Laplacian Colormaps: a framework for structure-preserving color transformations

40
Laplacian colormaps: a framework for structure-preserving color transformations Davide Eynard, Artiom Kovnatsky, Michael Bronstein Institute of Computational Science, Faculty of Informatics University of Lugano, Switzerland Eurographics, 8 April 2014 This research was supported by the ERC Starting Grant No. 307047 (COMET). 1 / 40

description

When mapping between color spaces, one wishes to find image-specific transformations preserving as much as possible the structure of the original image. Using image Laplacians to capture structural information, we show that if color transformations between two images are structure-preserving the respective Laplacians are approximately jointly diagonalizable (i.e., they commute). Using Laplacians commutativity as a criterion of color mapping quality, we minimize it w.r.t. the parameters of a color transformation to achieve optimal structure preservation.

Transcript of Laplacian Colormaps: a framework for structure-preserving color transformations

Page 1: Laplacian Colormaps: a framework for structure-preserving color transformations

Laplacian colormaps: a frameworkfor structure-preserving color transformations

Davide Eynard, Artiom Kovnatsky, Michael Bronstein

Institute of Computational Science, Faculty of InformaticsUniversity of Lugano, Switzerland

Eurographics, 8 April 2014

This research was supported by the ERC Starting Grant No. 307047 (COMET).

1 / 40

Page 2: Laplacian Colormaps: a framework for structure-preserving color transformations

2 / 40

Page 3: Laplacian Colormaps: a framework for structure-preserving color transformations

3 / 40

Page 4: Laplacian Colormaps: a framework for structure-preserving color transformations

4 / 40

Page 5: Laplacian Colormaps: a framework for structure-preserving color transformations

Color transformations

RGB source Luma

Standard color transformations may break image structure!

5 / 40

Page 6: Laplacian Colormaps: a framework for structure-preserving color transformations

Color transformations

RGB source Luma

Standard color transformations may break image structure!

6 / 40

Page 7: Laplacian Colormaps: a framework for structure-preserving color transformations

Color transformations

RGB source Luma Desired outcome

Standard color transformations may break image structure!

7 / 40

Page 8: Laplacian Colormaps: a framework for structure-preserving color transformations

Image Laplacian

Input N ×M image with d colorchannels, column-stacked into anNM × d matrix X

Represented as graph with K vertices(e.g. superpixels) and weighted edges

K ×K adjacency matrix WX

wij = exp

(−δ2ij2σ2s

+‖x′ki − x′kj‖

22

2σ2r

)

K ×K Laplacian

LX = DX−WX, DX = diag(∑j 6=i

wij)

8 / 40

Page 9: Laplacian Colormaps: a framework for structure-preserving color transformations

Image Laplacian

Input N ×M image with d colorchannels, column-stacked into anNM × d matrix X

Represented as graph with K vertices(e.g. superpixels) and weighted edges

K ×K adjacency matrix WX

wij = exp

(−δ2ij2σ2s

+‖x′ki − x′kj‖

22

2σ2r

)

K ×K Laplacian

LX = DX−WX, DX = diag(∑j 6=i

wij)

x′ki

x′kj

wij

9 / 40

Page 10: Laplacian Colormaps: a framework for structure-preserving color transformations

Laplacians = structure descriptors

UTLXU = ΛX, VTLYV = ΛY

X u4 u5 u6 u7

Y v4 v5 v6 v7

Similar structure ⇐⇒ similar Laplacian eigenvectors

10 / 40

Page 11: Laplacian Colormaps: a framework for structure-preserving color transformations

Laplacians = structure descriptors

UTLXU = ΛX, VTLYV = ΛY

X u4 u5 u6 u7

Y v4 v5 v6 v7

Similar structure ⇐⇒ similar Laplacian eigenvectors

Ideally, two Laplacians are jointly diagonalizable (iff theycommute): there exists a joint eigenbasis U = U = V

11 / 40

Page 12: Laplacian Colormaps: a framework for structure-preserving color transformations

Laplacians = structure descriptors

X u2 u3 u4 u5

RGB source

12 / 40

Page 13: Laplacian Colormaps: a framework for structure-preserving color transformations

Laplacians = structure descriptors

X u2 u3 u4 u5

RGB source

Y v2 v3 v4 v5

Luma (‘bad’ color conversion)

13 / 40

Page 14: Laplacian Colormaps: a framework for structure-preserving color transformations

Laplacians = structure descriptors

X u2 u3 u4 u5

RGB source

Y v2 v3 v4 v5

Luma (‘bad’ color conversion)

Z t2 t3 t4 t5

‘Good’ color conversion

14 / 40

Page 15: Laplacian Colormaps: a framework for structure-preserving color transformations

Laplacians = structure descriptors

X u2 u3 u4 u5 Clustering

RGB source

Y v2 v3 v4 v5 Clustering

Luma (‘bad’ color conversion)

Z t2 t3 t4 t5 Clustering

‘Good’ color conversion

15 / 40

Page 16: Laplacian Colormaps: a framework for structure-preserving color transformations

Finding joint eigenbases

Joint approximate diagonalization

Find joint approximateeigenbasis U

minU

off(UTLXU) + off(U

TLYU)

s.t. UTU = I

where off(A) =∑

i 6=j a2ij .

These two problems are equivalent!(approx. joint diagonalizability ⇐⇒ approx. commutativity)

Cardoso 1995, Eynard et al. 2012, Kovnatsky et al. 2013

, Bronstein et al. 2013

16 / 40

Page 17: Laplacian Colormaps: a framework for structure-preserving color transformations

Finding joint eigenbases

Joint approximate diagonalization

Find joint approximateeigenbasis U

minU

off(UTLXU) + off(U

TLYU)

s.t. UTU = I

where off(A) =∑

i 6=j a2ij .

Closest commuting Laplacians

Find closest commutingpair LX, LY

minLX,LY

‖LX − LX‖2F + ‖LY − LY‖2F

s.t. LXLY = LYLX

Since LX and LY commute, theyhave a joint eigenbasis U

These two problems are equivalent!(approx. joint diagonalizability ⇐⇒ approx. commutativity)

Cardoso 1995, Eynard et al. 2012, Kovnatsky et al. 2013, Bronstein et al. 201317 / 40

Page 18: Laplacian Colormaps: a framework for structure-preserving color transformations

Finding joint eigenbases

Joint approximate diagonalization

Find joint approximateeigenbasis U

minU

off(UTLXU) + off(U

TLYU)

s.t. UTU = I

where off(A) =∑

i 6=j a2ij .

Closest commuting Laplacians

Find closest commutingpair LX, LY

minLX,LY

‖LX − LX‖2F + ‖LY − LY‖2F

s.t. LXLY = LYLX

Since LX and LY commute, theyhave a joint eigenbasis U

These two problems are equivalent!(approx. joint diagonalizability ⇐⇒ approx. commutativity)

Cardoso 1995, Eynard et al. 2012, Kovnatsky et al. 2013, Bronstein et al. 201318 / 40

Page 19: Laplacian Colormaps: a framework for structure-preserving color transformations

Laplacian colormaps

X

19 / 40

Page 20: Laplacian Colormaps: a framework for structure-preserving color transformations

Laplacian colormaps

X

−→Φθ

Y = Φθ(X)

Parametric colormap Φθ : RNM×d → RNM×d′ parametrizedby θ = (θ1, . . . , θn)

Global: each pixel x is transformed same way, y = Φθ(x)Local: different transformations in q regions,Φθ(X) =

∑qi=1 wiΦθi(X)

20 / 40

Page 21: Laplacian Colormaps: a framework for structure-preserving color transformations

Laplacian colormaps

X

−→Φθ

Y = Φθ(X)

LX LY

LX = DX −WX LΦθ(X) = DΦθ(X) −WΦθ(X)

Find an optimal parametric color transformation

minθ∈Rn

‖LXLΦθ(X) − LΦθ(X)LX‖2F + regularization on θ

21 / 40

Page 22: Laplacian Colormaps: a framework for structure-preserving color transformations

Color-to-gray conversion

Color mapping by a global color transformation of the form

Φθ(R,G,B) = θ1 + θ2Rθ3 + θ4G

θ5 + θ6Bθ7

Luma Col2Gray Rasche Decolorize Neumann Smith Lu Ours

2.18/-1.05 1.96/-0.10 1.43/-1.38 1.35/0.86 2.22/0.29 2.13/-0.29 1.47/0.82 1.19/1.15

Cadık 2008; Gooch et al. 2005; Rasche et al. 2005; Grundland, Dodgson 2007;

Neumann et al. 2007; Smith et al. 2008; Lu et al. 2012; Kuhn et al. 200822 / 40

Page 23: Laplacian Colormaps: a framework for structure-preserving color transformations

Color-to-gray conversion

Color mapping by a global color transformation of the form

Φθ(R,G,B) = θ1 + θ2Rθ3 + θ4G

θ5 + θ6Bθ7

Luma Col2Gray Rasche Decolorize Neumann Smith Lu Ours

5.01/-0.55 3.42/-0.89 3.59/-0.48 3.44/1.41 5.44/-0.66 5.04/-0.19 2.90/0.50 1.28/0.86

9.27/-0.57 7.05/-0.53 7.20/-0.04 7.28/1.45 10.17/-1.05 9.13/-1.02 6.30/1.01 3.78/0.76

Cadık 2008; Gooch et al. 2005; Rasche et al. 2005; Grundland, Dodgson 2007;

Neumann et al. 2007; Smith et al. 2008; Lu et al. 2012; Kuhn et al. 200823 / 40

Page 24: Laplacian Colormaps: a framework for structure-preserving color transformations

Color-to-gray conversion

Color mapping by a global color transformation of the form

Φθ(R,G,B) = θ1 + θ2Rθ3 + θ4G

θ5 + θ6Bθ7

Luma Col2Gray Rasche Decolorize Neumann Smith Lu Ours

0.97/0.27 1.24/-1.30 0.97/-0.08 1.02/0.61 1.66/-0.86 1.05/0.32 0.80/0.22 0.85/0.82

Cadık 2008; Gooch et al. 2005; Rasche et al. 2005; Grundland, Dodgson 2007;

Neumann et al. 2007; Smith et al. 2008; Lu et al. 2012; Kuhn et al. 200824 / 40

Page 25: Laplacian Colormaps: a framework for structure-preserving color transformations

Color-to-gray conversion

Color mapping by a global color transformation of the form

Φθ(R,G,B) = θ1 + θ2Rθ3 + θ4G

θ5 + θ6Bθ7

Luma Col2Gray Rasche Decolorize Neumann Smith Lu OursRWMS 2.84 2.31 2.46 2.20 4.85 2.94 1.90 1.33z-score -0.17 -0.31 -0.63 0.55 -0.53 -0.09 0.34 0.84

Cadık 2008; Gooch et al. 2005; Rasche et al. 2005; Grundland, Dodgson 2007;

Neumann et al. 2007; Smith et al. 2008; Lu et al. 2012; Kuhn et al. 200825 / 40

Page 26: Laplacian Colormaps: a framework for structure-preserving color transformations

Computational complexity: Color-to-gray example

10-1

100

101

102

103

Tim

e (sec)

#vertices 253 641 1130 22946 91784 367136

0.597

RW

MS e

rror

0.599

x10-3

Linear (n=3)

Non-linear (n=7)

Superpixels Scaling

Complexity O(K2)

Laplacian dimension K �MN (realtime performance withsmall K)

Optimization on θ is performed with small Laplacians. Then,Φθ is applied on full image

Superpixels: Ren, Malik 200326 / 40

Page 27: Laplacian Colormaps: a framework for structure-preserving color transformations

Color-blind image optimization

RGB source

X

Ψ

Seen by color-blind

Ψ(X)

Vienot et al. 1999, Kim et al. 201227 / 40

Page 28: Laplacian Colormaps: a framework for structure-preserving color transformations

Color-blind image optimization

RGB source

X Φθ(X)

Ψ

Seen by color-blind

Φθ

(Φθ ◦Ψ)(X)

︸ ︷︷ ︸‖LXLΦθ(X)−LΦθ(X)LX‖

‖LXL(Φθ◦Ψ)(X)−L(Φθ◦Ψ)(X)LX‖︷ ︸︸ ︷

28 / 40

Page 29: Laplacian Colormaps: a framework for structure-preserving color transformations

Color-blind image optimization

RGB source

X Φθ(X)

Ψ

Seen by color-blind

Φθ

(Φθ ◦Ψ)(X)︸ ︷︷ ︸‖LXLΦθ(X)−LΦθ(X)LX‖

‖LXL(Φθ◦Ψ)(X)−L(Φθ◦Ψ)(X)LX‖︷ ︸︸ ︷

29 / 40

Page 30: Laplacian Colormaps: a framework for structure-preserving color transformations

Color-blind image optimization: protanopia

RGB Lau

1.23

Optimized

0.50

Lau et al. 201130 / 40

Page 31: Laplacian Colormaps: a framework for structure-preserving color transformations

Color-blind image optimization: tritanopia

RGB Lau

1.69

Optimized

0.53

Lau et al. 201131 / 40

Page 32: Laplacian Colormaps: a framework for structure-preserving color transformations

Gamut mapping

Map image colors to a gamut G(convex polytope)

minθ∈Rn

‖LXLΦθ(X) − LΦθ(X)LX‖2F+ regularization on θ

s.t. Φθ(X) ⊆ G

sRGB

G

32 / 40

Page 33: Laplacian Colormaps: a framework for structure-preserving color transformations

Gamut mapping

Original Lau et al. Ours HPMINDE (clip)

Lau et al. 201133 / 40

Page 34: Laplacian Colormaps: a framework for structure-preserving color transformations

RGB+NIR fusion

NIR RGB Lau et al. Ours

Lau et al. 201134 / 40

Page 35: Laplacian Colormaps: a framework for structure-preserving color transformations

Multiple image fusion

Morning

Day

Evening

Night

Fusion

35 / 40

Page 36: Laplacian Colormaps: a framework for structure-preserving color transformations

Summary

Framework

theoretically grounded

versatile

global/local

realtime

Applications

color-to-grayscale

color-blind optimization

gamut mapping

multispectral image fusion

36 / 40

Page 37: Laplacian Colormaps: a framework for structure-preserving color transformations

Summary

Framework

theoretically grounded

versatile

global/local

realtime

Applications

color-to-grayscale

color-blind optimization

gamut mapping

multispectral image fusion

37 / 40

Page 38: Laplacian Colormaps: a framework for structure-preserving color transformations

Thank you!

38 / 40

Page 39: Laplacian Colormaps: a framework for structure-preserving color transformations

Qualitative evaluation

Web survey

124 volunteers, 2884 pairwise evaluations

Thurstone’s law of comparative judgements → z-score

Consistent with Cadık’s results

39 / 40

Page 40: Laplacian Colormaps: a framework for structure-preserving color transformations

Extension: local colormap

RGB Luma Lau et al.

Global Local Clusters

Φθ(X) =∑q

i=1 wiΦθi(X)

Lau et al. 201140 / 40