projectsachin-111017093244-phpapp01.ppt

23
7/27/2019 projectsachin-111017093244-phpapp01.ppt http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 1/23 SHITAL JAGTAP SACHIN HADAVALE MAYUR ZUNJARRAO GUIDE:- PROF. A K BANDSODE

Transcript of projectsachin-111017093244-phpapp01.ppt

Page 1: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 1/23

SHITAL JAGTAP

SACHIN HADAVALE

MAYUR ZUNJARRAO

GUIDE:- PROF. A K BANDSODE

Page 2: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 2/23

INTRODUCTION Hydrogen peroxide (H2O2) is the simplest peroxide

Hydrogen peroxide is a clear liquid, slightly more viscous than

water.

Page 3: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 3/23

HISTORY

Hydrogen peroxide was first manufactured in 1818 by Louis Jacques Thenard

by reacting barium peroxide with nitric acid. An improved version of this

process used hydrochloric acid, followed by sulfuric acid to precipitate the

barium sulfate byproduct. Thenard's process was used from the end of the 19th

century until the middle of the 20th century.

Page 4: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 4/23

LITERATURE SURVEY

No Process Date Auther

1 Direct production of hydrogen

peroxide from oxygen and

hydrogen applying membrane-

permeation mechanism

1 Jan 2010 Tomoya Inoue,

Yusuke Tanaka,

Koichi Sato

2 Anthraquinone process for the

production of hydrogen

peroxide

May 2008 Qunlai Chen

3 Hydrogen Peroxide production

by water electrolysis

13 October

2004

Yuji Ando,

Tadayoshi Tanaka

4 Hydrogen Peroxide production

by oxidation of cyanide

15 October

2007

Susana Silva

Martínez

Page 5: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 5/23

5 Hydrogen peroxide formation by

direct combination of H2 and O2 in a

micro reactor

16 January

2010

Yury Voloshin,

Adeniyi Lawal

6 Hydrogen peroxide synthesis by

direct photo reduction of 2-

ethylanthraquinone

1 January 2011 Mao Mao,

Xue-You Duan,

7 Catalytic synthesis of hydrogen

peroxide in micro reactors

4 April 2008 K. Kusakabe,

Maehara

8 Photochemical production of

hydrogen peroxide in Antarctic

Waters

6 June 2000 David J. Kieber

9 Direct synthesis of hydrogen

peroxide from hydrogen and oxygen

over palladium catalyst

25 July 2009 Ji Chul Jung,

Sunyoung Park,

10 Direct synthesis of hydrogen

peroxide from H2 and O2 using

zeolite supported Au catalysts

30 May 2006 Albert F. Carley,

Jennifer Edwards

Page 6: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 6/23

PHYSICAL PROPERTIESMolecular formula H2O2

Molar mass 34.0147 g/mol

 Appearance light blue to colourless

Density 1.450 g/cm 3 (20 °C)

Melting point -0.43 °C, 273 K, 31 °F

Boiling point 150 °C, 423 K, 302 °FSolubility Soluble in ether

Refractive index 1.34

 Viscosity 1.245 cP (20 °C )

Specific heat capacity 2.619 J/g K (liquid)

pH 6.2

Std enthalpy offormation ΔH f 298 k 

-4.007 kJ/g

Page 7: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 7/23

USES   Pulp and paper

  Mining

  Textile bleaching

  Controlling fungus on fish and eggs

  Waste water treatment

  Healing wounds 

  Explosive

Page 8: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 8/23

MARKET SURVEY

Page 9: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 9/23

0

20000

40000

60000

80000

100000

120000

140000

160000

2005-06 2006-07 2007-08 2008-09 2009-10 2010-11

DEMAND

SUPPLY

Page 10: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 10/23

IMPORT AND EXPORT

IMPORT EXPORT

COUNTRY QUANTITY

(Kg)

COUNTRY QUANTITY

(Kg)

China 5155989 Untd. ArabEmts.

1167115

Indonesia 2268897 Bangladesh 1156390

Rep. Of

Korea

1121118 Maldives 400000

Turkey 887374 Sri Lanka 259830

Taiwan 600277 Kenya 105000

Page 11: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 11/23

MANUFACTURING

PROCESSES   Wet Chemical Process

 Electrochemical Process

 Autoxidation Process

Page 12: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 12/23

The Wet Chemical Process Disadvantages

High capital cost

Low hydrogen peroxide content Unsatisfactory stability

Page 13: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 13/23

Electrochemical processAdvantages

More conc. H2o2

High purity H2o2

Disadvantages

High capital investment

High electricity consumption

Page 14: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 14/23

AUTOXIDATION PROCESS  Hydrogen peroxide is manufactured almost

exclusively by the autoxidation (AO) process. The

process is based on a reduction of anthraquinone,followed by oxidation resulting in the formation of

H2O2.

Hydrogen peroxide is separated from water with

extraction and is concentrated to produce gradesat standard commercial strengths of 35 - 65%.

Page 15: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 15/23

  Reactions Of Autoxidation Process

Hydrogenation

Oxidation 

Page 16: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 16/23

Page 17: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 17/23

Process Selection

Higher industrial applicability

Greater purity of H2O2

Ease of operation Easy availability of raw material

Lesser cost of raw material

Recycle of raw material

Lesser power requirement

Page 18: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 18/23

THERMODYNAMIC

FEASIBILITY

Components Heat Of Formation

(KJ/mol)

Heat Capacity

(KJ/ Kmol °C)

2-Ethyl Anthraquinone

C16H12O2

-111.021 453.4

2-EthylHydroquinone

C16H14O2

-132.46 489.4

Hydrogen Peroxide

H2O2

-45.16 70.79

Hydrogen

H2

0 28.65

Ox en 0 26.1

Page 19: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 19/23

For Hydrogenation Reaction that is

C16H12O2 + H2→C16H14O2

Heat of Formation of above reaction at 298 K is

ΔHf 298K = ΣΔHf Products - ΣΔHf Reactant

= - 132.46 - ( - 111.021)

= - 21.439 KJ/mol

The specific heat is givaen as follows

ΔCP = ΣΔCP Products - ΣΔCP Reactant

= 489.4 - (453.4 + 28.65)

=7.35 KJ/ Kmol °C

The heat of reaction at working temp.

ΔHR 313 K = ΔHf 298K  

= -21439 + (7.35) (40 - 25)

= -21328 KJ/Kmol

The entropy of Hydrogenation ReactionΔSR 313 K  = ΔSR ° +

At const temp ΔSR °= 0

ΔSR 313 K = 7.35 ln (40/25) 

= 3.454 KJ/Kmol °C

 40

25

PdtC

  dtT/C

40

25

P  

Page 20: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 20/23

The Gibbs free energy

Δ G 313 k  = ΔHR 313 K - T ΔSR 313 K

= -21328.75 - 40 X 3.54

=- 21446.93 KJ/Kmol (Less than zero)

Consider second reaction taking place in oxidizer

C16H14O2 + O2→C16H12O2 + H2O2

ΔHf 298K = ΣΔHf Products - ΣΔHf Reactant

= ( - 111.021 - 45.16) - ( - 132.46 )

= -23.721 KJ/mol

ΔCP = ΣΔCP Products - ΣΔCP Reactant

= 453.4 + 70.79 - 489.4 - 26.1

= 8.69 KJ/ Kmol °C

ΔHR 323 K = ΔHf 298K  

= -23721 + 8.69 ( 50 - 25 )

=-23503.75 KJ/Kmol

ΔSR 323 K  = ΔSR ° +

= 0 + 8.69 ln ( 50/25 )

= 6.023 KJ/ Kmol °C

 50

25

PdtC

  dtT/C

50

25

P  

Page 21: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 21/23

The Gibbs free energy

Δ G 323 k  = ΔHR 323 K - T ΔSR 323 K

= - 23503.75 - 50 X 6.023

= -23804.922 KJ/Kmol (Less than zero)From the above values it can be seen that the values of Gibbs Free energy at

respective working temp. is less than zero, which is the ideal case scenario. Thus

both the reactions are feasible and thereby the selected process is also feasible.

Page 22: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 22/23

Bibliography Perry's handbook of chemical engineering 8th

edition

Ullmans Encyclopedia

Wikipedia

Sciencedirect.com

www.cheresources.com

Page 23: projectsachin-111017093244-phpapp01.ppt

7/27/2019 projectsachin-111017093244-phpapp01.ppt

http://slidepdf.com/reader/full/projectsachin-111017093244-phpapp01ppt 23/23

THANK YOU