Mercator’s Projectionnew.math.uiuc.edu/math198/MA198-2014/geldean2/presentation.pdftan = Rcos(˚)...

10
Mercator’s Projection Andrew Geldean Computer Engineering November 14, 2014 Andrew Geldean (Computer Engineering) Mercator’s Projection November 14, 2014 1 / 10

Transcript of Mercator’s Projectionnew.math.uiuc.edu/math198/MA198-2014/geldean2/presentation.pdftan = Rcos(˚)...

  • Mercator’s Projection

    Andrew Geldean

    Computer Engineering

    November 14, 2014

    Andrew Geldean (Computer Engineering) Mercator’s Projection November 14, 2014 1 / 10

  • Introduction

    Cylindrical projectionDerivation of equationsTruncation and Scale FactorLoxodromes and GeodesicsCalculating Distance

    Figure 1 : Mercator’s Projection

    Andrew Geldean (Computer Engineering) Mercator’s Projection November 14, 2014 2 / 10

  • Projecting the Globe

    Figure 2 : Geometry of a cylindrical projection.

    Geographic coordinates of latitude φ and longitude λTangential to globe at equatorRadius of a parallel is Rcos(φ)

    Andrew Geldean (Computer Engineering) Mercator’s Projection November 14, 2014 3 / 10

  • Small Element Geometry

    tanα = Rcos(φ)δλRδφ and tanβ =δxδy

    Parallel Scale Factor k(φ) = P′M′

    PM =δx

    Rcos(φ)δλ

    Meridian Scale Factor h(φ) = P′K ′

    PK =δyRδφ

    Andrew Geldean (Computer Engineering) Mercator’s Projection November 14, 2014 4 / 10

  • Deriving Mercator’s Projection

    tanβ = Rsecφy ′(φ) tanα, k = secφ, h =y ′(φ)R

    Equality of Angles: α = β −→ y ′(φ) = Rsec(φ)Equality of Scale Factors: h = k −→ y ′(φ) = Rsec(φ)

    Therefore,

    x = R(λ− λ0) and y = Rln[tan(π4 +φ2 )]

    And inversely,

    λ = λ0 +xR and φ = 2tan

    −1[e(yR)]− π2

    Andrew Geldean (Computer Engineering) Mercator’s Projection November 14, 2014 5 / 10

  • Truncation and Scale Factor

    The ordinate y approaches infinity as the latitude approaches the poles.

    φ = 2tan−1[e(yR)]− π2

    = 2tan−1[eπ]− π2= 1.48842 radians

    = 85.05133 ◦

    Figure 3 : Graph of Scale Factor vs. Latitude.

    Andrew Geldean (Computer Engineering) Mercator’s Projection November 14, 2014 6 / 10

  • Loxodromes and Geodesics

    Loxodromes

    Paths, also known as rhumb lines, which cut a meridian on a given surfaceat any constant angle.All straight lines on the Mercator’s Projection are loxodromes.

    Figure 4 : Loxodromes vs Geodesics

    Andrew Geldean (Computer Engineering) Mercator’s Projection November 14, 2014 7 / 10

  • Calculating Distance

    Representative Fraction

    The fraction Ra is called the representative fraction.It is also known the principal scale of the projection.For example, if a map has an equatorial width of 31.4 cm, then its globalradius is 5 cm, which translates to an RF of approximately 1130M .

    There are two main problems when it comes to calculating distance usingMercator’s projection:

    Variation of scale with latitude

    Straight lines on the map do not correspond to great circles

    Short Distances: True Distance = rhumb distance ∼= ruler distance × cosφRFFor example, a line of 3mm, its midpoint at 40 ◦, and an RF of 1130M , thetrue distance would be approximately 300km

    Andrew Geldean (Computer Engineering) Mercator’s Projection November 14, 2014 8 / 10

  • Calculating Distance

    Measuring longer distances requires different approaches

    On the equator: True distance = ruler distanceRF

    On other parallels: Parallel distance = ruler distance × cosφRF

    On a meridian: m12 = a|φ1 − φ2|

    On a rhumb: r12 = a secα|φ1 − φ2| = a secα∆φ

    Andrew Geldean (Computer Engineering) Mercator’s Projection November 14, 2014 9 / 10

  • Sources

    http://www.princeton.edu/~achaney/tmve/wiki100k/docs/

    Mercator_projection.html

    http://en.wikipedia.org/wiki/Mercator_projection

    http:

    //www.public.asu.edu/~aarios/resourcebank/maps/page10.html

    http://kartoweb.itc.nl/geometrics/map20projections/body.htm

    http://www.progonos.com/furuti/MapProj/Normal/CartProp/

    ShapePres/shapePres.html

    Andrew Geldean (Computer Engineering) Mercator’s Projection November 14, 2014 10 / 10

    http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Mercator_projection.htmlhttp://www.princeton.edu/~achaney/tmve/wiki100k/docs/Mercator_projection.htmlhttp://en.wikipedia.org/wiki/Mercator_projectionhttp://www.public.asu.edu/~aarios/resourcebank/maps/page10.htmlhttp://www.public.asu.edu/~aarios/resourcebank/maps/page10.htmlhttp://kartoweb.itc.nl/geometrics/map20projections/body.htmhttp://www.progonos.com/furuti/MapProj/Normal/CartProp/ShapePres/shapePres.htmlhttp://www.progonos.com/furuti/MapProj/Normal/CartProp/ShapePres/shapePres.html

    IntroductionMathematics behind ProjectionProjecting the GlobeSmall Element GeometryDeriving Mercator's ProjectionTruncation and Scale FactorLoxodromes and GeodesicsCalculating Distance

    Sources