Oedema Kuliah

download Oedema Kuliah

of 57

Transcript of Oedema Kuliah

  • 7/30/2019 Oedema Kuliah

    1/57

    OEDEMA

    Sutikno Tanuwidjaja

    Subbagian Kardiologi Bagian Ilmu Penyakit Dalam

    FK UNDIP/RS Dr. Kariadi Semarang

  • 7/30/2019 Oedema Kuliah

    2/57

    Major body fluid compartments with average volumes indicated for a 70-kg human.Total body water is about 60% of body weight.

    LUNGS

    RIGHT

    HEART

    LEFT

    HEART

    BODY ORGANS

    Circulating plasma

    - 3 L

    Intracellular space

    - 30 L

    Interstitial space

    (internal environment

    - 12 L

    CAPILLARIES

    CELLS

  • 7/30/2019 Oedema Kuliah

    3/57

    BERAT BADAN TOTAL (70 KG)

    AIR TUBUH TOTAL (42L)

    ICV (28L) ECV (14L)

    SDM PV

    (3 L)

    Vol darah 5 L

    IF = ECV - PV

    Volume distribusi air mencakup volume

    intraselular (ICV) dan ekstraselular (ECV).

  • 7/30/2019 Oedema Kuliah

    4/57

    Diffusion of fluid and dissolved substances between the

    capillary and interstitial space

    BLOOD CAPILLARYArterial

    endVenous

    end

    LYMPHATIC CAPILLARY

  • 7/30/2019 Oedema Kuliah

    5/57

    Alveolar

    epithelium

    Epithelialbasementmembrane

    Interstitialspace

    Capillarybasementmembrane

    Capillaryendothelium

    REDBLOODCELL

    CAPILLARYALVEOLUS

    Diffusion of oxygen

    Diffusion of carbon dioxide

    The structures of thealveolar-capillary

    membrane over whichreciprocal diffusion of

    oxygen and carbondioxide occurs

  • 7/30/2019 Oedema Kuliah

    6/57

    LUNGS

    LEFT HEART PUMPRIGHT HEART PUMP

    HEART MUSCLE

    BRAIN

    SKELETAL MUSCLE

    GASTROINTESTINAL SYSTEM, SPLEEN

    LIVER

    KIDNEY

    SKIN

    OTHER

    BONE

    VEINS ARTERIES

    100%100%

    100%

    3%

    14%

    15%

    5%

    21%

    6%

    22%

    6%

    8%

  • 7/30/2019 Oedema Kuliah

    7/57

    Definition of Heart Failure

    Heart failure is the pathophysiologicalstate in which the heart is unable to pumpblood at a rate commensurate with therequirements of the metabolizing tissues

    or can do so only from an elevated fillingpressure.

    Heart failure is a complex clinical

    syndrome that can result from anystructural or functional cardiac disorderthat impairs the ability of ventricle to fillwith or eject blood.

  • 7/30/2019 Oedema Kuliah

    8/57

    Mechanism of death

    Sudden death 40%

    Worsening CHF 40%

    Other 20%

    Further damage

    Excessive wall stressNeurohormonal activation

    Myocardial ischemia

    Progression

    Annual mortality

  • 7/30/2019 Oedema Kuliah

    9/57

    FRAMINGHAM HEART STUDY

    Incidence of heart failure by age and sex

    (Kannel & Belanger, 1981)

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    045-54 55-64 65-74 75-84 85-94

    Age (yr)

    Rate

    per1000

    Males

    Females

  • 7/30/2019 Oedema Kuliah

    10/57

    EVOLVING MODELS OF HEART FAILURE

    Cardiorenal Hemodynamic Neurohormonal

    Digitalis and

    Diuretic to Perfuse

    kidneys

    Vasodilators or

    positive inotropes to

    relieve ventricular

    wall stress

    ACE-I, -blockers

    and other agents to

    block neurohormonal

    activation

    1940s 1960s 1970s 1990s - 2000

  • 7/30/2019 Oedema Kuliah

    11/57

    LV dilatation

    Activation of Neurohormonal Pathways in HF

    Coronary Disease Cardiomyopathy Cardiac Overload

    Left Ventricular Dysfunction

    Neurohormonal Activation Cathecholamines

    RAS AVP Endothelin

    Cardiac RemodellingPeripheral OrganBlood Flow

    Vasoconstriction

    skeletalmuscle flow

    RBFNa+ retention

    LV hypertrophy

    Arrhythmias

    Exercise Intolerance Edema, Congestion Sudden Death Pump Failure

    Ruffolo, J Cardiovasc, Pharmachol, 1998

  • 7/30/2019 Oedema Kuliah

    12/57

    The multiple effects of left ventricular (LV) dysfunction

    Autonomic NS Metabolic

    Renal

    Hepatic Skeletal muscle

    Other

    Neuroendocrine

    Vascular tone/structure

    Peripheral

    Coronary

    LV Dysfunction

    Electrical

    substrate

    dennervation

    chemical milieu

    Mechanical

    cell death

    fibrosis

    Heart

  • 7/30/2019 Oedema Kuliah

    13/57

    The Role of Angiotensin II in the progression of Heart Failure

    Coronary artery disease

    Pressure overload Cardiomyopathy

    Left ventricular dysfunction

    Arterial blood pressure

    Renin release

    Angiotensin II

    Na+

    and water retention

    Aldosterone release

    Vasoconstriction

    Edema

    Vascular and cardiac

    hypertrophy

    Peripheral organ blood flow

    Renalblood flow

    Skeletal muscleBlood flow

    Exercise intolerance

    Cardiac remodelling

    Left ventricular

    dilation & hypertrophy

    Pump failure

  • 7/30/2019 Oedema Kuliah

    14/57

    Vasodilatation

    Diuresis

    Antimitogenic

    VasoconstrictionSalt and water

    retention

    Apoptosis

    Hypertrophy

    Myocardial

    dysfunction

    Prostaglandins Natriureticpeptides No

    Free radicals

    Cytokines

    Growth

    hormoneEndothelins

    Catecholamines

    All

    ReninAVP

    Aldosterone

    Many different neurohormonal pathways are stimulated following myocardial dysfunction

  • 7/30/2019 Oedema Kuliah

    15/57

    Humoral

    RAAS

    Epinephrine

    EndothelinGrowth factors

    Myocyte

    slippage

    Myocyte

    hypertrophy

    Interstitial

    fibrosis

    Stretch

    Increased

    myocardial

    volume

    Increased

    myocardial

    mass

    Remodeling

    Increased

    stroke volume

    (Starling)

    Decreased

    Wall stress

    (Laplace)

    Adaptive Mal-

    adaptive

    Increased

    O2 demand

    Ischemia

    Impaired

    Contractility

    Arrhythmo-

    genesis

    Factors influencing myocardial remodelling in HF

  • 7/30/2019 Oedema Kuliah

    16/57

    CARDIAC REMODELING

    Cardiac remodeling may be defined as genome expression,

    molecular, cellular and interstitial changes that are

    manifested clinically as changes in size, shape and

    function of the heart after cardiac injury.

    Remodeling encompasses cellular changes including

    myocyte hypertrophy, necrosis, apoptosis, fibrosis,

    increased fibrillar collagen and fibroblast

    proliferation.

    (Cohn et al, 2000)

  • 7/30/2019 Oedema Kuliah

    17/57

    Disease progression in heart failure. LV = left ventricular.( Elchorn & Young , 2001)

    Asymptomatic Symptomatic

    LVEjectionFraction

    0.60

    0.20

    Index Event (myocardial injury)

  • 7/30/2019 Oedema Kuliah

    18/57

    NEUROHUMORAL EFFECTS OF HEART FAILURE

    Poor organperfusion

    kidneyLow BP

    FORWARD FAILURELOW BLOOD PRESSURE

    Baroreflexes

    Adrenergic stimulation

    RENIN

    Angiotensin

    Aldosterone

    ANP

    Na+ loss Na+ retension

    Edema

    EXCESSBLOOD VOLUME

    low renal

    blood flow

    EXCESSAFTERLOAD

    Increasing

    forward

    failure

    Increasing

    preload

    heartINCREASINGBACKWARD

    FAILURE

    big liveredema

    Leftventricle

    back

    ward

    pressure

    RVLA

    RV failure

    JVP

    BACKWARD FAILUREINTO LUNGS & RV

    ACE inhibitors for congestive heart failure

    (Opie, 1994)

  • 7/30/2019 Oedema Kuliah

    19/57

    DETERMINANTS OF

    VENTRICULAR FUNCTION

    CONTRACTILITY

    PRELOAD

    Synergistic LV contraction

    LV wall integrity

    Valvular competence

    CARDIAC OUTPUT

    HEART

    RATE

    STROKE

    VOLUME

    AFTERLOAD

  • 7/30/2019 Oedema Kuliah

    20/57

    Major Criteria

    Paroxysmal nocturnal dyspnea

    Neck vein distention

    Rales

    Radiographic cardiomegalyAcute pulmonary edema

    S3 gallop

    Central venous pressure > 16 cm H2O

    Circulation time > 25 sec

    Hepatojugular reflux

    Pulmonary edema, visceral congestion, or cardiomegaly at autopsyWeight loss > 4.5 kg in 5 days in response to treatment of congestive heart failure

    Minor Criteria

    Bilateral ankle edema

    Nocturnal cough

    Dyspnea on ordinary exertion

    HepatomegalyPleural effusion

    Decrease in vital capacity by one third from maximal value recorded

    Tachycardia (rate > 120 beats min)

    FRAMINGHAM CRITERIA FOR CONGESTIVE HEART FAILURE

    ( Ho KL, et al., 1993 )

    The diagnosis of CHF in this study required that two major

    or one major and two minor criteria be present concurrently, Minor Criteria

    were acceptable only if they could not be attributed to another medical condition.

  • 7/30/2019 Oedema Kuliah

    21/57

    Clinical Clues to the Differential Diagnosis of

    Congestive Heart Failure

    Systolic CHF Diastolic CHF

    History

    Myocardial infarction XX XHypertension X XX

    Physical examination

    Displaced PMI XS3 gallop X

    S4 gallop X

    Chest radiograph

    Cardiomegaly XX X

    Pulmonary congestion XX XX

    Electrocardiogram

    Q waves XX X

    Left ventricular hypertrophy X XX

    (Goldsmith & Dick, 1993)

  • 7/30/2019 Oedema Kuliah

    22/57

    Neurohormonal stimulation

    Endothelial dysfunction

    Vasoconstriction

    Renal sodium retention

    Progression of Cardiovascular DiseaseCoronary

    arterydisease

    HypertensionArrhythmia

    Left ventricularremodeling

    RemodelingLow ejection

    fractionDeath

    Pump

    failureCardiomyopathyValvular

    disease

    (Abraham, 2000)

    Noncardiac

    factors

    Symptoms:

    Dyspnea

    Fatigue

    Edema

    Chronic

    heart

    failure

  • 7/30/2019 Oedema Kuliah

    23/57

    HEART FAILURE SPECTRUMRisk

    Factors

    Symptoms

    NYHA II-III SymptomsNYHA - IV

    Symptoms

    ECHO / LV dysfunction

    BNP?

    Asymptomatic

    LV Dysfunction

    Heart disease

  • 7/30/2019 Oedema Kuliah

    24/57

    Aims of treatment

    Preventiona) Prevention and/or controlling of diseases

    leading to cardiac dysfunction and heart failure

    b) Prevention of progression to heart failure once

    cardiac dysfunction is established

    MorbidityMaintenance or improvement in quality of life

    MortalityIncreased duration of life

    Guidelines for the diagnosis and treatment of chronic heart failure

    European Heart Journal (2001) 22, 1527-1560

    Ch i C ti H t F il

  • 7/30/2019 Oedema Kuliah

    25/57

    Cortex

    Medulla

    ThiazidesInhibit active exchange of Cl-Na

    in the cortical diluting segment of the

    ascending loop of Henle

    K-sparingInhibit reabsorption of Na in thedistal convoluted and collecting tubule

    Loop diuretics

    Inhibit exchange of Cl-Na-K inthe thick segment of the ascendingloop of Henle

    Loop of HenleCollecting tubule

    DIURETICS

    Chronic Congestive Heart Failure

  • 7/30/2019 Oedema Kuliah

    26/57

    LOW VS HIGH CEILING DIURETICS

    High-ceiling

    Loop diuretics

    Low-ceiling

    Thiazides

    K+ -sparing

    DOSE

    EFFICACY

    Opie (2001)

    Dose foroliguria

    Dose for

    severe CHF

    Dose for

    mild CHF

    Dose for

    hypertension

  • 7/30/2019 Oedema Kuliah

    27/57

    Low-outputsymptoms

    Left ventricular filling pressure

    Congestiveand low-

    outputsymptoms

    Diureticonly

    Stro

    kevolume

    Inotropic agent+ vasodilator+ diuretic

    Inotropic agent+ vasodilator

    Vasodilatoronly

    Inotropicagent only

    Congestivesymptoms

    (Smith & Kelly, 1991)

  • 7/30/2019 Oedema Kuliah

    28/57

    Myocardial Insult

    and/or

    Excessive Load

    LV Dilation

    and

    Hypertrophy

    Myocyte Loss,

    Elongation or

    Slippage

    DecreasedLV Reserve

    Increased

    Afterload

    GISSI-3CONSENSUS-2SMILEISIS-4

    SAVESOLVD (prev.)TRACE

    V-HeFT-1V-HeFT-2SOLVD (treat.)CONSENSUS-1AIRE

    CHF

    INITIAL EVENT LV REMODELING CLINICAL

    SYNDROMEAII

    M.R.

    Diastolic WallStress

    Energy SupplyPATHOPHYSIOLOGY

    TRIALS

    The pathophysiology of heart failure progressing

    with time from the initial event. (Lejemtel et al, 2001)

  • 7/30/2019 Oedema Kuliah

    29/57

    INOTROPIC, VAGAL & SYMPATHOLYTIC EFFECTS OF DIGOXIN

    Vasodilation

    Diuresis

    RASinhibition

    E

    NE

    Sympatho-inhibitoreffects

    Vagomimeticeffect

    Baroreceptors

    Adrenergicactivationin CHF

    CHF

    AVSA

    +

    Positive inotropic effect

    3 Na+

    Digoxin Na+

    Na+ rises

    2K+

    +Ca2+

    Digitalis has both neural and myocardial cellular effects. Opie (2001)

    Toxic arrhythmias

  • 7/30/2019 Oedema Kuliah

    30/57

    Bisoprolol pooled (2 trials)

    Bucindolol pooled (4 trials)

    Carvedilol pooled (5 trials)

    Metoprolol pooled (9 trials)

    5 small trials

    Overall (25 trials)

    0.1 0.2 0.5 1 2 5 10

    Pooled odds ratios (and 95% confidence intervals) describing the effectof blockers on mortality in patients with heart failure (fixed effects model)

    (Cleland et al, 1999)

  • 7/30/2019 Oedema Kuliah

    31/57

    Adrenergic

    Directcardiotoxicity

    Renin-angiotensin

    ?

    Vasoconstriction

    Volumeoverloaded

    Increasedheart rate andcontractility

    IncreasedMVO2

    Increasedwall stress

    Myocytedamage Hypertrophy

    Decreased contractility

    (Bristow, 1993)

    Betablocker and beta adrenergic

    receptor in heart failure

  • 7/30/2019 Oedema Kuliah

    32/57

    Vascular

    smooth

    muscle

    cells

    Endothelial cell of

    intramyocardial

    coronary artery

    Tissue fluid

    of interstitium

    Myocyte

    Fibrillar

    collagen

    Endothelial

    cell ofcapillary

    Cardiac

    fibrolast

    ofinterstitial

    space

    Myocyte and nonmyocyte constituents of the heart.

  • 7/30/2019 Oedema Kuliah

    33/57

    Pulmonary capillary fluid dynamics (Adapted from Wilson RF: Cardiovascular

    physiology. In Critical care manual, ed 2, Philadelphia, 1992, Davis)

    PULMONARY CAPILLARY FLUID DYNAMICSHydrostatic forces at either end of the pulmonary capillary favor a

    driving pressure through the capillary bed of approximately 4 mm

    Hg. The normal mean forces acting at the pulmonary capillary are

    as follows :

    AVERAGE FORCES TENDING TO PUSH FLUID OUT OF

    THE PULMONARY VASCULAR SPACE

    Mean pulmonary capillary hydrostatic pressure 8.0 mm Hg

    Subatmospheric pulmonary interstitial hydrostatic

    pressure (drawing fluid into the lung) -10.0 mm Hg

    Interstitial oncotic pressure +12.0 mm Hg

    Net Forces Directing Fluid Outward 30.0 mm Hg

    AVERAGE FORCES TENDING TO PUSH FLUID INTO

    THE PULMONARY VASCULAR SPACE

    Plasma oncotic pressure 28.0 mm Hg

    Net Forces Dircted Inward 28.0 mm Hg

    Net forces : Outward 30.0 mm HgInward -28.0 mm Hg

    AVERAGE FORCES DIRECTING FLUID INTO

    THE PULMONARY TISSUE SPACE 2.0 mm Hg

    Arteriole

    Venule

    Laters

    titialspace

    Alveolus

  • 7/30/2019 Oedema Kuliah

    34/57

    PRESSURES CAUSING FLUID MOVEMENT

    Hydrostatic and osmotic forces at the capillary (left) and alveolar membrane (right) of

    the lungs. Also shown is a lymphatic (center) that pumps fluid from the pulmonary

    interstitial spaces. (Modified from Guyton, Taylor, and Granger : Dynamics of the

    Body Fluids. Philadelphia, W. B. Saunders Company, 1975)

    Osmoticpressure

    Netpressure

    Hydrostaticpressure

    Capillary Alveolus

    ( Surfacetensionat pore )

    ( Evaporation )

    +7

    -28 -14

    -8

    (+1)-5000

    -8 -8

    -5000-8

    -4

    ( 0 )

    Lymphatic pump

  • 7/30/2019 Oedema Kuliah

    35/57

  • 7/30/2019 Oedema Kuliah

    36/57

    Various causes of edema

  • 7/30/2019 Oedema Kuliah

    37/57

    Pathophysiology of CHF

    Injury to myocytesand EC matrix

    Electrical, vascular, renal,

    pulmonary, muscle effects

    CHF

    Ventricular

    remodelling

    Neurohumoral activationIncreased cytokines

    Immune andinflammatory changes

    altered fibrinolysis

    Oxidative stressApoptosis

    Altered geneExpressionEnergy starvation

    McMurray J, Pfeffer M. Circulation. 2002 (in press)

  • 7/30/2019 Oedema Kuliah

    38/57

    CAPILLARY (NUTRIENT) BED

    ARTERY

    VEIN

    Venules

    Capillary

    (nutrient) bed

    Metarterioles

    Arterioles

  • 7/30/2019 Oedema Kuliah

    39/57

  • 7/30/2019 Oedema Kuliah

    40/57

  • 7/30/2019 Oedema Kuliah

    41/57

  • 7/30/2019 Oedema Kuliah

    42/57

  • 7/30/2019 Oedema Kuliah

    43/57

  • 7/30/2019 Oedema Kuliah

    44/57

  • 7/30/2019 Oedema Kuliah

    45/57

    Determinants of stroke volume and cardiac output

    MUSCULAR SYNCHRONY

    CONTRACTILITY

    AFTERLOAD

    PRELOAD

    HEART RATE

    STROKE VOLUME

    CARDIAC OUTPUT

  • 7/30/2019 Oedema Kuliah

    46/57

    Starlings law of the heart

    Ventricular end-diastolic volume

    stro

    kevolume

  • 7/30/2019 Oedema Kuliah

    47/57

    E A

    AO

    mmHg120

    80

    40

    0

    ml120

    80

    40

    0

    cm/s80

    40

    0

    Factors

    influencing

    LV diastole

    M-mode

    achocardio-

    graphy

    Dopplerecho

    ECG

    LV Volume

    LV Pressure

    AortaLV

    LA

    RV

    sv

    P

    R

    T P

    Q S

    (Stork et al, 1995)

    MI

    Cardiac Cycle

    Relaxation

    Passive stiffness

    Elastic recoil

    Atrial reserve

  • 7/30/2019 Oedema Kuliah

    48/57

    Diagram showing the interrelationship of influences on ventricular end-diastolic

    Volume (EDV) through stretching of the myocardium and the contractile stase

    Of the myocardium.

    Stretching of

    myocardium

    Dyspnea

    Ventricular EDVPul. edema

    Fatal

    myocardial

    depression

    Exercise

    Heart failureRest

    Contractile stateof myocardium

    Normal-rest

    Normal-exerciseMaximal

    activity

    Walking

    Rest

    Ventricularperformance

    B

    A

    D

    3

    3

    4E

    1

    2 C

  • 7/30/2019 Oedema Kuliah

    49/57

    Treating Hemodynamic profiles

    DRYWETWARM

    A B

    CL

    Vasodilators

    Natriuretic peptides

    Nitroprusside

    nitroglycerin

    COLDInotropic drugs

    Dobutamine

    Milrinone

    (levosimendan)

    (enoxinune)

    Suggestions for how the hemodynamic profiles may be used to conceptualize initial

    therapy for patients with advanced heart failure, patients who are wet and warm

    (profile B) generally can be dried out without complex intervention. patients who

    are cold and wet (profile C) often require addition of other therapy to Warm up

    before they can dry out.Concepts are further discussed in text and in Ref [30].

    Two Minute Assessment of Hemodynamic Profile

  • 7/30/2019 Oedema Kuliah

    50/57

    NO

    NO

    Two Minute Assessment of Hemodynamic Profile

    Congestion at rest?

    YES

    Warm & Dry Warm & Wet

    A B

    Low perfusion

    Evidence forCongestion

    Orthopnea

    Elevated JVP

    Edema (25%)

    Pulsatile hepatomegaly

    AscitesRales (rare in chronic

    HF)

    Louder S3

    P2 radiation leftward

    Abdomino-jugular reflex

    Valsalva square wave

    at rest?YES

    Cold & Dry Cold & Wet

    L C

    Evidence for low perfusion

    Narrow pulse pressure8

    Cool extremities*

    May be sleepy, obtundedSuspect from ACEI hypotension

    And low serum Sodium

    One cause of worsening renal fn

    * Most helpful

  • 7/30/2019 Oedema Kuliah

    51/57

    +

    Normal

    AFTERLOADREDUCTION

    PRELOAD REDUCTION

    Inotropic

    Decreased pulmonary wedge pressureDecreased dyspnea

    Theoretical Frank-Starling curves in CHF.(Opie, 2001)

    Decreased

    fatigue

    Increasedcar

    diacoutput

    HEMODYNAMICS OF VASODILATORS IN CHF

  • 7/30/2019 Oedema Kuliah

    52/57

    Pathophysiology of CHF

    Injury to myocytesand EC matrix

    Electrical, vascular, renal,

    pulmonary, muscle effects

    CHF

    Ventricular

    remodelling

    Neurohumoral activationIncreased cytokines

    Immune andinflammatory changes

    altered fibrinolysis

    Oxidative stressApoptosis

    Altered geneExpressionEnergy starvation

    McMurray J, Pfeffer M. Circulation. 2002 (in press)

  • 7/30/2019 Oedema Kuliah

    53/57

    HIPOTESA STARLING

  • 7/30/2019 Oedema Kuliah

    54/57

    HIPOTESA STARLING

  • 7/30/2019 Oedema Kuliah

    55/57

    AVERAGE FORCES TENDING TO PUSH FLUIDArteriole

  • 7/30/2019 Oedema Kuliah

    56/57

    Systemic capillary fluid dynamics (Adapted from Wilson RF: Cardiovascular

    physiology. In Critical care manual, ed 2, Philadelphia, 1992, Davis)

    AVERAGE FORCES TENDING TO PUSH FLUID

    OUT OF THE SYSTEMIC VASCULAR SPACE

    AVERAGE FORCES TENDING TO PUSH FLUID INTOTHE SYSTEMIC VASCULAR SPACE

    Mean capillary hydrostatic pressure 17.0 mm Hg

    Subatmospheric interstitial hydrostatic

    pressure (acting as a vacuum drawingfluid into the interstitium) -6.0 mm Hg

    Interstitial oncotic pressure +5.3 mm Hg

    Net Forces Directing Fluid Outward 28.3 mm Hg

    Plasma oncotic pressure 28.0 mm Hg

    Net Forces Dircted Inward 28.0 mm Hg

    Net forces : Outward 28.3 mm Hg

    Inward -28.0 mm Hg

    AVERAGE FORCE DIRECTING FLUID INTO

    THE BODY TISSUE SPACE 0.3 mm Hg

    Arteriole

    Venule

    Interstitial

    space

    Systemic

    cell

    Capillary

    Overload/

    Myocyte lossPreload Energy supply:

    demand ratio

  • 7/30/2019 Oedema Kuliah

    57/57

    Cellular Altered collagen

    hypertropy matrix

    Remodelling

    Cardiac outputBaroreflex

    response

    Neurohormonal

    activation

    Arrhythmias

    Sudden death

    demand ratio

    Afterload

    Inotropy

    Ca2- Renin-angiotensin-aldosterone

    Sympatheticnervous system

    Endothelin Arginine vasopressin

    Natriureticpeptides

    Prostaglandins Bradykinin

    Response

    to stress

    Fluid & salt

    retention

    Altered skeletal muscle

    blood flow and metabolism

    Vasoconstriction, vascular remodelling, endothelial dysfunction

    maintains blood pressure

    redistributes cardiac outputperfusion

    of vital

    organs

    Dyspnea, edema, fatigue

    The pathophysiology of heart failure involves the interaction of intrinsic cardiac function wit neurohormonal activation, peripheral

    vasoconstriction and volume expansion. Neurohormonal activation may increase vasoconstriction and lead to a vicious cycle of

    worsening cardiac function. Natriuretic peptides and other hormones with vasodilating properties may have potentially beneficial

    effects on vasoconstriction and volume expansion. This complex model is influenced by numerous factors, including age of patient,

    Peripheral

    resistance