Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

38
0 2012-06-25 Issue for Construction C 2012-05-11 Issue for Approval B 2012-03-23 Issue for Approval J.H.WON J.H.CHOI I.S.LEE A 2012-02-17 Issue for Approval J.H.WON J.H.CHOI I.S.LEE REV. DATE DESCRIPTION DSGN CHKD APPD PROJECT : TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT EMPLOYER : CONSULTANT : CONTRACTOR : DESIGNED BY DATE TITLE : 2012-06-25 DESIGN CRITERIA - Civil & Architecture CHECKED BY DATE 2012-06-25 APPROVED BY DATE PROJECT NUMBER DOCUMENT NUMBER REV. 2012-06-25 ADB/MD1-TPIP/EPC150911 MD1-0-C-300-04-00010 0 FOR CONSTRUCTION

Transcript of Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

Page 1: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

0 2012-06-25 Issue for Construction C 2012-05-11 Issue for Approval B 2012-03-23 Issue for Approval J.H.WON J.H.CHOI I.S.LEE

A 2012-02-17 Issue for Approval J.H.WON J.H.CHOI I.S.LEE

REV. DATE DESCRIPTION DSGN CHKD APPD

PROJECT :

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

EMPLOYER :

CONSULTANT :

CONTRACTOR :

DESIGNED BY DATE TITLE :

2012-06-25

DESIGN CRITERIA - Civil & Architecture CHECKED BY DATE

2012-06-25

APPROVED BY DATE PROJECT NUMBER DOCUMENT NUMBER REV.

2012-06-25 ADB/MD1-TPIP/EPC150911 MD1-0-C-300-04-00010 0

FOR CONSTRUCTION

Page 2: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 1 of 37

TABLE OF CONTENTS

1.0 GENERAL .............................................................................................................................. 3

1.1 SCOPE ................................................................................................................................... 3

1.2 UNIT OF MEASUREMENT .................................................................................................... 3

1.3 CODES AND STANDARDS ................................................................................................... 3

1.4 SITE INFORMATION ............................................................................................................. 4

1.5 SITE GRADING ...................................................................................................................... 5

2.0 DESIGN METHOD ................................................................................................................. 5

3.0 MATERIALS ........................................................................................................................... 6

3.1 CONCRETE ........................................................................................................................... 6

3.2 REINFORCEMENT STEEL BAR ........................................................................................... 6

3.3 STRUCTURAL STEEL ........................................................................................................... 7

4.0 LOADS AND LOAD COMBINATIONS .................................................................................. 7

4.1 DESIGN LOADS ..................................................................................................................... 7

4.2 LOAD COMBINATIONS ....................................................................................................... 12

5.0 CONCRETE STRUCTURE .................................................................................................. 13

5.1 STRENGTH REDUCTION FACTORS ................................................................................. 13

5.2 CONCRETE PROTECTION FOR REINFORCEMENT (CONCRETE COVER) ................... 14

5.3 CRACK CONTROL .............................................................................................................. 14

5.4 SHRINKAGE AND TEMPERATURE REINFORCEMENT ................................................... 15

5.5 DEFLECTION CONTROL .................................................................................................... 16

5.6 DEVELOPMENT AND SPLICES OF REINFORCEMENT ................................................... 16

6.0 STEEL STRUCTURE ........................................................................................................... 22

6.1 CODES AND STANDARDS ................................................................................................. 22

6.2 DEFLECTIONS .................................................................................................................... 22

6.3 STEEL DECKING ................................................................................................................. 23

6.4 ANCHOR BOLT .................................................................................................................... 24

6.5 STEEL CONNECTIONS ....................................................................................................... 24

6.6 GRATINGS ........................................................................................................................... 25

6.7 KICK PLATES ...................................................................................................................... 25

6.8 MISC. STAINLESS STEEL MEMBERS ............................................................................... 25

6.9 CABLE SUPPORT BRACKETS ........................................................................................... 25

6.10 PRE-ENGINEERED BUILDINGS ......................................................................................... 25

Page 3: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 2 of 37

7.0 FOUNDATION ...................................................................................................................... 26

7.1 DESIGN PRINCIPLE ............................................................................................................ 26

7.2 FACTORS OF SAFETY ....................................................................................................... 26

7.3 SHALLOW FOUNDATION ................................................................................................... 26

7.4 PILE FOUNDATION ............................................................................................................. 27

7.5 MACHINE FOUNDATIONS .................................................................................................. 28

7.6 LIMITING ANGULAR DISTORTION FOR DIFFERENTIAL SETTLEMENT OF FOUNDATION ..... 28

8.0 PIPE RACK STRUCTURE ................................................................................................... 29

8.1 LAYOUT AND GEOMETRY ................................................................................................. 29

8.2 LOADS AND LOAD COMBINATIONS ................................................................................. 29

9.0 DRAINAGE .......................................................................................................................... 31

9.1 STORM WATER DRAINAGE ............................................................................................... 31

9.2 SANITARY WASTEWATER DRAINAGE ............................................................................. 31

9.3 PLANT WASTEWATER(CHEMICAL, OILY) DRAINAGE .................................................... 31

9.4 COAL WASTEWATER DRAINAGE ..................................................................................... 32

9.5 ASH WASTEWATER DRAINAGE ........................................................................................ 32

10.0 PAVEMENT .......................................................................................................................... 32

10.1 LOAD .................................................................................................................................... 32

10.2 CONCRETE PAVING ........................................................................................................... 32

10.3 GRAVEL PAVING ................................................................................................................ 33

10.4 OTHER AREA ...................................................................................................................... 33

10.5 GROUND COVER ................................................................................................................ 33

10.6 WALKWAYS ......................................................................................................................... 33

10.7 CROSS SLOPES FOR ROADS ........................................................................................... 33

10.8 ROAD ELEVATIONS ............................................................................................................ 34

10.9 DESIGN OF FLEXIBLE PAVEMENT ................................................................................... 34

Page 4: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 3 of 37

1.0 GENERAL

1.1 Scope

The purpose of this “Design Criteria” is intended to present the design procedure/method,

design parameters, and the material standards to be used for the structural analysis and

detail design of structures and foundations to be constructed for TWO(2) x 500MW MONG

DUONG 1 THERMAL POWER PLANT.

1.2 Unit of Measurement

Unit of measurement in design shall be expressed in international SI system.

1.3 Codes and Standards

Structure design and materials shall comply with Vietnamese Standards or to other

internationally recognized codes having an equivalent or stringent requirements listed

below:

ASCE 7-05 Minimum Design Loads for Buildings and Other Structures

AISC 360-05 Specification for Structural Steel Building

AISC 303-05 Code of Standard Practice for Steel Building and Bridges

AISC 341-05 Seismic Provisions for Structural Steel Buildings

ACI 318-08 Building Code Requirements for Structural Concrete

ACI 350-06 Code Requirements for Environmental Engineering Concrete

Structures

ACI 301-05 Specification for Structural Concrete

ACI 530-08 Building Code Requirements for Masonry Structures

IBC 2006 International Building Code

AWS D1.1-04 Structural Welding Code for Steel

AASHTO American Association of State Highway and Transportation Officials

NFPA 101 Life Safety Code

NFPA 850 Recommended Practice of Fire Protection for Electric Generating

Plants

BS British Standard (as applicable)

ASTM American Society for Testing and Materials (as applicable)

API 650 American Petroleum Institute (as applicable)

Page 5: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 4 of 37

JIS Japanese Industry Standard (as applicable)

SSPC Steel Structures Painting Council (as applicable)

KS1) Korean Standard (as applicable)

GB1) Chinese Standard (as applicable)

1) These standards (KS and GB) would be subject to approval of Owner (‘s). 1.4 Site Information

1.4.1 Site Location

The plant site is located at Mong Duong ward, Cam Pha town, Quang Ninh Province in

Vietnam Site elevation(to top of soil platform) is 8m in comparison with M.S.L(+)0.0m .

1.4.2 Temperature

Absolute minimum air temperature : 0.20°C

Absolute maximum air temperature : 39.50°C

Yearly mean air temperature : 22.80°C

1.4.3 Humidity

Absolute lowest air relative moisture : 14.00%

Absolute highest air relative moisture : 100.00%

Yearly mean air relative moisture : 83.00%

1.4.4 Wind

Basic Wind Speed : : 49.67 m/sec

This value is 3 second gust wind speed for 50 year return period at 10m height from ground

level. Additional parameters are defined in Section 2.1.6.

(This basic wind speed is recommended in report of “Recommendation on Wind and

Seismic Load” approved by Owner with Letter No 17/AND1-KT dated on Jan. 06, 2012)

1.4.5 Rainfall

Yearly mean rainfall : 2212.7 mm

Maximum daily rainfall : 611.0 mm

(to be calculated with the frequency of 0.1% corresponding to project grade I)

Page 6: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 5 of 37

• Rainfall intensity(l/s.ha) : nbt

PCAq

)(

)log1(

where,

A,C,b,n : Parameters of Hon Gai near Mong Duong

P : 30 years (Recurrence period)

t : Calculation time(min)

Regarding the rainfall intensity, the formula in TCVN 7957-2008 will be applied.

1.4.6 Earthquake

• Peak Ground Acceleration(PGA) : 0.13 g ( for Site Class “B”)

This value is given in Table 15 of Report of “Recommendation on Wind and Seismic Load”

approved by Owner with Letter No 17/AND1-KT dated on Jan. 06, 2012

1.5 Site Grading

1.5.1 Concrete Level

Foundation Out-Door In-Door

Structural Steel Columns GL +300mm CL+ 30 ~50mm

Stairs and Ladders GL+200mm CL+30mm

Equipment(general) GL+300mm CL+200mm

Local Pipe Support GL+200mm CL+200mm

Ground Floor in Building - GL+300mm

Note : GL and CL mean the Grading Level and Concrete Level of each floor respectively. And equipment support concrete levels may be adjusted in accordance with the specific requirements of the equipment.

: Site Datum E.L(+)0.0m = M.S.L(+)8.0m

2.0 DESIGN METHOD

Concrete work shall, as a minimum, shall be designed, specified and installed in

accordance with ACI requirements. Reinforced concrete structures and foundations shall

be designed in accordance with ACI 318-08. All water retaining structures shall be

designed and constructed in accordance with ACI 350-06.

Steel structures will be designed in accordance with AISC 360-05 LRFD method. Masonry

work shall, as a minimum, be designed, specified, and constructed in accordance with ACI

530-08 requirements.

Page 7: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 6 of 37

3.0 MATERIALS

3.1 Concrete

Physical properties of concrete

Unit weight :wc =25 kN/m3

Modulus of elasticity : Ec = 37,000 MPa for f’c = 60MPa

30,000 MPa for f’c = 40MPa

27,000 MPa for f’c = 32MPa

25,000 MPa for f’c = 28MPa

21,000 MPa for f’c = 20MPa

16,000 MPa for f’c = 12MPa

Poisson’s ratio : υ = 0.2

The grade of concrete to be used shall be as follows:

Concrete Type *Compressive Strength

Based on cylinder test (f’c)

**Compressive Strength

Based on cube test (Fc)

Blinding 12 MPa 15 MPa

Electrical duct bank 20 MPa 25 MPa

Bored pile 32 MPa 40 MPa

Spun pile 60 MPa 72 MPa

Foundation 28 MPa 35 MPa

All other concrete 28 MPa 35 MPa

Waterproof concrete 28 MPa 35 MPa

CW pump structure 40 MPa 50 MPa * ASTM C39 Compressive Strength Test or equivalent having a standard specimen 150mm in diameter by 300mm long and capped with a suitable material to provide a smooth-bearing surface on each end of the specimen. ** ASTM C109 Compressive Strength Test or equivalent having a standard 50mm cube specimen.

3.2 Reinforcement Steel Bar

Reinforcement steel bar used in reinforced concrete shall be complied with ASTM A615M

Grade 420 or equivalent. Physical properties based on ASTM A 615M are as below.

Minimum yield strength : fy = 420 MPa

Modulus of elasticity : Es = 200,000MPa

Welded wire fabric shall be confirmed to the requirements of ASTM A184

Page 8: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 7 of 37

Bar Size No. Nominal

Diameter, mm Nominal Area,

mm2 Nominal Weight

kg/m

D10 (# 3) 9.5 71 0.560

D13 (# 4) 12.7 129 0.994

D16 (# 5) 15.9 199 1.552

D19 (# 6) 19.1 284 2.235

D22 (# 7) 22.2 387 3.042

D25 (# 8) 25.4 510 3.973

D29 (# 9) 28.7 645 5.060

D32 (# 10) 32.3 819 6.404

D36 (# 11) 35.8 1006 7.907

D43 (# 14) 43.0 1452 11.380

D57 (# 18) 57.3 2581 20.240

3.3 Structural Steel

Structural steel shall be confirmed to ASTM A36M, ASTM A572 Gr. 345 (50) or ASTM A992.

Material properties based on ASTM shall be satisfied except that the minimum strength

shall meet below requirement or equivalent depending on local availability.

Minimum yield strength : 250 MPa for ASTM A36M

345 MPa for ASTM A572/A992

Modulus of elasticity : 200,000 MPa

4.0 LOADS AND LOAD COMBINATIONS

4.1 Design Loads

The following loads shall be considered in the structural design. If other loads are expected,

those loads shall be included in the design.

4.1.1 Dead Loads (D)

Dead loads is comprised of the weight of structural members and all permanent materials

and weight of equipment as well as the weight of pipes, air ducts, cables, insulation, and

other similar items fastened thereto or supported thereby, which are not considered in the

live load hereinafter.

Page 9: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 8 of 37

Ds : Self Weight of Structural Element in Analysis Model

Dd : Material Weight of Structural Floor, Non Structural Element or Finish

De : Equipment Loads to be provided by mechanical engineers

Dp : Area loads for piping and cable tray to be provided by Pipe/Elec.

Engineers

The weights of structural or non-structural material to be considered are as follows:

Reinforced Concrete : 25.0 kN/m3

Steel : 78.5 kN/m3

Plaster : 20.0 kN/m3

4.1.2 Live Loads (L or Lr)

4.1.2.1 Facility Building

Live loads are all non-permanent and occur over an area, which is not occupied by fixed

equipment. This is stationary or movable loads and can occur regularly during the expected

service life of the power or only during special operating conditions, like transportation,

inspection, assembling and dismantling of components. For example:

• Operating load and/or test load of equipment and piping

• Short circuit forces

• Anchor loads(force) on pipe anchor supports due to movement restrains

• Vehicle loads

• Surcharge on soil / surface adjacent to retaining walls (affected by traffic loads, construction loads or expected maintenance loads)

• Any other relevant load as per manufacturer’s specified loading data

• The minimum live loads given below will be used in the structural design unless the special load requirement provided by manufacturer is indicated.

1) Turbine Building

Unloading ground concrete floor (S.O.G) : 25.0kN/m2 Ground concrete floor (S.O.G) : 15.0kN/m2

Ground grating floor (w/o forklift access) : 10.0kN/m2

Ground grating floor : 15.0kN/m2 Operating, non lay-down concrete areas : 17.5kN/m2

Other floor concrete areas : 10.0kN/m2 Other floor grating/steel plate areas : 10.0kN/m2 Electrical Equipment Room : 12.5kN/m2 Stairs : 5.0kN/m2 Access platform and catwalks : 5.0kN/m2 Concrete Roof : 7.5kN/m2 Metal Roof : 1.0kN/m2

Page 10: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 9 of 37

2) Other Buildings (excluding turbine & administration building)

Ground Concrete Floor (S.O.G) : 10.0kN/m2 Control Rooms : 10.0kN/m2 Electrical Equipment Rooms : 10.0kN/m2 Battery Room : 12.5kN/m2 Storage Areas : 7.5kN/m2 General Equipment Rooms : 5.0kN/m2 Offices or Rocker room, General room : 5.0kN/m2 Concrete Roof with equipment : 5.0kN/m2 Metal or Concrete Roof : 1.0kN/m2 Stairs, Gratings, Platforms : 5.0kN/m2

4.1.2.2 Non-Facility Building

The live loads for Non-Facility Building to be used in design are based on ASCE 7-05 for

rooms not mentioned properly in Owner’s Specification (Clause 23.1.3.6)

1) Administration Building

Offices : 4.8kN/m2 File/ Computer Room : 4.8kN/m2

Lobbies and First Floor Corridor : 4.8kN/m2

Above First Floor Corridors : 4.8kN/m2

Switch Room : 10.0kN/m2

Conference Room : 4.8kN/m2

Dining Room : 4.8kN/m2

Where, live load for members having a tributary area defined in ASCE can be reduced according to requirements Sec. 4.8 and Sec. 4.9 of ASCE/SEC 7-05. The reduction of live loads in this project would be applied in the following cases;

a) Live loads or equal to 4.8 kN/m2 in administration building

b) Roof live loads of 1.0 kN/m2 in metal roof.

In addition, heavy live load that exceed 4.8 kN/m2 for members (columns) supporting two or more floor may be reduced by 20 percent based on Sec 4.8.2. in ASCE.

4.1.3 Crane Loads(CL)

The maximum wheel load will be determined in accordance with Sec 4.10.1 of ASCE/SEI 7-

05. Design loads for the runway beams, including the connections and support brackets will

include the maximum wheel load of the crane and the additional followings:

• 25% of maximum wheel loads

• A lateral force of not less than 20% of the sum of the weights of the lifted load and the

crane trolley, (excluding other parts of the crane), acting at the top of the rail in either

Page 11: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 10 of 37

direction normal to the rail

• A longitudinal force of not less than 10% of the sum of the maximum wheel loads of the

crane applied at the top of the rail in either direction

4.1.4 Soil Lateral Loads (H)

Earth retaining structures, including basement, trench walls and retaining walls shall be

designed to resist soil lateral loads due to construction vehicle and earthquake event.

The Mononobe-Okabe (M-O) method would be considered to compute the effects of earth

pressures including earthquake actions. The values of the ground acceleration to be used

in the M-O expressions shall be obtained from the site design spectrum in Section 4.1.7.

In addition to earth pressure, surcharge load for underground structure design will be

considered 5 kN/m2for non-traffic area and HS 20-44 loading respectively for traffic area,

and minimum of HS-25 would be applied to box culvert.

4.1.5 Water Pressure (F)

Water pressure means the pressure and buoyancy of groundwater acting on the

underground structure or foundation.

4.1.6 Wind Load (W)

Wind loads will be determined in accordance with Section 6.5 of ASCE/SEI 7-05 with

parameters mentioned below;

Basic Wind Speed (3Sec) : 49.67 m/sec

Importance Factor(I) : 1.15

Exposure : C

Topographic Factor(Kzt) : 1.0

4.1.7 Earthquake Loads (E)

Earthquake Loads will be determined based on following parameters in accordance with

ASCE/SEI 7-05.

Tabulated below are the key parameters for the design response spectrum corresponding

to Site classifications from ASCE 7-05, equivalent to TCXDVN 375:2006 ground types:

Page 12: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 11 of 37

Parameters necessary for Seismic Design Spectrum Parameter Soil Type D Soil Type E

SDS 0.334*g 0.490*g

SD1 0.198*g 0.296*g

T0 0.119 sec 0.121 sec

TS 0.593 sec 0.604 sec

TL 8 sec 8 sec

Seismic design category C D

Importance factor 1.25 1.25

PGA 0.20 g 0.294 g

Structures All of structures except

Main&Aux. Tr, Condensate storage tank and Outfall

Main&Aux. Tr, Condensate storage tank and Outfall

Structure.

Detailed derivation of design spectral response acceleration parameters SDS and SD1 at

short periods (0.2s) and at 1 second (1.0s) for different soil types are presented in the

attachment 2 “Clause 7.0 Design value for PGA SDS, SD1”.

4.1.8 Temperature Load

Temperature effects due to weather conditions will be considered for expansion and

contraction joints in accordance with relevant codes and standards. For the design of

structural steel and reinforced concrete members sufficient degrees of freedom will be

provided to ensure weather temperature changes are generally of minor influence. Hence,

loads due to weather temperature changes specified in specifications and standards are

covered by the applied safety factors in the general design procedures.

Allowance shall be made for the stresses induced in any structure due to differences in

temperature between surfaces of members or structures. Expansion joints shall be located

and spaced where necessary, so as to minimize strains in the structure of building, cladding,

finished, fixing, plants and etc.

4.1.9 Vibration force and dynamic effects

Structure and foundation for heavy vibrating equipment including, but not limited to,

reciprocating and centrifugal compressors and large pumps, shall be investigated for

response to the imposed cyclic loading and unbalanced force and moments. Such structure

and foundations shall be analyzed by recognized dynamic methods and proportioned to

ensure safe, smooth and trouble-free behavior under operating conditions.

Page 13: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 12 of 37

4.1.10 Rain Loads and Ponding Instability

The amount of rain water that could accumulate on a roof from blockage of the primary

drainage system shall be considered in accordance with ASCE 7-05 Section 8. The roof

shall be designed to withstand the load created by that water plus the uniform load caused

by water that rises above the inlet of the secondary drainage systems at its design flow.

Ponding refers to the retention of water due solely to the deflection of relatively flat roofs

(slope less than 1.2O). Roof deflections caused by rain loads shall be investigated when

determining the likelihood of ponding instability. The primary drainage system within an

area subjected to ponding shall be considered to be blocked in this analysis.

4.2 Load combinations

4.2.1 General

Load combinations used shall be based on the provisions Chapter 2 of ASCE 7-

05.Buildings and structures shall be designed to resist the following load combinations.

Basic Load Cases

D : Dead load

L : Live load

Lr : Roof live load

R : Rain load

H : Earth pressure, groundwater pressure or bulk materials pressure

F : Fluid with well-defined pressures

T : Thermal Load

W : Wind load

E : Earthquake load

EH : Horizontal Earth pressure(Only applicable for clause 4.2.3.8)

EV : Vertical Earth pressure(Only applicable for clause 4.2.3.8)

4.2.2 Service Load Combination

Where allowable stress design is used, all buildings, foundations or structures shall resist

the most critical effects resulting from the following combinations

1) D + F

2) D + H + F + L + T

Page 14: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 13 of 37

3) D + H + F + (Lr or R)

4) D + H + F + 0.75(L + T) + 0.75(Lr or R)

5) D + H + F + (W or 0.7E)

6) D + H + F + 0.75(W or 0.7E) + 0.75L + 0.75(Lr or R)

7) 0.6D + W + H

8) 0.6D + 0.7E + H

4.2.3 Factored Load Combinations for USD or LRFD

These combinations listed below will be used for the design of steel with LRFD method or

concrete structures with USD method.

1) 1.4(D + F)

2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or R)

3) 1.2D+ 1.6(Lr or R) + (L or 0.8W)

4) 1.2D + 1.6W + L + 0.5(Lr or R)

5) 1.2D + 1.0E + L

6) 0.9D + 1.6W + 1.6H

7) 0.9D + 1.0E + 1.6H

8) 1.25D + 1.75L + 1.35EH + 1.3EV

Exceptions:

1) The load factor on H shall be set equal to zero in combination 6) and 7) if the

structural action due to H counteracts that due to W or E. Where lateral earth

pressure provides resistance to structural actions from other forces, it shall not be

included in H but shall be included in the design resistance.

2) The combination 8) would only applicable for the box culverts and pipe encasement

structure under the road according to AASHTO standard (1997)

5.0 CONCRETE STRUCTURE

5.1 Strength Reduction Factors

The factors in USD method for structural concrete shall be used as per following

provisions in Section 9.0 of ACI 318(M)-08.

Page 15: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 14 of 37

Tension-controlled sections: 0.90

Compression-controlled sections:

- Members with spiral reinforcement conforming to Section 10.9.3, ACI 318(M)-08:

0.75

- Other reinforced members: 0.65

- Shear and torsion: 0.75

- Bearing on concrete: 0.65

5.2 Concrete Protection for Reinforcement (Concrete Cover)

In general the concrete protection for reinforcement bar shall be as per Section 7.7 of ACI

318(M)-08.

The minimum concrete cover shall be as follows.

• Concrete exposed to sea water : 75mm

• Concrete exposed earth or weather :

D19 (# 6) through D57 (# 18) bars: 50mm

D16 (# 5) bar, W31 (MW200) or D31 (MD200) wire, and smaller: 40mm

• Concrete not exposed to weather or in contact with ground

For slabs, walls, joints

D43 (# 14) and D57 (#18) bars: 40mm

D36 (# 11) bar and smaller: 20mm

For beams, column

Primary reinforcement, ties, stirrups, spirals: 40mm

For shells, folded plate member

D19 (# 6) bar and larger: 20mm

D16 (# 5) bar, MW200 (W31) or MD200 (D31) wire, and smaller: 13mm

Note: According to geotechnical report, water-soluble sulfate concentration in contact with concrete is low and injurious sulfate attack is not concerned. Since sulfate in water is 38.4ppm < 150ppm, no need of sulfate-resisting cement.(refer to Table 4.2.1 inACI318-08 code.)

5.3 Crack Control

Permissible crack width for reinforced concrete shall be as follows.

For liquid retaining structures (beam and one way slab)as per ACI 350-06,

Section 10.6.4

Page 16: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 15 of 37

22 2504

00056

)/(

,max,

b

sds

f

, (MPa, In normal environmental exposure areas.)

22 2504

50045

)/(

,max,

b

sds

f

, (MPa, In severe environmental exposure areas.)

Where,

max,sf : maximum allowable stress in reinforcement at service load (MPa)

: Strain gradient amplification factor.

s : Center-to-center spacing of flexural tension reinforcement (mm)

bd : nominal diameter of bar (mm)

For other structures (beam and one way slab) as per ACI 318(M)-08, Section 10.6.4

The spacings of reinforcement closest to a surface in tension shall not exceed that

given by

cs

cf

s 5260094

.,

, but not greater than 300mm.(In environmental exposure case)

cs

cf

s 52280

380 . , but not greater than 300mm.(Other case)

Where,

fs : Calculated stress in reinforcement at service load (Mpa)

cc : Clear cover from the nearest surface in tension (mm)

s : Center-to-center spacing of flexural tension reinforcement (mm)

5.4 Shrinkage and Temperature Reinforcement

Reinforcement for shrinkage and temperature stresses normal to flexural reinforcement

shall be provided in structural slabs where the flexural reinforcement extends in one

direction only. Such reinforcements shall be provided at least the following ratios of

reinforcement area to gross concrete area.

Page 17: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 16 of 37

Length between movement joints, m (ft)

Minimum shrinkage and temperature

reinforcement ratio (Grade 420)

Less than 6 (20) 0.003

6 (20) to less than 9 (30) 0.003

9 (30) to less than 12 (40) 0.004

12 (40) and greater 0.005*

* Maximum shrinkage and temperature reinforcement where movement joints are not provided.

Note: When using this table, the actual joint spacing shall be multiplied by 1.5 if no more than 50%

of the reinforcement passes through the joint.

In cases of restraint causing significant tension in slab, it may be necessary to increase the

amount of shrinkage and temperature reinforcement in both principal directions.

For liquid retaining structures as per ACI 350-06, Section 7.12

For building and other structures as per ACI 318(M)-08, Section 7.12

Deformed bars used: ρmin = 0.0020

Welded wire fabric used: ρmin = 0.0018

5.5 Deflection Control

Control of deflections is in accordance with ACI 318(M)-08, Section9.5.

5.6 Development and Splices of Reinforcement

5.6.1 Tensile Development Length of Deformed Bars

1) Development Length ld for Deformed Bars in Tension

f’c = 60MPa, fy = 420 MPa unit : mm

Case α D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

ld

a 1.0 300 335 413 490 701 797 924 1020

1.3 335 435 536 637 911 1036 1201 1326

b 1.0 387 503 619 735 1084 1232 1429 1577

1.3 503 653 804 955 1409 1601 1857 2050

Page 18: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 17 of 37

f’c = 40MPa, fy = 420 MPa unit : mm

Case α D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

ld

a 1.0 316 411 505 600 859 976 1132 1250

1.3 410 534 656 780 1116 1268 1471 1625

b 1.0 474 616 758 901 1328 1509 1750 1931

1.3 616 800 985 1171 1726 1961 2275 2510

f’c = 32MPa, fy = 420 MPa unit : mm

Case α D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

ld

a 1.0 353 459 565 671 960 1091 1266 1397

1.3 458 596 734 872 1248 1418 1645 1816

b 1.0 530 689 848 1007 1484 1687 1957 2159

1.3 689 895 1102 1309 1929 2193 2544 2806

f’c = 28MPa, fy = 420 MPa unit : mm

Case α D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

ld

a 1.0 377 491 604 718 1027 1167 1354 1494

1.3 490 638 785 933 1335 1517 1760 1942

b 1.0 566 737 907 1077 1587 1803 2092 2309

1.3 735 958 1179 1400 2063 2343 2719 3001

f’c = 20MPa, fy = 420 MPa unit : mm

Case α D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

ld

a 1.0 447 581 715 849 1215 1381 1602 1767

1.3 581 755 929 1103 1579 1795 2082 2297

b 1.0 670 872 1073 1274 1878 2134 2475 2732

1.3 871 1133 1394 1656 2441 2774 3217 3551

Page 19: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 18 of 37

Case a: clear spacing of bars being developed or spliced not less than db, clear cover not

less than db, and stirrups or ties throughout ld not less than the code minimum, or

clear spacing of bars being developed or spliced not less than 2db and clear cover

not less than db

Case b: all other cases, except for case a

2) Modification Factors

Reinforcement location factor (Ψt )

Horizontal reinforcement so placed that more than 300mm of fresh concrete is

cast in the member below the development length or splice: 1.3

Other reinforcement: 1.0

Excess reinforcement

Reduction in development length shall be permitted where reinforcement in a

flexural member is in excess of that required by analysis except where

anchorage or development for fy is specifically required:

(As required) / (As provided)

5.6.2 Compressive Development Length of Deformed Bars

1) Development Length Id for Deformed Bars in Compression

f’c = 60MPa, fy = 420 MPa unit :mm D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

Id 200 218 268 319 369 420 487 577

f’c = 40MPa, fy = 420 MPa unit :mm

D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

Id 200 234 288 343 397 451 523 577

f’c = 32MPa, fy = 420 MPa unit :mm D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

Id 200 241 296 352 408 464 538 593

f’c = 28MPa, fy = 420 MPa unit :mm D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

Id 200 257 317 377 436 496 575 634

Page 20: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 19 of 37

f’c = 20MPa, fy = 420 MPa unit :mm D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

Id 234 305 375 446 516 586 680 751

2) Modification Factors

Excess reinforcement

Reinforcement in excess of that required by analysis:

(As required) / (As provided)

Spirals and ties

Reinforcement enclosed within spiral reinforcement not less than 6.0mm diameter and

not more than 100mm pitch or within D13 (# 4) ties spaced at not more than 100mm on

center: 0.75

5.6.3 Development of Standard Hooks in Tension

1) Development Length ldh for Deformed Bars in Tension Terminating in a Standard Hook

f’c = 60MPa, fy = 420 MPa unit :mm D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

Id 150 176 216 257 298 338 393 433

f’c = 40MPa, fy = 420 MPa unit :mm

D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

Id 166 215 265 315 365 415 481 531

f’c = 32MPa, fy = 420 MPa unit :mm

D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

Id 185 241 296 352 408 464 538 593

f’c = 28MPa, fy = 420 MPa unit :mm

D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

Id 198 257 317 377 436 496 575 634

f’c = 20MPa, fy = 420 MPa unit :mm

D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

Id 234 305 375 446 516 586 680 751

2) Modification Factors

Concrete cover

For D36 (#11) bar and smaller, side cover (normal to plane of hook) not less than 65mm

and for 90 degree hook, cover on bar extension beyond hook not less than 50mm :0.7

Page 21: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 20 of 37

Ties or stirrups

For 90 degree hooks of D36 (#11) and smaller bars that are either enclosed within ties

or stirrups perpendicular to the bar being developed, spaced not greater than 3db along

the development length ldh of the hook; or enclosed within ties or stirrups parallel to the

bar being developed, spaced not greater than 3db along the length of the tail extension

of the hook plus bend :0.8

For 180 degree hooks of D36 (#11) and smaller bars that are either enclosed within

ties or stirrups perpendicular to the bar being developed, spaced not greater than 3db

along the development length ldh of the hook :0.8

3) Excess reinforcement

Where anchorage or development for fy is not specifically required, reinforcement in

excess of that required by analysis: (As required) / (As provided)

4) Hooked Bar Details for Development of Standard Hooks

5.6.4 Splices of Reinforcement

Splices shall be positioned and furnished as shown on the drawings. Alteration of splice

locations shall be submitted with drawing revisions for owner’s consent.

Lap splices shall not be used for bars larger than D36 (#11). Bars spliced by non-contact

lap splices in flexural members shall not be spaced transversely farther apart than one-fifth

the required lap splice length, nor 150mm.

1) Splices of Deformed Bars in Tension

Minimum length of lap for tension lap splices shall be as required for Class A or B splice,

but not less than 300mm, where:

Page 22: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 21 of 37

Class A splice: 1.0 ld

Class B splice : 1.3 ld

Where, ld is the tensile development length for the specified yield strength fy in accordance

with Clause 5.6.1 without the modification factor of excess reinforcement.

As provided * Maximum percent of As spliced within required lap length

As required 50 100

Equal to or greater than 2 Class A Class B

Less than 2 Class B Class B * Ratio of area of reinforcement provided to area of reinforcement required by analysis at splice

locations.

2) Splices of Deformed Bars in Compression

Compression lap splice length shall not be less than 300mm. For f’c less than 21MPa,

length of lap shall be increased by one-third.

f’c = 60MPa or 40MPa or 32MPa or 28MPa, fy = 420 MPa unit :mm

Bar size D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

Id 306 397 489 581 673 765 887 979

f’c = 20MPa, fy = 420 MPa unit :mm

Bar size D10 (#3) D13 (#4) D16 (#5) D19 (#6) D22 (#7) D25 (#8) D29 (#9) D32(#10)

Id 410 533 656 779 902 1025 1189 1312

5.6.5 Minimum Bend Diameters

Diameter of bend measured on the inside of the bar, other than for stirrups and ties in sizes

D10 (# 3) through D16 (# 5), shall not be less than the values in below table.

Inside diameter of bend for stirrups and ties shall not be less than 4db for D16 (#5) bar and

smaller. For bars larger than D16 (#5), diameter of bend shall be in accordance with below

table.

Inside diameter of bend in welded wire reinforcement for stirrups and ties shall not be less

than 4db for deformed wire larger than D6 and 2db for all other wires. Bends with inside

diameter of less than 8db shall not be less than 4db from nearest welded intersection.

Bar Size Minimum Diameter

D10(# 3) through D25(# 8) 6 db

D29(# 9) through D36(#11) 8 db

D43(#14) and D57(#18) 10 db

Page 23: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 22 of 37

6.0 STEEL STRUCTURE

6.1 Codes and Standards

Steel structures will be designed in accordance with LRFD design method as specified in

AISC 360-05 “Specification for Structural Steel Buildings” and the requirement of Seismic

provision (AISC 341-05).

6.2 Deflections

The maximum allowable deflections for structural steel elements, where L is the span for

the element, are given in Tables below.

Limit of vertical deflection Structural Element Vertical Limit Loading

Metal roof panel L/240* Roof Live Load

Purlins L/240* Roof Live or Wind (or Snow)

L/200** Dead Load + Roof Live Load

Floor Beams / Girders L/300** Dead Load + Live Load

L/360 Live Load

Floor Beams supporting column

L/400** Dead Load + Live Load

Walkway and stair beams L/250** Dead Load + Live Load

Cantilever L/180** Dead Load + Live Load

Monorail runway beam Smaller of L/800** or

Manufacturer Specification Dead + Crane Load

Crane runway beam Smaller of L/800** or

Manufacturer SpecificationDead + Crane Load

Cantilever runway beam L/450** Dead Load + Live Load

Main Frame Rafter of Pre-engineered Building supporting metal roofing

L/150*** Roof Live Load

Purlins of Pre-engineered Building supporting metal roofing

L/150* Dead Load + Roof Live Load

L/180* Wind

Note: *Values taken from IBC 2006 Table 1604.3 **Values taken Mong Duong Technical Specification Sec 23.1.3.6 *** Value taken MBMA 2006 Table 1.3.1(b)

Anticipated deflection from potential ponding shall be considered for flat roofs having a

slope ≤ 1.2O (20mm per meter). It shall be investigated to assure that they possess

adequate stiffness to preclude progressive deflection as rain falls on them using methods

specified in AISC 360-05 Appendix 2.

Page 24: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 23 of 37

Limit of horizontal Deflection

Structural Element Horizontal Limit Loading

Turbine Building with Bridge Crane

1)Lesser of H/240 or 50mm, where H is runway beam elevation from operating

floor

100% crane lateral load or 0.7Wind

Drift of structure 2)H/400, H is Frame Height Dead + 0.5Live + 0.7Wind

Story Drift 2)h/400 and absolute inter-story drift of limit of 10mm*

Dead + 0.5Live + 0.7Wind

Crane run way girder or monorail runway beam

Smaller of 3)L/600 or Manufacturer Specification

100% crane lateral load

Wind Columns 3)L/300 0.7Wind

Girts

3)L/200 for wall metal panels

0.7Wind

4)L/240 < 40mm for masonry

0.7Wind

Story Drift of structure 5)0.01h / 0.015h / 0.02h,

where h is the story heightEarthquake Load

Columns with metal cladding of Pre-engineered Building

3)H/150 Dead + Wind

Girt with metal cladding of Pre-engineered Building

6)L/90 Wind

Reference: 1) AISC Steel Design Guide 3 (Serviceability Design Consideration for Steel Buildings), p30 2) ASCE 7-05, p384a, CC.1.2 3) Mong Duong Technical Specification 23.1.3.6 K 4) AISC Steel Design Guide 3 (Serviceability Design Consideration for Steel Buildings), p18 5) ASCE 7-05, Table 12.12-1, p134 6) IBC 2006,Table 1604.3, p280 Note: *Absolute inter-story drift limit of 10mm is imposed if damage to cladding and non-structural walls is not tolerable. This absolute inter-story drift limit may be relaxed if there is appropriate detailing in the non-structural elements to accommodate greater drift.

6.3 Steel Decking

Steel decking shall consist of profiled steel sheets for use as permanent formwork for

concrete slabs. The steel decking shall be hot-dipped zinc coated BONDEK (1.0 mm thick)

as manufactured by John Lysaght or equal to be approved by the Owner and installed in

accordance with the manufacturer's recommendations. Design shall be based on the

requirements of BS 5950 Part 4 or equivalent.

Limiting vertical deflections of the profiled sheet during construction stage and of the

composite slab shall be based on manufacturer’s recommendation or as suggested by BS

5950 Part 4.

Page 25: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 24 of 37

6.4 Anchor Bolt

Anchor bolts will be headed or bent type with requirements of ASTM F1554 Grade 248 (36).

Minimum anchor bolt diameter shall be 13mm. Where high strength anchor are required,

ASTM F1554 Grade 380 (55) plain or threaded bars will be prepared. All anchor bolts shall

not be hot-dip galvanized.

6.5 Steel Connections

6.5.1 Welding

All welding shall conform to the requirement of AWS codes listed below.

A2.4 : Welding Symbols

D1.1 : Steel

D1.3 : Aluminium

D1.4 : Reinforcing Steel

C5.4 : Stud Welding

Welding electrode will have minimum specified tensile strength of 480MPa (70,000psi).

Where the welding is conducted in accordance with D1.1-steel, E70 Electrode will be used.

6.5.2 High Tension Bolt

High strength structural bolts will be ASTM A325 with type 1, ASTM A490 or equivalent.

Structural steel connections will be predominately use 22mm diameter high tension bolts.

The pre-tensioning will be achieved by Turn-of-Nut Pre-tensioning, Calibrated Wrench Pre-

tensioning, Direct-Tension-Indicator Pre-tensioning or twist off-type Tension control Bolt

Pre-tensioning.

Contact surfaces of connection by bearing connection (or snug tightened connections) will

not be painted. Main bracing connections will be designed to cover the full section

properties of the connected members. Pry action will be considered in the design of bolted

connections in accordance with the AISC.

6.5.3 Common Bolt

The common bolts will be ASTM A307 or equivalent A36. The connection for a girt, purlin

or others secondary members will have a minimum of two 16 mm diameter common bolts

unless otherwise indicated. Also, common bolts will apply to the minor connections such as

handrails, floor plates and etc.

Page 26: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 25 of 37

6.6 Gratings

The design will be carried out in accordance with the following codes;

Steel will comply with ASTM A1011(ASTM A569-withdrawn) and ASTM A36 for steel

bars in thickness over 4.8mm (3/16 inches).

Galvanized grating will be galvanized per ASTM A123 or A385.

Grating banding shall be provided around grating panels and around openings in grating.

Banding around grating panels shall be of same size as bearing bars. Banding around

openings shall be 6mm thick plates and shall extend 100 mm higher than the top surfaces

of gratings. Indoor grating shall be non-serrated while outdoor grating shall be serrated.

6.7 Kick Plates

Unless otherwise specified, all kick plates shall be 6 mm thick plates and shall extend 100

mm higher than the top surface of the floor or platform level.

6.8 Misc. Stainless Steel Members

Material for stainless steel members including pins, expansion bolts, nuts and washers and

handrail shall be of grade 316 as specified and shall meet the requirements of ASTM A240

or other equal and approved standards for resistance to corrosion.

6.9 Cable Support Brackets

Cable Support Brackets shall be 'Unistrut' System or other equivalent system to be

approved by the Owner. The base metal for the system shall be grade 316 stainless steel,

the arrangement and type of cable support bracket shall be as shown on the Contractor’s

Construction Drawings and the maximum deflection shall not exceed 1/180. The system

shall include all anchorage bolts and other accessories, all in grade 316 stainless steel

necessary for the completion of the brackets.

6.10 Pre-Engineered Buildings

Pre-engineered metal building shall be designed in accordance with ASCE 7-05 and the

AISC 360-05 code. Performance requirements for deflection and building drift of pre-

engineered metal building shall refer to Section 6.2 of this document. The longitudinal drift

(perpendicular to the frames) shall also be checked.

The pre-engineered building lists are as follows:

Page 27: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 26 of 37

a. Coal yard storage shed

b. Limestone storage shed

7.0 FOUNDATION

7.1 Design Principle

The size of footing shall be determined such that working soil pressure or pile stress shall

not exceed the allowable soil bearing pressure or allowable pile bearing capacity. The total

combined loads for footing size shall be in accordance with clause 4.2.2.

For the structural design of footing, the combined effects of loading combinations shall be in

accordance with clause 4.2.3

7.2 Factors of Safety

Overturning : 1.5

Sliding : 1.5

Buoyancy : 1.25

Soil Bearing Capacity for Pile Foundation

- Compression Load : 2.5

- Tension Load : 2.0

- Static Pile Load Test : 2.5

- Dynamic Load Test(PDA) : 2.0

Soil Bearing Capacity for Shallow Foundation : 3.0

The forces to be used to compute the safety factor shall be based from the clause 4.2.2

load combinations. However, the aforementioned safety factor could be adjusted for

temporary structures.

7.3 Shallow Foundation

General foundation can be either footings or mats. They consist of reinforced concrete

slabs formed directly on a prepared soil base or pile. Footings may be spread, combined or

continuous.

Allowable bearing capacity on foundation for the various combinations of footing

dimensions and embedment shall be based on the site specific Soil Investigation and

Geotechnical Report (Document No. MD1-0-T-070-07-00018).

Page 28: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 27 of 37

7.4 Pile Foundation

Piles are vertical members used to transmit the loads of the superstructure to lower layer in

the soil mass. The load transfer mechanism relies both on the skin resistance along the

surface contact of the pile with the soil and on the end bearing on a dense or firm layer.

The preliminary design bearing capacity of a pile will be estimated using the static

calculation method and shall be revised by the results of the preliminary pile load test. Also,

design loading capacity of piled shall e confirmed by working pile load test.

Pile design procedure

1) The minimum center-to-center spacing and the edge of footing to center of pile shall be

2.5 times and 1.25 times the pile diameter respectively. Minimum pile embedment in

pile cap shall be 100mm.

2) Allowable pile capacity

Two (2) types of piles will be used, and the preliminary allowable capacity of each pile

will be as follows.

PILE

Bored Pile (D=800mm)

PC SPUN PILE (D=400mm)

Permanent Permanent Earthquake

Compression 3300 KN 1100 KN 1300 KN

Horizontal 200 KN 30 KN 90 KN

Tension 500 KN 240 KN 320 KN

Note: 1) The calculation for allowable capacity of PC & Bored pile would be submitted at a later time.

(Refer to document no. MD1-0-T-050-05-016, ‘Method statement of pile load test’) 2) The bored pile tension value will be revised as per the result of preliminary pile loads test at site.

Preliminary design of bearing capacity using the static calculation

Preliminary pile load test

Design capacity revision

Confirmation of design capacity by working pile load test

Page 29: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 28 of 37

7.5 Machine Foundations

Vibrating equipment foundation shall be designed primarily according to manufacturer’s

foundation acceptance criteria satisfying permissible vibration amplitudes, allowable

differential settlements, foundation inclination and static deflection due to loads and other

limitations as applicable.

Foundations and structures supporting rotating machinery shall be proportioned so that

their natural frequency shall not fall within the range of 0.8 to 1.2 of the frequency of the

machinery at normal operating conditions unless other or strict requirements are specified

by the manufacturer.

Where dynamic analysis is not required to be performed, the following minimum ratio of

foundation weight with respect to equipment weight shall be as follows:

• Inherently balanced centrifugal and rotary pumps, fans and compressors 3:1

• Unbalanced reciprocating compressors and pumps 5:1

Reference to the design of heavy vibrating equipment foundation will based on ”Design of

Large Steam Turbine-Generator Foundations” by ASCE Committee or to other applicable

codes and standards like ACI 351.3R-04 Foundations for Dynamic Equipment.

7.6 Limiting Angular Distortion for Differential Settlement of Foundation

The differential settlement will be assessed and applied on a structure to structure basis as

appropriate. During each individual structure design the maximum settlement can be

calculated and judgement made as to whether it should be applied to the analysis model.

The maximum allowable differential settlement would be determined as follow;

Limiting Angular Distortion, δ/SL Type of Bridge

0.004 Multiple-span (continuous span)

0.005 Single-span Note:

1) Refer to the FHWA “Chapter 8.0 Shallow Foundations”.

2) δ is differential settlement, SL is the span length. The quantity, δ /SL, is dimensionless and is applicable

when the same units are used for δ and SL, i.e., if δ is expressed in millimeters then SL should also be

expressed in millimeters.

Page 30: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 29 of 37

8.0 PIPE RACK STRUCTURE

8.1 Layout And Geometry

Yard pipe racks will generally be designed as braced frames in the longitudinal direction

and as a series of transverse rigid frame main bents.

Longitudinal beams shall be provided as required to support piping or transfer thrusts to a

braced bay (anchor bay).

Intermediate crossbeam shall be provided as required to reduce the unsupported length of

piping, conduit or cable trays. Intermediate beams shall span between the longitudinal

beams parallel to the main transverse bents.

Longitudinal stability of pipe racks shall be achieved by knee brace, braced bay or other

systems depending on the magnitude of forces and layout.

Pipe racks must be designed with expansion joints in the structural system spaced not

more than 50m apart.

Horizontal bracing of top flange in the plane of the transverse beams shall be considered at

anchor bents due to the large horizontal loading.

8.2 Loads And Load Combinations

8.2.1 Vertical Load

Vertical loads shall be due to weight of pipes, insulation, valves and other accessories,

weight of fluid passing through the pipe, weight of the supporting structures and hydro-test

weight of pipes.

8.2.2 Piping Horizontal Load

1) Frictional Force Parallel to the Pipe

With due regard to the friction forces caused by the expansion and contraction of pipe

sliding across the pipe support, pipe support shall be designed for horizontal forces

2) Anchor Force

The beams of anchor bays shall be designed for anchor forces as given by piping engineer.

Page 31: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 30 of 37

8.2.3 Load Combination

For Allowable Stress Design

D

D + T + L

D + 0.75(L + T)

D + (W or 0.7E)

D + 0.75(W or 0.7E) + 0.75L

0.6D + W

0.6D + 0.7E

For Ultimate Strength Design

1.4D

1.2(D + T) + 1.6L

1.2D + (L or 0.8W)

1.2D + 1.6W + L

1.2D + E + L

0.9D + 1.6W

0.9D + E

where,

D : Dead load

W : Wind load

E : Earthquake load (Horizontal + Vertical components if applicable)

T : Thermal load (piping friction load)

L : Live load ( Hydro-test load, piping anchor load)

Allowable Stress design is for steel structures, according to provisions of AISC, including

the additional requirements in Section 6 above.

Ultimate strength design is for concrete structures, according to the provisions of ACI 318,

including the additional requirements in Section 7 above.

During hydro-test of pipes with full of water, this load shall not be combined with any other

piping horizontal load, wind and earthquake load.

Piping friction forces are not considered to act at the same time as wind or earthquake

forces, unless these friction forces are caused by normal operation conditions.

Page 32: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 31 of 37

9.0 DRAINAGE

In principle, the proposed drainage system will be underground piping system or of open

drains or a combination of the two. It will be separated into the following four categories.

• Storm water drainage

• Sanitary wastewater drainage

• Plant wastewater(oily, chemical) drainage

• Coal wastewater drainage

• Ash wastewater drainage

9.1 Storm Water Drainage

The storm water drainage system will be provided to cater for the non-contaminated

surface water runoff which will be collected from roof, roads, hard standings and impervious

areas. Rain water from the oily contaminated area will be led separately for treatment.

Open U ditch will be provided on either side of roads in addition to the network of drains in

plant yard area which is composed of catch basin and underground drainage pipe.

The rain water drainage system is planned by dividing the area into several catchment

areas, and rain water collected from each catchment area will be finally discharged to south

and north storm water discharge terminal point (C3 &C4) shown on ITB dwg. 28990-00-CI-

TDR-0002 through underground concrete pipe or open U-ditch.

9.2 Sanitary wastewater drainage

Sewage / sanitary wastewater from sewage generating buildings will be led to the septic

tanks located close to each building. The effluent from each septic tank will be transferred

by pumping to centralized sewage treatment plant for biological treatment. And treated

effluent will be piped by gravity to the seal pit structure.

The drain pipe will be laid on sand bedding. Drainage works crossing the road shall be

mostly with concrete encasing to protect pipe in case of the cover depth less than 1.2m.

Sanitary water manholes will be provided with appropriate intervals at every change of

direction, gradient or diameter of sewer pipeline.

9.3 Plant wastewater(chemical, oily) drainage

Plant wastewater coming from oily and chemical contaminated areas will be firstly

conveyed to the waste water collecting pit by gravity flow, from which the collected waste

water will be transferred by pumping to the waste water treatment plant. Treated water from

Page 33: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 32 of 37

treatment plant will be discharged to the C.W. discharge channel or ash transportation

feedwater pit. And ash contaminated waste water will be trasfered separately to ash pond

by pump.

9.4 Coal wastewater drainage

Any contaminated wastewater from coal handling sysem drainages, including coal pile

storage area and coal handling area will be collected to coal run-off basin and re-used for

coal pile spray water after coal particle sedimentation.

9.5 Ash wastewater drainage

Any contaminated wastewater from ash handling system drainages, including bottom ash

silo, fly ash silo area and ash slurry system area will be collected to ash handling area

sump and transfered to normal wastewater pond by using chemical sump pumps.

10.0 PAVEMENT

Roads within the plant will be designed of sufficient width and strength concrete pavement.

Perimeter Roads will be designed of asphalt flexible pavement. Concrete paving shall be

provided where petrol and/or chemical spillage or leakage may occur.

Road works consisting of rigid or flexible pavements shall be laid on a firm sub-grade and

non-cohesive bedding material for bedding of road-stone foundation shall be laterite/sand

mixture in conformity with approved codes and standards and local authorities’

requirements. Crusher run shall be graded crushed dolomite stones obtained from one

source, free from dirt or other deleterious matter and shall meet the gradation requirements

of approved codes and standards.

10.1 Load

Traffic flow for the internal road and access road shall be taken as medium classification

designed for AASHTO HS 20-44, static axle load.

10.2 Concrete paving

Concrete paving will be provided inside of Boiler area, ESP, chimney and chemical spill

containment dike. The concrete paving will be concrete of Fcu = 35MPa reinforced with

one(1) layer of steel welded wire fabric laid over granular material compacted up to 90% of

Page 34: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 33 of 37

maximum dry density. Minimum pavement would be designed as subject to the design.

Boiler, ESP, stack area will be finished with floor hardener.

10.3 Gravel paving

Appropriate areas in switchyard, transformer area and water treatment area will be covered

with a 100mm thickness of crushed stone/gravel of approved quality and grading, and

adequately levelled to even surface.

10.4 Other area

The inside of Fuel oil tank farm dike will be finished gravel top on sand layer and HDPE

membrane over compacted ground.

Coal stock pile area will be covered with impervious clay layers of 200mm thick and

impermeable HDPE liner on the compacted ground and another sand layer before lacing

the gravel layer

The area not occupied by buildings, structures, equipment, roads, pavement and other

facilities will be treated with green landscaping with the lawn per the approved drawings.

10.5 Ground Cover

Ramps shall have a minimum of 100 mm thick crushed rock sprayed with fluid asphalt

suitable for hot climates. Unpaved areas around process units shall have 100 mm thick

landscaped with the lawn seeding.

10.6 Walkways

Walkways shall be designed for pedestrian traffic and shall be a minimum of 100 mm

concrete slab or 60mm precast concrete paving.

10.7 Cross Slopes for Roads

Cross slopes for roads shall be 2% for bituminous or stone surfacing, if not shown

otherwise on the drawings.

Page 35: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 34 of 37

10.8 Road Elevations

Unless otherwise shown on drawings, gradient on all roads within the boundary of the plant

area shall not exceed 5%.

10.9 Design of Flexible Pavement

10.9.1 Design code

AASHTO Interim Guide for Design of Pavement Structure (1993)

10.9.2 Pavement Design

1) Design life: 25 years

2) Terminal serviceability index (Pt): 2.0 for secondary highway

3) Traffic

Traffic is expressed as the sum of equivalent 18kip (80kN) single-axle load converted from

the varying axle loads.

Traffic load : 32 kip (142kN) axle load as per HS 20-44 loading

Design traffic

- For Perimeter Road : 200 axles per day

- For Internal Road : 50 axles per day

Number of equivalent 18 kip single axle loads for all axle groups

n

118

itt eiPiNW

where,

18tW : Total numbers of equivalent 18-kip single-axle load application for all

lanes and both direction of travel during design life.

tN : Total number of axles

Pi : Percent of axles in load group i

ei : Traffic equivalent factor for load group i

Total equivalent 18-kip single-axle load for design lane

DLDDWW 18t18

Page 36: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)X500MW MONG DUONG 1 THERMAL POWER PLANT DESIGN CRITERIA - CIVIL & ARCHITECTURE REV.0

MD1-0-C-300-04-00010 Sheet 35 of 37

where,

18tW : Total number of equivalent 18-kip single-axle load application for all

lanes and both direction of travel during design life.

DD : Directional distribution factor

50% of the traffic to each direction

DL : Lane distribution factor

100% of the traffic in each direction to the design lane

4) Soil Support Value of Sub-grade (S)

The proper value of soil support of sub-grade will be used for the design with CBR value of

sub-grade as per Figure C.3-1 of AASHTO Interim Guide.

5) Structural Number (SN)

SN = a1D1 + a2D2 + a3D3

where, a1, a2, a3 : Layer coefficients representative of surface, base and sub-base

course respectively.

D1, D2, D3 : Actual thickness, in cm, of surface, base and sub-base courses

respectively.

6) Alternative Procedure for Determining Thickness of Layer

An alternative procedure may be used to determine the thickness for each of component

layer of pavement.

Page 37: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)XDESIGN

MD1-0-C

W

Minimum

X500MW MON CRITERIA

C-300-04-000

Where, a,

An

mu

m Layer Th

Su

Ba

Su

ONG DUONG- CIVIL & AR

010

D, and SN

n asterisk w

ust be equa

ickness

rface cours

se course

b-base cou

G 1 THERMARCHITECTU

are as defi

with D or SN

al to or grea

se

rse

AL POWER URE

ned in the t

N indicates t

ater than the

: 50m

: 100

: 100

PLANT

text, and are

that it repres

e required v

mm

0mm

0mm

e minimum

sents the va

value.

required va

alue actuall

REV

Sheet 36 of

alues.

y used, whi

V.0

f 37

ich

Page 38: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2)XDESIGN

MD1-0-C

7)

8)

<Note>

X500MW MON CRITERIA

C-300-04-000

Design Cha

Minimum L

Su

Ba

Su

> This docpavemenrespectiv

ONG DUONG- CIVIL & AR

010

art for Flexi

D

Layer Thickn

rface cours

se course

b-base cou

cument wounts, marineve designs

G 1 THERMARCHITECTU

ble Paveme

Design Chart

ness

se

rse

uld be updae works, dare issued.

AL POWER URE

ent, Pt = 2.0

t for Flexible

: 50m

: 100

: 100

ated to incdrain flows

PLANT

0

e Pavement,

mm

0mm

0mm

clude the res and stac

Pt = 2.0

elevant desck superstr

sign paramructure etc

REV

Sheet 37 of

eters for ric., before

V.0

f 37

gid the

Page 39: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

Attachment 2. SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN.

SITE CLASSIFICATION REPORTFOR SEISMIC DESIGN.

Page 40: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

1. INTRODUCTION 2

2. CODE AND STANDARD 2

3. SITE CLASS ASSESSMENT LAYOUT 3

4. SEISMIC SITE CLASSIFICATION METHOD 4

4.1 METHOD A : Vs 5

4.2 METHOD B : N-value 5

4.3 METHOD C : Nch and Su 5

4.3.1 METHOD C-1 : Nch 5

4.3.2 METHOD C-2 : Su 5

4.4 DETAIL ACCESSMENT FOR CLASS E 5

5. DETERMINATION OF GEOTECHNICAL SOIL PARAMETER 6

5.1 DESCRIPTION OF SOIL AND ROCK LAYERS 6

5.2 PERFORMED LAB&FIELD TEST RESULTS 7

5.3 DETERMINATION OF SHEAR WAVE VELOCITY : Vs 7

5.4 DETERMINATION OF UNDRAINED SHEAR STRENGTH : Su 8

5.5 APPLIED SOIL PARAMETER FOR DETAIL REVIEW(PI AND W) 8

6. SUMMARY OF SITE CLASS FOR EACH AREA 10

6.1 SITE CLASSIFICATION FOR EACH STRUCTURE AREA 13

6.2 SUMMARY OF SITE CLASSIFICATION 17

7. DESIGN VALUE FOR PGA, SDS, SD1 18

8. THE SUMMARY OF KEY PARAMETERS FOR SEISMIC DESIGN 20

[ ATTACHMENT ]

#1. Site class definition(ASCE7-05, Chapter 20)

#2. Down hole test results(Soil investigarion report, MD1-0-T-070-07-00018)

#3. Empirical formula for Vs assumption(CALTRAN)

#4. Assumption of undrained shear strength(Su) by empirical formula

#5. The summary of detail review for class E (by PI, w, Su)

#6. The detail calculation table for each method

#7. The seismic coefficients Ca, Cv for return period 2500 years in MD1 site

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

TABLE OF CONTENTS

Page

MD1-0-C-070-07-00001 1 of 45

Page 41: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

1. INTRODUCTION

This document describes the procedures for determining the Site Class and seismic paramater

for seismic design at Mong doung 1 thermal power plant.

The site class definition quantifies the soil’s propensity to amplify, or in some cases

decrease surface ground motion propagating from underlying rock.

Based on the investigated soil parameters(chapter 5), the site class would be determined by

three method(chapter 4) at each borehole, and the global site class at each structure area

would be shown at chapter 6.

Finally, the design seismic parameter(PGA, Sds, Sd1) would be determined for "Class B~E".

(chapter 7), and the key parameter for seismic design would be summarized at chapter 8.

2. CODES & REFERENCES

1) ASCE 7-05 - Chapter 20. Site Classification Procedure for Seismic Design.

2) Soil Investigation Report (MD1-0-T-070-07-00018)

3) Recommendation on wind and seismic load for MD1(Dr. Phung Duc Long, Nov.28,2011)

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

MD1-0-C-070-07-00001 2 of 45

Page 42: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

3. SITE CLASS ASSESSMENT LAYOUT

The seismic site classification layout for MD1 would be as below, evaluated for power block

area, C.W system area, jetty area. For main power block area, the detail site assessment

at each structures would be reviewed at chapter 6.

C.W SYSTEM AREA

POWER BLOCK AREA

JETTY AREA

MD1-0-C-070-07-00001 3 of 45

Page 43: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

4. SEISMIC SITE CLASSIFICATION METHOD

A site shall be classified as A though F in accordance with the site class definitions in Table 1.

Site shall be classified by their stiffness as determined by the shear wave velocity(Vs),

N-value and undrained shear strength(Su) for upper 30m.

1) Site class would be determined as class E having all of these characteristics, not one of them.

(Refer to the attachment 1.)

The Site Class C, D, and E soils shall be classified by using one of the following

three methods with Vs, N, and Nch&Su as specified at clause 4.2~4.4.

1. Vs for the top 100 ft (30 m) (Vs method).

2. N for the top 100 ft (30 m) (N method).

3. Nch for cohesionless soil layers in the top 100 ft (30 m)

and Su for cohesive soil layers in the top 100 ft (30 m) (Su method).

Where the Nch and Su criteria differ, the site shall be assigned to the category with the

softer soil.

For the conservative review, the lowest site class result from above methods would be applied.

Site Class

A. Hard Rock

B. Rock

D. Stiff soil

E. Soft clay soil

Any profile with more than 3m of soil having the following

characteristics1) : - Plasticity Index PI >20, - Moisture content w ≥ 40%, and - Undrained shear strength Su < 24 kN/m2

47.9 to 95.8 kN/m2

< 47.9 kN/m2

365 to 760 m/s

183 to 365 m/s

< 183 m/s

N or Nch

N/A

N/A

> 50

15 to 50

< 15

Vs

< Table 1. > Site class definitions

Su

N/A

N/A

>95.8 kN/m2

> 1,524 m/s

762 to 1,524 m/s

C. Very dense soil and soft rock

MD1-0-C-070-07-00001 4 of 45

Page 44: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

4.1 METHOD A : Vs method

The average Vs for the top 30 m is determined as:

where,

Vsi : Shear wave velocity in m/s of a layer.

di : Thickness of a layer

4.2 METHOD B : N method

The average N for the top 30 m is determined as:

where,

Ni : Standard Penetration Test blow count of a layer.

(not to exceed 100blows/30cm)

di : Thickness of a layer

4.3 METHOD C : Nch and Su

4.3.1 METHOD C-1 : Nch method (for cohesionless soil)

The average Nch for cohesionless soil layers in the top 30 m is determined as:

where,

Ni : Standard Penetration Test blow count of cohesionless layers.

(not to exceed 100blows/30cm, for rock layer, 100 would be applied.)

ds : Sum of thickness for cohesionless layers in the top 30m

(including rock layer)

4.3.2 METHOD C-2 : Su method (for cohesive soil)

The average Su for cohesive soil layers in the top 30 m is determined as:

where,

Sui : The undrained shear strength in kPa, not exeed 240kPa

(for rock layer, 240kPa would be applied.)

dc : Sum of Thickness for cohesive layers in top 30m

(including rock layer)

4.4 Detail accessment for Class E

As shown in Table.1, any profile with more than 3 m of clay soil having all of the follwing

characteristics would be classified as Class E.

- Plasticity Index PI >20,

- Moisture content w ≥ 40%, and

- Undrained shear strength Su < 24 kN/m2

MD1-0-C-070-07-00001 5 of 45

Page 45: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

5. DETERMINATION OF GEOTECHNICAL SOIL PARAMETER

5.1 DESCRIPTION OF SOIL AND ROCK LAYERS

Based on the soil investigation report(MD1-0-T-070-07-00018), the description of

soil and rock layers would be summarized as below.

a) Layer 1: Filled soil: (SC, SP, SW, CL): Blackish, red-brown, yellowish clayey sand,

poorly graded sand with gravel to well graded sand with gravel, sometimes sandy lean

clay, mixed with boulders in large size of rock, medium dense metimes very dense. This

layer distributes on the ground surface.

b) Layer 2: (CL, ML, SC): Lean clay with sand to clayey sand, sometimes mix silt.

Yellowish-brown and blackish, with organic matter, soft to firm.

c) Layer 3: (SC, SP, SW): Clayey sand, poorly graded sand with gravel to well graded sand

with gravel. Yellowish, loose to medium dense sometimes dense.

d) Layer 4: (CL, SC): Sandy lean clay sometimes mix clayey sand. Blackish grey, yellowish

grey, very stiff to hard (completion weathered from silty clay stone & coaly clay stone).

e) Layer 5: Highly to moderately weathered rock zone: Silty clay stone, coaly clay stone,

blackish colour. Rock is highly to moderately weathered. Rockmass is fractured and

fragmentation into fragments. The original color of bedrock has been changed. Joints are

widen and partly filled by sandyclay, clayeysand. Rock quality designation RQD is lower

than 25 percent (RQD < 25%). Vp ranges 829-1972m/s, average is 1435m/s. Vs ranges

246 – 461m/s, average is 374m/s

f) Layer 6: Fractured rock zone: Siltyclay stone, contain whitish mineral. Rock is slightly

weathered, width of joint is small, somewhere is covered by thin layer of iron oxide. Main

colour are blackish and greyish. Rock quality designation RQD is higher than 25 percent

(RQD >=25%). Vp is about 2170m/s, Vs is about 500m/s.

SC, SP, SW, CL

CL, ML, SC

SC, SP, SW

Layer 5

Layer 6

CL, SC

Clay

Medium Sand

Clay

Weathered Rock (W.R)

Layer 1

Layer 2

Layer 3

Layer 4

Filled soil (Sand)

-

-Slightly weathered Rock (S.R)

< Table 2. > soil and rock layer in MD1 site

MD1-0-C-070-07-00001 6 of 45

Page 46: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

5.2 Required soil parameters

Each method(A, B, C-1, C-2) needs the below soil parameters, which come from the filed/lab

test results and empirical formula.

The empirical formula in method A, C-2 would be detaily described at clause 5.3~5.4.

5.3 Determination of shear wave velocity (Vs)

The shear wave velocity would come from the down-hole tests which were performed at

BL-005 and BL-007. The soil layer compositions of BL-005 and BL-007 were as below.

(Refer to attachment 2)

Method C-2

Method C-1

Method B

Method A

Detail assessment for Class E

Classification

Su(undrained shear strength)

N-value

N-value

Vs

Required soil parameters

PI, w, Su

Basis data

from empirical formulabased on N-value

from lab-test

from SPT

from SPT

from Downhole test andempirical formula

BL-007 DEPTH Vs(m/s) BL-007 DEPTH Vs(m/s)1 111 18 3952 118 19 4063 144 20 4204 177 21 4245 210 22 4316 237 23 4387 251 24 4408 257 25 4439 263 26 449

10 264 27 45011 258 28 45012 286 29 45113 326 30 45114 340 31 45615 360 32 46116 378 33 50517 387 34 513

LAYER 5

LAYER 6

LAYER 1

LAYER 3

LAYER 5

BL-005 DEPTH Vs(m/s) BL-005 DEPTH Vs(m/s)1 90 20 2842 103 21 2793 133 22 3274 163 23 3295 182 24 3286 200 25 3327 216 26 3378 219 27 3339 218 28 336

10 215 29 33311 221 30 34112 214 31 30213 222 32 31014 214 33 37515 220 34 40716 214 35 42117 246 36 42918 260 37 44419 278 38 451

LAYER 5

LAYER 5

LAYER 1

MD1-0-C-070-07-00001 7 of 45

Page 47: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

The average Vs(m/s) for each layer would be summarized at below table.

As shown above table, there is no Vs(m/s) value in layer 2 and layer 4.

Thus, the empirical formula by SPT-N would be applied for the assumption of Vs.

(Refer to attachment 3 for empirical formula, suggested by CALTRAN)

In addition, the lower Vs between downhole-test and empirical formulation

in layer 1 and layer 3 would be used for Method A.

1) For layer 1 & layer 3

- Comparison between downhole test result and empirical formula by N-value

- Vs = 100.5 N 0.29 ( For cohesionless soils)

- Empirical formula would be applied.

2) For layer 2 & layer 4

- Empirical formula would be applied. (No performed data by Down-hole test)

- Vs = 86.9 N 0.333 ( For cohesive soils)

3) For layer 5 & layer 6

- Downhole test results would be applied.

1

(Vs by empirical formula shows lower value than downhole test result.)

3

Layer

5

6

Average Vs (m/s)

374.0

509.0

Layer No.

8

12

189.5

267.8

Vs by N-value, m/s

Avg. N

206.6

Layer 4Layer 5Layer 6

Vs(m/s)190

-268

-374509

Vs = 100.5 N 0.29

183.7

Layer

Layer 1Layer 2Layer 3

Vs by downhole test result

MD1-0-C-070-07-00001 8 of 45

Page 48: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

5.4 Determination of undrained shear strength (Su)

For clay layer(layer 2 and 4), Method C-2 needs the undrained shear strength(Su).

Thus, empirical formulas would be applied for assumption of undrained shear strength.

Four kinds of empirical formula would be used for determination of Su, and the

minimum value would be applied for Method C-2, and summarized at attachment 4.

For rock, the limitation value(240kPa) would be applied.

1) Bowles' Method

Note) Linear interpolation method would be applied for calculation of Su.

2) Hunt's Method

Note) Linear interpolation method would be applied for calculation of Su.

3) Terzaghi - Peck's Method

4) Dunham's Method

5.5 APPLIED SOIL PARAMETER FOR DETAIL REVIEW(PI AND W)

Any profile with more than 3m clay layer(layer 2, layer 4) would be detaily reviewed.

The averaged PI, w, Su value at each borehole would be used whether to satisfy the

class E, and the review results would be summarized at attachment 5.

As a result of detail review, it was confirmed that there would be no change of site class.

(ton/m2)

Su =N

(ton/m2)1.54

Su =N

1.62

4 ~ 82 ~ 40 ~ 2N, Standard penetration

resistance

su (ton/m2), UndrainedShear strength

The undrained shear strength is 1/2 of the unconfined compressivestrength.

> 3015 ~ 308 ~ 15

20.0~40.0 > 40.0qu (ton/m2), Undrainedcompressive strength

0 ~2.5 2.5 ~ 5.0 5.0 ~ 10.0 10.0 ~ 20.0

Description Very Soft Soft Medium Stiff Very Stiff Hard

su (ton/m2), UndrainedShear strength

The undrained shear strength is 1/2 of the unconfined compressivestrength.

N, Standard penetrationresistance

qu (ton/m2), Undrainedcompressive strength

0 ~ 2 2 ~ 4 4 ~ 8 8 ~ 16 16 ~ 32 > 32

0 ~2.4 2.4 ~ 4.9 4.9 ~ 9.8 9.8 ~ 19.6 19.6~39.2 > 39.2

Stiff Very Stiff HardDescription Very Soft Soft Medium

MD1-0-C-070-07-00001 9 of 45

Page 49: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

6. SUMMARY OF SITE CLASSIFICATION

The boreholes at power block/C.W. system/jetty area would be summarized as below table.

And, the site classification for each borehole would be summarized at clause 6.1.

Limestone grinding House

Limestone storage Shed

Fuel oil unloading pipe

Limestone Conveyor

Limestone conveyor

Fueloil unloading pipe

Power BlockArea-3

BH(C)-

BH(C)- 02

Stack, CEMS

Stack, CEMSPower Block

Area-401

Boiler #1

Boiler unit #1

Bottom ash silo/mixing

CCB,Diesel generator house

Boiler unit #2

ESP

ESP control house

ESP

ESP control house

BL-

BL-

BL-

BL-

012

004

001

002

003

005

007-1

006

007

005

Power BlockArea-5

BH-

BH-

BL-

013

021

015

BH

BH

BL

BL

BL

BH(CW)

BH(CW)

BL-

BL-

BL-

BL-

013

014

009

010

008

BH-

BL-

BL-

Area Borehole Structure (Equipment)

500kV Switchyard

500kV Switchyard

Power BlockArea-1

004

BH

500kV Switchyard

Station aux. transfer

110kV Switchyard

110kV Switchyard

Power BlockArea-2

001

003

Hydrogen Plant Building

S.T.G area

Service gas storage

S.T.G area

S.T.G area

Ash slurry pump house

Fly ash silo/mixing

Bottom ash silo/mixing

Ash water transfer sump

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

Switchyard control house

500kV Switchyard

500kV Switchyard

010

MD1-0-C-070-07-00001 10 of 45

Page 50: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

BL-

BH- 011

BL- 018

015

Power BlockArea-9

Power BlockArea-10

BH-

BH-

BL-

BL-

BH- 015

024BH-

Return water pump house

Ash slurry pipe

Return water pipe to collection pit

Coal crusher tower

Coal conveyor

C.H.S control building

Coal transfer tower

Coal conveyor

Coal receiving tower

Coal transfer tower

BH-

BL-

014

011

Workshop Building

I&C EL&ME ware house

Bulldozer garage

Coal yard/storage shed

Power BlockArea-7

BH-

BH-

007

008

016

017

018

006 Condesate stroage tank

Condesate stroage tank

Main trasformer

Auxiliary Transformer

Condesate stroage tank

Main trasformer

Auxiliary Transformer

BH-

Power BlockArea-8

019

020

016

017

Coal yard/storage shed

Coal pile run-off basin

Coal yard/storage shed

Coal yard/storage shed

Coal yard/storage shed

Coal yard/storage shed

Coal yard/storage shed

BH-

BH-

BH-

BH- 009

BH- 012

BH- 023

011

Fuel Oil Pump house

Water Treatment Building

Waste Water Treatment Building

Raw water tank

Filtered water tank

Portable water tank

Fire protection pump House011

BH-

BH-

BL-

005

Power BlockArea-6

Area Borehole Structure (Equipment)

Fuel oil storage tank

Diesel oil storage tank

Waste Water Treatment Building

Lubrication oil storage

Car garage

Demi water tank

Fire water tank

MD1-0-C-070-07-00001 11 of 45

Page 51: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

Limestone unloading

Limestone unloading

Fuel oil unloading

Equipment unloading Jetty

Jetty Area004

022

BL-

BH(CW)- 007

004

BH(CW)- 009

OBH

OBH

001

002

C.W.Sin Outfall Area

C.W.S in PowerBlock Area

Intake Basin

C.W.P.S/Chlorination building

C.W Pump station/C.W.Inlet Pipe

010

010-1

Discharge basin

Discharge basin

Auxiliary Boiler

Dirty Oil Tank

Administration building

Car garage

Motocycle shed

BH-

BH-

OBH

OBH

BH-

005

006-1

003

C.W discharge canal

C.W. Inlet pipe

C.W. Inlet pipe

Seal pit, C.W. Inlet pipe

Seal pit, C.W. Inlet pipe

C.W discharge canal

C.W discharge canal

Maingate house

BH-

BH(CW)-

BH(CW)-

BH(CW)-

BH(CW)-

Intake Basin

BH(CW)-

BH(CW)-

Fuel oil unloading

002

004

005

006

008

BH(CW)-

BH(CW)-

BH(CW)-

BH(CW)-

001

002

003

001-1

Area Borehole Structure (Equipment)

C.W.Sin Intake Area

BH(CW)- 007 Common service building

ETC

MD1-0-C-070-07-00001 12 of 45

Page 52: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

6.1 Site Classification for Each Structure Area

The detail calculation table for each method would be described at attachment 6.

And, the summary table at each structure area would be as belows.

1) Power Block Area-1

2) Power Block Area-2

3) Power Block Area-3

Method BN

Method C-1Nch

Method C-2Su

Conclusion

D C D

D D D C D

BL-013 C C C

BH-003

Site Class CLASS D

C C

BL-014 C C C C

C

D

C CBH-004

BH(CW)-005

C

D

C

C C

D

BH-010 D D D C

D D

D

BL-007-1 D D D C

C

D D D C D

BL-010 C C

Conclusion

BL-009 D D D C

D C D

BH-001 D D

Borehole No.Method A

Vs

C

Site Class CLASS D

Borehole No.Method A

VsMethod B

NMethod C-1

NchMethod C-2

SuConclusion

Site Class

BL-007 D D D

C

BL-012

D

BL-008 D D

Borehole No.Method A

VsMethod B

NMethod C-1

NchMethod C-2

Su

D

CLASS D

BL-001 D D D C D

BL-002 C C C C C

BL-003 C C C C C

BH(CW)-004 D D D C D

BL-005 D D D C D

BL-006 D D D C D

C

MD1-0-C-070-07-00001 13 of 45

Page 53: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

4) Power Block Area-4

5) Power Block Area-5

6) Power Block Area-6

7) Power Block Area-7

Borehole No.Method A

VsMethod B

NMethod C-1

NchMethod C-2

SuConclusion

D

Site Class CLASS D

Borehole No.Method A

VsMethod B

NMethod C-1

NchMethod C-2

SuConclusion

D D C

BH(C)-01 D D D C

DBH-015

BH(C)-01 C C C C C

D

D

BH-021 D D D C D

BH-003 D D D C

BH-009 D D D

BH-005 D D D C

D

ConclusionBorehole No.Method A

Vs

C D

Method BN

Borehole No.

Method C-2Su

Site Class CLASS D

BL-011 C

Method AVs

Site Class CLASS D

Method C-1Nch

Method C-2Su

Conclusion

C C C C

Site Class CLASS E

D

BH-008 D E D C E

BH-006 D

BH-007 D E E C E

BH-011 D D D C D

BH-012 D D D C D

BH-023 C C C C C

Method BN

Method C-1Nch

D D C

MD1-0-C-070-07-00001 14 of 45

Page 54: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

8) Power Block Area-8

9) Power Block Area-9

10) Power Block Area-10

11) C.W.S in Intake Area

D D C

BH-017 D D D C D

Borehole No.Method A

VsMethod B

NMethod C-1

NchMethod C-2

SuConclusion

Site Class CLASS D

BH-020 D D D C D

BL-015 C C C C C

BL-016 C

BL-017 C C C C C

C C C C

D

BH-019 D D D C D

BH-018 D D D C

D

BH-016 D D D C D

BH-015 D

Method C-1Nch

Method C-2Su

CBL-018 C C C C

Conclusion

BL-011 C C C C C

Borehole No.Method A

VsMethod B

NMethod C-1

NchMethod C-2

Su

Site Class CLASS D

Borehole No.Method A

VsMethod B

NMethod C-1

NchMethod C-2

SuConclusion

D

BH-014 D D D C D

BH-011 D D D C

Conclusion

Site Class CLASS D

BH-024 D D D D D

Borehole No.Method A

VsMethod B

N

Site Class CLASS D

BH(CW)-002 D D D C D

BH(CW)-003 D D D C D

D

BH(CW)-001-1 D D D C D

BH(CW)-001 D D D C

MD1-0-C-070-07-00001 15 of 45

Page 55: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

12) C.W.S in Power Block Area

13) C.W.S in Outfall Area

14) Jetty Area

15) ETC

Conclusion

BH-002 D D D C D

Borehole No.Method A

VsMethod B

NMethod C-1

NchMethod C-2

Su

Site Class CLASS D

Borehole No.Method A

VsMethod B

NMethod C-1

NchMethod C-2

SuConclusion

BH(CW)-004 D D D C D

BH(CW)-005 D D D C D

BH(CW)-006 D D D C D

BH(CW)-007 D D D C D

Site Class

Borehole No.Method A

VsMethod B

NMethod C-1

NchMethod C-2

SuConclusion

BH(CW)-008 C C C C C

BH(CW)-009 D C C C C

CLASS E

BH(CW)-010 D E C D E

DBH(CW)-010-1 D D D C

OBH-001 D D D C D

OBH-002 D D D C D

OBH-003 D D D C D

OBH-004 C D D C D

BH-0022 D D D C D

BL-004

Site Class CLASS D

Borehole No.Method A

VsMethod B

NMethod C-1

NchMethod C-2

SuConclusion

BH-005 D D D C D

BH-006-1 D D D C D

Site Class CLASS D

CC C C C

BH(CW)-007 D D D C D

MD1-0-C-070-07-00001 16 of 45

Page 56: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

6.2 Summary of site classification

The global site class at each area would be summarized as below table.

Power Block Area-7

Power Block Area-8

2 Power Block Area-2

Power Block Area-3

Power Block Area-4

Power Block Area-5

Power Block Area-6

No.

1

Area

Power Block Area-1

6

3

4

13 C.W.S in Outfall Area

14 Jetty Area

Site Class

15

C.W.S in Power Block Area

ETC

9

10

11

12

Power Block Area-10

5

7

8

D

D

D

D

D

D

E

D

D

D

D

D

E

D

D

Power Block Area-9

C.W.S in Intake Area

Remark

Main&Aux.Transformer,Condensate Storage Tank

Discharge basin

MD1-0-C-070-07-00001 17 of 45

Page 57: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

7. Design Value for PGA, SDS,SD1

For the site class SB, the seismic coefficients Ca, Cv are euqal to Z value, and given as 0.13g

(for return period 2500 years) at the report on wind and seismic load(attachment 7).

Thus, the Ss and Sa of soil class SB would be calculated as belows.

PGA = g (= Ca = Cv )

= x Ca = x = g

= = g

The MCE spectral response accelerations for short periods (SMS) and at 1s(SM1)

adjusted for site class effects, shall be determined by the following equations.

= (1)

= (2)

Where, coefficients Fa and Fv are taken from Table 1 and 2 in ASCE/SEI 7-05.

And modified site coefficient Fa and Fv to be used for maximum considered earthquake

pertinent to the project site is given in Table 3.

3.5 3.2 2.8 2.4 2.42.4 2.0 1.8 1.6

1.01.7 1.6 1.5 1.4 1.31.0 1.0 1.0 1.0

0.8 0.8 0.8 0.8

D

E 2.5 1.7 1.2 0.9 0.91.6 1.4 1.2 1.1 1.0

1.5

0.8 0.8 0.8 0.8 0.81.0 1.0 1.0 1.0 1.0

Fv S1

1.2 1.2 1.1 1.0 1.0

B

C

SS < 0.25 SS = 0.5 SS = 0.75 SS = 1.0 SS > 1.25

2.5 0.13 0.325

E

D

C

B

0.130

Ss

S1

2.5

Cv 0.130

SMS

SM1

Fa SS

Mapped MCE Spectral Response Acceleration Parameterat Shot PeriodSite Class

A

Site ClassMapped MCE Spectral Response Acceleration Parameter

at 1-s Period

S1 < 0.1 S1 = 0.2 S1 = 0.3 S1 = 0.4 S1 > 0.5

<Table 1.> Site Coefficient, Fa

<Table 2.> Site Coefficient, Fv

A 0.8

MD1-0-C-070-07-00001 18 of 45

Page 58: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

Note: Intermediate Values of Z=0.13 are calculating using the straight line interpolation.

Adjusted maximum considered earthquake is calculated using the Eq. (1) and (2) in this report.

The values are taken in Table 4.

The design spectra response acceleration parameters S DS and SD1 at short periods(0.2s)

and period of second are calculated by:

And The values are taken in Table 5. using the Eq. (3) and (4).

2 (3)

3

2 (4)

3

0.217 0.087

0.221 0.217

S1 = 0.2

B 0.325 0.325

0.173 0.173 0.173 0.069 0.069

SDS

0.2080.260

0.1980.542 0.490 0.368 0.303 0.2960.347 0.334 0.303 0.208

0.0870.260 0.260 0.260 0.147 0.1450.217 0.217

0.1300.260 0.260 0.260 0.104 0.104

0.8 0.8 0.8 0.8 0.8

2.5 2.26

0.296

0.104

E 0.813 0.735 0.553 0.455 0.443

0.130

D 0.520 0.501 0.455 0.312

0.130C 0.390 0.390 0.390

E

D

C

B

E

D

C

B

Mapped MCE Spectral ResponseAcceleration Parameter

at Shot Period

Mapped MCE Spectral ResponseAcceleration Parameter

at 1-s Period

<Table 3.> Modified Site Coefficient, Fa, Fv

SS < 0.25 SS = 0.375 SS = 0.5 S1 < 0.1 S1 = 0.13

0.81.01.62.03.2

<Table 4.> Adjusted Maximum Considered Earthquake, SMS, SM1

Site Class

= SM1

0.416

A

Site ClassSMS SM1

SS < 0.25 SS = 0.375 SS = 0.5 S1 < 0.1 S1 = 0.13

S1 = 0.2

1.7 3.5 3.411.6 1.54 1.4 2.4 2.28

1.0 1.0 1.0 1.0 1.01.2 1.2 1.2 1.7 1.67

0.325

0.1390.173

0.0690.087

A

0.277

S1 = 0.2

= SMS

SD1

A

<Table 5.> Design Spectral Acceleration of SDS, SD1

Site ClassSDS SD1

SS < 0.25 SS = 0.375 SS = 0.5 S1 < 0.1 S1 = 0.13

MD1-0-C-070-07-00001 19 of 45

Page 59: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

The values taken in Table 6. T0, Ts, TL are calculated by using the Eq. (5), (6), (7).

= (conservatively based on the value for low to medium seismic risk zones)

The values for PGA would be calculated as below table.

8. The summary of Key parameters for Seismic Design

The key parameters for Seismic Design at Mong Duong 1 project would be summarized as follows.

0.208 0.200 0.1820.325 0.294 0.221

0.130 0.130 0.1300.156 0.156 0.156

Main&Unit auxiliaryTransformer, condensate

storage tankand Discharge basin

0.490*g

0.296*g

0.121 sec

0.604 sec

8 sec

D

1.25

SDS

SD1

T0

TS

TL

Seismic designcategory

Importance factor

Structures

PGA 0.294*g

Soil Type D

0.334*g

SDS

SDS

8s

T0

0.104 0.104 0.104

A

D 0.119 0.593 8.000E 0.121 0.604 8.000

B 0.080 0.400 8.000C 0.111 0.557 8.000

0.080 0.400 8.000

A

E

D

C

B

0.198*g

0.119 sec

0.593 sec

8 sec

C

1.25

0.20*g

All of structures except Main&Unit auxiliary Transformer,

condensate storage tankand Discharge basin

<Table 6.> Modified, T0, TS, TL

0.2SD1

SD1Ts

=

=

<Table 7.> Modified PGA (T=0)

SS < 0.25 SS = 0.375 SS = 0.5

Site Class T0

Soil Type EParameter

TS TL

Site ClassPGA(=Ca when T=0)

TL

MD1-0-C-070-07-00001 20 of 45

Page 60: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

# Attachment 1. Site class definition(ASCE7-05, Chapter 20)

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

MD1-0-C-070-07-00001 21 of 45

Page 61: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

MD1-0-C-070-07-00001 22 of 45

Page 62: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

# Attachment 2. Down hole test results(Soil investigarion report, MD1-0-T-070-07-00018)

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

Vs for Layer 5.

Vs for Layer 1.

MD1-0-C-070-07-00001 23 of 45

Page 63: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

Vs for Layer 5.

MD1-0-C-070-07-00001 24 of 45

Page 64: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

Vs for Layer 5.

Vs for Layer 6.

Vs for Layer 1.

Vs for Layer 3.

MD1-0-C-070-07-00001 25 of 45

Page 65: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

- Average Vs of each Layer. unit : m/s

190 268 374 509

263264258286

451451456

461

505513

326340360378387395406420

443449450450

424431438440

329328332337333336

246260278284279327

333341

251257

220214111118144177210237

222214

90103133163182200216219218215221214

Layer 6

BL-005 BL-007 BL-007 BL-005 BL-007 BL-007

Layer 1 Layer 3 Layer 5

MD1-0-C-070-07-00001 26 of 45

Page 66: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

# Attachment 3. Empirical formula for Vs assumption(CALTRAN)

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

MD1-0-C-070-07-00001 27 of 45

Page 67: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

MD1-0-C-070-07-00001 28 of 45

Page 68: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

# Attachment 4. Assumption of Undrained Shear Strength(Su) by empirical formula

HUNT BOWLESTERZAGHI-PECK

(N/1.6)DUNHAM(N/1.54)

APPLIED VAULE REMARK

LAYER 2 7 42.0 42.0 42.4 44.6 42.0

LAYER 4 50 196.1 192.2 302.7 318.4 192.2

OBH 2 LAYER 2 3 18.4 18.1 18.2 19.1 18.1

LAYER 2 3 18.4 18.1 18.2 19.1 18.1

LAYER 4 13 79.7 78.1 78.7 82.8 78.1

BH(C)01 LAYER 4 35 228.8 216.2 211.9 222.9 211.9

BH-006-1 LAYER 4 50 196.1 192.2 302.7 318.4 192.2

BH-008 LAYER 2 6 36.8 36.3 36.3 38.2 36.3

BH-009 LAYER 2 5 30.6 30.2 30.3 31.8 30.2

BH-011 LAYER 4 33 215.8 204.2 199.8 210.2 199.8

BH-014 LAYER 4 12 73.6 72.1 72.6 76.4 72.1

BH-015 LAYER 4 22 143.8 138.2 133.2 140.1 133.2

BH-017 LAYER 4 22 143.8 138.2 133.2 140.1 133.2

BH-018 LAYER 2 15 98.1 90.1 90.8 95.5 90.1

LAYER 2 6 36.8 36.3 36.3 38.2 36.3

LAYER 4 12 73.6 72.1 72.6 76.4 72.1

BH-020 LAYER 2 7 42.9 42.4 42.4 44.6 42.4

BH-021 LAYER 4 14 85.8 84.1 84.8 89.2 84.1

BH-022 LAYER 4 28 183.1 174.2 169.5 178.3 169.5

BH-024 LAYER 2 5 30.6 30.2 30.3 31.8 30.2

BL-007 LAYER 4 12 73.6 72.1 72.6 76.4 72.1

LAYER 2 6 36.8 36.3 36.3 38.2 36.3

LAYER 4 18 117.7 114.1 109.0 114.6 109.0

BL-015 LAYER 4 16 104.6 102.1 96.9 101.9 96.9

BL-017 LAYER 4 18 117.7 114.1 109.0 114.6 109.0

LAYER 2 6 36.8 36.3 36.3 38.2 36.3

LAYER 4 15 91.9 90.1 90.8 95.5 90.1

BH(CW)-001-1 LAYER 2 3 18.4 18.1 18.2 19.1 18.1

BH(CW)-002 LAYER 2 7 42.9 42.4 42.4 44.6 42.4

BH(CW)-010 LAYER 2 3 18.4 18.1 18.2 19.1 18.1

LAYER 2 13 79.7 78.1 78.7 82.8 78.1

LAYER 4 23 150.4 144.2 139.2 146.5 139.2

Undrained Shear Shrength, Su (kN/m2)

OBH 1

BOREHOLENO.

LAYERAverageN-value

BL-007-1

BH(CW)-001

BH(CW)-010-1

BH-019

OBH 4

MD1-0-C-070-07-00001 29 of 45

Page 69: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

# Attachment 5. The summary of detail review for class E (by PI, w, Su)

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.API

AVERAG

ELIMIT(<20)

ESTIMATIO

NW

(%)

AVERAGE

LIMIT

(<40)ESTIM

ATION

HUNTBO

WLES

TERZAG

HI-PECK

(N/1.62)D

UNHAM(N/1.54)

APPLIED VAULE

LIMIT VALUE

ESTIMATIO

NAC

CESSM

ENT BYM

ETHOD

A, B, C1&C

2FINALIZED

SITE CLASS

U223.0

28.1

U312.6

17.1

U120.7

19.8

D415.5

11.5

D515.9

10.9

BH-006-1LAYER

46

50U1~U2

196.1192.2

302.7318.4

192.223.9

OK

CLASS D

CLASS D

U118.9

22.1

U217.2

25.3

U335.2

59.7

U17.7

22.2

U218.5

13.6

U112.8

15.7

U28.1

15.5

U312.7

14.2

U411.5

14.1

U118.6

18.4

U221.5

14.6

U312.3

14.0

BH-018LAYER

26.1

15U1

12.812.8

20.0O

K18.1

18.140.0

OK

98.190.1

90.895.5

90.123.9

OK

CLASS D

CLASS D

D318.9

26.4

U115.3

23.4

U119.8

31.2

U319.5

30.8

BL-007-1LAYER

45.3

18U3~U4

117.7108.1

109.0114.6

108.123.9

OK

CLASS D

CLASS D

U120.6

13.5

U221.6

18.5

U211.3

20.1

U424.8

29.9

U522.7

34.8

U120.1

31.7

U215.5

23.3

U315.0

24.4

BH(CW

)-010-1LAYER

49.5

23U3~U7,D

5150.4

138.2139.2

146.5138.2

23.9O

KC

LASS DC

LASS D

WATER

CO

NTENTFINAL SITE C

LASS

OBH-004

LAYER 4

5.513

17.820.0

OK

BOREHO

LENO

.LAYER

THICKNESS(m

)AverageN-value

SAMPLE NO

.PLASTIC

ITY INDEX

SU(kN/m2)

OK

CLASS D

CLASS D

22.640.0

OK

84.178.1

78.7

BH(C)01

LAYER 4

6.135

17.420.0

82.878.1

23.9

3.45

23.820.0

CLASS D

211.9222.9

192.223.9

OK

CLASS D

OK

14.140.0

OK

196.1192.2

CLASS D

30.331.8

30.023.9

OK

CLASS D

NG

35.740.0

OK

30.630.0

BH-008LAYER

2

LAYER 4

633

13.120.0

OK

17.940.0

14.940.0

CLASS C

CLASS C

199.8210.2

192.2

CLASS D

133.2140.1

132.123.9

OK

CLASS D

OK

OK

24.940.0

OK

91.184.1

23.9O

K

150.4138.2

139.2146.5

138.2

OK

196.1192.2

OK

OK

143.8132.1

15.740.0

BH-021LAYER

4

23.9BH-017

LAYER 4

CLASS D

CLASS D

OK

30.630.0

30.331.8

30.0

CLASS C

84.889.2

84.123.9

OK

CLASS C

OK

CLASS C

CLASS C

OK

BL-015LAYER

44.5

1621.1

20.0N

G

23.9O

KBH-024

LAYER 2

5.25

19.720.0

OK

31.040.0

CLASS C

CLASS D

16.040.0

101.996.9

23.9O

K

BH(CW

)-010LAYER

25.5

316.9

20.0

90.895.5

90.1O

K28.3

40.0O

K98.1

90.1BH(C

W)-001

LAYER 4

5.415

19.620.0

5.514

17.120.0

6.523

17.520.0

BH-015LAYER

415

2211.3

20.0

BH-011

NO LAB.D

ATA

NO LAB.D

ATA

NO LAB.D

ATA

CLASS D

18.219.1

17.923.9

NG

CLASS D

OK

26.540.0

OK

18.417.9

CLASS D

23.9O

KC

LASS D

OK

104.6102.1

96.9

MD1-0-C-070-07-00001 30 of 45

Page 70: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN

# Attachment 6. The detail calculation table for each method

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 6.5 10 196 0.033 10 0.650 6.5 10 0.650

2 Clay 1.6 6 158 0.010 6 0.267 1.6 36.3 0.0441

4 Clay 5.4 15 214 0.025 15 0.360 5.4 90.1 0.0599

5 W.R 5.4 100 377 0.014 100 0.054 5.4 100 0.054 5.4 240 0.0225

6 S.R 7.4 100 509 0.015 100 0.074 7.4 100 0.074 7.4 240 0.0308

6 S.R 3.7 100 509 0.007 100 0.037 3.7 100 0.037 3.7 240 0.0154

30 0.105 Class D 1.442 Class D 23 0.815 Class D 23.5 0.1728 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 7.7 10 196 0.039 10 0.770 7.7 10 0.770

2 Clay 1.1 3 125 0.009 3 0.367 1.1 18.1 0.0608

3 Sand 6.1 16 225 0.027 16 0.381 6.1 16 0.381

5 W.R 9.2 100 377 0.024 100 0.092 9.2 100 0.092 9.2 240 0.0383

6 S.R 5.9 100 509 0.012 100 0.059 5.9 100 0.059 5.9 240 0.0246

30 0.111 Class D 1.669 Class D 28.9 1.302 Class D 16.2 0.1237 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 9.7 10 196 0.050 10 0.970 9.7 10 0.970

2 Clay 2.9 7 166 0.017 7 0.414 2.9 42.4 0.0684

3 Sand 2.6 11 201 0.013 11 0.236 2.6 11 0.236

5 W.R 5.8 100 377 0.015 100 0.058 5.8 100 0.058 5.8 240 0.0242

2.2 24 377 0.006 24 0.092 2.2 24 0.092 2.2 240 0.0092

5 W.R 6.8 100 377 0.018 100 0.068 6.8 100 0.068 6.8 240 0.0283

30 0.119 Class D 1.838 Class D 27.1 1.424 Class D 17.7 0.1301 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 11.2 10 196 0.057 10 1.120 11.2 10 1.120

5 W.R 10.5 100 377 0.028 100 0.105 10.5 100 0.105 10.5 240 0.0438

6 S.R 4.3 100 509 0.008 100 0.043 4.3 100 0.043 4.3 240 0.0179

26 0.093 Class D 1.268 Class D 26 1.268 Class D 14.8 0.0617 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 7.0 10 196 0.036 10 0.697 7.0 10 0.697

5 W.R 18.5 100 377 0.049 100 0.185 18.5 100 0.185 18.5 240 0.0771

6 S.R 1.5 100 509 0.003 100 0.015 1.5 100 0.015 1.5 240 0.0063

6 S.R 3.0 100 509 0.006 100 0.030 3.0 100 0.030 3.0 240 0.0126

30 0.094 Class D 0.927 Class D 30 0.927 Class D 23 0.0960 Class C

18 22 131.0

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH(CW)-001

287 21 28 136.0

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH(CW)-003

278 21 21 240.0

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH(CW)-004

321 32 32 240.0

Sum

Sum

LENSE

REV.A

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH(CW)-002

252 16 19 136.1

Sum

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH(CW)-001-1

270

MD1-0-C-070-07-00001 31 of 45

Page 71: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 8.0 10 196 0.041 10 0.804 8.0 10 0.804

3 Sand 1.5 10 196 0.008 10 0.150 1.5 10 0.150

5 W.R 12.0 100 377 0.032 100 0.120 12.0 100 0.120 12.0 240 0.0500

6 S.R 1.5 100 509 0.003 100 0.015 1.5 100 0.015 1.5 240 0.0063

6 S.R 7.0 100 509 0.014 100 0.070 7.0 100 0.070 7.0 240 0.0290

30 0.097 Class D 1.159 Class D 30 1.159 Class D 20.5 0.0853 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 11.3 10 196 0.058 10 1.130 11.3 10 1.130

5 W.R 18.7 100 377 0.050 100 0.187 18.7 100 0.187 18.7 240 0.0779

30 0.107 Class D 1.317 Class D 30 1.317 Class D 18.7 0.0779 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 11.3 9 190 0.059 9 1.256 11.3 9 1.256

5 W.R 15.1 100 377 0.040 100 0.151 15.1 100 0.151 15.1 240 0.0629

6 S.R 3.0 100 509 0.006 100 0.030 3.0 100 0.030 3.0 240 0.0125

6 S.R 0.6 100 509 0.001 100 0.006 0.6 100 0.006 0.6 240 0.0025

30 0.107 Class D 1.443 Class D 30 1.443 Class D 18.7 0.0779 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 0.5 10 196 0.003 10 0.054 0.5 10 0.054

5 W.R 23.5 100 377 0.062 100 0.235 23.5 100 0.235 23.5 240 0.0979

6 S.R 1.0 100 509 0.002 100 0.010 1.0 100 0.010 1.0 240 0.0042

6 S.R 5.0 100 509 0.010 100 0.050 5.0 100 0.050 5.0 240 0.0207

30 0.077 Class C 0.349 Class C 30 0.349 Class C 29.5 0.1228 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 1.8 10 196 0.009 10 0.184 1.8 10 0.184

5 W.R 10.2 100 377 0.027 100 0.102 10.2 100 0.102 10.2 240 0.0425

3.0 50 377 0.008 50 0.060 3.0 50 0.060 3.0 240 0.0125

5 W.R 15.0 100 377 0.040 100 0.150 15.0 100 0.150 15.0 240 0.0623

30 0.084 Class D 0.496 Class C 30 0.496 Class C 28.2 0.1173 Class C

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH(CW)-005

309 26 26 240.0

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH(CW)-006

280 23 23 240.0

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH(CW)-007

281 21 21 240.0

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH(CW)-008

391 86 86 240.0

Method B : N Method C : Nch Method C : Su

Description

BH(CW)-009

357 60.5 61 240.0LENSE

Sum

Sum

BoreholeSoil Layer Information Method A : Vs

MD1-0-C-070-07-00001 32 of 45

Page 72: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 2.3 10 196 0.012 10 0.229 2.3 10 0.229

2 Clay 5.5 3 125 0.044 3 1.833 5.5 18.1 0.3039

5 W.R 22.2 100 377 0.059 100 0.222 22.2 100 0.222 22.2 240 0.0925

30 0.114 Class D 2.284 Class E 24.5 0.451 Class C 27.7 0.3964 Class D

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 6.7 10 196 0.034 10 0.670 6.7 10 0.670

2 Clay 2.8 13 204 0.014 13 0.215 2.8 78.1 0.0359

4 Clay 9.5 23 247 0.038 23 0.413 9.5 139.2 0.0682

5 W.R 11.0 100 377 0.029 100 0.110 11.0 100 0.110 11.0 240 0.0458

30 0.116 Class D 1.408 Class D 17.7 0.780 Class D 23.3 0.1499 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 5.0 10 196 0.026 10 0.500 5.0 10 0.500

2 Clay 0.0 0

3 Sand 0.0 0

4 Clay 0.0 0

5 W.R 19.4 100 377 0.051 100 0.194 19.4 100 0.194 19.4 240 0.0808

6 S.R 5.6 100 509 0.011 100 0.056 5.6 100 0.056 5.6 240 0.0233

30 0.088 Class D 0.750 Class D 30 0.750 Class D 25 0.1042 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 3.9 10 196 0.020 10 0.390 3.9 10 0.390

2 Clay

3 Sand

4 Clay

5 W.R 20.5 100 377 0.054 100 0.205 20.5 100 0.205 20.5 240 0.0854

6 S.R 5.6 100 509 0.011 100 0.056 5.6 100 0.056 5.6 240 0.0233

30 0.085 Class D 0.651 Class D 30 0.651 Class D 26.1 0.1088 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 5.8 10 196 0.030 10 0.580 5.8 10 0.580

5 W.R 8.5 100 377 0.023 100 0.085 8.5 100 0.085 8.5 240 0.0354

6 S.R 1.9 100 509 0.004 100 0.019 1.9 100 0.019 1.9 240 0.0079

5 W.R 5.1 100 377 0.014 100 0.051 5.1 100 0.051 5.1 240 0.0213

6 S.R 2.0 100 509 0.004 100 0.020 2.0 100 0.020 2.0 240 0.0083

6 S.R 6.7 100 509 0.013 100 0.067 6.7 100 0.067 6.7 240 0.0279

30 0.086 Class D 0.822 Class D 30 0.822 Class D 24.2 0.1008 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 2.4 10 196 0.012 10 0.240 2.4 10 0.240

5 W.R 14.0 100 377 0.037 100 0.140 14.0 100 0.140 14.0 240 0.0583

6 S.R 2.0 100 509 0.004 100 0.020 2.0 100 0.020 2.0 240 0.0083

5 W.R 4.5 100 377 0.012 100 0.045 4.5 100 0.045 4.5 240 0.0188

6 S.R 3.8 100 509 0.007 100 0.038 3.8 100 0.038 3.8 240 0.0158

6 S.R 3.3 100 509 0.006 100 0.033 3.3 100 0.033 3.3 240 0.0138

30 0.079 Class C 0.516 Class C 30 0.516 Class C 27.6 0.1150 Class C

Method B : N Method C : Nch Method C : Su

Description

BH(CW)-010

262 13.1 54.3 69.9

Sum

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH(CW)-010-1

260 21.3 22.7 155.4

Borehole

Soil Layer Information Method A : Vs

BoreholeSoil Layer Information Method A : Vs

Method B : N Method C : Nch Method C : Su

Description

BH-001 341 40 40 240.0

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-002 352 46 46 240.0

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-003 347 36 36 240.0

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-004 379 58 58 240.0

Sum

MD1-0-C-070-07-00001 33 of 45

Page 73: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 9.1 7 177 0.051 7 1.300 9.1 7 1.300

5 W.R 15.5 100 377 0.041 100 0.155 15.5 100 0.155 15.5 240 0.0646

6 S.R 1.5 100 509 0.003 100 0.015 1.5 100 0.015 1.5 240 0.0063

6 S.R 3.9 100 509 0.008 100 0.039 3.9 100 0.039 3.9 240 0.0163

30 0.103 Class D 1.509 Class D 30 1.509 Class D 20.9 0.0871 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 9.1 7 177 0.051 7 1.300 9.1 7 1.300

5 W.R 20.9 100 377 0.055 100 0.209 20.9 100 0.209 20.9 240 0.0871

30 0.107 Class D 1.509 Class D 30 1.509 Class D 20.9 0.0871 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 9.5 7 177 0.054 7 1.357 9.5 7 1.357

4 Clay 6.0 50 320 0.019 50 0.120 6.0 192.2 0.0312

5 W.R 9.5 100 377 0.025 100 0.095 9.5 100 0.095 9.5 240 0.0396

6 S.R 4.0 100 509 0.008 100 0.040 4.0 100 0.040 4.0 240 0.0167

6 S.R 1.0 100 509 0.002 100 0.010 1.0 100 0.010 1.0 240 0.0042

30 0.108 Class D 1.622 Class D 24 1.502 Class D 20.5 0.0916 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 8.4 6 169 0.050 6 1.400 8.4 6 1.400

3 Sand 7.0 7 177 0.040 7 1.000 7.0 7 1.000

5 W.R 14.5 100 377 0.038 100 0.145 14.5 100 0.145 14.5 240 0.0604

6 S.R 0.1 100 509 0.000 100 0.001 0.1 100 0.001 0.1 240 0.0004

30 0.128 Class D 2.546 Class E 30 2.546 Class E 14.6 0.0608 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 4.7 6 169 0.028 6 0.783 4.7 6 0.783

2 Clay 3.4 6 158 0.022 6 0.567 3.4 36.3 0.0937

3 Sand 8.5 15.4 222 0.038 16 0.531 8.5 15.4 0.552

6 S.R 13.1 100 509 0.026 100 0.131 13.1 100 0.131 13.1 240 0.0546

6 S.R 0.3 100 509 0.001 100 0.003 0.3 100 0.003 0.3 240 0.0013

30 0.114 Class D 2.015 Class E 26.6 1.469 Class D 16.8 0.1495 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 9.1 10 196 0.046 10 0.910 9.1 10 0.910

2 Clay 0.5 5 149 0.003 5 0.100 0.5 30.2 0.0166

3 Sand 4.0 11 201 0.020 16 0.250 4.0 11 0.364

5 W.R 16.0 100 377 0.042 100 0.160 16.0 100 0.160 16.0 240 0.0667

6 S.R 0.4 100 509 0.001 100 0.004 0.4 100 0.004 0.4 240 0.0017

30 0.113 Class D 1.424 Class D 29.5 1.438 Class D 16.9 0.0849 Class C

Method B : N Method C : Nch Method C : Su

Description

BH-006 281 20

12 12 240.0

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-007 234

Sum

Borehole

Soil Layer Information Method A : Vs

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-005 291 20 20 240.0

20 240.0

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-006-1 279 18 16 223.7

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-008 263 14.89 18 112.4

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-009 266 21.07 21 199.1

Sum

MD1-0-C-070-07-00001 34 of 45

Page 74: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 7.7 10 196 0.039 10 0.770 7.7 10 0.770

5 W.R 16.0 100 377 0.042 100 0.160 16.0 100 0.160 16.0 240 0.0667

6 S.R 1.5 100 509 0.003 100 0.015 1.5 100 0.015 1.5 240 0.0063

6 S.R 4.8 100 509 0.009 100 0.048 4.8 100 0.048 4.8 240 0.0200

30 0.094 Class D 0.993 Class D 30 0.993 Class D 22.3 0.0929 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 5.2 10 196 0.027 10 0.520 5.2 10 0.520

4 Clay 6.0 33 278 0.022 33 0.182 6.0 199.8 0.0300

5 W.R 1.8 100 377 0.005 100 0.018 1.8 100 0.018 1.8 240 0.0075

6 S.R 5.2 100 509 0.010 100 0.052 5.2 100 0.052 5.2 240 0.0217

5 W.R 1.5 100 377 0.004 100 0.015 1.5 100 0.015 1.5 240 0.0063

6 S.R 10.3 100 509 0.020 100 0.103 10.3 100 0.103 10.3 240 0.0429

30 0.087 Class D 0.890 Class D 24 0.708 Class D 24.8 0.1084 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 10.6 10 196 0.054 10 1.060 10.6 10 1.060

3 Sand 5.0 13 211 0.024 13 0.385 5.0 13 0.385

5 W.R 11.5 100 377 0.031 100 0.115 11.5 100 0.115 11.5 240 0.0479

6 S.R 1.5 100 509 0.003 100 0.015 1.5 100 0.015 1.5 240 0.0063

6 S.R 1.4 100 509 0.003 100 0.014 1.4 100 0.014 1.4 240 0.0058

30 0.114 Class D 1.589 Class D 30 1.589 Class D 14.4 0.0600 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 6.1 10 196 0.031 10 0.610 6.1 10 0.610

5 W.R 16.0 100 377 0.042 100 0.160 16.0 100 0.160 16.0 240 0.0667

6 S.R 3.0 100 509 0.006 100 0.030 3.0 100 0.030 3.0 240 0.0125

6 S.R 4.9 100 509 0.010 100 0.049 4.9 100 0.049 4.9 240 0.0204

30 0.089 Class D 0.849 Class D 30 0.849 Class D 23.9 0.0996 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 6.2 10 196 0.032 10 0.620 6.2 10 0.620

3 Sand 3.1 12 207 0.015 12 0.258 3.1 12 0.258

4 Clay 1.1 12 199 0.006 12 0.092 1.1 72.1 0.0153

5 W.R 12.0 100 377 0.032 100 0.120 12.0 100 0.120 12.0 240 0.0500

6 S.R 7.6 100 509 0.015 100 0.076 7.6 100 0.076 7.6 240 0.0317

30 0.099 Class D 1.166 Class D 28.9 1.074 Class D 20.7 0.0969 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 2.7 10 196 0.014 10 0.270 2.7 10 0.270

4 Clay 15.0 22 243 0.062 22 0.682 15.0 133.2 0.1126

5 W.R 12.3 100 377 0.033 100 0.123 12.3 100 0.123 12.3 240 0.0513

30 0.108 Class D 1.075 Class D 15 0.393 Class D 27.3 0.1639 Class C

30.2 30 240.0

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-010 319

BH-015 278 27.9 38.2 166.6

Sum

BH-014 303 25.7 26.9 213.6

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-012 263 18.9 18.9 240.0

Method B : N Method C : Nch Method C : Su

Description

BH-013 337 35.3 35.3 240.0

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

Sum

BH-011 344 33.7 34 228.9

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

Borehole

Soil Layer Information Method A : Vs

MD1-0-C-070-07-00001 35 of 45

Page 75: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 11.2 10 196 0.057 10 1.120 11.2 10 1.120

3 Sand 4.4 22 246 0.018 22 0.200 4.4 22 0.200

5 W.R 7.5 100 377 0.020 100 0.075 7.5 100 0.075 7.5 240 0.0313

6 S.R 6.9 100 509 0.014 100 0.069 6.9 100 0.069 6.9 240 0.0288

30 0.108 Class D 1.464 Class D 30 1.464 Class D 14.4 0.0600 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 2.6 10 196 0.013 10 0.260 2.6 10 0.260

4 Clay 6.5 22 243 0.027 22 0.295 6.5 133.2 0.0488

5 W.R 6.1 100 377 0.016 100 0.061 6.1 100 0.061 6.1 240 0.0254

2.9 27 377 0.008 27 0.107 2.9 27 0.107 2.9 240 0.0121

5 W.R 1.3 100 377 0.003 100 0.013 1.3 100 0.013 1.3 240 0.0054

6 S.R 10.6 100 509 0.021 100 0.106 10.6 100 0.106 10.6 240 0.0442

30 0.088 Class D 0.843 Class D 23.5 0.547 Class D 27.4 0.1359 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 4.1 8 184 0.022 8 0.513 4.1 8 0.513

2 Clay 6.1 15 214 0.028 15 0.407 6.1 90.1 0.0677

3 Sand 5.3 11 201 0.026 11 0.482 5.3 11 0.482 5.3 240 0.0221

5 W.R 13.4 100 377 0.036 100 0.134 13.4 100 0.134 13.4 240 0.0558

6 S.R 1.1 100 509 0.002 100 0.011 1.1 100 0.011 1.1 240 0.0046

30 0.115 Class D 1.546 Class D 23.9 1.139 Class D 25.9 0.1502 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 7.7 10 196 0.039 10 0.770 7.7 10 0.770

2 Clay 0.8 6 158 0.005 6 0.133 0.8 36.3 0.0220

3 Sand 5.6 7 177 0.032 7 0.800 5.6 7 0.800

4 Clay 1.4 12 199 0.007 12 0.117 1.4 42.4 0.0330

5 W.R 3.9 100 377 0.010 100 0.039 3.9 100 0.039 3.9 240 0.0163

6 S.R 10.6 100 509 0.021 100 0.106 10.6 100 0.106 10.6 240 0.0442

30 0.114 Class D 1.965 Class D 27.8 1.715 Class D 16.7 0.1155 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 7.5 10 196 0.038 10 0.750 7.5 10 0.750

2 Clay 1.0 7 166 0.006 7 0.143 1.0 42.4 0.0236

3 Sand 3.7 9 190 0.019 9 0.411 3.7 9 0.411

5 W.R 7.5 100 377 0.020 100 0.075 7.5 100 0.075 7.5 240 0.0313

6 S.R 10.3 100 509 0.020 100 0.103 10.3 100 0.103 10.3 240 0.0429

30 0.104 Class D 1.482 Class D 29 1.339 Class D 18.8 0.0978 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 3.7 10 196 0.019 10 0.367 3.7 10 0.367

4 Clay 5.5 14 209 0.026 14 0.393 5.5 84.1 0.0654

5 W.R 1.8 100 377 0.005 100 0.018 1.8 100 0.018 1.8 240 0.0075

6 S.R 8.0 100 509 0.016 100 0.080 8.0 100 0.080 8.0 240 0.0333

5 W.R 4.0 100 377 0.011 100 0.040 4.0 100 0.040 4.0 240 0.0167

6 S.R 7.0 100 509 0.014 100 0.070 7.0 100 0.070 7.0 240 0.0293

30 0.090 Class D 0.968 Class D 24.5 0.575 Class D 26.3 0.1522 Class C

Sum

Sum

Borehole

Soil Layer Information Method A : Vs

LENSE

Sum

Sum

144.6

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch

BH-018 261 19.4 21.0 172.4

Method C : Su

Description

BH-020 289 20.2 21.7 192.3

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-019 263 15.3 16.2

BH-017 340 35.6 42.9 201.6

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-016 277 20.5 20.5 240.0

Method B : N Method C : Nch Method C : Su

Description

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

Method C : Su

Description

BH-021 334 31.0 42.6 173.0

MD1-0-C-070-07-00001 36 of 45

Page 76: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 11.8 10 196 0.060 10 1.180 11.8 10 1.180

3 Sand 5.4 39 291 0.019 39 0.138 5.4 39 0.138

4 Clay 2.1 28 264 0.008 28 0.075 2.1 169.5 0.0124

5 W.R 10.7 100 377 0.028 100 0.107 10.7 100 0.107 10.7 240 0.0446

30 0.115 Class D 1.500 Class D 27.9 1.425 Class D 12.8 0.0570 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

5 W.R 23.4 100 377 0.062 100 0.234 23.4 100 0.234 23.4 240 0.0975

6 S.R 6.6 100 509 0.013 100 0.066 6.6 100 0.066 6.6 240 0.0275

30 0.075 Class C 0.300 Class C 30 0.300 Class C 30 0.1250 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 12.0 15 220 0.054 15 0.800 12.0 15 0.800

2 Clay 5.2 6 158 0.033 6 0.860 5.2 30.2 0.1722

5 W.R 10.8 100 377 0.029 100 0.100 10.8 100 0.108 10.8 240 0.0450

6 S.R 2.0 100 509 0.004 100 0.020 2.0 100 0.020 2.0 240 0.0083

30 0.120 Class D 1.780 Class D 24.8 0.928 Class D 18 0.2255 Class D

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 11.2 10 196 0.057 10 1.119 11.2 10 1.119

5 W.R 14.3 100 377 0.038 100 0.143 14.3 100 0.143 14.3 240 0.0596

6 S.R 4.5 100 509 0.009 100 0.045 4.5 100 0.045 4.5 240 0.0188

30 0.104 Class D 1.307 Class D 30 1.307 Class D 18.8 0.0784 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 2.9 10 196 0.015 10 0.290 2.9 10 0.290

5 W.R 19.6 100 377 0.052 100 0.196 19.6 100 0.196 19.6 240 0.0817

6 S.R 3.9 100 509 0.008 100 0.039 3.9 100 0.039 3.9 240 0.0163

6 S.R 3.6 100 509 0.007 100 0.036 3.6 100 0.036 3.6 240 0.0150

30 0.082 Class C 0.561 Class C 30 0.561 Class C 27.1 0.1129 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 1.0 10 196 0.005 10 0.103 1.0 10 0.103

5 W.R 16.8 100 377 0.045 100 0.168 16.8 100 0.168 16.8 240 0.0700

6 S.R 6.2 100 509 0.012 100 0.062 6.2 100 0.062 6.2 240 0.0258

6 S.R 6.0 100 509 0.012 100 0.060 6.0 100 0.060 6.0 240 0.0249

30 0.074 Class C 0.393 Class C 30 0.393 Class C 29 0.1207 Class C

Sum

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-024 250 16.9 26.7 79.8

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-023 400 100.0 100.0 240.0

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BH-022 261 20.0 19.6 224.7

Sum

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BL-003 407 76 76 240.0

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BL-002 368 53 53 240.0

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BL-001 289 23 23 240.0

MD1-0-C-070-07-00001 37 of 45

Page 77: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

5 W.R 30.0 100 377 0.080 100 0.300 30.0 100 0.300 30.0 240 0.1250

30 0.080 Class C 0.300 Class C 30 0.300 Class C 30 0.1250 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 16.0 10 196 0.082 10 1.600 16.0 10 1.600

5 W.R 14.0 100 377 0.037 100 0.140 14.0 100 0.140 14.0 240 0.0583

30 0.119 Class D 1.740 Class D 30 1.740 Class D 14 0.0583 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 5.7 7 177 0.032 7 0.814 5.7 7 0.814

5 W.R 23.3 100 377 0.062 100 0.233 23.3 100 0.233 23.3 240 0.0971

1.0 35 377 0.003 35 0.029 1.0 35 0.029 1.0 240 0.0042

30 0.097 Class D 1.076 Class D 30 1.076 Class D 24.3 0.1013 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 8.0 10 196 0.041 10 0.800 8.0 10 0.800

3 Sand 4.0 12 207 0.019 12 0.333 4.0 12 0.333

4 Clay 2.0 12 199 0.010 12 0.167 2.0 72.1 0.0277

5 W.R 16.0 100 377 0.042 100 0.160 16.0 100 0.160 16.0 240 0.0667

30 0.113 Class D 1.460 Class D 28 1.293 Class D 18 0.0944 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 8.0 10 196 0.041 10 0.800 8.0 10 0.800

2 Clay 0.7 6 158 0.004 6 0.117 0.7 36.3 0.0193

4 Clay 5.3 18 228 0.023 18 0.294 5.3 109 0.0486

5 W.R 16.0 100 377 0.042 100 0.160 16.0 100 0.160 16.0 240 0.0667

30 0.111 Class D 1.371 Class D 24 0.960 Class D 22 0.1346 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 8.5 10 196 0.043 10 0.850 8.5 10 0.850

5 W.R 20.0 100 377 0.053 100 0.200 20.0 100 0.200 20.0 240 0.0833

6 S.R 1.5 100 509 0.003 100 0.015 1.5 100 0.015 1.5 240 0.0063

30 0.099 Class D 1.065 Class D 30 1.065 Class D 21.5 0.0896 Class CSum

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BL-008 302 28 28 240.0

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BL-007-1 270 22 25 163.5

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BL-007 266 21 22 190.7

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BL-006 310 28 28 240.0LENSE

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BL-005 253 17 17 240.0

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BL-004 377 100 100 240.0

MD1-0-C-070-07-00001 38 of 45

Page 78: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 4.6 10 196 0.023 10 0.460 4.6 10 0.460

5 W.R 23.0 100 377 0.061 100 0.230 23.0 100 0.230 23.0 240 0.0958

6 S.R 2.4 100 509 0.005 100 0.024 2.4 100 0.024 2.4 240 0.0100

30 0.089 Class D 0.714 Class D 30 0.714 Class D 25.4 0.1058 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 0.2 10 196 0.001 10 0.020 0.2 10 0.020

5 W.R 16.5 100 377 0.044 100 0.165 16.5 100 0.165 16.5 240 0.0688

6 S.R 1.5 100 509 0.003 100 0.015 1.5 100 0.015 1.5 240 0.0063

5 W.R 6.0 100 377 0.016 100 0.060 6.0 100 0.060 6.0 240 0.0250

6 S.R 5.8 100 509 0.011 100 0.058 5.8 100 0.058 5.8 240 0.0242

30 0.075 Class C 0.318 Class C 30 0.318 Class C 29.8 0.1242 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

5 W.R 13.9 100 377 0.037 100 0.139 13.9 100 0.139 13.9 240 0.0579

6 S.R 16.1 100 509 0.032 100 0.161 16.1 100 0.161 16.1 240 0.0671

30 0.069 Class C 0.300 Class C 30 0.300 Class C 30 0.1250 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 7.3 10 196 0.037 10 0.730 7.3 10 0.730 7.3 240 0.0304

5 W.R 22.7 100 377 0.060 100 0.227 22.7 100 0.227 22.7 240 0.0946

30 0.097 Class D 0.957 Class D 30 0.957 Class D 30 0.1250 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 0.1 10 196 0.001 10 0.010 0.1 10 0.010

5 W.R 28.0 100 377 0.074 100 0.280 28.0 100 0.280 28.0 240 0.1167

6 S.R 1.9 100 509 0.004 100 0.019 1.9 100 0.019 1.9 240 0.0079

30 0.079 Class C 0.309 Class C 30 0.309 Class C 29.9 0.1246 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

5 W.R 8.5 100 377 0.023 100 0.085 8.5 100 0.085 8.5 240 0.0354

1.0 50 377 0.003 50 0.020 1.0 50 0.020 1.0 240 0.0042

5 W.R 6.1 100 377 0.016 100 0.061 6.1 240 0.0254

3.0 50 377 0.008 50 0.060 3.0 50 0.060 3.0 240 0.0125

5 W.R 11.4 100 377 0.030 100 0.114 11.4 100 0.114 11.4 240 0.0475

30 0.080 Class C 0.340 Class C 23.9 0.279 Class C 30 0.1250 Class C

BL-014 377 88.2 85.7 240.0

Sum

LENSE

LENSE

BL-013 382 97.1 97.1 240.0

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BL-012 308 31.3 31.3 240.0

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

Sum

Description

BL-011 438 100.0 100 240.0

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BL-010 400 94.3 94.3 240.0

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BL-009 336 42.0 42.0 240.0

MD1-0-C-070-07-00001 39 of 45

Page 79: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 0.6 10 196 0.003 10 0.060 0.6 10 0.060

4 Clay 4.5 16 219 0.021 16 0.281 4.5 96.9 0.0464

5 W.R 5.0 100 377 0.013 100 0.050 5.0 100 0.050 5.0 240 0.0208

6 S.R 8.0 100 509 0.016 100 0.080 8.0 100 0.080 8.0 240 0.0333

6 S.R 11.9 100 509 0.023 100 0.119 11.9 100 0.119 11.9 240 0.0496

30 0.076 Class C 0.590 Class C 25.5 0.309 Class C 29.4 0.1502 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 2.8 10 196 0.014 10 0.280 2.8 10 0.280

5 W.R 18.0 100 377 0.048 100 0.180 18.0 100 0.180 18.0 240 0.0750

6 S.R 4.5 100 509 0.009 100 0.045 4.5 100 0.045 4.5 240 0.0188

6 S.R 4.7 100 509 0.009 100 0.047 4.7 100 0.047 4.7 240 0.0196

30 0.080 Class C 0.552 Class C 30 0.552 Class C 27.2 0.1133 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

1 Sand 0.9 10 196 0.005 10 0.090 0.9 10 0.090

4 Clay 1.3 18 228 0.006 18 0.072 1.3 109 0.0119

5 W.R 17.7 100 377 0.047 100 0.177 17.7 100 0.177 17.7 240 0.0738

6 S.R 4.5 100 509 0.009 100 0.045 4.5 100 0.045 4.5 240 0.0188

6 S.R 5.6 100 509 0.011 100 0.056 5.6 100 0.056 5.6 240 0.0233

30 0.077 Class C 0.440 Class C 28.7 0.368 Class C 29.1 0.1278 Class C

THK.(D)(m)

NavgVs

(m/s)di/Vsi

Vs,avg(m/s)

N di/Ni N,avgD

(m)Nch di/Nch Nch,avg

D(m)

Su(kN/m2)

di/SuSu,avg(kN/m2)

6 S.R 3.0 100 509 0.006 100 0.030 3.0 100 0.030 3.0 240 0.0125

5 W.R 3.0 100 377 0.008 100 0.030 3.0 100 0.030 3.0 240 0.0125

6 S.R 3.0 100 509 0.006 100 0.030 3.0 100 0.030 3.0 240 0.0125

5 W.R 4.5 100 377 0.012 100 0.045 4.5 100 0.045 4.5 240 0.0188

6 S.R 1.5 100 509 0.003 100 0.015 1.5 100 0.015 1.5 240 0.0063

6 S.R 15.0 100 509 0.029 100 0.150 15.0 100 0.150 15.0 240 0.0625

30 0.064 Class C 0.300 Class C 30 0.300 Class C 30 0.1250 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 2.4 10 196 0.012 10 0.240 2.4 10 0.240

3 Sand 2.8 22 246 0.011 22 0.127 2.8 22 0.127

4 Clay 6.1 35 284 0.021 35 0.174 6.1 211.9 0.0288

5 W.R 15.5 100 377 0.041 100 0.155 15.5 100 0.155 15.5 240 0.0646

6 S.R 3.2 100 509 0.006 100 0.032 3.2 100 0.032 3.2 240 0.0133

30 0.093 Class D 0.729 Class D 23.9 0.554 Class D 24.8 0.1067 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 1.1 10 196 0.006 10 0.110 1.1 10 0.110

5 W.R 24.0 100 377 0.064 100 0.240 24.0 100 0.240 24.0 90 0.2667

6 S.R 4.9 100 509 0.010 100 0.049 4.9 100 0.049 4.9 240 0.0204

30 0.079 Class C 0.399 Class C 30 0.399 Class C 28.9 0.2871 Class C

Method C : Nch Method C : Su

Sum

BL-017 389 68.1 78.0 227.8

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BL-018 468 100.0 100.0 240.0

Description

BL-015 395 50.8 82.5 195.8

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

BL-016 374 54.3 54.3 240.0

Sum

BoreholeSoil Layer Information Method A : Vs Method B : N

BoreholeSoil Layer Information Method A : Vs Method B : N Method C : Nch Method C : Su

Description

Sum

Method C : Nch Method C : Su

Description

BH(C)02 380 75 75 100.7

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N

Method C : Su

232.4

Borehole

Soil Layer Information Method A : Vs Method B : N Method C : Nch

Description

BH(C)01 324 41 43

MD1-0-C-070-07-00001 40 of 45

Page 80: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 5.8 10 196 0.030 10 0.580 5.8 10 0.580

2 Clay 1.5 7 166 0.009 7 0.214 1.5 42 0.0357

3 Sand 1.5 16 225 0.007 16 0.094 1.5 16 0.094

4 Clay 1.5 50 320 0.005 50 0.030 1.5 192.2 0.0078

5 W.R 16.9 100 377 0.045 100 0.169 16.9 100 0.169 16.9 240 0.0704

6 S.R 2.8 100 509 0.006 100 0.028 2.8 100 0.028 2.8 240 0.0117

30 0.100 Class D 1.115 Class D 27 0.871 Class D 22.7 0.1256 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 5.3 10 196 0.027 10 0.530 5.3 10 0.530

2 Clay 1.2 3 125 0.010 3 0.400 1.2 18.1 0.0663

5 W.R 23.5 100 377 0.062 100 0.235 23.5 100 0.235 23.5 240 0.0979

30 0.099 Class D 1.165 Class D 28.8 0.765 Class D 24.7 0.1642 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 5.9 10 196 0.030 10 0.590 5.9 10 0.590

5 W.R 24.1 100 377 0.064 100 0.241 24.1 100 0.241 24.1 240 0.1004

30 0.094 Class D 0.831 Class D 30 0.831 Class D 24.1 0.1004 Class C

THK.(D)

(m)Navg

Vs

(m/s)di/Vsi

Vs,avg

(m/s)N di/Ni N,avg

D

(m)Nch di/Nch Nch,avg

D

(m)

Su

(kN/m2)di/Su

Su,avg

(kN/m2)

1 Sand 6.1 10 196 0.031 10 0.610 6.1 10 0.610

2 Clay 0.8 3 125 0.006 3 0.267 0.8 18.1 0.0442

4 Clay 5.5 13 204 0.027 13 0.423 5.5 78.1 0.0704

5 W.R 9.0 100 377 0.024 100 0.090 9.0 100 0.090 9.0 240 0.0375

6 S.R 8.6 100 509 0.017 100 0.086 8.6 100 0.086 8.6 240 0.0358

30 0.105 Class D 1.476 Class D 23.7 0.786 Class D 23.9 0.1880 Class CSum

Method C : Nch Method C : Su

Description

OBH 4 285 20 30 127.2

Method A : Vs Method B : N

Sum

Borehole

Soil Layer Information Method A : Vs Method B : N

Method C : Nch Method C : Su

Description

OBH 3 319 36 36 240.0

Borehole

Soil Layer Information Method A : Vs Method B : N

OBH 1 299 27 31

Sum

180.7

Method C : Su

DescriptionBorehole

Soil Layer Information Method B : NMethod A : Vs Method C : Nch

Sum

Method C : Nch Method C : Su

Description

OBH 2 303 26 38 150.4

Borehole

Soil Layer Information

MD1-0-C-070-07-00001 41 of 45

Page 81: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

# Attachment 7. The seismic coefficients Ca, Cv for return period 2500 years in MD1 site

(From "Recommendation on wind and seismic load for MD1")

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

MD1-0-C-070-07-00001 42 of 45

Page 82: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

MD1-0-C-070-07-00001 43 of 45

Page 83: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

MD1-0-C-070-07-00001 44 of 45

Page 84: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

SITE CLASSIFICATION REPORT FOR SEISMIC DESIGN REV.A

MD1-0-C-070-07-00001 45 of 45

Page 85: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

U.S. Department Publication No. FHWA HI-98-032of Transportation May 2001

Federal HighwayAdministration

NHI Course No. 132068))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Load and Resistance Factor Design (LRFD)for Highway Bridge Substructures

Reference Manual and Participant Workbook

National Highway Institute

Page 86: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

4-26

Table 4-10 (A3.4.1-1) Load Combinations and Load Factors

(AASHTO, 1997a) Use one of these at a

time LOAD COMBINATION LIMIT STATE

DC DD DW EH EV ES

LL IM CE BR PL LS

WA WS WL FR

(1) TU CR SH EL

TG SE EQ IC CT CV

STRENGTH-I (unless noted) γp 1.75 1.00 - - 1.00 0.50/

1.20 γTG γSE - - - -

STRENGTH-II γp 1.35 1.00 - - 1.00 0.50/ 1.20 γTG γSE - - - -

STRENGTH-III γp - 1.00 1.40 - 1.00 0.50/ 1.20 γTG γSE - - - -

STRENGTH-IV EH, EV, ES, DW DC ONLY

γp

1.50 - 1.00 - - 1.00 0.50/

1.20 - - - - - -

STRENGTH-V γp 1.35 1.00 0.40 0.40 1.00 0.50/ 1.20 γTG γSE - - - -

EXTREME EVENT-I γp γEQ 1.00 - - 1.00 - - - 1.00 - - -

EXTREME EVENT-II γp 0.50 1.00 - - 1.00 - - - - 1.00 1.00 1.00

SERVICE-I 1.00 1.00 1.00 0.30 0.30 1.00 1.00/ 1.20 γTG γSE - - - -

SERVICE-II 1.00 1.30 1.00 - - 1.00 1.00/ 1.20 - - - - - -

SERVICE-III 1.00 0.80 1.00 - - 1.00 1.00/ 1.20 γTG γSE - - - -

FATIGUE-LL, IM & CE ONLY - 0.75 - - - - - - - - - - -

CONSTRUCTION 1.25 1.50 1.00 1.25 1.25 1.25 1.00 1.00 1.00 - - - - (1) The reduced values of γ are used when calculating force effects other than displacements of joints and bearings (A14.4.1).

1109674
사각형
Page 87: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

4-27

Table 4-11 (A3.4.1-2) Load Factors for Permanent Loads, γP

(AASHTO, 1997a)

Load Factor Type of Load Maximum Minimum

DC: Component and Attachments 1.25 0.90 DD: Downdrag 1.80 0.45 DW: Wearing Surfaces and Utilities 1.50 0.65 EH: Horizontal Earth Pressure • Active • At-Rest

1.50 1.35

0.90 0.90

EV: Vertical Earth Pressure • Retaining Structure • Rigid Buried Structure • Rigid Frames • Flexible Buried Structures • Flexible Metal Box Culverts

1.35 1.30 1.35 1.95 1.50

1.00 0.90 0.90 0.90 0.90

ES: Earth Surcharge 1.50 0.75 From the Table 4-10, the limit states which must be investigated include:

• Strength Limit State • Extreme Event Limit State • Service Limit State • Fatigue Limit State • Construction Limit State

The limit states are further subdivided based on consideration of applicable load combinations as follows:

• Strength I - Basic load combination related to the normal vehicular use of the bridge without wind.

• Strength II - Load combination relating to the use of the bridge by Owner-

specified special design vehicles and/or evaluation permit vehicles, without wind.

• Strength III - Load combination relating to the bridge exposed to wind

velocity exceeding 90 km/hr without live loads.

• Strength IV - Load combination relating to very high dead load to live load force effect ratios exceeding about 7.0 (e.g., for spans greater than 75 m).

1109674
사각형
1109674
사각형
1109674
사각형
1109674
사각형
Page 88: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

F May.29,12 Issue for Approval

E May.16,12 Issue for Approval

D May.01,12 Issue for Approval M.J, Song Y.S, Lee Son, Joon

C Apr.18,12 Issue for Approval M.J, Song Y.S, Lee Son, Joon

B Apr.02,12 Issue for Approval M.J, Song Y.S, Lee Son, Joon

A Mar.15,12 Issue for Approval M.J, Song Y.S, Lee Son, Joon

REV. DATE DESCRIPTION DSGN CHKD APPD

PROJECT :

TWO(2) x 500 MW MONG DUONG 1 THERMAL POWER PLANT

EMPLOYER :

CONSULTANT :

CONTRACTOR :

DESIGNED BY DATE TITLE :

May.25,12 Interpretation Report for the Preliminary

Pile Load Test of PC Spun Pile CHECKED BY DATE

May.27,12

APPROVED BY DATE PROJECT NUMBER DOCUMENT NUMBER REV.

May.28,12 ADB/MD1-TPIP/EPC150911 MD1-0-T-070-07-00025 F

FOR APPROVAL

Page 89: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

Appendix N. Safety Factor

174

JUNG
다각형
Page 90: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture

Safety Factor

Method

Safety Factor

Recommended Determined

Geotechnical

Bearing Capacity

Calculation

Compression load 2~3 2.5

Tension load 1.5~3 2

Static Pile Load Test 1.5~2.2 2.5 *1)

Dynamic Load Test (PDA) 1.6~2.4 2 *2)

Note : *1) If pile reaches to ultimate capacity or failure load which causes settlement equal to the 10% of diameter during pile load test, safety factor of 3 should be applied. *2) Safety factor shall be evaluated and revised based on the comparison between dynamic load test and static pile load test.

175

JUNG
다각형
Page 91: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture
NAM GA
Text Box
Climate station
NAM GA
Text Box
Year
NAM GA
Text Box
Monthly data
NAM GA
Text Box
Temperature
NAM GA
Text Box
Rainfall
NAM GA
Text Box
Humidity
NAM GA
Text Box
Sunshine
NAM GA
Text Box
Month
NAM GA
Text Box
Hours
NAM GA
Text Box
Climate station
NAM GA
Text Box
Year
NAM GA
Text Box
Month
NAM GA
Text Box
Temperature
NAM GA
Text Box
Rainfall
NAM GA
Text Box
Humidity
NAM GA
Text Box
Sunshine
NAM GA
Text Box
Hours
NAM GA
Text Box
Trung tâm Nghiên cứu Khí tượng Nông nghiệp
NAM GA
Text Box
Centre for Agricultural Meteorology
Page 92: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture
NAM GA
Text Box
Climate station
NAM GA
Text Box
Climate station
NAM GA
Text Box
Year
NAM GA
Text Box
Year
NAM GA
Text Box
Month
NAM GA
Text Box
Month
NAM GA
Text Box
Temperature
NAM GA
Text Box
Temperature
NAM GA
Text Box
Rainfall
NAM GA
Text Box
Rainfall
NAM GA
Text Box
Humidity
NAM GA
Text Box
Humidity
NAM GA
Text Box
Sunshine
NAM GA
Text Box
Sunshine
NAM GA
Text Box
Hours
NAM GA
Text Box
Hours
NAM GA
Text Box
Trung tâm Nghiên cứu Khí tượng Nông nghiệp
NAM GA
Text Box
Centre for Agricultural Meteorology
Page 93: Md1-0-C-300!04!00010-0, Design Criteria - Civil _ Architecture
NAM GA
Text Box
Climate station
NAM GA
Text Box
Year
NAM GA
Text Box
Month
NAM GA
Text Box
Temperature
NAM GA
Text Box
Rainfall
NAM GA
Text Box
Humidity
NAM GA
Text Box
Sunshine
NAM GA
Text Box
Hours
NAM GA
Text Box
Trung tâm Nghiên cứu Khí tượng Nông nghiệp
NAM GA
Text Box
Centre for Agricultural Meteorology