Ppt t Thongrattanasiri_Metamaterials_g-Ene

download Ppt t Thongrattanasiri_Metamaterials_g-Ene

of 21

Transcript of Ppt t Thongrattanasiri_Metamaterials_g-Ene

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    1/21

    Graphene Plasmonics

    Sukosin Thongrattanasiri,*

    Frank Koppens,# Darrick Chang,$ and Javier Garca de Abajo*,&

    *CISC, Madrid#ICFO, Barcelona

    $

    Caltech, Pasadena&On sabbatical at ORC, Southampton, 2010-2011

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    2/21

    Milestones in Plasmonics

    Graphene Plasmonics Metamaterials, October 2011

    Experimentally evidence

    but not unexplained until 1957 (Ritchie, theory)and 1959 (Powell and Swan, experiment)

    Metal plasmons, 1950s

    Jablan et al., Phys. Rev. B 80, 245435 (2009)Velizhanin and Efimov, Phys. Rev. B 84, 085401 (2011)Vakil and Engheta, Science 332, 1291 (2011)Chen and Alu, ACS Nano 5, 5855 (2011)Koppens et al., Nano Lett. 11, 3370 (2011)Nikitin et al., arXiv:1104.3558v1 (2011)Sukosin et al., arXiv:1106.4460v1 (2011)

    Ju et al., Nature Nanotech. 6, 630 (2011)

    Increasing interest from theory

    and experimental proof

    Graphene plasmons, 2009-2011

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    3/21

    Outline

    Graphene Plasmonics Metamaterials, October 2011

    plasmonic background

    graphene background

    graphene plasmonics 100% light absorption

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    4/21

    Plasmons

    Graphene Plasmonics

    plasmons quantum of rapid oscillations of conduction-electrons

    surface plasmon - Wikipedia

    localized plasmon

    Myroshnychenko et al., Chem. Soc. Rev. 37, 1792 (2008)

    Metamaterials, October 2011

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    5/21

    Graphene

    Graphene Plasmonics

    Das Sarma et al., Rev. Mod. Phys. 83, 407 (2011)

    a flat monolayer of carbon atoms tightly packed into a 2-dimensionalhoneycomb lattice

    Physics World, Nov 2006

    = 3 +

    Expandingk=K

    +q

    close toK

    (K

    ) with |q

    |

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    6/21

    Unique Properties

    Graphene Plasmonics

    electrons and holes near Dirac points behave as particles describedby the Dirac equation for -spin particles massless Dirac fermions

    vF=106 m/s, similar to noble metals

    minimum conductivity at T=0K:

    ,

    ,

    impurity concentration, rippling, interaction with substrate

    high electron mobility at room temperature

    large mean free path (up to several microns) extremely good conductor

    Crystal mobility (cm2/Vs)

    graphene 10,000-200,0001

    GaAs 8,0002

    GaSb 5,0002

    diamond 1,8002

    1Geim et al., Nat. Mat. 6, 183 (2007)2Kittel, Introduction to Solid State Physics, 8th ed

    Metamaterials, October 2011

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    7/21

    Unique Properties (cont.)

    Graphene Plasmonics

    high 3D plasmon-confinement: ~106 times smaller thandiffraction limit

    tunable material absorption = 2.3% over a broad spectral range

    Metamaterials, October 2011

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    8/21

    Optical Response

    Graphene Plasmonics

    real

    imaginary

    Falkovsky et al., Eur. Phys. J. B 56, 281 (2007)

    Koppens et al., Nano Lett. 11, 3370 (2011)

    Metamaterials, October 2011

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    9/21

    Plasmons in a Graphene Sheet

    Graphene Plasmonics

    Jablan et al., PRB 80, 245435 (2009)

    For ,

    +

    Koppens et al., Nano Lett. 11, 3370 (2011)

    Metamaterials, October 2011

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    10/21

    Graphene vs Gold

    1

    2

    4

    |

    WZS

    Z

    V

    i

    iLp12

    2

    |

    WZS

    V

    i

    iEe F

    !

    1 monolayer of gold

    (L=0.24 nm)graphene

    (L=0.33 nm)

    L

    i

    Z

    VS

    ZH

    4|L

    Graphene Plasmonics Metamaterials, October 2011

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    11/21

    Nanostructured graphene

    Graphene Plasmonics

    So far graphene, an extended sheet allows

    high field confinement

    long plasmon propagation (many plasmon wavelength)

    But we can gain further benefits by nanostructuring extremely high field confinement

    high plasmon localization

    engineering plasmon resonances

    Metamaterials, October 2011

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    12/21

    1D Plasmon Confinement: Nanoribbons

    Graphene Plasmonics Metamaterials, October 2011

    Koppens et al., Nano Lett. 11, 3370 (2011)

    Width (nm)

    Photon

    energy(eV)

    10.5 0.750.250.01

    Extinction V/area

    EF=0.2 eVlightE

    ext

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    13/21

    0D Plasmon Confinement: Nanodisks

    Graphene Plasmonics

    =

    Im

    Sukosin et al., arXiv:1106.4460v1

    Metamaterials, October 2011

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    14/21

    Experimental Proof of Nanoribbon Plasmons

    Graphene Plasmonics Metamaterials, October 2011

    Ju et al., Nature Nanotech. 6, 630 (2011)

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    15/21

    Light Absorption in Graphene

    Graphene Plasmonics Metamaterials, October 2011

    At plasmon resonance, an arrayofpatternedgraphene catches the light.

    Higher absorption!!

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    16/21

    Absorption by a Thin Layer

    Graphene Plasmonics

    SymmetricEnvironment

    A thin layer patterned with a period smaller than the wavelength canonly produce specularly reflected and transmitted beams (no diffraction).

    = 1

    = 1 1

    = 50%

    Full Detail: Sukosin et al., arXiv:1106.4460v1

    Metamaterials, October 2011

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    17/21

    Absorption by a Thin Layer

    Graphene Plasmonics

    AsymmetricEnvironment

    Full Detail: Sukosin et al., arXiv:1106.4460v1

    , =1

    1 + Re

    , = 1 Re

    Re + /

    =1

    cos

    sin

    Metamaterials, October 2011

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    18/21

    Array of Graphene Nanodisks

    Graphene Plasmonics

    1Garca de Abajo et al., PRB 65, 115418 (2002)2Stefanou et al., Comput. Phys. Commun. 113, 49 (1998)

    3Garca de Abajo et al., Rev. Mod. Phys. 79, 1267 (2007)

    Full Detail: Sukosin et al., arXiv:1106.4460v1

    Numerical1. BEM1 multipolar scattering matrix

    of each graphene nanodisk2. multiple-scattering method2 periodic structure

    Analytical dipole model3

    =

    1/

    5.52

    +

    2

    3

    ;

    =2

    cos

    =

    2 cos

    Metamaterials, October 2011

    T l Li h Ab i

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    19/21

    Total Light Absorption

    Graphene Plasmonics

    Full Detail: Sukosin et al., arXiv:1106.4460v1

    Metamaterials, October 2011

    T t l Li ht Ab ti O idi ti lit

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    20/21

    Total Light Absorption: Omnidirectionality

    Graphene Plasmonics

    Full Detail: Sukosin et al., arXiv:1106.4460v1

    Metamaterials, October 2011

    C l i

  • 7/27/2019 Ppt t Thongrattanasiri_Metamaterials_g-Ene

    21/21

    Conclusion

    Funding:

    Koppens et al., Nano Lett. 11, 3370 (2011)

    Sukosin et al., arXiv:1106.4460v1 (2011)

    graphene nanostructure

    high field confinement

    high plasmon localization

    engineering plasmon resonance

    omnidirectional total light absorption within an

    atomically thick layer

    strong light-matter interaction

    a new direction in plasmonics metamaterials

    more info on graphene plasmonics: