

11.  Ferris  MT,  Joyce  P,  Burch  CL  (2007)  High  frequency  of  mutations  that  expand  the  host  range  of  an  RNA  virus.  Genetics  176:  1013-­‐1022.  

12.  Mindich  L,  Nemhauser  I,  Gottlieb  P,  Romantschuk  M,  Carton  J,  et  al.  (1988)  Nucleotide  sequence  of  the  large  double  stranded  RNA  segment  of  bacteriophage  phi6  -­‐    genes  specifying  the  viral  replicase  and  transcriptase.  Journal  of  Virology  62:  1180-­‐1185.  

13.  Mindich  L,  Nemhauser  I,  Gottlieb  P,  Romantschuk  M,  Carton  J,  et  al.  (1988)  Nucleotide  sequence  of  the  large  dsRNA  segment  of  bacteriophage  phi6  -­‐  genes  specifying  the  viral  replicase  and  transcriptase.  Journal  of  Virology  62:  1180-­‐1185.  

14.  McGraw  T,  Mindich  L,  Frangione  B  (1986)  Nucleotide  sequence  of  the  small  double  stranded  RNA  segment  of  bacteriophage  phi6  -­‐  novel  mechanism  of  natural  translational  control.  Journal  of  Virology  58:  142-­‐151.  

15.  Duffy  S,  Turner  PE,  Burch  CL  (2006)  Pleiotropic  costs  of  niche  expansion  in  the  RNA  bacteriophage  Phi  6.  Genetics  172:  751-­‐757.  

16.  Vidaver  AK,  Koski  RK,  Vanetten  JL  (1973)  Bacteriophage  phi6  -­‐    lipid  containing  virus  of  Pseudomonas  phaseolicola.  Journal  of  Virology  11:  799-­‐805.  

17.  Dennehy  JJ,  Friedenberg  NA,  Holt  RD,  Turner  PE  (2006)  Viral  ecology  and  the  maintenance  of  novel  host  use.  American  Naturalist  167:  429-­‐439.  

Page 102: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  85  

18.  Luria  SE,  Delbruck  M  (1943)  Mutations  of  bacteria  from  virus  sensitivity  to  virus  resistance.  Genetics  28:  491-­‐511.  

19.  Kearse  M,  Moir  R,  Wilson  A,  Stones-­‐Havas  S,  Cheung  M,  et  al.  (2012)  Geneious  Basic:  An  integrated  and  extendable  desktop  software  platform  for  the  organization  and  analysis  of  sequence  data.  Bioinformatics  28:  1647-­‐1649.  

20.  Tamura  K,  Peterson  D,  Peterson  N,  Stecher  G,  Nei  M,  et  al.  (2011)  MEGA5:  molecular  evolutionary  genetics  analysis  using  maximum  likelihood,  evolutionary  distance,  and  maximum  parsimony  methods.  Molecular  Biology  and  Evolution  28:  2731-­‐2739.  

21.  Zhang  Y  (2008)  I-­‐TASSER  server  for  protein  3D  structure  prediction.  BMC  Bioinformatics  9:  40.  

22.  Roy  A,  Kucukural  A,  Zhang  Y  (2010)  I-­‐TASSER:  a  unified  platform  for  automated  protein  structure  and  function  prediction.  Nat  Protoc  5:  725-­‐738.  

23.  Chao  L,  Rang  CU,  Wong  LE  (2002)  Distribution  of  spontaneous  mutants  and  inferences  about  the  replication  mode  of  the  RNA  bacteriophage  phi  6.  Journal  of  Virology  76:  3276-­‐3281.  

24.  Mulet  M,  Lalucat  J,  Garcia-­‐Valdes  E  (2010)  DNA  sequence-­‐based  analysis  of  the  Pseudomonas  species.  Environmental  Microbiology  12:  1513-­‐1530.  

25.  Cserzo  M,  Wallin  E,  Simon  I,  vonHeijne  G,  Elofsson  A  (1997)  Prediction  of  transmembrane  alpha-­‐helices  in  prokaryotic  membrane  proteins:  the  dense  alignment  surface  method.  Protein  Engineering  10:  673-­‐676.  

26.  Stitt  BL,  Mindich  L  (1983)  Morphogenesis  of  bacteriophage  Phi6  -­‐  a  presumptive  viral  membrane  precursor.  Virology  127:  446-­‐458.  

27.  Kenney  JM,  Hantula  J,  Fuller  SD,  Mindich  L,  Ojala  PM,  et  al.  (1992)  Bacteriophage  phi  6  envelope  elucidated  by  chemical  cross-­‐linking,  immunodetection,  and  cryoelectron  microscopy.  Virology  190:  635-­‐644.  

28.  Dennehy  J  (2009)  Bacteriophages  as  model  organisms  for  virus  emergence  research.  Trends  in  Microbiology  17:  450-­‐457.  

29.  Ayora-­‐Talavera  G,  Shelton  H,  Scull  MA,  Ren  JY,  Jones  IM,  et  al.  (2009)  Mutations  in  H5N1  Influenza  virus  hemagglutinin  that  confer  binding  to  human  tracheal  airway  epithelium.  Plos  One  4.  

30.  Sampson  T,  Broussard  GW,  Marinelli  LJ,  Jacobs-­‐Sera  D,  Ray  M,  et  al.  (2009)  Mycobacteriophages  BPs,  Angel  and  Halo:  comparative  genomics  reveals  a  novel  class  of  ultra-­‐small  mobile  genetic  elements.  Microbiology-­‐Sgm  155:  2962-­‐2977.  

31.  Cox  J,  Putonti  C  (2010)  Mechanisms  responsible  for  a  Phi  X174  mutant's  ability  to  infect  Escherichia  coli  by  phosphorylation.  Journal  of  Virology  84:  4860-­‐4863.  

32.  Baranowski  E,  Ruiz-­‐Jarabo  CM,  Domingo  E  (2001)  Evolution  of  cell  recognition  by  viruses.  Science  292:  1102-­‐1105.  

33.  Li  ZJ,  Chen  HL,  Jiao  PR,  Deng  GH,  Tian  GB,  et  al.  (2005)  Molecular  basis  of  replication  of  duck  H5N1  influenza  viruses  in  a  mammalian  mouse  model.  Journal  of  Virology  79:  12058-­‐12064.  

34.  Subbarao  EK,  London  W,  Murphy  BR  (1993)  A  single  amino  acid  in  the  PB2  gene  of  influenza  A  virus  is  a  determinant  of  host  range.  Journal  of  Virology  67:  1761-­‐1764.  

35.  Jonah  G,  Rainey  A,  Natonson  A,  Maxfield  LF,  Coffin  JM  (2003)  Mechanisms  of  avian  retroviral  host  range  extension.  Journal  of  Virology  77:  6709-­‐6719.  

Page 103: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  86  

36.  Yamada  S,  Suzuki  Y,  Suzuki  T,  Le  MQ,  Nidom  CA,  et  al.  (2006)  Haemagglutinin  mutations  responsible  for  the  binding  of  H5N1  influenza  A  viruses  to  human-­‐type  receptors.  Nature  444:  378-­‐382.  

37.  Baer  CF,  Miyamoto  MM,  Denver  DR  (2007)  Mutation  rate  variation  in  multicellular  eukaryotes:  causes  and  consequences.  Nature  Reviews  Genetics  8:  619-­‐631.  

38.  Ellegren  H,  Smith  NGC,  Webster  MT  (2003)  Mutation  rate  variation  in  the  mammalian  genome.  Current  Opinion  in  Genetics  &  Development  13:  562-­‐568.  

39.  Cuppels  DA,  Vanetten  JL,  Lambrecht  P,  Vidaver  AK  (1981)  Survey  of  phytopathogenic  pseudomonads  for  a  restriction  and  modification  system  active  on  the  double-­‐stranded  ribonucleic  acid  phage  Phi6.  Current  Microbiology  5:  247-­‐249.  

40.  Bono  LM,  Gensel  CL,  Pfennig  DW,  Burch  CL  (2013)  Competition  and  the  origins  of  novelty:  experimental  evolution  of  niche-­‐width  expansion  in  a  virus.  Biology  Letters  9.  

41.  Dennehy  JJ  (2012)  What  Can  Phages  Tell  Us  about  Host-­‐Pathogen  Coevolution?  Int  J  Evol  Biol  2012:  396165.  

42.  Gottlieb  P,  Metzger  S,  Romantschuk  M,  Carton  J,  Strassman  J,  et  al.  (1988)  Nucleotide  sequence  of  the  middle  dsRNA  segment  of  bacteriophage  phi6  -­‐    placement  of  the  genes  of  membrane  associated  proteins.  Virology  163:  183-­‐190.  

43.  Mindich  L,  Mackenzie  G,  Strassman  J,  McGraw  T,  Metzger  S,  et  al.  (1985)  cDNA  cloning  of  portions  of  the  bacteriophage  phi6  genome  Journal  of  Bacteriology  162:  992-­‐999.  

44.  Dennehy  JJ  (2009)  Bacteriophages  as  model  organisms  for  virus  emergence  research.  Trends  in  Microbiology  17:  450-­‐457.  

45.  Dawkins  B  (1991)  Siobhan's  Problem:  The  Coupon  Collector  Revisited.  The  American  Statistician  45:  76-­‐82.  

46.  Yamada  S,  Matsumoto  Y,  Takashima  Y,  Otsuka  H  (2005)  Mutation  hot  spots  in  the  canine  herpesvirus  thymidine  kinase  gene.  Virus  Genes  31:  107-­‐111.  

47.  Sasadeusz  JJ,  Tufaro  F,  Safrin  S,  Schubert  K,  Hubinette  MM,  et  al.  (1997)  Homopolymer  mutational  hot  spots  mediate  herpes  simplex  virus  resistance  to  acyclovir.  Journal  of  Virology  71:  3872-­‐3878.  

48.  Ng  TI,  Shi  Y,  Huffaker  HJ,  Kati  W,  Liu  Y,  et  al.  (2001)  Selection  and  characterization  of  varicella-­‐zoster  virus  variants  resistant  to  (R)-­‐9-­‐[4-­‐Hydroxy-­‐2-­‐(hydroxymethy)butyl]  guanine.  Antimicrobial  Agents  and  Chemotherapy  45:  1629-­‐1636.  

49.  Wu  K,  Peng  G,  Wilken  M,  Geraghty  RJ,  Li  F  (2012)  Mechanisms  of  Host  Receptor  Adaptation  by  Severe  Acute  Respiratory  Syndrome  Coronavirus.  Journal  of  Biological  Chemistry  287:  8904-­‐8911.  

50.  Hall  AR,  Scanlan  PD,  Buckling  A  (2011)  Bacteria-­‐Phage  Coevolution  and  the  Emergence  of  Generalist  Pathogens.  American  Naturalist  177:  44-­‐53.  

51.  Hoeper  D,  Kalthoff  D,  Hoffmann  B,  Beer  M  (2012)  Highly  pathogenic  avian  influenza  virus  subtype  H5N1  escaping  neutralization:  more  than  HA  variation.  Journal  of  Virology  86:  1394-­‐1404.  

52.  Tapparel  C,  Cordey  S,  Junier  T,  Farinelli  L,  Van  Belle  S,  et  al.  (2011)  Rhinovirus  genome  variation  during  chronic  upper  and  lower  respiratory  tract  infections.  Plos  One  6.  

53.  Yuang  TTT,  Shih  C  (2000)  A  frequent,  naturally  occurring  mutation  (P130T)  of  human  hepatitis  B  virus  core  antigen  is  compensatory  for  immature  secretion  phenotype  of  another  frequent  variant  (I97L).  Journal  of  Virology  74:  4929-­‐4932.  

Page 104: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  87  

54.  Chattopadhyay  S,  Weissman  SJ,  Minin  VN,  Russo  TA,  Dykhuizen  DE,  et  al.  (2009)  High  frequency  of  hotspot  mutations  in  core  genes  of  Escherichia  coli  due  to  short-­‐term  positive  selection.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  106:  12412-­‐12417.  

55.  Hughes  AL,  Nei  M  (1988)  Pattern  of  nucleotide  substitution  at  major  histocompatibility  complex  class  I  loci  reveals  overdominant  selection.  Nature  335:  167-­‐170.  

56.  Keitel  T,  Diehl  A,  Knaute  T,  Stezowski  JJ,  Höhne  W,  et  al.  (2000)  X-­‐ray  structure  of  the  quinoprotein  ethanol  dehydrogenase  from  Pseudomonas  aeruginosa:  basis  of  substrate  specificity.  J  Mol  Biol  297:  961-­‐974.  

57.  Ghosh  M,  Anthony  C,  Harlos  K,  Goodwin  MG,  Blake  C  (1995)  The  refined  structure  of  the  quinoprotein  methanol  dehydrogenase  from  Methylobacterium  extorquens  at  1.94  A.  Structure  3:  177-­‐187.  

58.  Oubrie  A,  Rozeboom  HJ,  Kalk  KH,  Huizinga  EG,  Dijkstra  BW  (2002)  Crystal  structure  of  quinohemoprotein  alcohol  dehydrogenase  from  Comamonas  testosteroni:  structural  basis  for  substrate  oxidation  and  electron  transfer.  J  Biol  Chem  277:  3727-­‐3732.  

59.  Petsko  GA,  Ringe  D  (2004)  Protein  Structure  and  Function.  Sunderland,  MA:  New  Science  Press.  

60.  Fisher  RA  (1930)  The  Genetical  Theory  of  Natural  Selection.  Oxford,  UK:  Clarendon  Press.  61.  Rose  MR  (1982)  Antagonistic  pleiotropy,  dominance  and  genetic  variation.  Heredity  48:  63-­‐

78.  62.  Cooper  VS,  Lenski  RE  (2000)  The  population  genetics  of  ecological  specialization  in  evolving  

Escherichia  coli  populations.  Nature  407:  736-­‐739.  63.  Kassen  R  (2002)  The  experimental  evolution  of  specialists,  generalists,  and  the  maintenance  

of  diversity.  Journal  of  Evolutionary  Biology  15:  173-­‐190.  64.  Dennehy  JJ  (2014)  What  Ecologists  Can  Tell  Virologists.  Annu  Rev  Microbiol.  65.  Sokurenko  EV,  Gomulkiewicz  R,  Dykhuizen  DE  (2006)  Opinion  -­‐  Source-­‐sink  dynamics  of  

virulence  evolution.  Nature  Reviews  Microbiology  4:  548-­‐555.  66.  Chattopadhyay  S,  Feldgarden  M,  Weissman  SJ,  Dykhuizen  DE,  van  Belle  G,  et  al.  (2007)  

Haplotype  diversity  in  "source-­‐sink"  dynamics  of  Escherichia  coli  urovirulence.  Journal  of  Molecular  Evolution  64:  204-­‐214.  

67.  Williams  PD  (2010)  Darwinian  interventions:  taming  pathogens  through  evolutionary  ecology.  Trends  in  Parasitology  26:  83-­‐92.  

68.  Lide  DR  (1991)  Handbook  of  Chemistry  and  Physics.  Boca  Raton,  FL:  CRC  Press.  69.  Kyte  J,  Doolittle  RF  (1982)  A  simple  method  for  displaying  the  hydropathic  character  of  a  

protein.  Journal  of  Molecular  Biology  157:  105-­‐132.      

Page 105: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  88  

Chapter  3:  Host-­‐Acquired  Factor  Impacts  Fitness  on  Subsequent  Hosts  in  an  RNA  Virus    Brian  E.  Ford1,2,  Kevin  Mu1,3  and  John  J.  Dennehy*,1,2    1  Department  of  Biology,  Queens  College  of  the  City  University  of  New  York,  Queens,  NY  2  Molecular,  Cellular  and  Developmental  Biology  Program,  The  Graduate  Center  of  the  City  University  of  New  York,  New  York,  NY  3  Macaulay  Honors  College  of  the  City  University  of  New  York,  New  York,  NY    *Corresponding  author:  [email protected]    Correspondence:    Prof.  John  J.  Dennehy  Department  of  Biology,  Queens  College  65-­‐30  Kissena  Blvd.  Queens,  NY  11367-­‐1597      Keywords:  host  legacy  effect,  bacteriophage,  Cystoviridae,  Φ6,  Φ9,  Φ13,  Φ14,  enveloped  virus,  RNA  virus,  maternal  effect,  epigenetics,  phenotype,  Pseudomonas  syringae      Research  Article  to  be  submitted  to  Axios  Review  (http://axiosreview.org).  Target  journals:  

1.   eLife  2.   PLoS  Biology  3.   BMC  Biology  4.   American  Naturalist  

     

Page 106: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  89  

Abstract  

 

Many  viruses  are  able  to  infect  multiple  hosts,  often  across  species  and  genus  barriers.  The  

ability  to  predict  how  well  a  virus  will  fare  on  a  new  host  would  be  invaluable  to  

epidemiologists.  Here  we  describe  our  findings  that  a  virus’  lipid  envelope—notable  for  being  

both  host  derived  and  of  non  genetic  origin—plays  a  significant  role  in  virus  fitness  in  

subsequent  infections.  We  demonstrate  significant  fitness  tradeoffs  for  host  shifts  between  

numerous  bacteriophage  with  different  host  ranges  and  across  different  mechanisms  of  

infection.  Our  results  demonstrate  that  for  some  viruses,  passage  through  a  novel  host  may  

hinder  that  virus’  ability  to  reinfect  the  original  native  host.  However,  in  other  cases,  passage  

through  a  novel  host  actually  improves  reproductive  fitness  on  both  native  and  novel  hosts,  

suggesting  a  host  range  expansion.  This  expansion  is  likely  facilitated  by  a  host-­‐derived  factor.  

Our  study  demonstrates  that  other  factors  besides  evolutionary  adaptation  may  influence  how  

successfully  viruses  reproduce  on  their  hosts.  

   

Page 107: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  90  

Introduction  

 

Most  viruses  are  able  to  infect  multiple  host  types  even  when  host  cell  physiologies  are  

different  [1].  Although  permissive  for  infection,  hosts  may  vary  in  intrinsic  factors,  such  as  

receptor  structure  and  number,  codon  usage  patterns,  circuitry  of  genetic  interactions,  

metabolic  capacities  and  pathways,  immune  system  activity  [2],  etc.  These  intrinsic  

physiological  differences  result  in  antagonistic  pleiotropy,  epistasis  and  other  tradeoffs  across  

hosts,  giving  rise  to  the  common  observation  of  differential  virus  reproductive  output  across  

different  hosts  [3-10].  While  these  intrinsic  factors  are  major  causes  of  fitness  differences  

across  hosts,  they  are  not  the  sole  causes.  Here  we  describe  a  new  class  of  extrinsic  factors  that  

can  affect  virus  fitness  in  a  specific  host,  the  genotype  and  phenotype  of  the  previous  host.  

 

This  effect,  which  we  term  the  host  legacy  effect,  occurs  when  the  reproductive  output  of  a  

virus  infecting  a  particular  host  differs  according  to  the  genotype  or  phenotype  of  the  previous  

host  that  produced  the  virus.  Host  legacy  effect  was  first  observed  in  the  bacteriophage  Φ6,  

which  can  infect  its  native  host  Pseudomonas  syringae  pv  phaseolicola  (hereafter  PP)  or  a  novel  

host  Pseudomonas  pseudoalcaligenes  East  River  Isolate  A  (hereafter  ERA).  Interestingly,  it  was  

shown  that  Φ6  viruses  acquired  from  infections  of  PP  were  more  productive  on  subsequent  

hosts  than  Φ6  viruses  acquired  from  infections  of  ERA  [4,11].  In  other  words,  some  factor  

acquired  from  the  previous  host  affects  Φ6's  ability  to  infect  and  reproduce  in  ERA.  The  goal  of  

our  study  was  to  experimentally  determine  whether  a  host  legacy  effect  is  present  in  other  

bacteriophages  in  the  Cystoviridae  family,  including  Φ9,  Φ13  and  Φ14.  

Page 108: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  91  

 

 

Materials  and  Methods  

 

Bacterial  Host  Strain  Determination  and  Selection  

Members  of  Cystoviridae  family  (Φ6,  Φ7,  Φ8,  Φ9,  Φ10,  Φ11,  Φ12,  Φ13  and  Φ14)  were  

screened  via  spot  titer  against  a  panel  of  bacterial  strains  for  viability  (supplementary  table  

ST1).  To  ensure  that  fitness  assays  would  be  representative  for  the  whole  bacteriophage  family,  

two  members  of  the  “close  relatives”—to  the  canonical  member  Φ6—[12],  Φ6  and  Φ9,  and  

two  members  of  the  “distant  relatives”,  Φ13  and  Φ14,  were  selected  for  testing.  All  bacterial  

host  pairings  consisted  of  the  canonical  bacterial  host,  Pseudomonas  syringae  pv  phaseolicola  

(PP)  and  a  secondary  bacterial  host.  Secondary  bacterial  hosts  were  different  for  each  virus  

strain-­‐  Φ6:  LM2489;  Φ9:  Pseudomonas  syringae  pv  atrofaciens  (hereafter  Atro);  Φ13:  LM2509;  

Φ14:  Pseudomonas  syringae  pv  tomato  (hereafter  Tomato).  LM2489  [13]  is  a  derivative  of  PP  

susceptible  to  infection  of  all  members  of  the  Cystoviridae  (Φ12  inclusive).  LM2509  is  another  

derivative  of  PP  that  lacks  pili  [13].  Secondary  bacteria  hosts  were  chosen  to  be  different  as  

possible,  both  from  each  other  and  for  unique  sensitivity.  Bacteria  host  sensitivities  are  

summarized  in  Table  1.  

   

Page 109: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  92  

 

Table  1.  Bacterial  Strains  Bacteria   AKA   Sensitive  to   Used  with  Pseudomonas  syringae  pv  phaseolicola  

PP,  HB   Φ6,  Φ9,  Φ13,  Φ14  

Φ6,  Φ9,  Φ13,  Φ14  

Pseudomonas  syringae  pv  atrofaciens  

Atro   Φ9   Φ9  

Pseudomonas  syringae  pv  tomato  

Tomato   Φ14   Φ14  

“Common  host”   LM2489   Φ6,  Φ9,  Φ13,  Φ14  

Φ6  

“Non-­‐piliated”   LM2509   Φ13   Φ13  Susceptibility  to  infection  by  bacteriophage  strains  used  in  this  study.    Paired  Bacteriophage  Strain  Preparation  

Bacteria  were  propagated  in  lysogeny  broth  (LB:  10g  NaCl,  10g  Bacto  tryptone  and  5g  Bacto  

yeast  extract  per  liter  of  water)  at  pH  7.  Bacterial  cultures  were  initiated  from  a  single  colony  

from  a  streak  plate  in  10  ml  of  LB  in  a  sterile  50  ml  flask  capped  by  a  20  ml  beaker.  Cultures  

were  incubated  for  18  H  at  25°C  with  shaking  at  120  rpm.  Viruses  were  propagated  in  3  ml  top  

agar  (0.7%  agar)  containing  diluted  virus  lysate  and  bacteria  (200  μl  PP  or  100  μl  for  all  other  

hosts).  Top  agar  was  poured  over  LB  agar  plates  (containing  1.5%  agar)  and  incubated  overnight  

at  25°C.  Top  agar  from  four  replicate  plates  was  scraped  into  4  ml  of  LB  broth  and  

centrifuged  (RCF  =  1,400x  g)  for  40  min.  Viral  lysates  were  passed  through  0.22  μm  filters  

to  remove  bacteria  and  stored  at  4°C  for  the  duration  of  the  experiments.  Paired  strains  

were  made  in  tandem;  virus  stock  propagated  on  PP  was  passed  through  either  PP  to  

create  a  base  strain  or  its  secondary  bacterial  host  to  create  a  differentially  lipid-­‐‑enveloped  

test  strain  (Figure  1A).  Bacteriophage  lysates  were  titered  on  both  PP  and  the  secondary  

strain  and  the  highest  titer  values  were  used  in  multiplicity  of  infection  (MOI)  calculations.  

 

Page 110: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  93  

Fitness  Assay  Conditions  

A  single  colony  of  both  Pseudomonas  syringae  pv  phaseolicola  and  one  of  the  secondary  hosts  

(either  LM2489,  Pseudomonas  syringae  pv  atrofaciens,  LM2509  or  Pseudomonas  syringae  pv  

tomato)  was  used  to  inoculate  10  ml  of  LB  broth  each  and  incubated  overnight  (18H)  at  25°C  

with  shaking  at  110  rpm.  150  μl  of  this  18H  culture  was  used  to  inoculate  15  ml  LB  and  grown  at  

25°C  to  an  optical  density  (OD)  of  0.2.  30  μl  of  PP  and  each  secondary  host  strain  was  

serially  diluted  and  plated  to  verify  equivalent  starting  bacterial  colony  forming  units  (CFU)  

for  the  different  strains.  

 

Both  bacterial  hosts,  as  well  as  both  of  the  differentially  enveloped  paired  virus  strains,  

were  measured  concurrently  in  a  96-­‐‑well  flat-­‐‑bottom  plate  (Figure  1B).  Virus  

concentration  was  titered  for  each  strain  and  chosen  to  maximize  bacterial  growth  before  

complete  host  lysis.  In  order  to  keep  the  phage  infection  curves  consistent  between  strains,  

an  inoculation  concentration  of  100  plaque  forming  units  (pfu)  for  Φ6  or  10,000  pfu  for  Φ9,  

Φ13  and  Φ14  was  used.  Appropriate  virus  concentrations  were  diluted  in  a  final  volume  of  

100  μl.  100  μl  of  0.2  OD  bacteria  was  added  to  100  μl  of  virus  dilution  (initial  MOI  of  

1:40,000  for  Φ6  and  1:400  for  the  three  remaining  virus  strains)  following  Figure  1C.  

Subsequent  optical  density  (OD)  was  measured  in  a  Tecan  Infinite  Pro  plate  reader  at  600  

nm.  ODs  were  measured  every  5  minutes,  200  sec  of  orbital  shaking,  5  flashes,  with  the  lid  

on  over  the  course  of  18H  at  25°C.  Each  sample  was  plated  in  octuplicate  and  each  

experiment  repeated  in  triplicate  (final  n=24  for  each  treatment).  Due  to  lack  of  change  in  

the  readings  from  15H  to  18H  for  all  strains,  all  results  are  only  reported  until  15H.  

 

Page 111: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  94  

Statistical  Analysis  

Statistical  analyses  were  carried  out  using  GraphPad  Prism  for  Macintosh  (6.0c)  (GraphPad  

Software,  La  Jolla,  CA).  Optical  density  (OD)  was  plotted  over  time  (15  hours  total)  for  each  

paired  strain.  Column  statistics  was  used  to  determine  the  Area  Under  the  Curve  (AUC),  the  

time  to  maximal  infection  (x-­‐maximum)  and  the  maximal  growth  (OD-­‐max,  or  y-­‐maximum)  for  

each  replicate  and  experiment  (8  replicates  per  treatment  times  3  repeats  of  each  experiment  

equals  24  replicates  total  per  treatment).  One-­‐way  analysis  of  variance  (ANOVA)  with  multiple  

comparisons  was  used  to  compare  differences  between  groups  (bacteria  growth  alone,  bacteria  

growth  with  phage-­‐canonical  coat  and  bacterial  growth  with  phage-­‐secondary  coat)  using  each  

of  the  three  variables  (AUC,  x-­‐max  and  y-­‐max)  on  each  bacterial  host  (canonical  or  secondary).  

Due  to  close  agreement  between  the  results  for  the  three  measures  (AUC,  x-­‐max  and  y-­‐max,  

see  ST2.  and  ST3.),  only  results  from  the  AUC  measures  were  used  in  the  results  and  discussion.  

 

 

Results  

 

Φ6  

For  Φ6  strains  passed  through  either  PP  or  LM2489  (a  PP  derivative  susceptible  to  infection  by  

all  members  of  the  Cystoviridae),  there  is  no  difference  in  number  of  progeny  produced,  

indicating  that  previous  host  identity  does  not  change  growth  dynamics  for  either  of  the  paired  

strains  grown  on  PP  (Figure  2A).  However,  for  those  same  paired  strains  grown  on  LM2489,  

Page 112: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  95  

there  is  a  slight  but  still  significant  advantage  (p  =  0.0028,  Supplementary  Table  ST3)  to  virus  

grown  previously  on  PP  (Figure  2B).  

 

Φ9  

For  the  paired  Φ9  strains  assayed  on  PP,  virus  that  had  been  grown  first  on  Atro  demonstrated  

a  significantly  increased  fitness  in  comparison  to  virus  that  had  been  grown  on  PP  (figure  2C).  

This  trend  of  Φ9-­‐atro  growing  better  than  Φ9-­‐PP  was  also  observed  for  the  two  strains  when  

assayed  on  Atro  (Figure  2D).  The  difference  in  progeny  production  between  these  paired  strains  

was  more  pronounced  on  Atro  than  PP  (Figure  2C,D).  

 

Φ13  

Φ13  was  passaged  through  either  PP  or  LM2509  (a  non-­‐piliated  PP  derivative)  to  make  paired  

strains.  Previous  host  exposure  (i.e.  those  virus  strains  that  had  been  previously  passaged  

through  and  possessed  the  same  lipid  envelope)  leads  to  an  increased  fitness  on  both  hosts  and  

a  significant  decrease  in  fitness  for  both  strains  lacking  prior  exposure  (Figure  2E-­‐F;  p  <  0.0001,  

supplementary  figure  ST3).  

 

Φ14  

Distant  Φ6  relative  Φ14  was  passaged  through  either  PP  or  Tomato  to  make  paired  strains.  

Without  pre-­‐exposure  to  Tomato,  Φ14  was  unable  to  infect  Tomato  at  the  tested  MOI  (Figure  

2H).  However,  Φ14  pre-­‐exposed  to  Tomato  was  even  better  at  infecting  PP  than  Φ14  that  had  

been  only  exposed  to  PP  (Figure  2G).  

Page 113: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  96  

 

These  results  are  summarized  below  in  Table  2.    

 

Table  2.  Relative  Virus  Productivity  On  Mismatched  Hosts  Strain   Previous  Host   Current  Host   Productivity   Relative  Change  

Φ6  

PP   LM2489   Increased    

LM2489   PP   No  change    

Φ9  

PP   Atro   Decreased    

Atro   PP   Increased    

Φ13  

PP   LM2509   Decreased    

LM2509   PP   Decreased    

Φ14  

PP   Tomato   Decreased    

Tomato   PP   Increased    

Summary  of  the  relative  productivity  of  each  virus  strain  on  the  bacterial  host  not  matching  the  previous  passage  (i.e.  unmatched  lipid  membrane).  Outcomes  are  relative  to  productivity  measured  for  each  strain  on  the  bacterial  strain  matching  the  previous  passage  (i.e.  matching  lipid  membrane).  An  increased  productivity  indicates  higher  progeny  production  (greater  reduction  in  OD600).  Relative  change  column  indicates  the  difference  in  growth  between  paired  strains  (red  =  decrease  relative  to  concordant  envelope  strain;  green  =  increase  relative  to  concordant  envelope  strain;  blue  =  no  significance;  more  color  indicates  greater  difference).    

   

Page 114: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  97  

 

Discussion  

 

Considered  the  type  strain  for  the  Cystoviridae  family,  Φ6  is  the  member  against  which  other  

canonical  members  are  classified.  Close  family  members  are  (Φ6)  Φ7,  Φ9,  Φ10  and  Φ11,  while  

distant  family  members  are  Φ8,  Φ12,  Φ13  and  Φ14  [13].  This  close  and  distant  classification  is  

based  on  infection  dynamics;  for  close  family  members  the  host  bacteria  pilus  plays  a  crucial  

role  in  the  infection  cycle  [14]  while  distant  relatives  infect  via  the  lipopolysaccharide  (LPS)  [15]  

present  on  the  cell  membrane.    

 

It  is  worth  noting  that—of  the  novel  bacterial  hosts  tested—two  are  naturally  occurring  strains  

(Pseudomonas  syringae  pathovars  atrofaciens  and  tomato)  and  two  are  mutant  derivatives  of  

PP.  The  two  mutant  derivatives  are  notable  for  their  susceptibility  dynamics.  LM248  is  a  PP  

derivative  allowing  infection  by  any  of  the  Cystoviridae,  while  LM2509  is  a  PP  mutant  that  does  

not  produce  pili  (hence  the  non-­‐piliated  designation).  As  pili  are  essential  components  for  

producing  a  productive  infection  for  the  Cystoviridae  type  strain  Φ6  and  its  close  relatives  (Φ7,  

Φ9,  Φ10,  Φ11)  but  not  its  distant  relatives  (Φ8,  Φ12,  Φ13,  Φ14)  we  would  not  expect  LM2509  

to  be  susceptible  to  infection  by  any  of  the  close  Φ6  relatives.  This  is  the  exact  infection  pattern  

that  we  observe  with  spot  titers  (Supplementary  Table  ST1).  LM2509  is  only  susceptible  to  

infection  by  Φ12  and  Φ13  in  our  studies.  In  other  words,  the  two  mutant  derivatives  can  be  

considered  special  cases  almost  opposite  in  their  infection  outcomes;  LM2489  in  an  

Page 115: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  98  

exceptionally  permissive  host  and  LM2509  is  an  exceptionally  non  permissive  host.  This  

uniqueness  is  again  apparent  in  their  effect  on  Cystovirus  infection  patterns.  

 

Passage  through  LM2489,  the  extremely  permissive  host,  is  the  only  case  where  there  was  no  

difference  in  fitness  between  the  paired  strains  on  the  canonical  host  PP.  Stated  differently,  

jumping  to  an  extremely  permissive  host  carries  very  little  cost  in  switching  back  to  the  original  

host  (Figure  2A).  This  is  not  to  imply  that  there  is  no  cost  moving  to  a  new  host  species  as  the  

data  demonstrate  that  following  a  jump  to  the  new  LM2489  host,  subsequent  Φ6  infection  in  

that  same  host  (LM2489)  is  slightly  less  than  that  of  unexposed  Φ6  (Figure  2B).  This  seems  in  

direct  opposition  to  the  case  of  LM2509,  the  non-­‐piliated  or  extremely  non-­‐permissive  host.  

Here,  without  prior  passage  through  LM2509,  Φ13  is  unable  to  infect  the  host  at  the  tested  

MOI  (Figure  2F).  Once  the  virus  has  made  the  jump  to  this  mutant  host,  it  is  extremely  impaired  

at  infecting  the  original  host,  PP  (Figure  2E).  Unlike  in  the  previous  case  of  LM2489  of  an  easier  

jump  to  a  permissive  host,  in  LM2509,  the  shift  to  a  relatively  inhospitable  host  carries  a  

significant  fitness  cost  on  the  original  host  (Figure  2E).  Once  the  virus  successfully  replicates  on  

an  exceptionally  impervious  host,  it  has  higher  reproductive  fitness  on  subsequent  infections  of  

the  same  host,  but  is  also  much  worse  on  the  original  host.  

 

The  two  naturally  occurring  strains  (Atro  and  Tomato)  demonstrate  a  slightly  different  infection  

dynamic.  Here,  in  both  cases,  a  jump  to  the  novel  host  is  greatly  facilitated  by  previous  

exposure  to  that  host  (Figure  2D,H)  and  passage  through  the  secondary  novel  host  significantly  

increases  fitness  on  the  canonical  host  (Figure  2C,G).  These  results  are  interesting  in  that  they  

Page 116: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  99  

are  consistent  across  both  Φ9  and  Φ14  (a  close  and  distant  relative  of  Φ6  respectively).  That  

these  data  for  these  two  viruses—although  related—are  consistent,  is  noteworthy  given  that  

both  viruses  display  different  host  ranges  and  follow  different  infection  dynamics  (targeting  the  

pilus  vs  the  LPS  respectively)  [16].  These  data  would  suggest  that  certain  host  range  expansions  

could  improve  a  generalist  host  recognition  mechanism  or  that  there  are  other  factors  

responsible  for  bacteria  host  recognition  in  addition  to  recognition  sites  on  either  the  pilus  or  

LPS.  A  prime  candidate  for  the  responsible  factor  is  the  lipid  membrane.  

 

The  Cystoviridae  are  enveloped  viruses.  They  consist  of  about  10%  tripartite  dsRNA,  70%  

protein  and  20%  lipids  [17].  Their  lipid  membrane  is  derived  from  the  host’s  cytoplasmic  

membrane  [18].  In  our  paired  strain  experiments,  each  virus  is  passaged  once  though  PP  or  a  

novel  host.  We  kept  the  passage  cycles  to  a  minimum  to  reduce  genetic  evolution  as  a  

confounding  factor.  Each  paired  strain  should  significantly  differ  only  in  their  host-­‐derived  lipid  

membrane  (Figure  1C).  In  our  test  scenario,  resultant  differences  in  fitness  between  each  

paired  strain  should  be  attributable  to  the  composition  of  the  host-­‐derived  membrane.  Our  

data  suggest  the  host-­‐derived  lipid  membrane  is  a  significant  factor  in  subsequent  virus  fitness.  

Further  experimentation  is  required  in  order  to  determine  if  it  is  the  composition  of  the  lipid  

membrane  itself  [19]  or  that  of  the  host-­‐derived  proteins  embedded  in  the  membrane  [20]  as  

the  responsible  party  for  the  subsequent  fitness  tradeoffs.  

 

For  organisms—such  as  viruses—that  multiply  exponentially,  given  a  finite  amount  of  both  time  

and  resources,  initial  conditions  can  play  a  large  role  in  the  final  reproductive  outcome.  The  

Page 117: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  100  

host  legacy  effect  plays  a  direct  role  only  in  the  initial  infection  cycle  (Figure  3).  In  the  first  

scenario,  having  a  concordant  lipid  envelope—where  the  lipid  envelope  composition  of  the  

virus  matches  that  of  the  bacteria—virus  amplification  for  each  round  of  infection  is  relatively  

equivalent  to  each  other,  differing  only  in  the  ratio  of  virus  to  bacterial  hosts  (Figure  3A).  In  the  

second  case,  having  a  discordant  virus  envelope—where  the  lipid  envelope  composition  

matches  a  different  bacterial  host—virus  production  can  either  be  impaired  or  facilitated,  

leading  either  to  little  or  great  amplification  of  the  virus  (Figure  3B).  For  the  bacteriophage  Φ6,  

one  infection  cycle  takes  roughly  3H  [21,22].  For  the  majority  of  the  paired  strain  results  

(Supplementary  Figure  1A,B,C,E,F,G),  differences  in  virus  amplification  are  readily  apparent  

following  the  second  round  of  infection,  at  6H  (Supplementary  Figure  1,  Figure  2),  indicating  the  

importance  of  the  host  legacy  effect  and  initial  infection  conditions.  

 

Viruses  have  very  defined  host  ranges  and  niches.  Many  factors  have  been  identified  either  

allowing  or  restricting  expansion  of  these—usually  narrow—host  ranges  [23].  Here  we  identify  

a  new  factor  important  for  the  success  or  failure  of  of  these  segmented  dsRNA  viruses  in  

encountering  a  new  host:  the  host-­‐derived  lipid  membrane.  These  data  are  suggestive  of  a  

“host  legacy  effect”—analogous  to  the  eukaryotic  maternal  effect  concept—of  bacterial  host  

identity  impacting  virus  fitness  in  subsequent  infection.  While  we  do  not  see  a  generality  in  all  

tested  infection  scenarios,  we  do  see  that  in  all  cases  save  one—in  an  extremely  permissive  

host  where  the  exception  proves  the  rule—that  the  lipid  membrane  plays  a  significant  role  in  

subsequent  virus  fitness.  Further  experimentation  will  be  required  to  determine  both  the  

identity—whether  the  effect  is  a  function  of  differing  proteins  embedded  in  the  envelope,  the  

Page 118: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  101  

lipid  composition  of  the  envelope  itself,  or  some  other  factor—and  the  mechanism  of  action  

responsible  for  this  effect.  

 

 

Author  Contributions  

BEF  &  JJD  designed  the  study  and  analyzed  the  data,  BEF  &  KM  conducted  the  assays,  and  all  

three  authors  wrote  the  manuscript.  

 

 

Conflict  of  Interest  Statement  

None  of  the  authors  have  affiliations  with,  or  involvement  in  any  organization  or  entity  with  any  

financial  interest,  or  non-­‐financial  interest  in  the  subject  matter  or  materials  discussed  in  this  

manuscript.  

 

 

Acknowledgements  

We  would  like  to  thank  Leonard  Mindich  and  Paul  E.  Turner  for  their  kind  donations  of  

bacteriophage  and  bacteria  strains.  We  appreciate  assistance  from  Marko  Baloh  and  Elizabeth  

S.  Chapler  and  other  members  of  the  Dennehy  Lab.  This  work  was  funded  by  National  Science  

Foundation  Early  Career  Award  to  JJD  (DEB  #1148879).  The  Macaulay  Honors  College  provided  

financial  support  to  KM.  

 

Page 119: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  102  

 

Captions  

 

Figure  1.  Experimental  Design  

General  experimental  overview.  (A)  Reciprocal  fitness  assay  setup  for  the  four  paired  strains:  

each  virus  pair  is  concurrently  assayed  on  both  bacteria  host  strains  along  with  a  bacteria  

control.  Close  relatives  (Φ6,  Φ9)  in  top  row;  distant  relatives  (Φ13,  Φ14)  on  bottom  row.  (B)  

Fitness  assay  design.  Each  paired  strain  is  assayed  simultaneously  on  both  bacterial  hosts  in  

octuplicate.  Each  experiment  was  repeated  three  times.  White:  not  used;  Red:  blank;  Blue:  Φ9-­‐

canonical  on  canonical  strain;  Purple:  canonical  alone;  Cyan:  Φ9-­‐secondary  on  canonical;  Dark  

green:  Φ9-­‐canonical  on  secondary;  Bright  green:  secondary  alone;  Army  green:  Φ9-­‐secondary  

on  secondary.  (C)  Paired  strain  preparation.  Each  of  the  four  strains  (Φ6,  Φ9,  Φ13,  Φ14)  was  

passaged  through  one  round  of  infection  on  both  the  canonical  host  (PP)  and  a  secondary  

bacterial  host  (LM2489,  Atro,  LM2509  and  Tomato)  resulting  in  genetically  identical  viruses  

differing  only  in  the  host-­‐derived  lipid  membrane.  

 

Figure  2.  Paired  Fitness  Assays  

Growth  curves  for  the  four  paired-­‐strain  reciprocal  fitness  assays.  (A)  Φ6  on  Pseudomonas  

syringae  pv  phaseolicola  (PP);  (B)  Φ6  on  LM2489,  a  bacterial  strain  determined  to  be  

susceptible  to  the  entire  Cystoviridae  family.  (C)  Φ9  on  PP;  (D)  Φ9  on  Pseudomonas  syringae  pv  

atrofaciens  (Atro).  (E)  Φ13  on  PP;  (F)  Φ13  on  2509,  a  non-­‐piliated  bacteria.  (G)  Φ14  on  PP;  (H)  

Φ14  on  Pseudomonas  syringae  pv  tomato  (Tomato).  (A,C,E,G)  represent  growth  on  the  

Page 120: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  103  

canonical  host  Pseudomonas  syringae  pv  phaseolicola.  (B,D,F,H)  bacteriophage  fitness  on  

secondary  bacteria  hosts;  each  bacterial  host  is  different  for  each  virus.  N=24  for  all  

experiments.  Error  bars  represent  the  mean  ±  standard  error  of  the  mean  (SEM).  

 

Figure  3.  Host  Legacy  Effect  Infection  Dynamics  

The  host  legacy  effect  can  change  after  each  round  of  infection.  (A)  In  a  concordant  infection—

virus  envelope  matches  bacteria  type—infection  dynamics  and  virus  amplification  proceed  as  

normal.  (B)  For  discordant  infections—virus  envelope  matches  a  different  bacteria  type—the  

first  round  of  infection  can  greatly  differ  from  subsequent  rounds  of  infection,  leading  to  

greater  or  reduced  virus  amplification.  

 

Supplementary  Figure  1.  Paired  Fitness  Assay  Summary  at  6H  (~2  Infection  Cycles)  

Paired  strain  fitness  data  from  Figure  2  reformatted  to  emphasis  differences  at  6H,  about  two  

infectious  cycles  for  Φ6.    

 

Supplementary  Table  ST1.  Host  range  of  Cystoviridae  on  selected  strains  

Summary  of  selected  bacteria  strain  susceptibility  to  members  of  the  Cystoviridae.  

 

Supplementary  Table  ST2.  One-­‐way  ANOVA  tables  for  the  effect  of  virus  lipid  membrane  

composition  on  fitness  at  15  hours,  measured  by  Area  Under  Curve  (AUC),  time  to  infection  

(x-­‐max)  and  maximum  bacterial  growth  (y-­‐max).  

Page 121: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  104  

Fitness  is  measured  for  each  paired  strain  on  both  bacterial  hosts.  Degrees  of  freedom  (df)  for  

all  analyses  is  2.  Rows  with  discordant  significance  values  between  measures  are  boxed  in  red.  

AUC,  area  under  curve.  

 

Supplementary  Table  ST3.  ANOVA  post-­‐hoc  Tukey’s  multiple  comparison  test.  

Degrees  of  freedom  (df)  for  all  analyses  is  23.  Control,  bacteria  alone;  AUC,  area  under  curve;  

Mean  diff.,  mean  difference;  Summ.,  summary;  Adj.  P,  adjusted  P;  ns,  not  significant.  Rows  with  

discordant  significance  values  between  measures  are  boxed  in  red.  

 

Figures  

 

 

Figure  1.  Experimental  Design      

Page 122: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  105  

 Figure  2.  Paired  Fitness  Assays      

Page 123: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  106  

 Figure  3.  Host  Legacy  Effect  Infection  Dynamics        

Page 124: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  107  

Supplemental  Figures  

 

 Supplementary  Figure  1.  Paired  Fitness  Assay  Summary  6H  (~Two  Infection  Cycles)    

Page 125: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

 108  

 1  

Supp

lemen

tary  Tab

le  ST1.  C

ysto

virid

ae  H

ost  R

ange

 on  

Sele

ct  H

ost  S

trai

ns  

Nam

e  La

b  co

de  

Desig

natio

n  De

scrip

tion  

Susc

eptib

le  

Curr

ent  S

tudy

 Re

fere

nce  

Eschericha

 coli  

JJD1  

E.  c

oli  

 N

one  

   

Pseudo

mon

as  

pseudo

alcaligenes

 Ea

st  R

iver

 Isol

ate  

A  

JJD33

 ER

A  N

ovel

 Φ6  

host

 Φ

8,  Φ

10,  Φ

11,  

Φ12

,  Φ13

,  Φ

14*  

   

Pseudo

mon

as  

syrin

gae  

pv  

phaseolicola  

JJD34

 HB

,  PP  

Host

 of  

isola

tion  

for  

clos

e  re

lativ

es  

Φ6,

 Φ7,

 Φ8,

 Φ

9,  Φ

10,  Φ

11,  

Φ13

,  Φ14

 

Φ6,

 Φ9,

 Φ13

,  Φ

14  

 

 JJD

50  

LM23

33  

Perm

issiv

e  ho

st  

Φ6,

 Φ7,

 Φ8*

,  Φ

9,  Φ

10,  Φ

11,  

Φ12

*,  Φ

13*,

 Φ

14*  

 M

indi

ch  1

999  

“Non

-­‐pili

ated

”  JJD

53  

LM25

09  

 Φ

8*,  Φ

12,  Φ

13  Φ

13  

Min

dich

 199

9  Pseudo

mon

as  

syrin

gae  

pv  

tomato  

JJD98

 To

mat

o    

Φ8,

 Φ10

*,  

Φ11

*,  Φ

13,  

Φ14

*  

Φ14

   

Pseudo

mon

as  

syrin

gae  

pv  

atrofaciens  

JJD99

 At

ro  

 Φ

7,  Φ

9,  Φ

10,  

Φ11

 Φ

9    

 JJD

138  

S4M

   

Φ8  

 M

indi

ch  1

999  

“Com

mon

 hos

t”  

 JJD

139  

LM24

89  

Extr

emel

y  pe

rmiss

ive  

host

 

Φ6,

 Φ7,

 Φ8,

 Φ

9,  Φ

10,  Φ

11,  

Φ12

,  Φ13

,  Φ14

 

Φ6  

Min

dich

 199

9  

 JJD

140  

LM25

72  

 Φ

6,  Φ

7,  Φ

8,  

Φ9,

 Φ10

,  Φ11

,  Φ

12,  Φ

13,  Φ

14  

   

*  in

fect

ivity

 onl

y  at

 hig

h  tit

er  

2  

Page 126: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

 109  

 3  

Supp

lemen

tary  Tab

le  ST2.  O

ne-­‐w

ay  A

NO

VA  ta

bles

 for  t

he  e

ffect

 of  v

irus  l

ipid

 mem

bran

e  co

mpo

sitio

n  on

 fit

ness

 at  1

5  ho

urs  a

s  mea

sure

d  by

 Are

a  Un

der  C

urve

 (AUC

),  tim

e  to

 infe

ctio

n  (x

-­‐max

)  and

 max

imum

 bac

teria

l  gr

owth

 (y-­‐m

ax).  

Fitn

ess  i

s  mea

sure

d  fo

r  eac

h  pa

ired  

stra

in  o

n  bo

th  b

acte

rial  h

osts

.  Fa

ctor

 AU

C    

X-­‐M

ax  

 Y-­‐

Max

 SS

 F  

P    

SS  

F  P  

 SS

 F  

P  Φ6  

   

   

   

   

   

       

 PP  

361.

1  27

18  

<0.000

1    

671.

0  11

04  

<0.000

1    

0.97

34  

610.

1  <0.000

1        

 LM

2489

 19

1.6  

3097

 <0.000

1    

1093

 26

41  

<0.000

1    

1.10

9  11

96  

<0.000

1  Φ9  

   

   

   

   

   

       

 PP  

5531

.7  

8621

 <0.000

1    

1320

 43

45  

<0.000

1    

2.79

6  50

79  

<0.000

1        

 atr

o  17

7.6  

974.

4  <0.000

1    

792.

8  83

6.7  

<0.000

1    

1.89

4  71

2.6  

<0.000

1  Φ13

   

   

   

   

   

   

       P

P  49

8.7  

2969

 <0.000

1    

939.

8  66

9.1  

<0.000

1    

2.52

5  14

62  

<0.000

1        

 LM

2509

 36

2.7  

7202

 <0.000

1    

1374

 16

46  

<0.000

1    

3.10

7  57

33  

<0.000

1  Φ14

   

   

   

   

   

   

       P

P  65

7.7  

1244

3  <0.000

1    

1033

 14

44  

<0.000

1    

3.14

7  16

70  

<0.000

1        

 tom

ato  

99.1

3  33

5.1  

<0.000

1    

658.

4  16

11  

<0.000

1    

1.66

8  50

6.0  

<0.000

1  AU

C,  a

rea  

unde

r  cur

ve;  M

ean  

diff.

,  mea

n  di

ffere

nce;

 Sum

m.,  

sum

mar

y;  A

dj.  P

,  adj

uste

d  P;

 ns,  

not  s

igni

fican

t.  4  

Degr

ees  o

f  fre

edom

 (df)  

for  a

ll  an

alys

es  e

qual

s  2.  

5  

 6  

Page 127: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

 110  

Supp

lemen

tary  Tab

le  ST3.  A

NO

VA  P

ost-­‐h

oc  T

ukey

’s  M

ultip

le  C

ompa

rison

 Tes

t  Fa

ctor

 AU

C    

X-­‐M

ax  

 Y-­‐

Max

 M

ean  

diff  

Sum

m.  

Adj.  

P    

Mea

n  di

ff  Su

mm

.  Ad

j.  P  

 M

ean  

diff  

Sum

m.  

Adj.  

P  Φ6  

   

   

   

   

   

     PP  

   

   

   

   

   

       

 Con

trol

 vs  Φ

6-­‐PP

 4.

712  

****

 <0

.000

1    

6.43

0  **

**  

<0.0

001  

 0.

2455

 **

**  

<0.0

001  

       C

ontr

ol  v

s  Φ6-­‐

LM24

89  

4.78

8  **

**  

<0.0

001  

 6.

521  

****

 <0

.000

1    

0.24

78  

****

 <0

.000

1        

 Φ6-­‐

PP  v

s  Φ6-­‐

LM24

89  

0.07

608  

ns  

0.50

79  

 0.

0902

5  ns

 0.

3633

   

0.00

2379

 ns

 0.

9315

     LM24

89  

   

   

   

   

   

       

 Con

trol

 vs  Φ

6-­‐PP

 3.

519  

****

 <0

.000

1    

8.37

1  **

**  

<0.0

001  

 0.

2798

 **

**  

<0.0

001  

       C

ontr

ol  v

s  Φ6-­‐

LM24

89  

3.39

9  **

**  

<0.0

001  

 8.

159  

****

 <0

.000

1    

0.24

29  

****

 <0

.000

1        

 Φ6-­‐

PP  v

s  Φ6-­‐

LM24

89  

-­‐0.1

195  

**  

0.00

28  

 -­‐0

.211

9  **

*  0.

0003

   

-­‐0.0

3688

 **

**  

<0.0

001  

Φ9  

   

   

   

   

   

     PP  

   

   

   

   

   

       

 Con

trol

 vs  Φ

9-­‐PP

 5.

642  

****

 <0

.000

1    

8.76

8  **

**  

<0.0

001  

 0.

3840

 **

**  

<0.0

001  

       C

ontr

ol  v

s  Φ9-­‐

atro

 5.

880  

****

 <0

.000

1    

9.36

5  **

**  

<0.0

001  

 0.

4453

 **

**  

<0.0

001  

       Φ

9-­‐PP

 vs  Φ

9-­‐at

ro  

0.23

81  

***  

0.00

04  

 0.

5979

 **

**  

<0.0

001  

 0.

0612

7  **

**  

<0.0

001  

   atro  

   

   

   

   

   

       

 Con

trol

 vs  Φ

9-­‐PP

 1.

473  

****

 <0

.000

1    

5.00

2  **

**  

<0.0

001  

 0.

2090

 **

**  

<0.0

001  

       C

ontr

ol  v

s  Φ9-­‐

atro

 3.

814  

****

 <0

.000

1    

8.05

0  **

**  

<0.0

001  

 0.

3971

 **

**  

<0.0

001  

       Φ

9-­‐PP

 vs  Φ

9-­‐at

ro  

2.34

1  **

**  

<0.0

001  

 3.

048  

****

 <0

.000

1    

0.18

81  

****

 <0

.000

1  Φ13

   

   

   

   

   

   

   PP  

   

   

   

   

   

       

 Con

trol

 vs  Φ

13-­‐P

P  5.

696  

****

 <0

.000

1    

7.60

8  **

**  

<0.0

001  

 0.

4083

 **

**  

<0.0

001  

       C

ontr

ol  v

s  Φ13

-­‐LM

2509

 0.

2335

 *  

0.01

18  

 -­‐0

.110

4  ns

 0.

9097

   

0.02

309  

*  0.

0189

       

 Φ13

-­‐PP  

vs  Φ

13-­‐L

M25

09  

-­‐5.4

62  

****

 <0

.000

1    

-­‐7.7

19  

****

 <0

.000

1    

-­‐0.3

852  

****

 <0

.000

1      LM25

09  

   

   

   

   

   

       

 Con

trol

 vs  Φ

13-­‐P

P  0.

0583

3  ns

 0.

4187

   

0.19

92  

ns  

0.46

44  

 0.

0161

8  *  

0.02

68  

       C

ontr

ol  v

s  Φ13

-­‐LM

2509

 4.

790  

****

 <0

.000

1    

9.36

5  **

**  

<0.0

001  

 0.

4485

 **

**  

<0.0

001  

       Φ

13-­‐P

P  vs

 Φ13

-­‐LM

2509

 4.

732  

****

 <0

.000

1    

9.16

6  **

**  

<0.0

001  

 0.

4323

 **

**  

<0.0

001  

Φ14

   

   

   

   

   

   

   PP  

   

   

   

   

   

       

 Con

trol

 vs  Φ

14-­‐P

P  6.

140  

****

 <0

.000

1    

7.85

7  **

**  

<0.0

001  

 0.

3985

 **

**  

<0.0

001  

       C

ontr

ol  v

s  Φ14

-­‐tom

ato  

6.65

3  **

**  

<0.0

001  

 8.

200  

****

 <0

.000

1    

0.47

78  

****

 <0

.000

1  

Page 128: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

 111  

Cont

rol,  

bact

eria

 alo

ne;  A

UC,  a

rea  

unde

r  cur

ve;  M

ean  

diff.

,  mea

n  di

ffere

nce;

 Sum

m.,  

sum

mar

y;  A

dj.  P

,  adj

uste

d  P;

 ns,  

not  

7  sig

nific

ant.  

8  De

gree

s  of  f

reed

om  (d

f)  fo

r  all  

com

paris

ons  e

qual

s  23.

 9  

Row

s  with

 disc

orda

nt  si

gnifi

canc

e  va

lues

 bet

wee

n  m

easu

res  a

re  b

oxed

 in  re

d.  

10  

 11

   

 12

         Φ

14-­‐P

P  vs

 Φ14

-­‐tom

ato  

0.51

26  

****

 <0

.000

1    

0.34

29  

****

 <0

.000

1    

0.07

930  

****

 <0

.000

1      tom

ato  

   

   

   

   

   

       

 Con

trol

 vs  Φ

14-­‐P

P  0.

0191

7  **

 0.

8708

   

0.00

4167

 ns

 0.

8990

   

0.02

136  

**  

0.00

55  

       C

ontr

ol  v

s  Φ14

-­‐tom

ato  

2.49

9  **

**  

<0.0

001  

 6.

417  

****

 <0

.000

1    

0.33

30  

****

 <0

.000

1        

 Φ14

-­‐PP  

vs  Φ

14-­‐to

mat

o  2.

479  

****

 <0

.000

1    

6.41

3  **

**  

<0.0

001  

 0.

3116

 **

**  

<0.0

001  

Page 129: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  112  

References  

1.   Parrish  CR,  Holmes  EC,  Morens  DM,  Park  EC,  Burke  DS,  Calisher  CH,  et  al.  Cross-­‐Species  Virus  Transmission  and  the  Emergence  of  New  Epidemic  Diseases.  Microbiol  Mol  Biol  Rev.  2008;72:  457–470.  doi:10.1128/MMBR.00004-­‐08  

2.   Feng  Z,  Hensley  L,  McKnight  KL,  Hu  F,  Madden  V,  Ping  L,  et  al.  A  pathogenic  picornavirus  acquires  an  envelope  by  hijacking  cellular  membranes.  Nature.  Nature  Publishing  Group;  2013;496:  367–371.  doi:10.1038/nature12029  

3.   Ford  BE,  Sun  B,  Carpino  J,  Chapler  ES,  Ching  J,  Choi  Y,  et  al.  Frequency  and  Fitness  Consequences  of  Bacteriophage  Φ6  Host  Range  Mutations.  van  Raaij  MJ,  editor.  PLoS  ONE.  Public  Library  of  Science;  2014;9:  e113078.  doi:10.1371/journal.pone.0113078  

4.   Dennehy  JJ,  Friedenberg  NA,  Holt  RD,  Turner  PE.  Viral  ecology  and  the  maintenance  of  novel  host  use.  Am  Nat.  2006;167:  429–439.  doi:10.1086/499381  

5.   Crill  WD,  Wichman  HA,  Bull  JJ.  Evolutionary  reversals  during  viral  adaptation  to  alternating  hosts.  Genetics.  2000;154:  27–37.    

6.   Woolhouse  ME,  Taylor  LH,  Haydon  DT.  Population  biology  of  multihost  pathogens.  Science.  American  Association  for  the  Advancement  of  Science;  2001;292:  1109–1112.  doi:10.1126/science.1059026  

7.   Longdon  B,  Hadfield  JD,  Webster  CL,  Obbard  DJ,  Jiggins  FM.  Host  Phylogeny  Determines  Viral  Persistence  and  Replication  in  Novel  Hosts.  Schneider  DS,  editor.  PLoS  Pathog.  2011;7:  e1002260.  doi:10.1371/journal.ppat.1002260  

8.   Seed  KD,  Lazinski  DW,  Calderwood  SB,  Camilli  A.  A  bacteriophage  encodes  its  own  CRISPR/Cas  adaptive  response  to  evade  host  innate  immunity.  Nature.  2013;494:  489–491.  doi:10.1038/nature11927  

9.   Richter  M,  Reimann  I,  Schirrmeier  H,  Kirkland  PD,  Beer  M.  The  viral  envelope  is  not  sufficient  to  transfer  the  unique  broad  cell  tropism  of  Bungowannah  virus  to  a  related  pestivirus.  Journal  of  General  Virology.  Society  for  General  Microbiology;  2014;95:  2216–2222.  doi:10.1099/vir.0.065995-­‐0  

10.   Ciota  AT,  Payne  AF,  Ngo  KA,  Kramer  LD.  Consequences  of  in  vitro  host  shift  for  St.  Louis  encephalitis  virus.  Journal  of  General  Virology.  Society  for  General  Microbiology;  2014;95:  1281–1288.  doi:10.1099/vir.0.063545-­‐0  

11.   Duffy  S,  Turner  PE,  Burch  CL.  Pleiotropic  Costs  of  Niche  Expansion  in  the  RNA  Bacteriophage  Φ6.  Genetics.  Genetics  Society  of  America;  2006;172:  751–757.  doi:10.1534/genetics.105.051136  

12.   Gottlieb  P,  Potgieter  C,  Wei  H,  Toporovsky  I.  Characterization  of  phi12,  a  bacteriophage  

Page 130: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  113  

related  to  phi6:  nucleotide  sequence  of  the  large  double-­‐stranded  RNA.  Virology.  2002;295:  266–271.  doi:10.1006/viro.2002.1436  

13.   Mindich  L,  Qiao  X,  Qiao  J,  Onodera  S,  Romantschuk  M,  Hoogstraten  D.  Isolation  of  additional  bacteriophages  with  genomes  of  segmented  double-­‐stranded  RNA.  J  Bacteriol.  1999;181:  4505–4508.    

14.   Leo-­‐Macias  A,  Katz  G,  Wei  H,  Alimova  A,  Katz  A,  Rice  WJ,  et  al.  Toroidal  surface  complexes  of  bacteriophage  ϕ12  are  responsible  for  host-­‐cell  attachment.  Virology.  Elsevier  Inc;  2011;:  1–7.  doi:10.1016/j.virol.2011.03.020  

15.   Joseph  SB,  Hanley  KA,  Chao  L,  Burch  CL.  ORIGINAL  ARTICLE:  Coinfection  rates  in  φ6  bacteriophage  are  enhanced  by  virus-­‐induced  changes  in  host  cells.  Evolutionary  Applications.  2008;2:  24–31.  doi:10.1111/j.1752-­‐4571.2008.00055.x  

16.   Daugelavicius  R,  Cvirkaite  V,  Gaidelyte  A,  Bakiene  E,  Gabrenaite-­‐Verkhovskaya  R,  Bamford  D.  Penetration  of  Enveloped  Double-­‐Stranded  RNA  Bacteriophages    13  and    6  into  Pseudomonas  syringae  Cells.  J  Virol.  2005;79:  5017–5026.  doi:10.1128/JVI.79.8.5017-­‐5026.2005  

17.   King  AM,  Lefkowitz  E,  Adams  MJ,  Carstens  EB,  editors.  Virus  Taxonomy:  Ninth  Report  of  the  International  Committee  on  Taxonomy  of  Viruses.  1st  ed.  Elsevier;  2011.    

18.   Laurinavičius  S,  Käkelä  R,  Somerharju  P,  Bamford  D.  Phospholipid  molecular  species  profiles  of  tectiviruses  infecting  Gram-­‐negative  and  Gram-­‐positive  hosts.  Virology.  2004;322:  328–336.  doi:10.1016/j.virol.2004.02.009  

19.   Cvirkaite-­‐Krupovic  V,  Poranen  MM,  Bamford  D.  Phospholipids  act  as  secondary  receptor  during  the  entry  of  the  enveloped,  double-­‐stranded  RNA  bacteriophage    6.  Journal  of  General  Virology.  2010;91:  2116–2120.  doi:10.1099/vir.0.020305-­‐0  

20.   Cantin  R,  Methot  S,  Tremblay  MJ.  Plunder  and  Stowaways:  Incorporation  of  Cellular  Proteins  by  Enveloped  Viruses.  J  Virol.  2005;79:  6577–6587.  doi:10.1128/JVI.79.11.6577-­‐6587.2005  

21.   Dennehy  JJ,  Turner  PE.  Reduced  fecundity  is  the  cost  of  cheating  in  RNA  virus    6.  Proceedings  of  the  Royal  Society  B:  Biological  Sciences.  2004;271:  2275–2282.  doi:10.1098/rspb.2004.2833  

22.   Chao  L,  Rang  CU,  Wong  LE.  Distribution  of  spontaneous  mutants  and  inferences  about  the  replication  mode  of  the  RNA  bacteriophage  phi6.  J  Virol.  2002;76:  3276–3281.  doi:10.1128/JVI.76.7.3276–3281.2002  

23.   Longdon  B,  Brockhurst  MA,  Russell  CA,  Welch  JJ,  Jiggins  FM.  The  Evolution  and  Genetics  of  Virus  Host  Shifts.  Hobman  TC,  editor.  PLoS  Pathog.  Public  Library  of  Science;  2014;10:  e1004395.  doi:10.1371/journal.ppat.1004395  

Page 131: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  114  

Chapter  4:  Benefits  of  Sticking  Together:  Fitness  Reduced  in  Virus-­‐Challenged  Pseudomonas  Species  Following  Shift  to  Planktonic  Phenotype    Emily  Y.  Lin,1,2,  David  Toubiyan1,  Marko  Baloh1,  Glennon  V.  Bythrow2,3,  Brian  E.  Ford1,2  and  John  J.  Dennehy1,2,*    1Department  of  Biology,  Queens  College  of  the  City  University  of  New  York,  Queens,  NY  2Molecular,  Cellular  and  Developmental  Biology  Program,  The  Graduate  Center  of  the  City  University  of  New  York,  New  York,  NY  3Department  of  Biology,  Brooklyn  College  of  the  City  University  of  New  York,  Brooklyn,  NY    *Corresponding  author:  [email protected]    Correspondence:    Prof.  John  J.  Dennehy  Department  of  Biology,  Queens  College  65-­‐30  Kissena  Blvd.  Queens,  NY  11367-­‐1597      Keywords:  Clumping,  Pseudomonas,  ERA,  Phenotypic  Shift,  Planktonic,  Sessile,  bacteriophage      Original  Research  Article  to  be  submitted  to  Axios  Review  (http://axiosreview.org).  Target  journals:  

1.   Molecular  Ecology  2.   American  Naturalist  3.   BMC  Evolutionary  Biology  4.   Evolution  

     

Page 132: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  115  

 

Abstract  

 

Many  bacteria  can  switch  between  planktonic  and  sessile  states.  Single,  motile,  flagellated  cells  

characterize  the  planktonic  state,  whereas  cells  in  the  sessile  state  are  not  motile  and  aggregate  

into  clumps.  Canonical  Pseudomonas  pseudoalcaligenes  (ERA)  predominantly  exhibits  the  

sessile  phenotype.  Here  we  describe  the  selection  and  isolation  of  a  planktonic  strain  of  P.  

pseudoalcaligenes  through  serial  passage  evolution.  The  planktonic  strain  has  both  longer  and  

more  numerous  flagella  than  its  ancestor,  and  demonstrates  a  buoyancy  that  is  not  movement  

dependent.  Although  the  planktonic  strain  generates  smaller  colony  forming  units  (CFU)  than  

the  sessile  strain,  total  cell  mass  was  not  significantly  different,  suggesting  that  cell  growth  

rates  were  similar.  However,  phage  growth  data  suggested  that  cell  aggregation  decreases  

susceptibility  to  phage  infection.  These  data  imply  a  scenario  where  an  increase  in  bacteria  

motility—a  factor  associated  with  virulence—in  response  to  environmental  stress  (our  

selection),  is  tempered  by  an  increase  in  susceptibility  to  bacteriophage  infection.  This  model  

system  can  provide  insights  into  a  possible  regulatory  mechanism  of  bacterial  phenotype  in  the  

host-­‐virus  coevolutionary  arms  race.  

 

   

Page 133: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  116  

 

Introduction  

 

Pseudomonas  pseudoalcaligenes  East  River  Isolate  A  (hereafter  ERA)  as  a  model  system  to  

study  virus  host  shifts  has  a  long  and  well-­‐established  history  [1-6].  While  it  is  a  non-­‐permissive  

host  for  the  Pseudomonas  bacteriophage  Φ6  (hereafter  Φ6).  However,  several  different  labs  

have  isolated  Φ6  host  range  mutants  (HRMs)  capable  of  infecting  ERA  [6-9].  These  HRMs  are  

able  to  infect  both  ERA  and  the  canonical  host  for  Φ6,  Pseudomonas  syringae  pathovar  

phaseolicola  (hereafter  PP).  Previous  work  with  these  HRMs  has  provided  anecdotal  evidence  

that  HRM  grown  on  PP  have  better  fitness  on  ERA  than  HRMs  grown  only  on  ERA  [2,8].  Direct,  

simultaneous  comparison  of  fitness  of  these  HRMs  on  both  hosts  is  made  challenging  by  the  

different  growth  characteristics  between  the  two  strains.  Here,  we  describe  a  set  of  

experiments  designed  to  extend  this  model  system  to  study  new  concepts.  In  order  to  be  able  

to  compare  fitness  of  HRMs  on  their  original  host,  we  selected,  through  serial  passage,  an  ERA  

strain  with  growth  dynamics  closer  to  PP.  Standard  ERA—isolated  from  the  East  River  in  New  

York  [9]—exhibits  a  sessile  phenotype,  grows  quickly  to  stationary  phase,  and  forms  clumps.  

We  selected  for  a  free-­‐floating,  non-­‐clumping,  planktonic  ERA  that  reaches  stationary  phase  

much  later.  Characterization  of  this  new  resultant  planktonic  phenotype  of  ERA  has  revealed  a  

number  of  properties  that  allow  for  an  even  greater  number  of  new  types  of  assays  than  

originally  planned.  

 

 

Page 134: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  117  

Materials  and  Methods  

 

Bacteria  Culture  Preparation  

All  bacteria  were  propagated  in  lysogeny  broth  (LB:  10  g  NaCl,  10  g  Bacto  tryptone,  and  5  g  

Bacto  yeast  extract  per  liter  of  water)  at  pH  7.  Bacterial  cultures  were  initiated  by  transferring  a  

single  colony  from  a  streak  plate  into  10  mL  LB.  Culture  flasks  were  incubated  with  shaking  (120  

rpm)  at  25  °C  for  18  hours.  

 

Selection  for  planktonic  (non  clumping)  strain  

Figure  1  illustrates  our  selection  scheme.  Single  colonies  of  ERA  were  transferred  to  liquid  

culture  to  establish  two  lineages  (each  in  triplicate):  the  first  with  selection  and  the  second  

without.  The  first  was  lineage  briefly  centrifuged  following  overnight  incubation  with  only  

supernatant  (bacterial  cells  that  did  not  sediment)  used  to  inoculate  subsequent  passages.  The  

second  lineage—the  passage  control—  was  not  centrifuged  prior  to  inoculating  subsequent  

passages.  Lineages  were  tested  on  days  7  and  14.  By  passage  14,  all  three  selected  lineages  had  

achieved  a  planktonic  phenotype.  For  consistency,  the  starting,  unevolved  lab  ERA  strain  is  

labeled  “sessile”  in  all  graphs  (in  contrast  to  the  evolved  planktonic  phenotype).  

 

Isolation  and  Verification  of  Non  Clumping  Phenotype  

As  the  selection  scheme  has  resulted  in  a  mixed  bacterial  population,  passage  14  lineages  were  

streaked  out  for  single  colonies  and  assayed  for  planktonic  phenotype  via  18H  growth  curves  on  

a  Tecan  Infinite  200  Plate  Reader  (Tecan,  Morrisville,  NC).  Single  colonies  were  grown  over  

Page 135: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  118  

night  (O/N)  at  25  °C  with  shaking  at  120  rpm.  At  18H,  200  μl  of  this  stationary  phase  bacteria  

were  used  to  inoculate  10  ml  LB  at  25  °C  with  shaking  at  120  rpm.  Liquid  cultures  were  grown  

to  an  optical  density  of  0.2  at  600  nm  (OD600).  200  μl  of  these  exponential  bacteria  cultures  

were  then  plated  in  quadruplicate  (starting  OD600  =  0.02)  along  with  their  appropriate  controls  

(Day  0,  corresponding  passage  control,  unevolved  sessile  ERA).  

 

Heat  Shock  Buoyancy  Test  

A  single  colony  from  each  strain  was  used  to  inoculate  30  ml  LB  and  grown  O/N  at  25  °C  with  

shaking  at  120  rpm.  At  24H,  30  ml  stationary  phase  cultures  were  divided  in  to  three  10  ml  

aliquots  and  moved  to  three  different  temperatures:  25  °C,  37  °C  and  55  °C  and  incubated  O/N  

with  shaking  at  120  rpm.  At  18H,  cultures  were  plated  on  LB  agar  for  growth.  Experiment  was  

repeated  in  duplicate.  

 

Determination  of  Cell  Number  in  Clumps  

Six  single  colonies  from  each  strain  were  used  to  inoculate  in  triplicate  either  10  ml  LB  or  10  ml  

LB  containing  1%-­‐tween-­‐80  and  grown  O/N  at  25  °C  with  shaking  at  120  rpm.  At  18H,  samples  

from  each  treatment  were  diluted  to  give  approximately  20  –  200  CFUs  and  plated  on  LB  agar.  

Following  an  O/N  incubation  at  25  °C,  colonies  on  the  plates  were  counted.  Original  culture  

concentration  was  determined  by  dividing  the  number  of  counted  CFUs  by  the  dilution  factor.  

   

Page 136: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  119  

 

Colony  Size  Determination  

A  single  colony  from  each  strain  was  used  to  inoculate  10  ml  LB  at  grown  O/N  at  25  °C  with  

shaking  at  120  rpm.  At  18  H,  200  μl  of  these  stationary  phase  cultures  was  used  to  inoculate  10  

ml  LB  broth  (=  exponential  phase  culture).  Aliquots  were  taken  from  each  of  these  three  

exponential  phase  cultures  at  1-­‐hour  intervals  up  to  6  hours,  serially  diluted  and  plated  on  LB  

agar  to  give  20  –  200  colonies  per  plate.  Plates  were  incubated  O/N  at  25  °C.  Three  photos—

each  containing  ≥5  colonies—from  each  plate  were  taken  for  each  time  point  (1H  –  6H)  and  

treatment  (with  or  without  1%  tween).    Colony  sizes  were  measured  using  the  ImageJ  (version  

1.49)  software  (NIH,  Bethesda,  MD).  ImageJ  workflow:  1)  Image:  Adjust  -­‐>  Threshold  to  black  

and  white  (B&W);  2)  Process:  Binary  -­‐>  Fill  in  holes;  3)  Process:  Binary  -­‐>  Convert  to  masks;  4)  

Process:  Binary  -­‐>  Watershed;  5)  Analyze:  Analyze  Particles.    

 

TEM  Analysis  of  Cell  Morphology  

Cell  morphology  for  the  three  strains  was  analyzed  via  Transmission  Electron  Microscopy  (TEM)  

using  a  JEOL  1200  EX  Transmission  Electron  Microscope,  (JOEL  USA,  Columbia,  MD).  Bacteria  

was  incubated  for  20  min  at  room  temperature  (RT)  on  Carbon  Type-­‐B,  200  mesh,  copper  grids  

(Ted  Pella,  Redding,  CA),  washed  twice  with  deionized  water  and  negatively  stained  using  a  1%  

uranyl  acetate  solution  for  2  min  at  room  RT.  Multiple  micrographs  for  each  strain  were  taken  

at  10k,  15k  and  30k  x  magnifications.  

   

Page 137: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  120  

 

Bacteriophage  Strain  Preparation  

Φ6-­‐derived  host  range  mutant  (HRM)  S154  [6]  was  propagated  on  Pseudomonas  syringae  

pathovar  phaseolicola  (hereafter  PP).  Lysates  were  obtained  by  adding  1  μl  of  frozen  S154  stock  

and  200  μl  PP  to  3  ml  top  agar  (LB  with  0.7%  Bacto  agar,  liquid  at  45  °C,  solid  at  25  °C)  poured  

over  35  ml  bottom  agar  (LB  with  1.5%  Bacto  agar)  in  a  sterile  petri  dish.  Following  O/N  

incubation  at  25  °C,  top  agar  is  scraped  off  and  suspended  in  3  ml  LB  and  centrifuged  at  RCF  =  

1400xg  to  pellet  agar  and  cellular  debris.  Cell-­‐free  lysate  is  obtained  by  passing  the  supernatant  

through  a  0.22  μm  filter  (Durapore;  Millipore,  Bedford,  MA).  Phage  particles  per  ml  were  

quantified  via  serial  dilution  and  titering.  Plaques  were  counted  on  plates  where  30–500  

plaques  were  visible.  The  number  of  plaque  forming  units  (PFU)  per  ml  in  the  original  lysate  was  

obtained  by  multiplying  the  number  of  plaques  counted  by  the  dilution  factor.  

 

Growth  Curve  Optical  Density  to  Cell  Number  Correlation  

Because  we  were  using  multiple  strains—of  which  at  least  two  are  clump-­‐forming—the  

relationship  between  OD600  and  bacteria  cell  number  (assessed  via  direct  plate  count)  needed  

to  be  determined.  To  account  for  cell  clumping,  all  growth  curve  and  cell  plating  experiments  

were  carried  out  both  in  the  presence  and  absence  of  the  surfactant  Tween-­‐80  (1%  by  v/v).  A  

single  colony  from  each  of  the  three  bacterial  strains  was  used  to  inoculate  10  ml  LB  and  grown  

O/N  at  25  °C  with  shaking  at  120  rpm.  At  18H,  200  μl  from  each  stationary-­‐phase  overnight  

culture  was  used  to  inoculate  both  20  ml  LB  and  20  ml  LB  with  1%-­‐Tween.  The  relation  between  

OD  and  plating  number  was  determined  for  all  three  bacteria  over  the  course  of  6  hours.  At  1H  

Page 138: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  121  

intervals,  1  ml  aliquots  were  taken  from  each  liquid  culture,  measured  in  an  Implen  

Spectrophotometer  P  330  (Implen,  Westlake  Village,  CA)  at  600  nm  and  diluted  (10-­‐3,  10-­‐4,  10-­‐5  

for  the  two  control  strains  and  10-­‐5,  10-­‐6,  10-­‐7  for  the  planktonic  strain)  to  give  plates  with  

between  20  –  200  CFU.  Each  experiment  was  repeated  in  triplicate.  Results  were  plotted  on  

two  graphs:  1)  OD—in  the  presence  or  absence  of  Tween—  over  time  and  2)  number  of  cells—

with  or  without  Tween—plotted  over  time.  For  the  OD  over  time  graphs,  R-­‐square  values  were  

calculated  using  the  non-­‐linear  curve  fitting  function  of  GraphPad  Prism  Macintosh  v6.0f  

(GraphPad,  La  Jolla,  CA).  For  number  of  cells  over  time  graphs,  calculated  CFU  was  plotted  over  

the  course  of  the  6H  experiment.  To  calculate  the  original  CFU  per  time  point,  the  total  number  

of  CFUs  were  divided  by  the  dilution  factor.  Note  that  the  fitted  curves  for  these  experiments  

are  most  accurate  during  the  first  four  hours  of  the  experiment  (Supplementary  Figure  1),  

which  was,  fortunately,  also  the  relevant  time  period  for  our  assays.  1%-­‐Tween  CFU  graphs  

were  used  to  determine  cell  number  for  all  assays.  

 

Flask  Fitness  Analysis  

A  single  colony  of  each  bacteria  strain  was  used  to  inoculate  10  ml  LB,  the  incubated  O/N  at  25  

°C  with  shaking  at  120  rpm.  Following  18H  of  incubation,  109  bacteria  was  withdrawn  from  the  

O/N  cultures  and  added  along  with  104  bacteriophages  to  inoculate  10  LB  in  quintuplicate  for  a  

multiplicity  of  infection  (MOI)  of  1:100,000.  Bacteria  and  phage  are  incubated  O/N  at  25  °C  with  

shaking  at  120  rpm.  After  another  18H,  bacteria  and  phage  cultures  are  centrifuged  for  10  min  

at  RCF  =  1400xg  to  pellet  bacteria  and  debris  then  passed  through  a  0.22  μm  filter  to  obtain  a  

Page 139: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  122  

bacteria-­‐free  lysate.  Lysates  are  subsequently  titered  on  PP.  Experiment  was  repeated  in  

triplicate  (n  =  15).  

 

High-­‐Throughput  Microplate  Fitness  Analysis  

Three  flasks  with  10  ml  LB  were  inoculated  each  from  a  single  colony  of  the  three  bacteria  

strains  and  grown  O/N  at  25  °C  with  shaking  at  120  rpm.  At  18H,  200  μl  of  the  stationary  

cultures  were  used  to  inoculate  20  ml  LB  and  grown  at  25  °C  with  shaking  at  120  rpm.  OD600  

was  measured  for  each  culture  until  they  reached  an  OD600  corresponding  to  109  bacteria  per  

100  μl  (Supplemental  Figure  1).  Once  each  culture  reached  the  target  OD600,  those  cultures  

were  incubated  at  4  °C  on  ice  until  all  three  cultures  reached  the  desired  OD.  ODs  were  verified  

before  plating  on  a  96-­‐well  microplate.  Each  strain  was  plated  in  12  replicates,  either  bacteria  

alone  (109),  or  bacteria  plus  104  phages  (HRM  S154).  OD  was  measured  in  a  Tecan  Infinite  Pro  

(Tecan;  Morrisville,  NC)  microplate  reader  at  600  nm.  ODs  were  measure  every  5  minutes,  200  

sec  of  orbital  shaking,  5  flashes,  with  the  lid  on  over  the  course  of  15H  at  25°C.  Each  sample  was  

plated  in  replicates  of  12  and  each  experiment  repeated  in  triplicate  (n=36).  

 

Statistics  

All  statistical  analyses  were  calculated  using  GraphPad  Prism  Macintosh  v6.0f  (GraphPad,  La  

Jolla,  CA).  Bacterial  growth  with  surfactant  (Figure  3)  and  Colony  Forming  Unit  Area  Comparison  

(Figure  4)  were  both  analyzed  via  two-­‐way  analysis  of  variance  (ANOVA)  followed  by  a  post-­‐hoc  

Tukey’s  multiple  comparison  test  (column  effect  =  surfactant;  row  effect  =  strain).  Flask  fitness  

(Figure  5A)  was  analyzed  by  one-­‐way  ANOVA.  The  column  statistics  function  was  used  to  

Page 140: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  123  

calculate  the  area  under  the  curve  (AUC),  maximum  time  to  infection  (x-­‐max)  and  maximum  

bacteria  growth  (y-­‐max)  for  microplate  fitness  data,  which  in  turn  were  analyzed  by  an  unpaired  

two-­‐tailed  t-­‐test  (Figure  5B)  and  summarized  in  Supplementary  Table  1.  The  non-­‐linear  curve  

fitting  function  was  used  to  determine  the  formula  to  correlate  OD  with  time  (Supplementary  

Figure  1).  

 

DNA  Preparation  for  Next  Generation  Sequencing  

A  single  colony  of  each  of  the  three  bacterial  strains  was  used  to  inoculate  10  ml  LB  and  grown  

O/N  at  25  °C  with  shaking  at  120  rpm.  At  24H,  cultures  were  processed  using  a  PowerSoil  DNA  

Isolation  Kit  (Mo  Bio,  Carlsbad,  CA)  and  sent  out  for  Illumina  Next  Generation  Sequencing  (NGS)  

at  the  Genomic  Sciences  Lab  at  North  Carolina  State  University.  

 

 

Results  

 

1.  Characterization    

1.1  Growth  

Growth  parameters  of  each  strain  were  characterized  by  growth  parameters,  cell  morphology,  

colony  morphology  and  virus  susceptibility.  

   

Page 141: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  124  

 

1.1.1  Phenotype  Screening  

As  the  original  selection  protocol  resulted  in  a  mixed  population  (Figure  1),  strains  were  tested  

for  phenotypic  heterogeneity.  In  order  to  distinguish  between  phenotypes,  we  screened  their  

growth  parameters  using  a  96-­‐well  microplate  reader.  At  15H,  colonies  with  the  planktonic  

phenotype  reached  an  OD600  of  ~0.9  while  all  control  strains  only  reached  ~0.2  (data  not  

shown).  Colonies  displaying  the  planktonic  phenotype  were  mixed  1:1  (v/v)  with  80%-­‐glycerol  

and  frozen  at  -­‐20  °C.  These  selected  homogeneous  strains  were  used  in  all  subsequent  assays.  

 

1.1.2  Buoyancy  

The  planktonic  phenotype  is  characterized  as  an  unattached,  free-­‐floating  and  motile  form  of  

the  bacteria  [10].  To  test  whether  the  buoyancy  demonstrated  by  our  lab-­‐evolved  strain  is  

motility  dependent,  we  grew  them  at  a  non  permissive  temperature  and  observed  resultant  

buoyancy.  Results  are  summarized  below  in  Table  1.  

 

Table  1.  Heat  Shock  Growth  Verification  Strain   25  °°C   37  °°C   55  °°C  Sessile   +   +   -­‐  

Passage  Control   +   +   -­‐  Planktonic   +   +   -­‐  

Samples  from  24H  replicate  strains  were  divided  and  moved  to  three  temperatures:  25°C,  37°C  and  55°C  for  24H  and  subsequently  assayed  for  growth.  +  =  growth,  -­‐  =  no  growth.    

Despite  the  death  of  the  bacteria  grown  O/N  at  55  °C,  no  settling  was  observed  for  the  

planktonic  strain  (Figure  2C)  but  observed  in  the  two  control  strains  (Figure  2A-­‐B),  even  after  96  

H.  

Page 142: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  125  

 

1.1.3  Clumping  

To  test  for  the  presence  of  clumping,  bacteria  strains  were  grown  in  the  presence  or  absence  of  

a  surfactant  (1%-­‐Tween-­‐80)  and  subsequently  plated.  There  was  a  significant  difference  in  

number  of  observed  colonies  for  the  two  control  strains  but  not  the  planktonic  strain  (Figure  3)  

suggesting  the  planktonic  strain  does  not  clump.  The  surfactant  Triton-­‐X-­‐100  was  also  tested  

but  did  not  give  as  good  a  separation  of  cells  as  Tween-­‐80  (data  not  shown).  

 

1.2  Morphology  

 

1.2.1  Cell  Morphology  

ERA,  whether  the  unevolved,  sessile  phenotype  or  the  planktonic  phenotype,  is  a  gram  negative  

bacillus.  Representative  images  for  each  strain:  Sessile,  Passage  Control  and  Planktonic  are  

presented  in  Figure  2.  The  two  control  strains,  Sessile  and  Passage  Control  both  present  similar  

morphologies  and  observed  frequencies  of  pili  and  flagella  (Figure  2D-­‐F).  The  planktonic  strain,  

by  contrast,  consistently  presented  both  more  numerous  and  longer  pili  and  flagella  (Figure  2F).  

 

1.2.2  Colony  Morphology  

Colony  morphology  was  measured  over  the  course  of  6  hours.  Aliquots  were  taken  from  

cultures  in  exponential  phase  at  six  time  points  both  in  the  presence  and  absence  of  the  

surfactant  tween-­‐80  (1%  by  volume).  Representative  images  of  colonies  (grown  in  the  absence  

of  tween)  for  each  strain  are  presented  in  Figure  2G-­‐I.  As  we  did  not  measure  any  significant  

Page 143: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  126  

difference  between  colony  sizes  based  on  time  point  (data  not  shown),  data  were  aggregated  

across  time  points  for  comparison  of  grown  with  and  without  surfactant  for  a  final  n  ≥  90  

colonies  per  strain  (3  photos  x  ≥5  colonies  x  6  time  points  =  ≥90)  and  summarized  in  Figure  4.  

Results  demonstrate  that  addition  of  surfactant  does  not  affect  CFU  area.  However,  we  do  see  a  

significant  difference  in  CFU  area  size  between  the  planktonic  strain  and  its  two  control  strains  

(Figure  4).  

 

1.3  Virus  Susceptibility  

 

1.3.1  Flask  Fitness  

Flask  fitness  is  a  standard  measure  of  bacteriophage  fitness  on  a  given  host.  We  measured  the  

fitness  of  the  previously  isolated  Φ6-­‐derived  host  range  mutant  (HRM)  S154  [6]  on  the  three  

strains.  S154  was  significantly  better  (1-­‐way  ANOVA;  F  =  37.97,  DF  =  2,  p  <  0.0001)  at  infecting  

the  planktonic  strain  over  the  two  control  strains  (Figure  5A).  We  measured  no  significant  

difference  between  S154  fitness  on  the  two  control  strains.  The  fitness  of  S154  on  the—

canonical  bacteriophage  Φ6—host  PP  is  again  an  order  of  magnitude  larger  than  for  the  

planktonic  phenotype  (data  not  shown).  

 

1.3.2  High  Throughput  Fitness  Assays  

HRM  S154  fitness  was  measured  on  all  three  strains  via  a  96-­‐well  Tecan  Infinite  200  microplate  

reader.  Fitness,  for  the  purpose  of  our  assay,  is  the  number  of  progeny  a  phage  is  able  to  

produce  on  a  particular  host.  The  higher  the  number  of  progeny  (meaning  the  greater  the  

Page 144: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  127  

number  of  new  virus)  produced,  the  more  the  phage  is  able  to  infect,  leading  to  a  decrease  in  

measured  OD600  (as  infection  leads  to  lysis  and  subsequent  clearing  of  the  host  cells).  Fitness  of  

Φ6  on  its  canonical  host  PP  is  relatively  easy  to  measure  in  a  high-­‐throughput  manner.  PP’s  OD  

over  15H  increases  from  0.02  to  over  9  thereby  taking  advantage  of  the  full  resolution  of  the  

spectrophotometer.  By  contrast,  sessile  ERA  grows  to  stationary  phase  much  quicker  and  forms  

clumps  thereby  reducing  the  reproducibility  of  of  the  assay.  Unlike  sessile  ERA  phenotype,  the  

planktonic  phenotype  OD  increases  from  0.02  to  more  than  9  over  the  course  of  15H,  thereby  

increasing  the  resolution  of  this  bacteria  in  this  assay  and  adding  sensitivity  (as  shifts  in  growth  

patterns  were  be  more  easily  visualized)  (Figure  5B).  In  our  assay,  the  addition  of  S154  

significantly  (unpaired  t-­‐test;  p  <  0.0001,  Supplementary  Table  1)  alters  the  growth  of  the  

planktonic  phenotype  and  to  a  lesser  degree  the  passage  control  strain  (unpaired  t-­‐test;  p  =  

0.0132)  but  not  the  sessile  strain  (Figure  5B).  

 

1.4  Comparisons  

 

1.4.1  Planktonic  vs  Passage  Control  

In  a  microplate  reader  setting,  growth  of  the  passage  control  was  significantly  (Supplementary  

Table  1)  different  from  that  of  the  planktonic  strain  (Figure  5B)  indicating  that  simple  serial  

passage  of  sessile  ERA  is  insufficient  to  induce  a  planktonic  phenotype.  Interestingly,  both  the  

passage  control  strain  and  the  planktonic  strain  demonstrated  a  significant  susceptibility  to  

bacteriophage  infection  (Figure  5B;  p  =  0.01  and  p  <  0.0001  respectively),  unlike  the  sessile  

strain.  

Page 145: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  128  

 

1.4.2  Planktonic  versus  Sessile  

Growth  of  the  sessile  strain  is  significantly  different  from  that  of  the  planktonic  phenotype  

(Figure  5B).  In  a  microplate  reader  setting,  planktonic  growth  parameters  are  ideal  for  the  

spectrophotometer's  range  (0  to  1)  with  an  OD  increase  of  0.02  to  >9  over  the  course  of  15H.  

This  growth  of  ~0  to  9  is  much  different  from  that  for  the  sessile  phenotype,  ~0  to  ~2,  indicating  

an  increase  in  sensitivity  for  assays  which  perturb  ERA  growth  (e.g.  bacteriophage  fitness  

assays).  The  planktonic  phenotype  produces  longer  and  more  abundant  pili  and  flagella  

compared  to  the  sessile  strain.  

 

1.4.3  Planktonic  versus  PP  

Just  as  for  its  two  control  strains,  the  planktonic  phenotype  produces  longer  and  more  

abundant  pili  and  flagella  compared  to  the  sessile  strain  compared  to  PP.  However,  in  a  plate  

reader  setting,  both  the  planktonic  phenotype  and  PP  demonstrate  similar  OD  increases  over  

the  same  amount  of  time  (data  not  shown).  Although  S154  fitness  on  PP  is  still  greater  than  

that  on  the  planktonic  phenotype  ERA,  the  fitness  difference  between  those  two  is  much  less  

than  it  is  between  PP  and  either  the  ERA  sessile  phenotype  or  the  passage  control  strain.  These  

data  suggest  the  planktonic  ERA  as  a  better  candidate  to  study  phage  fitness  consequences  

from  shifts  back  and  forth  between  hosts  than  the  sessile  phenotype.  

   

Page 146: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  129  

 

1.5  Genotyping  

We  have  received  the  sequences  from  the  Illumina  NGS  and  coverage  for  the  three  strains  is  

high:  sessile  (~130  x),  passage  control  (~146  x)  and  planktonic  (~154  x).  Preliminary  contigs  and  

raw  reads  have  been  deposited  to  the  National  Center  for  Biotechnology  Information  (NCBI)  

Whole  Genome  Sequencing  (WGS)  portal  under  the  BioProject  number  PRJNA287670,  with  

individual  accession  numbers  LFMA00000000  (sessile  phenotype),  LFMB00000000  (passage  

control)  and  LFMC00000000  (planktonic  phenotype).  Sequences  have  been  sent  to  a  

collaborator  at  Hunter  College  for  assembly.  

 

 

Discussion  

 

Starting  with  a  sessile  phenotype,  serial  passage  emphasizing  phenotypes  that  evade  

sedimentation  results  in  a  population  with  an  ability  to  grow  to  a  higher  density  (Figure  3)  and  

that  does  not  form  clumps  (Figure  2C).  This  increased  growth  and  loss  of  clumping  comes  at  a  

cost:  a  heightened  susceptibility  to  predation  by  phage  (Figure  5A).  Whether  the  increased  

susceptibility  to  phage  is  a  result  of  the  loss  of  the  ability  to  clump  or  due  to  the  increased  

production  of  flagella  and  pili  requires  further  experimentation.  Different  sets  of  pilins  have  

been  shown  to  be  expressed  in  sessile  growth  compared  to  planktonic  growth  [11,12]  

suggesting  another  possible  route  for  increased  predation  by  phage,  keeping  in  mind  that  the  

first  step  in  a  Φ6  infection  is  adsorption  to  the  pilus  [13,14].  We  observed  a  marked  increase  in  

Page 147: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  130  

both  the  length  and  abundance  of  flagella  in  the  planktonic  strain.  Flagella  have  been  

demonstrated  to  be  important  for  adhesion  to  surfaces  [15,16];  perhaps  they  play  a  

mechanical  role  by  increasing  the  chances  of  phage  and  pilus  encounters.  Previous  studies  have  

demonstrated  that  motility  is  regulated  by  the  envelope  stress  response  in  Pseudomonas  [17]  

opening  the  possibility  that  the  observed  increase  in  flagella  may  not  be  in  response  to  the  

sedimentation  per  se  but  rather  the  stressful  conditions  of  centrifugation.  However,  the  sessile  

phenotype  has  previously  been  demonstrated  to  be  the  precursor  for  biofilm  formation  

[18,19],  which  in  turn  is  a  well  established  defense  against  predation  by  phage  [20-22].  These  

studies  would  seem  to  support  the  theory  that  the  increased  predation  by  phage  is  a  result  of  

the  loss  of  clumping.    It  is  well  established  that  bacteriophage  alter  their  host’s  environment  

[23],  for  example  by  affecting  the  bacterial  quorum  sensing,  genome,  motility,  etc.  [24].  The  

observation  that  the  addition  of  low  MOI  phage  affects  the  growth  dynamics  of  the  planktonic  

phenotype  but  not  the  sessile  phenotype  (Figure  5B)  suggests  that  at  one  point  in  time  the  

original  ERA  strain  may  have  been  subject  to  predation.  

 

We  have  observed  this  change  in  phenotype,  but  as  of  yet  the  source  of  the  variation  is  

unknown.  In  order  to  determine  the  source  of  the  planktonic  phenotype—whether  it  is  a  

reversible  phenotypic  switch  [25-27],  normal  phenotype  heterogeneity  [28],  or  a  genetic  

mutation  [29,30]—we  sent  out  the  three  strains  for  next  generation  sequencing  (NGS)  with  the  

goal  of  identifying  gene  candidates  for  the  switch.  Although  we  lack  a  reference  strain,  we  will  

look  for  homologs  of  pilus  and  flagella  genes  as  a  starting  point.  

 

Page 148: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  131  

One  area  where  the  planktonic  phenotype  presents  a  particular  advantage  is  in  a  high-­‐

throughput—or  microplate  reader—setting.  High-­‐throughput  fitness  screening  has  been  

previously  validated  for  PP[31]  but  not  yet  ERA.  Flask  fitness  is  reagent,  space  and  labor  

intensive;  being  able  to  assay  more  strains  with  less  reagents  offers  both  cost  and  time  savings  

advantages.  It  also  opens  the  way  to  testing  more  combinations  and  iterations  in  a  more  

reproducible  manner,  increase  replication  and  thereby  increase  the  power  of  the  assays.  Under  

our  initial  assay  conditions,  a  concentration  of  phage  that  significantly  altered  the  growth  of  of  

the  planktonic  phenotype,  had  no  measurable  effect  on  the  sessile  phenotype  (Figure  5B).  This  

novel  assay  is  of  particular  interest  as  we  previously  isolated  69  host  range  mutants  of  Φ6  [6]  

and  will  now  be  able  to  simultaneously  test  combinations  of  these  mutants  on  ERA  and  PP  

together.  Previously  it  was  not  possible  to  compare  phage  fitness  on  host  strains  with  

dramatically  different  growth  differences.  This  assay  also  opens  the  door  to  testing  how  well  

these  phages—which  have  genetically  mutated,  often  with  single  point  mutations  but  also  

double  and  triple  mutations—fare  when  put  back  in  the  context  of  their  original  host  of  

isolation,  PP.  

 

 

Author  Contributions  

BEF  &  JJD  designed  the  study  and  analyzed  the  data,  EYL  &  GVB  isolated  the  non  clumping  

strains  and  performed  initial  fitness  assays,  BEF  &  DT  conducted  phenotype  isolation,  fitness  

assays,  and  physical  characterization,  EYL  isolated  the  DNA  for  NGS;  BEF  &  EYL  assembled  the  

Page 149: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  132  

NGS;  BEF  carried  out  TEM  analysis,  MB  prepared  the  reagents,  and  all  authors  wrote  the  

manuscript.  

 

 

Acknowledgements  

This  work  was  funded  by  the  National  Science  Foundation  Early  Career  Award  to  JJD  (DEB  

#1148879).  

 

 

Captions  

Figure  1.  Selection  

Triplicate  overnight  colonies  of  ERA  were  grown  each  from  a  single  colony,  briefly  centrifuged  

to  sediment  the  bacteria  and  supernatant  was  transferred  to  fresh  media  daily  for  14  days.  

Colony  morphology  was  assayed  on  days  7  and  14.  Planktonic  colonies  were  streaked  out  for  

single  colonies,  with  each  colony  assayed  for  desired  phenotype.    

Icons  from  thenounproject.com.  

 

Figure  2.  Phenotype,  Cellular  and  Colony  Morphologies  

(A-­‐C)  Bacterial  buoyancy  following  96H  incubation  at  4.  (D-­‐F)  Transmission  electron  

micrographs  (magnification  =  15,000  x)  of  cell  morphology.  Multiple  and  longer  flagella  and  pili  

are  visible  on  the  planktonic  form.  (G-­‐H)  Planktonic  colony  forming  units  are  significantly  

smaller  than  the  control  strains.  

Page 150: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  133  

 

Figure  3.  Bacterial  Growth  with  Surfactant  

Bacteria  strains  were  grown  in  triplicate  (n=3)  in  the  presence  or  absence  of  tween-­‐20  in  flasks.  

Error  bars  represent  SEM.  

 

Figure  4.  Colony  Forming  Unit  Area  Comparison  

Strains  were  grown  in  the  presence  or  absence  of  the  surfactant  Tween-­‐80  at  1%.  Cell  areas  (n  ≥  

90)  were  measured  using  built-­‐in  functions  of  the  ImageJ  software.  Error  bars  represent  SEM.  

 

Figure  5.  Susceptibility  to  Bacteriophage  Infection  

(A)  Flask  fitness.  Strains  were  assayed  in  quintuplicate  and  repeated  in  triplicate  (n  =  15).  

Colored  bars  indicate  the  mean.  PP  fitness  is  significantly  higher  than  all  three  treatments  (data  

not  shown).  (B)  Plate  fitness.  Each  strain  had  12  replicates  per  experiment  and  each  experiment  

was  repeated  in  triplicate  (n  =  36).  Error  bars  representing  ±SEM  are  smaller  than  icons  for  all  

strains  except  “Passage  Control  +  S154”.  ns  =  not  significant;  ****  indicates  a  p  <  0.0001.  

 

Supplementary  Figure  1.  Growth  Curve  and  Plating  Number  

Determination  of  relationship  between  OD600  and  cell  number.  This  relationship  was  somewhat  

complicated  by  the  clumping  of  cells  in  the  control  strains.  To  rectify  this  discrepancy,  each  of  

the  three  strains  was  grown  in  both  the  presence  and  absence  of  1%-­‐Tween-­‐80  allowing  

calculation  of  true  cell  number  for  each  measured  OD.  Error  bars  represent  ±SEM.  Experiments  

were  repeated  in  triplicate.  

Page 151: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  134  

 

Supplementary  Table  1.  Microplate  Fitness  Statistics  Summary  

Summary  of  the  statistical  results  of  an  unpaired  two-­‐tailed  t-­‐test  (assuming  a  Gaussian  

distribution)  using  three  measures  for  each  bacteria  strain:  area  under  curve  (AUC),  time  to  

maximum  infection  (x-­‐max)  and  maximum  bacteria  growth  (y-­‐max).  

 

 

Figures  

 

 Figure  1.  Planktonic  Selection  Scheme    

Page 152: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  135  

 Figure  2.  Phenotype,  Cellular  and  Colony  Morphologies    

Page 153: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  136  

 Figure  3.  Bacterial  Growth  with  Surfactant    

Page 154: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  137  

 Figure  4.  Colony  Forming  Unit  Area  Comparison    

Page 155: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  138  

 Figure  5.  Susceptibility  to  Bacteriophage  Infection      

Page 156: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  139  

Supplementary  Tables  and  Figures  

 

 Supplementary  Figure  1.  Growth  Curve  and  Plating  Number      Supplementary  Table  1.  Microplate  Fitness  (Bacteria  vs  Bacteria  +  Phage)  Unpaired  T-­‐Test  Summary     AUC     x-­‐max     y-­‐max     t   P   Sig.     t   P   Sig.     t   P   Sig.  Sessile   1.092   0.2788   ns     1.484   0.1423   ns     1.057   0.2940   ns  Passage  Control   2.544   0.0132   *     2.609   0.0111   *     3.002   0.0037   **  

Planktonic   11.63   <0.0001   ****     10.69   <0.0001   ****     17.46   <0.0001   ****  AUC  =  area  under  curve;  x-­‐max  =  time  at  highest  OD;  y-­‐max  =  highest  OD;  t  =  t  ratio;  Sig.  =  significance;  ns  =  not  significant.  All  reported  P  values  are  from  two-­‐tailed  t-­‐tests.  

Page 157: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  140  

References  

 

1.   Montville  R,  Froissart  R,  Remold  SK,  Tenaillon  O,  Turner  PE.  Evolution  of  Mutational  Robustness  in  an  RNA  Virus.  PLoS  Biol.  2005;3:  e381.  doi:10.1371/journal.pbio.0030381.st002  

2.   Dennehy  JJ,  Friedenberg  NA,  Holt  RD,  Turner  PE.  Viral  ecology  and  the  maintenance  of  novel  host  use.  Am  Nat.  2006;167:  429–439.  doi:10.1086/499381  

3.   Duffy  S,  Burch  CL,  Turner  PE.  EVOLUTION  OF  HOST  SPECIFICITY  DRIVES  REPRODUCTIVE  ISOLATION  AMONG  RNA  VIRUSES.  Evolution.  2007;61:  2614–2622.  doi:10.1111/j.1558-­‐5646.2007.00226.x  

4.   Turner  PE,  Morales  NM,  Alto  BW,  Remold  SK.  ROLE  OF  EVOLVED  HOST  BREADTH  IN  THE  INITIAL  EMERGENCE  OF  AN  RNA  VIRUS.  Evolution.  2010;64:  3273–3286.  doi:10.1111/j.1558-­‐5646.2010.01051.x  

5.   Bono  LM,  Gensel  CL,  Pfennig  DW,  Burch  CL.  Competition  and  the  origins  of  novelty:  experimental  evolution  of  niche-­‐width  expansion  in  a  virus.  Biology  Letters.  2012;9:  20120616–20120616.  doi:10.1098/rsbl.2012.0616  

6.   Ford  BE,  Sun  B,  Carpino  J,  Chapler  ES,  Ching  J,  Choi  Y,  et  al.  Frequency  and  Fitness  Consequences  of  Bacteriophage  Φ6  Host  Range  Mutations.  van  Raaij  MJ,  editor.  PLoS  ONE.  Public  Library  of  Science;  2014;9:  e113078.  doi:10.1371/journal.pone.0113078  

7.   Turner  PE,  McBride  RC,  Duffy  S,  Montville  R,  Wang  L-­‐S,  Yang  YW,  et  al.  Evolutionary  genomics  of  host-­‐use  in  bifurcating  demes  of  RNA  virus  phi-­‐6.  BMC  Evol  Biol.  BMC  Evolutionary  Biology;  2012;12:  1–1.  doi:10.1186/1471-­‐2148-­‐12-­‐153  

8.   Duffy  S,  Turner  PE,  Burch  CL.  Pleiotropic  Costs  of  Niche  Expansion  in  the  RNA  Bacteriophage  Φ6.  Genetics.  Genetics  Society  of  America;  2006;172:  751–757.  doi:10.1534/genetics.105.051136  

9.   Mindich  L,  Cohen  J,  Weisburd  M.  Isolation  of  nonsense  suppressor  mutants  in  Pseudomonas.  J  Bacteriol.  1976;126:  177–182.    

10.   Abedon  S.  Bacteriophages  &  Biofilms:  Ecology,  Phage  Therapy,  Plaques.  2011.    

11.   Pohlschroder  M,  Esquivel  RN.  Archaeal  type  IV  pili  and  their  involvement  in  biofilm  formation.  Front  Microbiol.  2015;06:  1–16.  doi:10.3389/fmicb.2015.00190  

12.   Klausen  M,  Heydorn  A,  Ragas  P,  Lambertsen  L,  Aaes-­‐Jørgensen  A,  Molin  S,  et  al.  Biofilm  formation  by  Pseudomonas  aeruginosa  wild  type,  flagella  and  type  IV  pili  mutants.  Mol  Microbiol.  2003;48:  1511–1524.  doi:10.1046/j.1365-­‐2958.2003.03525.x  

Page 158: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  141  

13.   Kenney  JM,  Hantula  J,  Fuller  SD,  Mindich  L,  Ojala  PM,  Bamford  D.  Bacteriophage  phi  6  envelope  elucidated  by  chemical  cross-­‐linking,  immunodetection,  and  cryoelectron  microscopy.  Virology.  1992;190:  635–644.    

14.   Romantschuk  M,  Olkkonen  VM,  Bamford  D.  The  nucleocapsid  of  bacteriophage  phi  6  penetrates  the  host  cytoplasmic  membrane.  EMBO  J.  1988;7:  1821–1829.    

15.   Bruzaud  J,  Tarrade  J,  Coudreuse  A,  Canette  A,  Herry  J-­‐M,  de  Givenchy  ET,  et  al.  Flagella  but  not  type  IV  pili  are  involved  in  the  initial  adhesion  of  Pseudomonas  aeruginosa  PAO1  to  hydrophobic  or  superhydrophobic  surfaces.  Colloids  and  surfaces  B,  Biointerfaces.  Elsevier  B.V;  2015;131:  1–33.  doi:10.1016/j.colsurfb.2015.04.036  

16.   Pratt  LA,  Kolter  R.  Genetic  analysis  of  Escherichia  coli  biofilm  formation:  roles  of  flagella,  motility,  chemotaxis  and  type  I  pili.  Mol  Microbiol.  1998;30:  285–293.    

17.   Dougherty  K,  Smith  BA,  Moore  AF,  Maitland  S,  Fanger  C,  Murillo  R,  et  al.  Multiple  Phenotypic  Changes  Associated  with  Large-­‐Scale  Horizontal  Gene  Transfer.  Brown  SP,  editor.  PLoS  ONE.  2014;9:  e102170.  doi:10.1371/journal.pone.0102170  

18.   Oliveria  NM,  Martinez-­‐Garcia  E,  Xavier  J,  Durham  WM,  Kolter  R,  Kim  W,  et  al.  Biofilm  Formation  As  a  Response  to  Ecological  Competition.  Laub  MT,  editor.  PLoS  Biol.  2015;13:  e1002191–23.  doi:10.1371/journal.pbio.1002191  

19.   Costerton  JW,  Stewart  PS,  Greenberg  EP.  Bacterial  biofilms:  a  common  cause  of  persistent  infections.  Science.  American  Association  for  the  Advancement  of  Science;  1999;284:  1318–1322.  doi:10.1126/science.284.5418.1318  

20.   Tan  D,  Dahl  A,  Middelboe  M.  Vibriophages  Differentially  Influence  Biofilm  Formation  by  Vibrio  anguillarum  Strains.  Wommack  KE,  editor.  Appl  Environ  Microbiol.  2015;81:  4489–4497.  doi:10.1128/AEM.00518-­‐15  

21.   Tan  D,  Svenningsen  SL,  Middelboe  M.  Quorum  Sensing  Determines  the  Choice  of  Antiphage  Defense  Strategy  in  Vibrio  anguillarum.  MBio.  2015;6:  e00627–15–11.  doi:10.1128/mBio.00627-­‐15  

22.   Lacqua  A,  Wanner  O,  Colangelo  T,  Martinotti  MG,  Landini  P.  Emergence  of  Biofilm-­‐Forming  Subpopulations  upon  Exposure  of  Escherichia  coli  to  Environmental  Bacteriophages.  Appl  Environ  Microbiol.  2006;72:  956–959.  doi:10.1128/AEM.72.1.956-­‐959.2006  

23.   Clokie  MR.  Bacteriophage  behavioral  ecology:  How  phages  alter  their  bacterial  host's  habits.  Bacteriophage.  2014;4:  e29866.  doi:10.4161/bact.29866  

24.   Boyd  EF,  Brüssow  H.  Common  themes  among  bacteriophage-­‐encoded  virulence  factors  and  diversity  among  the  bacteriophages  involved.  Trends  Microbiol.  2002;10:  521–529.    

Page 159: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  142  

25.   van  Vliet  S,  Ackermann  M.  Bacterial  Ventures  into  Multicellularity:  Collectivism  through  Individuality.  PLoS  Biol.  2015;13:  e1002162–5.  doi:10.1371/journal.pbio.1002162  

26.   McElroy  KE,  Hui  JGK,  Woo  JKK,  Luk  AWS,  Webb  JS,  Kjelleberg  S,  et  al.  Strain-­‐specific  parallel  evolution  drives  short-­‐term  diversification  during  Pseudomonas  aeruginosa  biofilm  formation.  Proc  Natl  Acad  Sci  USA.  2014;111:  E1419–E1427.  doi:10.1073/pnas.1314340111  

27.   Be'er  A,  Florin  EL,  Fisher  CR,  Swinney  HL,  Payne  SM.  Surviving  Bacterial  Sibling  Rivalry:  Inducible  and  Reversible  Phenotypic  Switching  in  Paenibacillus  dendritiformis.  MBio.  2011;2:  e00069–11–e00069–11.  doi:10.1128/mBio.00069-­‐11  

28.   Norman  TM,  Lord  ND,  Paulsson  J,  Losick  R.  Memory  and  modularity  in  cell-­‐fate  decision  making.  Nature.  2013;503:  481–486.  doi:10.1038/nature12804  

29.   Hallet  B.  Playing  Dr  Jekyll  and  Mr  Hyde:  combined  mechanisms  of  phase  variation  in  bacteria.  Current  Opinion  in  Microbiology.  2001;4:  570–581.    

30.   Dhar  N,  McKinney  JD.  Microbial  phenotypic  heterogeneity  and  antibiotic  tolerance.  Current  Opinion  in  Microbiology.  2007;10:  30–38.  doi:10.1016/j.mib.2006.12.007  

31.   Turner  PE,  Draghi  JA,  Wilpiszeski  R.  High-­‐throughput  analysis  of  growth  differences  among  phage  strains.  J  Microbiol  Methods.  Elsevier  B.V;  2012;88:  117–121.  doi:10.1016/j.mimet.2011.10.020

   

Page 160: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  143  

Conclusion  

 

Three  regions  on  the  host  attachment  P3  gene—located  on  the  middle  segment—appear  to  be  

important  for  host  range  expansion  in  Φ6  (Chapter  2,  Figure  1A).  That  these  three  regions  all  lie  

on  the  same  face  of  the  molecule  (Chapter  2,  Figure  1B),  opposite  the  putative  P6  binding  

domain,  lends  credence  to  the  validity  of  the  predicted  3D  structure.  Though  all  of  the  69  host  

range  mutants  are  able  to  infect  the  novel  host  ERA  (Figure  1),  they  are  not  able  to  do  so  

equally  (Chapter  2,  Figure  2A).  In  all  save  one  case,  the  Φ6  host  range  mutants  had  reduced  

fitness  on  their  canonical  host  PP  in  relation  to  their  ancestor  (Chapter  2,  Figure  2B),  an  

example  of  antagonistic  pleiotropy  (gaining  a  new  host  comes  with  costs  on  the  old  host).  

 

 Figure  1.  Pseudomonas  pseudoalcaligenes  East  River  Isolate  A  (ERA).  Electron  micrograph  of  ERA—the  novel  host  of  Φ6  mutants—at  20,000  x  magnification.  Cells  were  grown  overnight  at  25  °C  and  negatively  stained  with  a  1%  uranyl  acetate  (UA)  solution.    

A  non  genetic  host-­‐acquired  factor—most  likely  either  the  lipid  envelope  or  proteins  contained  

therein—was  demonstrated  to  have  a  role  in  subsequent  bacteriophage  fitness  (Chapter  3,  

cba  Brian  E.  Ford,  The  Dennehy  Lab

Page 161: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  144  

Figure  2).  Similar  trends  were  observed  across  different  viruses  with  differing  niches,  host  

ranges  and  infection  dynamics.  These  finding  suggest  that  the  host  factor  impacts  virus  

emergence:  they  are  able  to  gain  an  ability  from  their  host  that  changes  how  well  they  are  able  

to  infect  subsequent  hosts.  

 

Finally,  the  last  study  demonstrates  how  bacteriophage  can  affect  their  bacteria  host  

phenotype.  The  planktonic  strain  shows  an  almost  2-­‐fold  increase  in  susceptibility  to  

bacteriophage  infection  in  relation  to  sessile  form  (Chapter  4,  Figure  5A).  The  planktonic  strain  

displays  superior  growth  dynamics  in  plate  fitness  assays  in  comparison  to  sessile  strain  

(Chapter  4,  Figure  5B)  suggesting  this  lab-­‐evolved  strain  to  be  a  valuable  tool  for  testing  the  

fitness  of  host  range  mutants  switching  between  hosts.  These  combined  findings  also  

emphasize  a  bacteria’s  growth  options:  increased  growth  (with  an  increased  susceptibility  to  

infection)  or  protected  growth  (improved  protection  but  to  a  lower  density).  

 

   

Page 162: Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence

 

  145  

(Introduction)  References  

 1.   Vidaver  AK,  Koski  RK,  Van  Etten  JL.  Bacteriophage  phi6:  a  Lipid-­‐Containing  Virus  of  

Pseudomonas  phaseolicola.  J  Virol.  American  Society  for  Microbiology;  1973;11:  799–805.    

2.   Mindich  L,  Qiao  X,  Qiao  J,  Onodera  S,  Romantschuk  M,  Hoogstraten  D.  Isolation  of  additional  bacteriophages  with  genomes  of  segmented  double-­‐stranded  RNA.  J  Bacteriol.  1999;181:  4505–4508.    

3.   King  AM,  Lefkowitz  E,  Adams  MJ,  Carstens  EB,  editors.  Virus  Taxonomy:  Ninth  Report  of  the  International  Committee  on  Taxonomy  of  Viruses.  1st  ed.  Elsevier;  2011.    

4.   Ojosnegros  S,  García-­‐Arriaza  J,  Escarmís  C,  Manrubia  SC,  Perales  C,  Arias  A,  et  al.  Viral  Genome  Segmentation  Can  Result  from  a  Trade-­‐Off  between  Genetic  Content  and  Particle  Stability.  Malik  HS,  editor.  PLoS  Genet.  2011;7:  e1001344.  doi:10.1371/journal.pgen.1001344.t002  

5.   O’Keefe  KJ,  Silander  OK,  McCreery  H,  Weinreich  DM,  Wright  KM,  Chao  L,  et  al.  GEOGRAPHIC  DIFFERENCES  IN  SEXUAL  REASSORTMENT  IN  RNA  PHAGE.  Evolution.  2010;:  no–no.  doi:10.1111/j.1558-­‐5646.2010.01040.x  

6.   Gottlieb  P,  Potgieter  C,  Wei  H,  Toporovsky  I.  Characterization  of  phi12,  a  bacteriophage  related  to  phi6:  nucleotide  sequence  of  the  large  double-­‐stranded  RNA.  Virology.  2002;295:  266–271.  doi:10.1006/viro.2002.1436  

7.   Leo-­‐Macias  A,  Katz  G,  Wei  H,  Alimova  A,  Katz  A,  Rice  WJ,  et  al.  Toroidal  surface  complexes  of  bacteriophage  ϕ12  are  responsible  for  host-­‐cell  attachment.  Virology.  Elsevier  Inc;  2011;:  1–7.  doi:10.1016/j.virol.2011.03.020  

8.   Jäälinoja  HT,  Huiskonen  JT,  Butcher  SJ.  Electron  Cryomicroscopy  Comparison  of  the  Architectures  of  the  Enveloped  Bacteriophages  ϕ6  and  ϕ8.  Structure.  2007;15:  157–167.  doi:10.1016/j.str.2006.12.004  

9.   Turner  PE,  Morales  NM,  Alto  BW,  Remold  SK.  ROLE  OF  EVOLVED  HOST  BREADTH  IN  THE  INITIAL  EMERGENCE  OF  AN  RNA  VIRUS.  Evolution.  2010;64:  3273–3286.  doi:10.1111/j.1558-­‐5646.2010.01051.x  

10.   Dennehy  JJ.  Bacteriophages  as  model  organisms  for  virus  emergence  research.  Trends  Microbiol.  2009;17:  450–457.  doi:10.1016/j.tim.2009.07.006  

11.   Freeland  JR.  Molecular  Ecology.  1st  ed.  Wiley;  2006.