Neoantigen summit 20161115

51
Software for Tumor Neoantigen Prediction and Vaccine Design Tim O’Donnell Mount Sinai, Hammer Lab Nov 15, 2016 Neoantigen Summit

Transcript of Neoantigen summit 20161115

Page 1: Neoantigen summit 20161115

Software for Tumor Neoantigen Prediction and Vaccine DesignTim O’DonnellMount Sinai, Hammer Lab

Nov 15, 2016Neoantigen Summit

Page 2: Neoantigen summit 20161115

Hammer Lab■Bringing emerging

software development and data science technologies into cancer immunotherapy

■Tools developed at github.com/hammerlab under an Apache license

Page 3: Neoantigen summit 20161115

Personalized genome vaccine (PGV)

NCT02721043: PHASE I, OPEN LABEL, STUDY OF PGV001: A MULTI-PEPTIDE

THERAPEUTIC VACCINE PLATFORM FOR USE IN THE TREATMENT OF SOLID TUMORS IN

THE ADJUVANT SETTING

Nina Bhardwaj

Page 4: Neoantigen summit 20161115

Personalized Genomic Vaccine

■Solid tumors patients (H&N, NSCLC, Breast, Ovarian, Urothelial, SCC) without evidence of metastatic disease

■Vaccine: ten 25-mer peptides containing predicted Class I MHC mutated ligands

■Adjuvant: Poly-ICLC■No checkpoint blockade (unfortunately)■Endpoint: safety and feasibility

Page 5: Neoantigen summit 20161115

Tumor neoepitope selection

Page 6: Neoantigen summit 20161115

Sequencing

■150x normal■300x tumor■Sureselect XT■~150 million mRNA reads

Page 7: Neoantigen summit 20161115

Pipeline

Page 8: Neoantigen summit 20161115

Tools developed for the trial

Available at github.com/hammerlab

varcode Variant effect prediction including indel coding sequence

isovar Determine mutant coding sequence from RNA-seqvaxrank Neoantigen vaccine selectionepidisco Workflow to generate vaccine peptide report from

FASTQsmhctools Standard interface to pMHC binding predictorspyensembl Python interface to Ensembl reference genome

annotations

Page 9: Neoantigen summit 20161115

Coding sequence prediction (varcode)Code Value

variant = varcode.Variant( "3", 36779850, ref="C", alt="", ensembl='grch37')

Variant( contig='3', start=36779850, ref='C', alt='', reference_name='GRCh37')

effect = variant .effects() .top_priority_effect()

FrameShift( variant=chr3 g.36779850_36779850delC, transcript_name=DCLK3-001, transcript_id=ENST00000416516, effect_description=p.E101fs)

effect.mutant_protein_sequence MGKEPLTLKSIQVAVEELYPNKARALTLAQHSRAPSPRLRSRLFSKALKGDHRCGETETPKSCSEVAGCKAAMRHQGKIPEELSLDDRARTQKKWGRGKWSQNPVASPPGKPLWKRGTQGERSILGWRLKRPRVKLSDARSARERGSSSRAWSVRGFLWGPVSWIWGRAQCMMWRSW

Page 10: Neoantigen summit 20161115

GGCGACTGTCCGGCTTTGAGCCAGGTGCCTC

Intron

Phasing and transcript selection (isovar)

TGTCCGGCTACTTGTCATGGCGACTGTCCGGCT

TGGCGACTGTCCAGCTCGACTGTCCAGCT

TGTCATGGCGACTGTCCAGCT

Somatic mutation Germline mut.RNA Read 1RNA Read 2RNA Read 3

RNA Read 5

RNA Read 4

TTGAGCCAGGAGCCTCTTGAGCCATTGAGCCAGGAGCCTCTTGTGCCAGGAGCCTCTTGTGCCAGGA

Exon 1 Exon 2

Selected coding sequence includes germline mutation:

Page 11: Neoantigen summit 20161115

Vaccine generation (vaxrank) vaxrank--vcf mutect.vcf --vcf strelka.vcf --bam tumor-rna.bam --vaccine-peptide-length 25 --mhc-predictor netmhcpan --mhc-alleles-file alleles.txt

Page 12: Neoantigen summit 20161115

Mutational burden can be limitingPatient #1 Patient #2 Patient #3 Patient #4 Patient #5

Variants 501 888 591 663 912(Non-silent)

Coding Variants 180 253 173 231 305Frame Shifts 4 8 1 3 1

Peptides in Report 11 9 17 32 22

Peptides with

Predicted MHC

ligands of affinity <=

100nM

4 3 8 10 9

Page 13: Neoantigen summit 20161115

First patient

■Oct 5, 2016 - samples acquired■Oct 10 - pathology deposits samples in Genomics

Core■Oct 17 - sequencing data delivered■Oct 19 - vaccine pipeline completes

■9 credible neoepitope-generating non-synonymous mutations identified

■Oct 20 - Histogenetics (HLA types) report arrives■Concordant with seq2hla except for one HLA-C allele

Page 14: Neoantigen summit 20161115

MHC Binding Affinity Prediction

■This trial uses netMHCpan for peptide/MHC binding prediction

■We think there is room for improvement over netMHC

■We are developing a new predictor called MHCflurry

Page 15: Neoantigen summit 20161115

Motivation for MHC binding prediction

■Identifying T cell antigens is required for vaccine design

■MHC binding is the most restrictive step in antigen processing

■Each MHC allele is capable of binding a distinct set of peptides

■There are thousands of MHC alleles in human population

Page 16: Neoantigen summit 20161115

Binding motifs

■Introduced: A. Sette 1989■Scan for occurrences of a “master sequence”,

e.g. the 6-mer sequence VHAAHA■Allow a certain number of substitutions between

similar amino acids

Page 17: Neoantigen summit 20161115

Position specific scoring matrices (PSSM)

■Introduced: Parker 1994

■At each position in the peptide, specify a value for each amino acid

■To predict whether a peptide binds, sum the values for each amino acid

Source: Bjoern Peters

Page 18: Neoantigen summit 20161115

Nonlinear effects

■Suppose a positively charged residue is required at exactly one of two positions in a peptide to bind an MHC allele

■This cannot be represented with binding motifs or PSSMs

Page 19: Neoantigen summit 20161115

Output

Hidden Layers

Input

Neural Networks

Page 20: Neoantigen summit 20161115

Neural networks for pMHC prediction■ Allele-specific

■ Train a model for each MHC allele■ Input to the model: peptide sequence

■ Pan-allele■ Train a model across alleles■ Input to the model:

(peptide sequence, MHC sequence)

Page 21: Neoantigen summit 20161115

netMHC neural networks■ Allele-specific

■ netMHC - M. Nielsen 2003■ Best choice for alleles with the most training

data ■ Pan-allele

■ netMHCpan - M. Nielsen 2007■ Best choice for alleles with less training data

Page 22: Neoantigen summit 20161115

MHCflurry

■Hybrid between allele-specific and pan-allele■Uses imputation (matrix completion) to “fill in”

missing training data for alleles with little data■Allele-specific predictors are trained on the

imputed data■As the training progresses, the imputed data is down-

weighted in favor of the real data

Page 23: Neoantigen summit 20161115

Imputation algorithmsAlgorithm AUC F1 scoreknnImpute (k=1)

0.8088 0.6906

knnImpute (k=3) 0.8202 0.6054

knnImpute (k=5) 0.8164 0.5884

meanFill 0.6590 0.0677

MICE (20 imputations) 0.8675 0.6292

similarityWeightedAveraging

0.8259 0.6162

softImpute (lambda =1,0) 0.8296 0.5126

softImpute (lambda=10,0) 0.7903 0.3835

softImpute (lambda=5,0) 0.8266 0.4930

svdImpute (rank=10) 0.8283 0.6201

Page 24: Neoantigen summit 20161115

Architecture

Page 25: Neoantigen summit 20161115

Performance

“Predicting Peptide-MHC Binding Affinities With Imputed Training Data.” Alex Rubinsteyn, Timothy O'Donnell, Nandita Damaraju, Jeffrey Hammerbacher. ICML 2016: Computational Biology Workshop. doi: http://dx.doi.org/10.1101/054775

Page 26: Neoantigen summit 20161115

Performance

“Predicting Peptide-MHC Binding Affinities With Imputed Training Data.” Alex Rubinsteyn, Timothy O'Donnell, Nandita Damaraju, Jeffrey Hammerbacher. ICML 2016: Computational Biology Workshop. doi: http://dx.doi.org/10.1101/054775

Page 27: Neoantigen summit 20161115

Weekly contest performance

http://tools.immuneepitope.org/auto_bench/mhci/weekly/

Page 28: Neoantigen summit 20161115

Using MHCflurryInstall $ pip install mhcflurry

$ mhcflurry-downloads fetch

Run$ mhcflurry-predict \ --alleles HLA-A0201 \ --peptides SIINFEKL SIINFEKD

Page 29: Neoantigen summit 20161115

MHCflurry

■ Allele-specific class I predictors may be downloaded from http://github.com/hammerlab/mhcflurry

■Working on■Expanding our training data by including less precise assays■Better handling of non-9mers■Class II prediction■Pan-allele prediction

Page 30: Neoantigen summit 20161115

■Patients■Jeff Hammerbacher & Hammer Lab■Nina Bhardwaj and the PGV team■Nikesh Kotecha and the PICI Bioinformatics

team■OSS bug reporters!

Thanks

Page 31: Neoantigen summit 20161115

End

Page 32: Neoantigen summit 20161115

Backup slides

Page 33: Neoantigen summit 20161115

Related work■Academic

■UCSC ProTECT■WashU pVAC-Seq■DTU MuPeXi

■Commercial■PGD ImmunoSelect-R■Personalis ACE ImmunoID■Immatics XPRESIDENT■MedGenome OncoPept

Page 34: Neoantigen summit 20161115

Does chemotherapy create neoantigens?

Page 35: Neoantigen summit 20161115

Question

■Mutations and neoantigens detectable from bulk-sequencing may be a biomarker for response to checkpoint blockade

■Chemotherapy induces mutations

Does chemotherapy meaningfully impact detectable mutation and neoantigen burden in high grade serous ovarian cancer?

Page 36: Neoantigen summit 20161115

Australian Ovarian Cancer Study (AOCS)

Page 37: Neoantigen summit 20161115

AOCS Cohort

■High grade serous ovarian carcinoma■WGS + RNA on 114 samples from 92 patients

■79 chemotherapy-naive primary samples■30 relapse samples taken after surgery and adjuvant-chemo■5 primary samples taken after neoadjuvant-chemo

Page 38: Neoantigen summit 20161115

Our analysis

■ Predict neoantigens and look for expression■Connect neoantigens to chemotherapy-

associated mutational signatures

Page 39: Neoantigen summit 20161115

Two contexts for chemotherapy

■Neoadjuvant: given before surgery to try to shrink tumors to be operable

■Adjuvant: given after surgery, when there are usually no clinical signs of disease

Page 40: Neoantigen summit 20161115

After adjuvant chemo and relapse, detectable mutation and neoantigen burden nearly double

81% increase124% increase

Page 41: Neoantigen summit 20161115

But not after neoadjuvant chemo

No changeNo change

Page 42: Neoantigen summit 20161115

In fact, neoadjuvant-treated samples trend toward fewer expressed neoantigens (p=0.09)

44 → 16

Page 43: Neoantigen summit 20161115

What part of the increase in neoantigens at relapse is due to chemo?

■As adjuvant chemo is standard of care, there are no patients who receive surgery but not adjuvant chemo to answer this question

■Alternative: mutational signatures (Alexandrov 2013)

Source: http://cancer.sanger.ac.uk/cosmic/signatures

Page 44: Neoantigen summit 20161115

Source: http://cancer.sanger.ac.uk/cosmic/signatures

Page 45: Neoantigen summit 20161115

Animal studies: cisplatin, cyclophosphamide, etoposide

Page 46: Neoantigen summit 20161115

Extracted signatures from G. Gallus experiments

Page 47: Neoantigen summit 20161115

Cyclophosphamide signature enriched in samples treated with cyclophosphamide (4/10 treated and 4/104 non-treated, p=0.001)

Page 48: Neoantigen summit 20161115

Focus on mutations introduced during treatment

■14 samples from 12 patients with paired pre- and post-treatment samples

■Extract unique-to-treated mutations: 0 variant reads and more than 30 depth in pre-treatment samples

■93,986 / 206,766 (45%) SNVs satisfy this filter■Perform deconvolution on these mutations

Page 49: Neoantigen summit 20161115

Deconvolution of unique-to-treated mutations

▶ Cisplatin detected only in the two cisplatin-treated samples

▶ Cyc detected in 3/6 cyc-treated. Unexpectedly, in 6/8 non-cyc treated samples

Page 50: Neoantigen summit 20161115

Chemo contributes at most 16% of neoantigens in adjuvant-treated relapse samples

Page 51: Neoantigen summit 20161115

Conclusions■ Ovarian tumors at relapse harbor nearly double the predicted

expressed neoantigen burden as primary chemo-naive samples■ Mutagenesis from standard chemotherapy regimes contribute a

small but detectable part of this effect■ Processes already operative in the primaries, including COSMIC

signatures (3) BRCA disruption and (8) Unknown etiology continue to contribute most mutations

■ Cisplatin-derived mutational signatures may not generalize to carboplatin

■ Some evidence that neoadjuvant treatment may decrease neoantigen expression, but larger cohorts are required to assess