PROBLEMS IN GASEOUS HYDRODYNAMICS MICHAŁ RÓŻYCZKA NICOLAUS COPERNICUS ASTRONOMICAL CENTER WARSAW,...

62
PROBLEMS IN GASEOUS HYDRODYNAMICS MICHAŁ RÓŻYCZKA NICOLAUS COPERNICUS ASTRONOMICAL CENTER WARSAW, POLAND PLANETARY NEBULAE AS ASTRONOMICAL TOOLS GDAŃSK, 28.06.2005

Transcript of PROBLEMS IN GASEOUS HYDRODYNAMICS MICHAŁ RÓŻYCZKA NICOLAUS COPERNICUS ASTRONOMICAL CENTER WARSAW,...

PROBLEMS

IN GASEOUS HYDRODYNAMICS

MICHAŁ RÓŻYCZKANICOLAUS COPERNICUS ASTRONOMICAL CENTER

WARSAW, POLAND

PLANETARY NEBULAE AS ASTRONOMICAL TOOLSGDAŃSK, 28.06.2005

1. THE TEMPLATE:

2. PIECES OF THE PUZZLE:

TALK PLAN

• THE GENERIC NEBULA• ...AND SOME EXTRA FLAVOURS

• INTRODUCTION: 1-D HYDRO• 2-D WORLD• 3-D WORLD • SMALL-SCALE FEATURES• MHD

THE TEMPLATE

THE GENERIC NEBULA

THE GENERIC NEBULA

SPHERICAL HALO

ORDERLY RINGS

A BIG MESS INSIDE

THE GENERIC NEBULA ...

VERY HOT GAS

(„HOT CAVITY”)

THE TEMPLATE

EXTRA FLAVOURS

SOME EXTRA FLAVOURS

HOT CAVITY

TADPOLES

SOME EXTRA FLAVOURS

WAVES

BIPOLAR LOBES

SOME EXTRA FLAVOURS

POINT SYMMETRY

SOME EXTRA FLAVOURS

MULTIPOLAR OUTFLOWS

SOME EXTRA FLAVOURS

FLIERS

SOME EXTRA FLAVOURS

ANSAE

JETS

DISKS

SOME EXTRA FLAVOURS

SOME EXTRA FLAVOURS

BRETS

BIPOLAR ROTATING EPISODIC JETS

SOME EXTRA FLAVOURS

HUBBLE FLOW(v ~ R)

BIPOLAR LOBES

PIECES OF THE PUZZLE

INTRODUCTION: 1-D HYDRO

INTRODUCTION: 1-D HYDRO

forward shock

contact surface

reverse shock

shocked wind 1

shocked wind 2

free wind 1

freewind 2

CONTACT SURFACE FRAME

forward shock

contact surface

reverse shock

shocked wind 1

shocked wind 2

free wind 1

freewind 2

CONTACT SURFACE FRAME

forward shock

contact surface

reverse shock

shocked wind 1

shocked wind 2

free wind 1

freewind 2

FREE WIND 2 FRAME (=AMBIENT MEDIUM FRAME)

free fast wind

shocked fast wind

free AGB wind

shocked AGB wind

forward shock

reverse shock

contact surface

INTRODUCTION: 1-D HYDRO

INTRODUCTION: 1-D HYDRO

Balick, B. & Frank, A. 2002; ARAA 40, 439

fs

fsd

R

V

)()( Tn

T

Tn

e

e

e2th

th

thc

.

ll

a

wAfs t

LR

5

35

1

0

2

2

1www VML .

laa RR 0)(

)(adiabatic cd

INTRODUCTION: 1-D HYDRO

Balick, B. & Frank, A. 2002; ARAA 40, 439

www VM .

ll

a

wRfs tR

4

24

1

0

)(radiative cd

laa RR 0)(

fs

fsd

R

V

)()( Tn

T

Tn

e

e

e2th

th

thc

.

INTRODUCTION: 1-D HYDRO

RS

CS

FS

PIECES OF THE PUZZLE

2-D WORLD

2-D WORLD: BASICS

10

2q

0

0

)(

)/(

)(),( FRR l0aa

ROTATION

BINARY INTERACTIONS

MAGNETIC FIELDS

Icke V. 1988; A&A 202, 177

2

1

0 )(2

1

hbfs P

t

RFOR SMALL DEPARTURES FROM SPHERICAL SYMMETRY:

reverse shock

forward shock

contact surface

shocked AGB wind

free AGB wind

shocked fast wind

free fast wind

2-D WORLD: BASICS

OBLIQUE SHOCK

shocked wind 2

freewind 2

SHOCK FRAME

2-D WORLD: OBLIQUE SHOCKS

2-D WORLD: SHAPING - BIPOLARS

Garcia-Segura,G. et al. 1999; ApJ 517, p.767

Mslow=10-5 M/yr.

Mfast =10-7 M/yr.

q = 0.1veq

vpl

Vpl/ Veq = 3

2-D WORLD: BREAKOUT

2-D WORLD: COLLIMATION, JETS-I

Blandford, R. & Rees, M. 1974; MNRAS 169, 395 Norman, M., Smarr, L., Smith, M., & Wilson, J. 1981; ApJ 247, 52

Frank, A. & Mellema, G. 1996; ApJ 472, 684

2-D WORLD: COLLIMATION, JETS-I

3

Mw = 10-7 M/yr

Vw = 200 km/s

adiabatic

.

RS

CS

FS

Frank, A. & Mellema, G. 1996; ApJ 472, 684

2-D WORLD: COLLIMATION, JETS-I

Mw = 10-7 M/yr

Vw = 200 km/s

adiabatic

q = 70

.

Frank, A. & Mellema, G. 1996; ApJ 472, 684

2-D WORLD: COLLIMATION, JETS-I

2-D WORLD: COLLIMATION, JETS-II

forward shock

reverse shock

contact surface

2-D WORLD: COLLIMATION, JETS-II

T

2-D WORLD: COLLIMATION, JETS-II

PIECES OF THE PUZZLE

3-D WORLD

a = 2.4 AU a = 12.6 AU

RG star: M*=1M; R*=0.7 AUsecondary: M*=0.6 M

RG wind: 10-6 M/yrfast wind: 10-8 M/yr; 103 km/s

3-D WORLD: BINARY, DENSE WIND SHAPING

Gawryszczak, A., Mikołajewska, J. & Różyczka, M. 2002; A&A 385, 205

3-D WORLD: BINARY, DENSE WIND SHAPING

Gawryszczak, A., Mikołajewska, J. & Różyczka, M. 2002; A&A 385, 205

Courtesy: Doris Folini & Rolf Walder

http://www.astro.phys.ethz.ch/staff/walder/

3-D WORLD: BINARY, DISK FORMATION

RW HyaRED GIANT: M=1.6M, R=1013 cm, M=10-7 M/yr WHITE DWARF: M=0.48 M, a=21013 cm

.

3-D WORLD: BINARY, DENSE WIND SHAPING

SYMBIOTIC BINARYCOOL STAR: M=1.4M, R=1013 cm, M=310-8 M/yr HOT STAR: M=0.6 M, a=31013 cm, M=410-9 M/yr

..

HIGH

LOW

Courtesy: Doris Folini & Rolf Walder http://www.astro.phys.ethz.ch/staff/walder/

3-D WORLD: BINARY, COMMON ENVELOPE EVOLUTION

Movies by Eric Sandquist;http://mintaka.sdsu.edu/faculty/erics/web/

red giant: 1 M with a 0.45 M core

companion: 0.35 M

3-D WORLD: BINARY, COMMON ENVELOPE EVOLUTION

Eric Sandquist;http://mintaka.sdsu.edu/faculty/erics/web/

3-D WORLD: BINARY, COMMON ENVELOPE EVOLUTION

De Marco, O. Et al. 2003; RevMexAA S.Conf. 18,24

1130 days170 days

2310 days 3250 days

AGB star

core 0.56 M

envelope 0.69 M

radius 1.85 AU

companion

mass 0.1 M

timesscale 9 yr

mass lost 4 %

AGB star

core 0.56 M

envelope 0.69 M

radius 1.85 AU

companion

mass 0.1 M

synchronous

timesscale 9 yr

mass lost 25 %

AGB star

core 0.60 M

envelope 0.44 M

radius 3.00 AU

companion

mass 0.1 M

timesscale 18 yr

mass lost 84 %

PIECES OF THE PUZZLE

SMALL-SCALE FEATURES

SMALL-SCALE FEATURES: COOLING INSTABILITY

~T-0.7

Gaetz,T. & Salpeter, E. 1983; ApJS 52, 155

SMALL-SCALE FEATURES: COOLING INSTABILITY; R-T INSTABILITY

Movie: courtesy Doris Folini & Rolf Walder http://www.astro.phys.ethz.ch/staff/walder/

SMALL-SCALE FEATURES: RAYLEIGH-TAYLOR INSTABILITY

Movie: courtesy ASC / Alliances Center for Astrophysical Thermonuclear Flashes http://flash.uchicago.edu/website/research/gallery/home.py

g lighter fluid

denserfluid

density schematic:

simulation time: 3.1 sec

density range: 0.5 – 2.5 g/cm3

isotropic thermal pressure

nonisotropic ram pressure

SMALL-SCALE FEATURES: THIN SHELL INSTABILITY I

Vishniac, E. 1983; ApJ 274, 152

SMALL-SCALE FEATURES: THIN SHELL INSTABILITY I

shocked AGB wind

shocked fast wind

free AGB wind

forward shock

SMALL-SCALE FEATURES: THIN SHELL INSTABILITY II

Vishniac, E. 1994; ApJ 428, 186

nonisotropic ram pressure

nonisotropic ram pressure

SPHERICAL SYMMETRY: IONIZATION INSTABILITIES (?)

SPHERICAL SYMMETRY: RAYLEIGH-TAYLOR INSTABILITY

AXIAL SYMMETRY: KELVIN-HELMHOLTZ INSTABILITY

SMALL-SCALE FEATURES: THIN SHELL INSTABILITY II

Movie: courtesy Doris Folini & Rolf Walder http://www.astro.phys.ethz.ch/staff/walder/

SMALL-SCALE FEATURES: THIN SHELL INSTABILITY II

John Blondinhttp://wonka.physics.ncsu.edu/~blondin/aas196/page33.html

SMALL-SCALE FEATURES: IONIZED SHELL INSTABILITY

Garcia-Segura,G. & Franco, J. 1996; ApJ 469, p.171

SMALL-SCALE FEATURES: IONIZED SHELL INSTABILITY

Garcia-Segura,G. et al. 1999; ApJ 517, p.767

Mslow=10-5 M/yr.

Mfast =10-7 M/yr.

Fion =1046 /s

PIECES OF THE PUZZLE

MHD

MHD: WEAK FIELD, TOROIDAL PINCH ON RADIATIVELY DRIVEN WIND

Różyczka, M. & Franco, J. 1996; ApJ 469, p.L127

( B(2R*) = 2G )

Różyczka, M. & Franco, J. 1996; ApJ 469, p.L127

MHD: WEAK FIELD, TOROIDAL PINCH ON RADIATIVELY DRIVEN WIND

Różyczka, M. & Franco, J. 1996; ApJ 469, p.L127

MHD: WEAK FIELD, TOROIDAL PINCH ON MAGNETICALLY DRIVEN WIND

M* = 1 M

R* = 4.5 AU

spherical wind Mw = 10-6 M/yr

at R* toroidal field

of 0.1, 1 or 5 G

MHD: STRONG FIELD; „MAGNETIC EXPLOSION”

Matt, S. 2003; arXiv:astro-ph/0308548

dipole field anchored in the core; envelope ejected if

v*vAve−2 > 0.1

to match pPNe fields of 105–108 G are needed

MHD: STRONG FIELD; „MAGNETIC EXPLOSION”

Matt, S. 2003; arXiv:astro-ph/0308548

dipole field anchored in the core; envelope ejected if

v*vAve−2 > 0.1

to match pPNe fields of 105–108 G are needed

C. Fendt

MHD: JETS FROM LARGE-SCALE POLOIDAL FIELD

Bv2

Bv2

MHD: JETS FROM LARGE-SCALE POLOIDAL FIELD

Kuwabara, T. et al. 2005; ApJ 621, 921

MHD: JETS FROM INTERNAL POLOIDAL FIELD

Kudoh, T., Matsumoto, R. & Shibata, K. 2002; PASJ 54, 267

MHD: JETS FROM INTERNAL POLOIDAL FIELD

Kudoh, T., Matsumoto, R. & Shibata, K. 2002; PASJ 54, 267