LC Detector R&D, SLAC, and SLUO… pre-P5 meeting · R Frey SLUO P6. 1. LC Detector R&D, SLAC, and...

17
R Frey SLUO P6 1 LC Detector R&D, SLAC, and SLUO… pre-P5 meeting R. Frey, University of Oregon Detector R&D will have a huge positive impact on the physics program of the TeV-scale LC. We see how to make big steps in performance over the LEP/SLC generation of detectors. And there is additional untapped potential. These steps will “possibly” be crucial for elucidating the New Physics. Major labs and their users should play a meaningful role. Outline: The LC challenges for detectors Snapshots of some current R&D involving SLAC and users SLAC as a center for LC R&D

Transcript of LC Detector R&D, SLAC, and SLUO… pre-P5 meeting · R Frey SLUO P6. 1. LC Detector R&D, SLAC, and...

R Frey SLUO P6 1

LC Detector R&D, SLAC, and SLUO… pre-P5 meeting

R. Frey, University of Oregon

Detector R&D will have a huge positive impact on the physics program of the TeV-scale LC.

We see how to make big steps in performance over the LEP/SLC generation of detectors. And there is additional untapped potential.These steps will “possibly” be crucial for elucidating the New Physics.Major labs and their users should play a meaningful role.

Outline:•

The LC challenges for detectors•

Snapshots of some current R&D involving SLAC and users•

SLAC as a center for LC R&D

The TeV Scale –

What will it bring?

R Frey SLUO P6 2

H. MurayamaWe know there is New Physics, but we don’t know what it is.

The LHC will uncover (choose):a)all the New Physicsb)a known portionc)an unknown portion

Jet (hadronic) final states at LHC

Z -> JJ , Mass Resolution

dE (Calor)FragmentationUnderlying EventRadiationB = 4 T

LHC Study: Z→ 2 jetsD. Green, Calor2002

• FSR is the biggest effect.

• The underlying event is the second largest error (if cone R ~ 0.7).

• Calorimeter resolution is a minor effect.

σM / M ∼

13% without FSR

⇒ At the LC, the situation is reversed: Detection dominates.

⇒ Opportunity at the LC to significantly improve measurement of jets.

3R Frey SLUO P6

LC environment: interaction rate; accelerator timing

Cross section is small ⇒ 0 or 1 event per bunch crossingNo underlying events (pairs swept forward)Little or no radiation damage

All events are interesting ⇒ no trigger (record everything)•

Long time between bunch trains ⇒ turn off (most) power in FECan use passive cooling ⇒ very light tracking systems

Small IP ⇒ can get very close with vertex detectorsR Frey SLUO P6 4

ILC(SC RF)

R Frey SLUO P6

LC detector goals•

In general, LC measurements are limited by the detectors (and luminosity, √s), not by the collider environment.

LC detectors should aim to measure all final states and measure with precision.

Multi-jet final states•

With or without beam constraintLeptons

including tauHeavy quarksMissing energy/massCollision energy and polarization

5

Meeting the challenges I: PFA for multi-jet final states

R Frey SLUO P6 6

Typical jet content:

≈2% at 100 GeV

+ confusion = 3-4% at 100 GeV

This is >2x better than previous collider detectors•

Key is minimizing confusion:1.Algorithms2.Calorimeter segmentation

R Frey SLUO P6 7

Steve Magill: PFA Illustration

t tbar → 6 jets

R Frey SLUO P6 8

The SiD Si/W ECal

Layers tiled with silicon sensors, each with 1024 13 mm2

pixels

KPiX chip

R Frey SLUO P6 9

KPiX chip (SLAC, Oregon, BNL)

one channel of 1024

Si pixel

Dynamic gain select

Event trigger

Leakage current subtraction

calibration

Storage until end of train.

Pipeline depth presently is 4

13 bit A/D

Developed for Si/W ECal and Si strip Tracker.Being considered for GEM HCal, muon system, FCal.

(some) implications of excellent jet measurement

R Frey SLUO P6 10

multi-jet masses in the absence of beam constraints, e.g. ννWW vs ννZZ, W/Z → jets

TESLA TDR

reducing combinations with intermediate jet masses, e.g. ZHH → jets

segmented, imaging calorimeters open up new measurements,e.g. tau id and polarization;non-pointing photons (GMSB)

τ+

→ ρ+ν

→(π+πoν) ν

Meeting challenges II: tracking

R Frey SLUO P6 11

SiD vtx+tracker

Meeting challenges III: vertexing

R Frey SLUO P6 12

(some) implications of excellent tracking/vertexing

R Frey SLUO P6 13

Yamashita

Meeting challenges IV: L.E.P.

A Luminosity Spectrum dL/dE •

Contributions1.

ISR2.

Beamstrahlung3.

Linac energy spread, ΔE/E

Need to measure dL/dE

“δ(Eo

) + tail”

Broadening near Eo

e.g. t-tbar

threshold

14R Frey SLUO P6

University-SLAC detector R&D projects (incomplete)

Groups R&D activityAnnecy, UC Davis, Oregon (, BNL) Silicon/tungsten ECalBrown, Michigan, New Mexico, Purdue, Santa Cruz, Tokyo, Washington (, FNAL)

Silicon tracking and vertexing

Colorado, Kansas, Kansas State, N. Illinois, Iowa, Oregon, Santa Cruz (, ANL, FNAL)

Simulations, Reconstruction, PFA development

Oregon Beam Energy measurement (synchrotron spectrometer)

Cambridge U., DESY, Dubna,

Royal Holloway U., U. of Notre Dame, University College London, UC Berkeley

Beam Energy Measurement (BPM spectrometer)

Tufts Polarimeter

backgrounds(BNL,) Yale, Colorado, DESY Far-forward calorimeters

R Frey SLUO P6 15

SLAC test beam users for LC R&D (M. Woods)

R Frey SLUO P6 16

Groups Test Beam activityCambridge U., DESY, Dubna,

Royal Holloway U., U. of Notre Dame, University College London, UC Berkeley, SLAC

Beam Energy Measurement (BPM spectrometer)

U. Oregon, SLAC Beam Energy Measurement (synchrotron spectrometer)

U. of Oxford, Rutherford Appleton Lab, U. of Essex, Dartmouth College, SLAC

Beam profile measurements (Smith-Purcell radiation)

Oregon, SLAC EMI effect on Vertex detectors

SLAC KPiX

readout of Si stripsU. of Birmingham, CCLRC (UK), CERN

Manchester U., Lancaster U., DESY, TEMF TU Darmstadt, SLAC

Collimator wakefield

studies

U. of Oxford, Daresbury Lab, SLAC IP BPM studies (FONT)

Why a SLAC Center for R&D?•

It already is at some level…

SLAC-based activity should increase with the U.S. LC effort.

The presence of a LC on site!!Unique national/international capabilityDetector test beamsAccelerator instrumentation test beamsThe test beams are great (several personal experiences)

Well-defined position, time, and energyWith a LC bunch timing structure(!)

Local detector/instrumentation expertise and infrastructureElectronics groupHEP-related engineeringDetector expertsComputing facilities and simulation/software group

Location•

Historical user base

R Frey SLUO P6 17