Laser Compton Polarized e + Source for ILC

44
Laser Compton Polarized e e + + Source for ILC Compton meeting@LAL 24/Apr/2006 Tsunehiko OMORI (KEK)

description

Laser Compton Polarized e + Source for ILC. Tsunehiko OMORI (KEK). Compton meeting@LAL 24/Apr/2006. ILC : International Linear Collider. DR. e - lineac. e + lineac. DRs. ~ 50 km. E cm = 500 - 1000 GeV. start experiment at ~2015. Polarized Beams play important role - PowerPoint PPT Presentation

Transcript of Laser Compton Polarized e + Source for ILC

Page 1: Laser Compton Polarized e +  Source for ILC

Laser Compton Polarized ee++ Source for ILC

Compton meeting@LAL 24/Apr/2006

Tsunehiko OMORI (KEK)

Page 2: Laser Compton Polarized e +  Source for ILC

ILC: International Linear Collidere+ lineace- lineac DRsDR

Ecm = 500 - 1000 GeV

Polarized Beams play important role Suppress back ground Increase rate of interaction (if both beam pol) Solve Week mixing of final state

start experiment at ~2015

~ 50 km

Page 3: Laser Compton Polarized e +  Source for ILC

Two ways to get pol. e+

(1) Helical Undurator

(2) Laser Compton

e- beam E >150 GeV

Undulator L > 150 m

Page 4: Laser Compton Polarized e +  Source for ILC

Two ways to get pol. e+

(1) Helical Undurator

(2) Laser Compton

e- beam E >150 GeV

Undulator L > 150 m

Our Proposal

Page 5: Laser Compton Polarized e +  Source for ILC

Why Laser Compton ?

ii) Independence Undulator-base e+ : use e- main linac Problem on design, construction, commissioning, maintenance, Laser-base e+ : independent Easier construction, operation, commissioning, maintenance iii) Low energy operation

Undulator-base e+ : need deccelation Laser-base e+ : no problem

i) Positron Polarization.

Page 6: Laser Compton Polarized e +  Source for ILC

ILC Undulator-base e+ Source

150 GeV 250 GeV 250 GeV

Experiments

Page 7: Laser Compton Polarized e +  Source for ILC

Today’s talk

2. Concept of Laser Based Polarized e+ Source for ILC

Simulation study & Plan of Experimental R/D(Cavity-Compton)

1.Proof-of-Principle demonstration at KEK-ATF (ATF-Compton collab.)

Experiment at KEK, just finished

Page 8: Laser Compton Polarized e +  Source for ILC

1. Experiment at KEK-ATF

120 m

ATF-Compton collaboration: Waseda, TMU, NRIS, AIST, and KEKATF: Accelerator Test Facility for ILC built at KEK

Page 9: Laser Compton Polarized e +  Source for ILC

i) proof-of-principle demonstration

ii) accumulate technical imformation: polarimetry, beam diagnosis, …

ATF Experiment@KEK

No Optical Cavity at Collision Point

Page 10: Laser Compton Polarized e +  Source for ILC
Page 11: Laser Compton Polarized e +  Source for ILC

Compton Chamber

Page 12: Laser Compton Polarized e +  Source for ILC
Page 13: Laser Compton Polarized e +  Source for ILC

-rayMeasured Asymmetry

A= -0.93± 0.15 % A= 1.18± 0.15 %laser pol. = - 79 % laser pol. = + 79 %

M. Fukuda et al., PRL 91(2003)164801

Page 14: Laser Compton Polarized e +  Source for ILC

Ne+ = 3 x 104/bunch Asym (expected) = 0.95%Pol(expected) = 77%

Page 15: Laser Compton Polarized e +  Source for ILC

polarized e+

Measure e+ polarization : use Bremsstrahlung -ray

Pb conveter

-ray

E = 40 MeV

calculation

Page 16: Laser Compton Polarized e +  Source for ILC

e+ polarization (e+ run )e- spin in Iron

e- spin in Iron

e- spin in Iron

e+ beam spin

e+ beam spin

e+ beam spinnon

A(R)= +0.60 ± 0.25%

A(L)= -1.18 ± 0.27%

A(0)= -0.02 ± 0.25%

T. Omori et al., PRL 96 (2006) 114801

Page 17: Laser Compton Polarized e +  Source for ILC

A = 0.90 ± 0.18 %

Pol. = 73 %

e+ run T. Omori et al., PRL 96 (2006) 114801

Page 18: Laser Compton Polarized e +  Source for ILC

Summary of Experiment1) The experiment was successful. High intensity short pulse polarized e+ beam was firstly produced. Pol. ~ 73 ± 15(sta) ± 19(sys) %

3) We established polarimetry of short pulse & high intensity -rays, positrons, and electrons.

2) We confirmed propagation of the polarization from laser photons -> -rays -> and pair created e+s & e-s.

T. Omori et al., PRL 96 (2006) 114801

Page 19: Laser Compton Polarized e +  Source for ILC

Collaborating Institutes:BINP, CERN, DESY, Hiroshima, IHEP, IPN, KEK, Kyoto,

LAL, NIRS, NSC-KIPT, SHI, and Waseda

SakaeArakiYasuoHigashiYousukeHondaMasaoKurikiToshiyukiOkugi TsunehikoOmoriTakashiTaniguchiNobuhiroTerunuma,

JunjiUrakawaXArtruMChevallier, VStrakhovenko, EugeneBulyakPeterGladkikhKlausMeonig, RobertChehabAlessandroVariolaFabianZomerFrankZimmermann, KazuyukiSakaueTachishigeHiroseMasakazuWashioN

oboruSasaoHirokazuYokoyamaMasafumiFukudaKoichiroHiranoMikioTakanoTohruTakahashiHirokiSatoAkiraTsunemiand JieGao

2. Concept of Compton polarized e+ source

for ILC

Page 20: Laser Compton Polarized e +  Source for ILC

Summer 2004ITRP(International Technology Recommendation Panel)

technology choice : cold LC (ILC) cold LC : super conduction RF cavity for accel.

Page 21: Laser Compton Polarized e +  Source for ILC

Conceptual Design for warm LCT. Omori et al., NIM A500 (2003) 232-252

Ne+=1.2x1010/bunch

Before Summer 2004

Page 22: Laser Compton Polarized e +  Source for ILC

Study Compton applied to a cold LC.

New and Improved design

Full use of slow repetition rate (5Hz)

After Summer 2004

Page 23: Laser Compton Polarized e +  Source for ILC

ILC requirements

Page 24: Laser Compton Polarized e +  Source for ILC

ILC requirements2x1010 e+/bunch (hard)2800 bunches/train (hard)5 Hz (we have time to store e + s)

Strategy

New: Design for cold LC (ILC) make positrons in 100 m sec. Electron storage ring, laser pulse stacking cavity : Re-use !!! positron stacking ring.

Old: Design for warm LC make positrons at once. both electron & laser beams: throw away

Basic Idea: K. Moenig P. Rainer

T. Omori et al., NIM A500 (2003) 232-252

Page 25: Laser Compton Polarized e +  Source for ILC

Laser Pulse Stacking Cavity

Input laser (YAGlaser) Energy 0.7 mJ/bunch 3.077 nsec bunch spacing train length = 50 sec

Cavity Enhancement Factor =1000

Laser pulse in cavity 700 mJ/bunch single bunch in a cavity

Fabry-perot Resonator

Page 26: Laser Compton Polarized e +  Source for ILC

Schematic View of Whole System

Page 27: Laser Compton Polarized e +  Source for ILC

ILC: International Linear Collidere+ lineace- lineac DRsDR

~ 50 km

Page 28: Laser Compton Polarized e +  Source for ILC

Schematic View of Whole System

Page 29: Laser Compton Polarized e +  Source for ILC

Schematic View of Whole System

This part is necessary for ILC, This part is necessary for ILC, no matter what eno matter what e++ production production scheme is chosen.scheme is chosen.

Page 30: Laser Compton Polarized e +  Source for ILC

We also haveExperimental R/D Plan

for Comptom Pol. e+ Source

Page 31: Laser Compton Polarized e +  Source for ILC

Plan: Exprmntl R/D at KEK

.Put it in ATF ringOct. 2006

Hiroshima-Waseda-LAL-Kyoto-CERN-KEK Collaboration

Make a fist prototype single cavityLcav = 420 mm

Page 32: Laser Compton Polarized e +  Source for ILC

.Put it in ATF ringOct. 2006

Make a fist prototype single cavityLcav = 420 mm

detail Sato's talk

Page 33: Laser Compton Polarized e +  Source for ILC

Laser based scheme is good candidate of ILC polarized e+ source.

Summary of ILC source design

We have new Ideamake positrons in 100 m sec. Electron storage ring laser pulse stacking cavities positron stacking ring (= e+ DRs)

2x1010 e+/bunch x 2800 bunches @ 5Hzwith polarization ( ~ 60%)

Some values are extrapolation from old design.We need detailed simulation.

We plan to put prototype laser cavity in ATF.

Page 34: Laser Compton Polarized e +  Source for ILC

Slides to answer questions

Page 35: Laser Compton Polarized e +  Source for ILC

Polarization Measurement

non (Liner)

)Calculate A

)Calculate A

)Calculate A

e+ beam pol.(laser pol)

e- spin in iron (magnet pol.)

A(0) : A(0) = 0

A(R) : A(R) ~ + 0.95 %

A(L) : A(L) ~ - 0.95 %

R

L

0

expected value

(MC)

Page 36: Laser Compton Polarized e +  Source for ILC
Page 37: Laser Compton Polarized e +  Source for ILC
Page 38: Laser Compton Polarized e +  Source for ILC
Page 39: Laser Compton Polarized e +  Source for ILC

W- target

Separationmagnet

e+

e+

e-

W- target

e+Separation

magnet

polarized

e-

e-

e+ run e- run

We did e- run, also.

Page 40: Laser Compton Polarized e +  Source for ILC

e- polarization (e- run)e- spin in Iron

e- spin in Iron

e- spin in Iron

e- beam spin

e- beam spin

e- beam spinnon

A(L)= -0.97 ± 0.27%

A(0)= -0.23 ± 0.27%

A(R)= +0.78 ± 0.27%

Page 41: Laser Compton Polarized e +  Source for ILC

A = 0.89 ± 0.19 %

e- run

Page 42: Laser Compton Polarized e +  Source for ILC

A = 0.90 ± 0.18 %

T. Omori et al., arXiv:hep-ex/0508026 KEK Preprint 2005-56

e+ run

A = 0.89 ± 0.19 %

e- run

Asymmetry Measurements

Page 43: Laser Compton Polarized e +  Source for ILC

Compton Ring (e- storage Ring)

0 10 20 30 40 50 Turns

0 20 40 60 80 100 Turns

CO2 ring YAG ring

N/

elec

tron

/turn

(in

all

ener

gy o

f -

ray)

2.0

1.6

1.2

0.8

0.4

1.6

1.2

0.8

0.4

Average N/turn (in 23-29 MeV) CO2 : 1.78x1010 /turn YAG : 1.36x1010 /turn (average in 50 turns) (average in 100 turns)

Page 44: Laser Compton Polarized e +  Source for ILC

e+ stacking in Damping Ring (simulation)1st bnch on 1st trn

5th bnch on 5th trn

100 bnchs on 18820th trn

10th bnch on 10th trn

before 11th bnch on 941st trn

11th bnch on 942nd trn

15th bnch on 946th trn

20th bnch on 951st trn

before 21st bnch on1882nd trn

100th bnch on 8479th trn

100 bnchs on 9410th trn

~110 sec

~10 msec

~10 msec + 110 sec ~20 msec ~100 msec + 110 sec

~110 msec

~200 msec

T=0

-0.4 0.4Longitudinal Pos. (m)

-0.0

3

0.

03E

nerg

y/En

ergy

i-th bunch on j-th DR turn

Time

e+ in a bucket

stacking loss = 18% in total