Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed,...

118
Investing in Public EV Charging Infrastructure: Balancing Strategic Investments in Fast and Regular Charging Facilities across Different Levels of Urbanisation Author: G.S.G.M. (Glenn) de Jong Student number: 357570gj Master Thesis: MSc Business Information Management Coach: Micha Kahlen, MSc Co-reader: Dr. Koen Dittrich Date: August 15 th 2016

Transcript of Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed,...

Page 1: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

Investing in Public EV Charging Infrastructure:

Balancing Strategic

Investments in Fast and

Regular Charging Facilities

across Different Levels of

Urbanisation

Author: G.S.G.M. (Glenn) de Jong

Student number: 357570gj

Master Thesis: MSc Business Information Management

Coach: Micha Kahlen, MSc

Co-reader: Dr. Koen Dittrich

Date: August 15th 2016

Page 2: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | i

Title: Investing in Public Electric Vehicle Charging Infrastructure:

Subtitle: Balancing Strategic Investments in Fast and Regular Charging

Facilities across Different Levels of Urbanisation

Project: Master Thesis

Date: August 15th 2016

University: Rotterdam School of Management, Erasmus University

Place: Rotterdam, Zuid-Holland, The Netherlands

Master: MSc Business Information Management

Author: G.S.G.M. de Jong

Student number: 357570gj

RSM University coach: M.T. Kahlen, MSc

RSM University co-reader: Dr. K. Dittrich

Stedin Company coach: B.M.H. de Brey

Stedin Company coach: H. Fidder

Page 3: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | ii

The copyright of this master thesis rests with the author. The author is responsible for its contents. The Rotterdam School of Management and Erasmus University are only responsible for the educational coaching and cannot be held liable for the content. No part of this publication may be reproduced or transmitted in any form or by any means electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, by third parties without permission in writing from the author. Although, much attention was paid to the data and data gathering process this study can be subject to potential measurement errors. For example, it could be the case that the data used is incomplete due to underreporting or data flaws. This could affect the outcomes and averages used. Due to the high rate of development and change in the industry the results and assumptions of this study should be taken “as-is” for the current market situation. For inquiries regarding this report, please contact the author: [email protected]

© 2016 Glenn de Jong – Rotterdam School of Management, Erasmus University, Rotterdam, The Netherlands

Page 4: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | iii

“When Henry Ford made cheap, reliable cars people said, 'Nah, what's wrong

with a horse?' That was a huge bet he made, and it worked.”

Elon Musk - The Los Angeles Times, April 22, 2003

Page 5: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | iv

Acknowledgements During the past five years I studied at the Rotterdam School of Management which is part of

the Erasmus University situated in Rotterdam, The Netherlands. This thesis is the final dissertation

for completing RSM’s Master’s program Business Information Management. Already since I was a

youngster, I had lots of interest in everything related to automobiles and over the years I became

a bit of a petrol head. In my search for a suitable subject I came across the research area of electric

vehicles and charging infrastructure. As we are currently at the start of the transition from

conventional fossil fuel powered vehicles towards more sustainable modes of transportation such

as electric and hydrogen/fuel cell powered vehicles I was eager to dive into this subject. In

addition, as I tended to be a bit sceptical about the electrification of private transportation, this

subject provided with a great opportunity to find out whether (full) EVs are as promising as some

promise and the solution for a more sustainable future of our planet. Eventually this quest resulted

in the subject of my Master thesis which focus is at a small, but important prerequisite for optimal

EV adoption: “Investing in Public Electric Vehicle Charging Infrastructure: Balancing Strategic

Investments in Fast and Regular Charging Facilities across Different Levels of Urbanisation”. Its

main goal is to find out what the costs of fast charging and regular charging poles really are and

whether the need for faster charging exists and whether this need differs across different levels

of urbanisation.

Working on this Master Thesis for the last seven and a half months in combination with my

other responsibilities, such as my studies in Strategic Management as well as Business Information

Management was sometimes quite challenging. However, diving so deep into one subject gave

me a lot of interesting insights, especially during the early stages of the project. This knowledge,

and setting up a study which is heavily related to a real life not only enriched my knowledge, but

even though I faced some struggles, I enjoyed it.

Of course this study would not have been here without the support and efforts of people

around me. Whether this is related to the content or more mental support. First of all, I would like

to thank my coach Micha Kahlen. Despite his busy schedule, Micha provided me with extensive

support, thoughts and expert research knowledge. In addition, he proved to be a really enjoyable

and passionate person to work with. I also would like to thank my co‐reader Dr. Koen Dittrich for

his support. The feedback he provided turned out to be useful and brought the document to a

higher level.

Furthermore, I would like to thank my company coaches, Baerte de Brey and Henk Fidder,

their colleagues as well as their connections for all their support, the great insights, referrals, and

meetings. Special thanks goes to Nazir Refa, Heinz Jankowsky, and Denes Jaszmann for providing

necessary bits of data.

Last but not least, I would like to thank the people close to me, my parents and brother, as

well as friends and fellow BIMmers for their support and the fun we had during the year.

Page 6: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | v

Abstract Over the last years e-mobility has gained significant interest from the academic field. First

from technical scholars, later on interest also increased from a business perspective. However,

there is limited understanding how we can ensure that the increasing number of (PH)EVs have

access to a well-developed, interoperable charging infrastructure. The objective to have 20 million

EVs on the road by 2020 is set by energy ministers from the world’s major economies (Trigg,

Telleen, Boyd, & Cuenot, 2013). In order to cope with the increased demand for power, significant

investments in charging infrastructure need to be made. Recent developments have come up with

several new solutions to deal with the increased charging demand. These include valet charging,

smart charging, charging incentives, simply deploying more charging poles, induction charging,

battery change stations, and fast charging facilities. This study will focus on public charging

infrastructure by exploring the determinants of strategic investments in fast and regular charging

facilities. Providing better insights in the exact costs of as well as demand for these facilities is a

necessity as current knowledge about fast charging in relation to regular charging is relatively

sparse. This leads towards the following research question:

How should strategic investments in public charging infrastructure (e.g. fast charging and

regular charging facilities) be balanced across different levels of urbanisation based on the

current costs as well as the charging behaviour of EV drivers?

The results presented in this study complement to prior research in the relatively new area

of electric personal transportation and makes use of cost and charging transaction data retrieved

from several stakeholders in order to further develop the rationale behind investments in fast

charging stations and charging poles in urban environments. The results create better

understanding of the costs of fast charging facilities and regular charging poles, the balance

between the charging solutions across different levels of urbanisation as well as its attractiveness

for stakeholders. It identified the fast charging need across five levels of urbanisation in the

Netherlands and suggest that fast charging can play a large role in fulfilling the (future) charging

demand of EVs. Based on the results it recommends that fast charging stations should not only be

placed in areas with a low degree of urbanisation such as along highways in order to enable long-

distance travelling, but also in highly urbanised areas such as in or near city centres.

Keywords: electric vehicles, electric cars, EV, charging, fast charging, high speed charging,

charging infrastructure, slow charging, public charging facilities, EV infrastructure investments,

Stedin, EV adoption, energy planning.

Page 7: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | vi

Table of Contents Acknowledgements .................................................................................................................. iv

Abstract ..................................................................................................................................... v

Table of Contents ..................................................................................................................... vi

1. Introduction .......................................................................................................................... 1

1.1 Aim and Research Question ........................................................................................... 4

1.2 Academic and Managerial Relevance ............................................................................ 5

2. Theoretical Background ........................................................................................................ 7

2.1 Research Context: Developments in Electric Driving and Charging ............................... 7

2.1.1 Electric Vehicles....................................................................................................... 9

2.1.2 Charging Infrastructure ......................................................................................... 11

2.1.3 Drivers of E-mobility .............................................................................................. 15

2.1.4 Conclusion ............................................................................................................. 19

2.2 Literature Review ......................................................................................................... 19

3. Conceptual Framework ...................................................................................................... 23

3.1 Cost Structures of Public Charging Facilities ................................................................ 23

3.2 Urbanisation Effects on Costs and Charging Behaviour ............................................... 23

3.3 Business Case ............................................................................................................... 24

4. Methodology ...................................................................................................................... 26

4.1 Quantitative Sample & Data ......................................................................................... 27

4.1.1 Public Charging Costs Analysis .............................................................................. 27

4.1.2 Balancing Charging Solutions: The Effect of Urbanisation & Charging Behaviour 28

4.1.3 Business Case ........................................................................................................ 31

4.2 Qualitative Data ............................................................................................................ 31

4.3 Analysis and Estimation Techniques ............................................................................ 32

5. Data and Findings ............................................................................................................... 33

5.1 Costs of Public Charging Solutions ............................................................................... 33

5.1.1 Costs of Regular Charging Poles ............................................................................ 33

5.1.2 Costs of Fast Charging Facilities ............................................................................ 39

5.1.3 Total Investment and Costs per Public Charging Solution .................................... 42

5.2 Charging behaviour, charging pole utilisation and fast charging need ........................ 43

5.2.1 Current Charging Behaviour .................................................................................. 44

5.2.2 Charging Behaviour Across Different Levels of Urbanisation ............................... 46

Page 8: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | vii

5.3 Balancing Public Charging Solutions ............................................................................. 54

6. Discussion ........................................................................................................................... 58

6.1 Theoretical Implications ............................................................................................... 58

6.2 Practical Implications ................................................................................................... 59

6.3 Limitations .................................................................................................................... 60

6.4 Future Research ........................................................................................................... 62

7. Conclusion .......................................................................................................................... 64

Bibliography ............................................................................................................................ 66

Appendices ............................................................................................................................... 0

Appendix I: The History of the Electric Powered Vehicle ..................................................... 0

Appendix II: EV Adoption over Time .................................................................................... 0

Appendix III: Statistical Output ............................................................................................ 2

III.I Regular Charging Pole Connection Costs: 2x25A vs 2x35A ........................................ 2

III.II Regular Charging Pole Connection Costs: detailed break-up ................................... 3

III.III Relative Occurrence of Activities in Regular Charging Pole Projects ....................... 3

III.IV Kruskal Wallis Test (Connection costs by degree of urbanisation) .......................... 4

III.V Cross Tabulation – Degree of Urbanisation & Fast Charging Opportunity ............... 5

III.VI Travel Behaviour - Travel Distances across Different Degrees of Urbanisation ...... 6

III.VII Travel Behaviour - Effect of Travel Distance on Charging Pole Utilisation ............. 8

Appendix IV: Transcripts and Notes of Personal Communication ....................................... 9

Notes Conversations Project Managers & Coordinators Stedin ...................................... 9

Notes: Key-takeaways Industry Charging Pole Manufacturers...................................... 10

Notes: Key-takeaways Fast Charging Operators (translated from Dutch) ..................... 10

Transcript Interview I: (Fast) Charging Operator, Allego ............................................... 11

Transcript Interview II: Municipality of The Hague ........................................................ 17

Transcript Interview III: (Fast)Charge Operator, MisterGreen ...................................... 23

Transcript Interview Question: Minister of Economic Affairs ....................................... 27

Appendix V: Overview of Conversations and Consultations .............................................. 28

Appendix VI: Indications of the balances across different levels of urbanisation ............. 30

Appendix VII: Current Charging Behavior per Level of Urbanisation – Regular Charging . 31

Appendix VIII: Current Charging Behavior per Level of Urbanisation - Fast Charging ....... 32

Appendix IX: Overview Balance between Regular Charging and Fast Charging across Different Levels of Urbanisation ................................................................................................ 34

Nomenclature & Definitions .............................................................................................. 35

Page 9: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 1

1. Introduction Although electric powered vehicles have been around since the invention of the conventional

automobile with internal combustion engine (ICE) in 1885, interest in electric vehicles (EVs)

revived rapidly during the last few years (Covert, 2016; Daimler AG, 2016; Sulzberger, 2004).

Currently, we are in the middle of the transformation of mobility and moving from fossil fuel

powered vehicles towards plug-in hybrids (PHEVs) and eventually full electric vehicles. An

increasing number of plugin hybrid (PHEV) and full electric (FEV) car models are introduced each

year and EV sales show a steep incline over the last years. In September 2015, the point of more

than one million hybrids and (PH)EVs was reached and the objective to have 20 million EVs driving

around by 2020 is set by energy ministers from the world’s major economies through the Electric

Vehicles Initiative (Borsboom, Wolthuis, Kusters, & Sharpe, 2010; Lutsey, 2015; Trigg et al., 2013).

In 2015, EV sales grew about 60 percent worldwide, which is the same annual growth rate Tesla

predicts until 2020. In addition, it is a comparable growth rate of the adoption of the Ford Model

T in the 1910s and also solar panel adoption follows a comparable growth curve (Randall, 2016).

In the Netherlands alone, EV sales have more than doubled over the past years and the Dutch

government aims to have more than one million EVs on the road by 2025 (Nijland, Hoen, Snellen,

& Zondag, 2012; RVO, 2016)1. According to the Energy Agreement (“Energie Akkoord”) of the SER

the Dutch fleet of new automobiles should be fully electric by 2035 (SER, 2013; van Mersbergen,

2016). Following the history of the conventional automobile it took approximately 30 years before

the millionth car hit the road (Lutsey, 2015; Trigg et al., 2013). Now, with EVs it took just 5-6 years

to reach this point. If we extrapolate these growth levels to 2030 and take the current state of the

technology as well as the increasing usability, affordability, and acceptance of EVs into account,

we can foresee that the transition from fossil fuel powered to electric powered vehicles will go on

and it appears that the future of mobility will be primarily electric.

Currently, private transportation is heavily reliant on oil. The transition towards e-mobility

reduces this dependency on fossil fuels and will have direct positive effects on the urban

environment. It moves society towards a more sustainable future, because of the strong reduction

of noise, usage of scare crude oil resources as well as particulate matter, CO2 and NOX emissions

(Nijland et al., 2012; Tessum, Hill, & Marshall, 2014). This effect is significant as transportation in

The Netherlands is responsible for approximately 22% of the CO2 emissions and 70% of the total

energy demanded by mobility is used for passenger cars (CROW, 2015; Leurent & Windisch, 2011;

Nijland et al., 2012). However, one of the prerequisites to fully benefit from EVs and outperform

ICEs in terms of pollution is that the energy used for charging EVs is derived from the most

sustainable source (Tessum et al., 2014; TNO, 2015). Nevertheless, broad EV adoption also

introduces new challenges as it impacts the energy grid and directly increases the demand for

charging facilities (Faria, Moura, Delgado, & De Almeida, 2012). This is especially the case when

transportation becomes fully electric as one FEV requires as much energy as a single household.

1 Appendix II provides a graphical representation of EV adoption in The Netherlands

Page 10: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 2

In the Netherlands, municipalities, network operators, the public and private sector as well

as other stakeholders made significant investments in public EV charging infrastructure.

Unfortunately, a large part of the urban EV drivers encounter that is increasingly difficult to charge

their vehicles at home and at work (AD, 2016; Hull, 2014; Verkeersnet, 2014). An interoperable

charging infrastructure needs to be present, but the charging infrastructure in the Netherlands is

still under development and not yet able to cope with the expected future demand when all cars

are fully electric. This is mainly due to three reasons: there already is an existing infrastructure in

place which relies on the “old” technology of vehicles with ICEs. Hence, the new disruptive

technology of electric powered vehicles needs some time to embed in society and meet the needs

and acceptance criteria of its customers. In addition, the new EV technology and its innovations

take place at the edge of three industries which were less heavily connected with each other in

the pre-EV era: the energy, automotive, and mobility industry (Davis, 1989; Perez, 2009;

Venkatesh, Morris, Davis, & Davis, 2003). This makes it difficult to coordinate the transformation.

Furthermore, it is tough to decide on the right balance and availability of charging infrastructure

when the future path is not really clear and technologies are developing rapidly. Hence, it can be

concluded that the growth in the number of charging facilities is not able to keep up with the

growth in number of EV’s (Lievense, 2016; Barendrecht, 2016).

Therefore, a crucial stage of the transition towards e-mobility is to ensure that the increasing

number of (PH)EVs have access to a well-developed, interoperable charging infrastructure which

requires significant investments in hardware as well as the grid. Currently, a lot is unclear: which

charging technology will be the “winner”, what will battery capacity be within 10 years, what will

be the price. However, what is clear is that the number of FEVs will raise. Due to this expected

increase in EV popularity in the upcoming years governments, municipalities, private parties,

investors, and grid operators need be capable to timely anticipate on the increase of demand for

charging facilities by modifying and investing in the power grid as well as the charging

infrastructure. Recent developments have come up with several relatively new solutions to deal

with the rapidly increasing demand. These include valet charging, smart charging, charging

Figure 1 – Overview Dutch EV Growth, compiled from Klimaatmonitor, 2016

Page 11: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 3

incentives, deploying more (public) charging poles, inductive charging, battery change stations,

charge point location optimization, and fast charging facilities in urban environments as well as

along high ways and other major roads. While the ultimate solution probably consists consist of a

combination of these methods, this study focusses on the investments in and balance between

fast charging facilities and regular charging poles (the so-called slow charging) across different

degrees of urbanisation.

Level 3 fast charging is defined as a form of direct current (DC) charging with a charging rate

of at least 43kW. Normally these are 50kW connections. In contrast, level 1 & 2 slow charging

makes use of alternating current (AC) and has a maximum charging rate which is lower than 43kW

(mostly around 11kW). With DC fast charging alternating current (AC) is already converted into

direct current (DC) outside the vehicle which improves charging performance. Off-board EV DC

chargers can service more EVs and, on average, while also fill-up batteries approximately eight

times faster than on-board charging solutions. Thus, with DC charging consumers will be able to

recharge batteries faster and enable travel longer distances.

An EV on average requires 16 kWh of electricity to drive 100 km or uses 1 kWh to drive 6

kilometres (Hoed, 2016; Lievense, 2016). A standard 50 kW off-board EV DC charging system

theoretically delivers that amount in approximately 20 minutes. The charging power of installed

charging solution increases overtime.

Slow charging Fast charging

Level 1 Level 2 Level 3 Future Level2

Voltage 120 V 200 V-240 V 300 – 450 V 450 – 800 V

Current Type AC AC DC DC

Useful power 1.4 kW 7.2 kW 20 - 50 kW +- 50 - 100 kW

Maximum output 1.9 kW 19.2 kW 150 kW +- 150 - 250 kW

Charging Time, 16kWh 12 hours 3 hours 20 min (80%; 12 kWh); Tesla 80%: 40 min 15 min 80%; 30 min

85%

Connector J1772 J1772 J1772 Combo, CHAdeMO and Supercharger Has yet to be defined

Table 1 - Compiled f rom: http://www.mass.gov/eea/docs/doer/clean-ci ties/ev-charging-

infrastructure-manual.pdf & http://www.hydroquebec.com/transportat ion-electrif ication/pdf/technical -

instal lation-guide.pdf

Fast chargers have already been deployed along high ways and some other high density traffic

points to ensure that EV drivers are capable of travelling longer distances. This reduces the range

anxiety and should foster EV adoption. However, as demand grows it is expected that fast charging

facilities also move towards more urban areas. Current knowledge about fast charging is relatively

sparse and the studies available mainly have a technological focus. By elaborating on unexplored

economic determinants, such as the costs and benefits of public fast charging and regular

charging, this study will complement prior research by identifying this need for faster charging as

well as the balance between regular and fast charging stations.

2 Porsche study: Mission E. (Dr. Ing. h.c. F. Porsche AG, 2016; English, 2015; Mathews, 2015)

Page 12: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 4

In addition, it still remains ambiguous which monetary factors influence the costs and thus

the investments in public charging infrastructure and how these factors are quantitatively related

to each other. There is no clear overview of the costs involved taking into account the most

important stakeholders. It is also unclear how public fast and regular charging facilities should be

balanced across different levels of urbanisation and whether there is a difference among them,

thus more research should be directed towards the financial side and desired balance between

charging solutions. First, this study analyses the costs of fast charging stations in relation to regular

charging stations and provides an overview of their cost structures. Consecutively, it combines the

identified cost and demand factors with the level of urbanisation in order to determine whether

there is are differences between the number of public regular charging poles and a fast charging

station in different urban environments based on fast charging need.

The main objective of this study to further develop the rationale behind investments in public

charging infrastructures with special focus on fast charging stations and regular charging poles.

The model and its results create better understanding of the fast charging phenomenon as well as

its attractiveness for all stakeholders including the society.

1.1 Aim and Research Question

The purpose of this thesis is to evaluate the public (PH)EV charging market and the influence

of different degrees of urbanisation on the costs of fast charging facilities and regular charging

poles as well as the balance between. Currently, it is unknown which charging technology will

become the market standard for FEVs: will it be fully fast charging, regular charging or a

combination of both? Gaining more insight in the costs of investing in fast charging and slow

charging facilities as well as the need for fast chargers will ultimately lead towards a model which

enables a better balance between fast charging facilities and regular public charging facilities3.

Throughout this paper the following overarching research question is being answered:

How should strategic investments in public charging infrastructure (e.g. fast charging and

regular charging facilities) be balanced across different levels of urbanisation based on the

current costs as well as the charging behaviour of EV drivers?

To answer this question four highly related sub-questions will be answered:

1. What are current developments in the EV charging industry and which trends can be

identified in transformation towards e-mobility anno 2016?

2. Who are the stakeholders in the process of investing in public charging infrastructure (e.g.

fast charging facilities and regular charging facilities)?

3. What are key cost factors of strategic investments in fast and regular charging facilities

and how do these relate to each other?

4. Does the need for faster charging change across different levels of urbanisation and thus

influence the balance between regular charging poles and fast charging facilities?

3 This study comes with an Excel file where all costs and charging behaviour data has been compiled

Page 13: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 5

The first two questions are mainly answered by a review of the industry and literature in

combination with some insights derived from the interviews which define the current state-of-

the-art. The last two questions are answered by making use of cost and benefit data in

combination with EV charging transaction data gathered from several stakeholders and experts in

the field of EV charging infrastructure. By addressing the above mentioned questions, this

research makes several contributions to the literature which will be discussed in the next

paragraph.

1.2 Academic and Managerial Relevance

Although the topic of EVs is relatively new, there is quite some literature about EVs. Studies

have been conducted in different academic fields ranging from economics and management to

engineering. However, current knowledge about public charging, especially fast charging, is sparse

and the studies that are available almost always have a technological focus. By elaborating on

unexplored economic determinants of fast charging this study will complement prior research and

further develop the economics and rationale behind investments in public charging infrastructure.

Ultimately, the results shed more light on the attractiveness of fast charging as a solution for the

increasing demand for charging infrastructure as this study combines the costs with the potential

demand for faster charging. In addition, the identified need in combination with the degree of

urbanisation can help to provide an indication for the balance between fast charging and slower

regular charging across different levels of urbanisation. Creating deeper understanding of the

costs and benefits of public charging facilities as well as need for charging infrastructure in general

can not only help scholars to develop more innovative and efficient solutions, but also result in

better investment allocation.

This research has societal relevance in multiple ways. First, this study enables better

allocation of investments in public charging facilities and might even identify parts or processes

which have room for improvement in terms of price and efficiency. Secondly, a well-developed

charging infrastructure will reduce range anxiety among EV drivers and make EVs more practical

(Neubauer & Wood, 2014). In turn this can foster further EV adoption, which is better for the

society as well as the environment and helps governments reaching their objectives (Kamp, 2016).

Users of EVs will of course also directly benefit from an improved charging infrastructure. Third, a

significant part of the investments in public EV charging infrastructure is subsidised (directly or

indirectly), thus the society as a whole will benefit from better allocation of these subsidies when

there is more insight in the cost and benefit structures of fast and regular charging facilities. For

example, municipalities do not exactly know which charging technology is (going to be) the most

effective in ensuring enough charging capacity (Elzakker, 2016). So, making sure that the

investments are made in the right technologies in the right proportions is key. Also, as not all costs

of the investments in charging infrastructure are fully paid by the parties undertaking these

projects, tax payers can benefit of the results as they are better able to form an opinion on

whether there is a societal business case and if it turns out that one of the options is less beneficial,

they can decide whether the additional societal value created justifies the extra costs.

Page 14: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 6

Grid operators benefit from a better balance between the more expensive DC fast chargers

and cheaper AC regular charging poles. First, an extensive cost overview of both solutions will help

to identify parts and processes which might have room for improvement by reducing costs or

increasing efficiency. The overview, will also highlight the investments of grid operators in

charging infrastructure in relation to the total investment. Second, not having to randomly install

to much overcapacity in terms of fast chargers or regular charging poles in certain areas can result

in significant cost reductions. A better balance also results in increasing utilisation rates due a

better fit between demand and supply of different charging solutions while inappropriate

deployment and overcapacity of EV charging stations can negatively affect EV adoption as well as

the layout of the city traffic network. An unbalanced charging infrastructure reduces convenience

and can result in higher chances of network losses and even degradation in voltage at some

connections (Liu, Wen, & Ledwich, 2013).

Lastly, governmental organizations and municipalities profit from the results in multiple

ways. On the one hand, more knowledge about public charging infrastructure can be incorporated

into policy resulting in a better balance (or investment policy) between fast charging and regular

charging facilities. Hence, this can result in faster adoption which supports the shift towards

cleaner cities. On the other hand, the direct effect of better subsidy allocation helps them to reach

their sustainability objectives and directives quicker at a potentially lower cost. A side effect of

this can be that the government benefits financially: when investing in public charging

infrastructure becomes more attractive and regulations loosen, the private sector will move into

this area and is probably more willing to invest significant amount of capital. In this way,

municipalities which are currently financing a large part of the public charging infrastructure can

reduce their costs tremendously.

In order to develop a reliable model this report starts with analysing the developments and

trends in electric driving as well as the EV charging industry. Secondly, the state-of-the-art of

research and an overview of the related literature will be provided. Based on identified gaps,

scientific, and managerial objectives of the study are presented. A problem definition is

formulated in the next section which forms the basis for the data analysis. Then the research

design is presented including its boundaries and limitations. Consecutively, the research findings

and implications are presented and discussed. Finally, the findings are summarized in a conclusive

chapter and recommendations for future research will be given.

Page 15: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 7

2. Theoretical Background This chapter provides an overview of the state-of-the-art in electric driving and EV charging

in order to create a better understanding of the research context. It starts with a more holistic

view on the adoption of the relatively new EV technology and also briefly discusses major

developments which shape the electric vehicle marketplace. This section forms the basis for

understanding the factors and trends which are relevant for building the core of this research: a

cost and benefit model based on fast charging need to balance strategic investments in fast and

regular public charging facilities across different levels of urbanisation. Although The Netherlands

is at the forefront of EV infrastructure and EV adoption, the country has besides a significant

automotive parts supplier industry no major vehicle production industry (BNR, 2016; Kamp, 2016;

RVO, 2016). Therefore, first a world-wide scope is used in this section.

2.1 Research Context: Developments in Electric Driving and Charging

According to Joseph Schumpeter a normal, healthy economy is not one in equilibrium, but

one that is constantly “disrupted” by technological innovations (Schumpeter, 1939). These so-

called techno-economic paradigm shifts are a further development of Schumpeter's work on

Kondratieff waves and occur as there is a strong interconnectedness and interdependence of the

participating systems, and when the capacity to transform the rest of the economy and eventually

society is present (Economist, 1999; Perez, 2009). When we look at the technological

developments and adoption of electric vehicles it can be noted that EVs and their charging

infrastructure follow the same technology deployment trajectory as described by Perez in the

techno economic paradigm theorem (2009). Now new technological innovations enable the

electrification of transportation, the current trend in EVs represents a technological revolution in

transportation and mobility. Especially when considering EVs being combined with autonomous

driving. So, following the current developments around the topic of EVs, EVs can be seen as a form

of disruptive innovation. A key element in this paradigm shift is that multiple industries which prior

to “the wave” had not much direct contact with each other, now together cause an upswing in the

pace of innovation. In case of EVs that are the energy, automotive, and mobility industry which

now have to cooperate in order to make the technological innovation a success. The main issue is

that there already is an environment in place: the current infrastructure as well as the current

transportation standard “the automobile with a combustion engine”. This hampers diffusion of

the technology in the market as well as an immediate shift towards the new technology and makes

it harder to shift towards a new paradigm (Rogers, 1976).

Fig. 2 - EVs and autonomous transportation: the next technological revolut ion in transportation

Page 16: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 8

Currently, we see that EV adoption rates are increasing, the need for standardisation is

starting to be gradually fulfilled, and technological improvements follow up on each other

relatively quickly which indicates we are halfway in the second phase of the technology adoption

trajectory. This also means that EV technology’s full potential has yet to be reached.

Fig. 3 - The trajectory of an individual technology and state of e-mobil ity

Over the past years, the existing technology has started to lose some market share against

the disruptive EV technology. Network effects play a major role in this adoption process. The

network effects are reduced for the incumbent technology, while the network potential can

increasingly benefit the disruptive technology. The turning point will be reached at the point

when the network effects of the disruptor overrule the network effects of the existing

technology. The idea is that the existing “old” technology will then be forced into an accelerated

decline in terms of market share and the former “disruptive” technology will eventually take

over the leading position in the system. Interoperability plays an important role in this process,

as it increases network size and external value for potential users (Shapiro & Varian, 1999).

When there is an interoperable charging infrastructure with good coverage and more

connections this will draw drivers from the existing technology towards the new technology. In

addition, this can lead towards, reduced lock-in in the old technology, better prices due to more

competition, commoditisation and most importantly in the case of EVs: reduced uncertainty. In

order to accommodate interoperability and grow the new market, standardisation and

cooperation between the market players (and sometimes competitors) plays a key role and

should therefore be fostered (Shapiro & Varian, 1999). With an EV you want to be able to charge

at any given point in time and independent of the geographical location.

So, it can be concluded that according to the macro-economic theory the trajectory of the

technology has been defined. Now the “new” paradigm needs to further develop the

technology, the market, and the infrastructure in order to make the technology a success for all

parties involved.

Page 17: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 9

2.1.1 Electric Vehicles

Electric vehicles (EVs) are vehicles that have an electric power source implemented in the

drivetrain and are powered by electricity which is stored in batteries. EVs in the context of this

study solely refer to electric powered passenger cars, heavy transportation vehicles as well as

vehicles using competing powertrain technologies such as fuel cell technology or hydrogen are

out of scope of this research.

Currently we are in the third age of electric vehicles4, an era in which the popularity of the

EV is high due to huge technological advancements, public environmental awareness, and

governmental support removing the hurdles of broader EV adoption. The enormous unexpected

interest for the new Tesla Model 3 confirms this trend (Covert, 2016). Despite the fact that

current EVs are still relatively expensive when compared to an ICE, the EV landscape has

changed radically over the last decade. An increasing number (PH)EV models was launched and

in the Netherlands alone the amount of registered electric powered vehicles has more than

doubled over the past two years (RVO, 2016)5.

Fig. 4 - Growth of the number of EVs in The Netherlands ( BEV; PHEV; Company EV)

The range of vehicles available today can be divided into three main categories: vehicles with

an internal combustion engine (ICEs), full electric powered vehicles (FEVs), and semi electric

vehicles (SEVs) which are the PHEVs and HEVs (hybrids). In this study the E-REV will be considered

as an BEV as we assume that the car propels itself mainly by electricity from its battery pack and

only uses the range extender for emergencies or on long distance trips. In addition, the total

amount of E-REVs in the Netherlands is relatively low when compared to other forms of EVs, which

validates this decision (RVO, 2016). For this reason and the assumption that in the near future all

4 Appendix I provides a historical overview of the different waves of EV adoption 5 Appendix II provides a graphical representation of EV adoption

Page 18: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 10

vehicles will be fully electric this study will mainly focus at full electric vehicles with a battery pack:

the BEVs.

ABBREVIATION DESCRIPTION EXPLANATION

Non Electric Vehicles (ICEs):

ICE Internal Combustion Engine

A vehicle propelled by a petrol or diesel engine, including those operating on alternative (bio) fuels.

Full Electric Vehicles (FEVs):

BEV Tesla, Nissan Leaf, i8

Battery Electric Vehicle

A vehicle powered purely by electricity which is stored in a battery pack

E-REV BMW i3 Fisker Karma

Extended-Range Electric Vehicle

A BEV with a fossil fuel powered range extender (generator) which can charge its batteries.

Semi Electric Vehicles (SEV):

PHEV Mitsubishi Outlander, Volvo XC90 T8, Golf GTE

Plug-in Hybrid Electric Vehicle

A vehicle powered by both a battery and an ICE, battery cannot be charged by external power sources.

HEV Toyota Prius

Hybrid Electric Vehicle

A vehicle powered by either/both a battery and an ICE

Table 2 – An overview of EV types available

Besides driving and trip characteristics such as speed, acceleration, and temperature, the

performance of EVs in terms of range, and thus usability, is highly dependent on three fixed

factors. Namely battery capacity, the charging rate the battery is able to take as well as the

efficiency of the vehicle and its drive train. Especially the first two are expected to increase

significantly overtime. Concerning the efficiency, EVs can achieve up-to 63% ‘tank-to-wheels’

energy reduction when compared to the benchmark conventional ICE vehicles, and 60% over

hybrids (Sweeting, Hutchinson, & Savage, 2011). Battery technology has already improved

significantly, especially now FEVs make use of lithium-ion battery technology which allow for more

storage capacity, higher quality, and reduced charging times. However, in order to foster further

adoption, it is waiting for the next generation of batteries which are able to store even more

energy and/or charge more quickly. For example, a Tesla Model S 85 kWh battery (544kg) currently

has an energy density of approximately 160Wh/kg creating a range of around 350-450 kilometres

(Tesla Motors, 2012). To mimic current ICE performance levels, batteries should be able to store

more than 300 Wh/kg which brings their range over 500 km up to 850 km (Carlson, Shirk, & Geller,

2010; Cluzel & Douglas, 2012; Sweeting et al., 2011; Younes, Boudet, Suard, Gerard, & Rioux,

2013).

The adoption of EVs as a technology can be explained by the Technology Adoption Model

(TAM)(Davis, 1989; Venkatesh et al., 2003). External variables such as increased range due to

improvements in battery technology and a better interoperable charging infrastructure lead

towards an increase in perceived usefulness and the perceived ease of use. Consecutively, this

increases the intention to adopt the new technology and improves the attitude towards using an

EV. In the end, it are these developments which directly impact the actual use of EVs and its

infrastructure. Therefore, it is of key importance that the right charging solutions are available.

Page 19: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 11

Fig. 5 - The Technology Adoption Model is applicable to the developments around EV adoption

The current EV landscape consists of numerous parties. EV manufacturers are the producers

of electric vehicles. The largest producers in terms of 2015 market share are: Renault-Nissan,

Mitsubishi, General Motors, Toyota, and Tesla. These producers sell cars through their dealership

network to e-mobility consumers. These e-mobility consumers take a central position in the

landscape as they interact with e-mobility services providers (MSP) as well as the charging points

of the charging point operator (CPO). The MSP provides consumers with all the service to charge

their vehicles and also handle the transactions. The charging point operator focusses more on the

operations of charging poles. Mostly, they place the charging poles and maintain them.

Fig. 6 - Simpl if ied e-mobil ity landscape Source: van der Laan, 2015

However, the landscape is far more complex when we also take in account the grid operators

(DSO’s), energy market, governmental organisations, power producers, fleet operators,

municipalities and all other stakeholders.

2.1.2 Charging Infrastructure

To enable broad EV adoption and cope with the growing number of EVs, a well-developed

and nationwide network of chargers is a necessity. As demand for chargers increases, the Dutch

public charging infrastructure is under continuous development and large-scale investments are

made by the public and private sector (van Bergen, 2016). A EV charging infrastructure is in broad

terms comparable to the existing network of gas stations which is currently in place in order to

fuel up ICEs. However, there are two key differences.

Page 20: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 12

First, gas stations cannot be placed in every location because they rely on the steady supply

of fossil fuels. Electric charging is more flexible and can theoretically take place at any location

where there is enough power or at least a regular power socket. Currently, EV drivers can already

charge at home on their driveway or in their garage. These home locations are belonging to the

so called private charging infrastructure (Neubauer & Wood, 2014). Charging facilities at specially

designed fleet facilities in the case of fleets, or at working locations or other destinations are

mostly on private property but sometimes also accessible to a broader public. These belong to the

so called semi-private charging infrastructure. Fast charging stations and charging poles in the

surroundings of workplaces, cities, and other public destinations which are publicly available

belong to the public charging infrastructure. This study will only focus on the public charging

infrastructure as this part of the infrastructure is specifically important for ±90 % of the Dutch

population, such as flat owners, people on the move, and drivers without a private parking, who

are not (always) able to charge in their private environment.

Second, fuelling up cars happens at a steady, linear filling rate while EVs can be recharged at

different charging speeds which is influenced by the power of the connection, the charging

technology, number of connected vehicles, and the battery type. Charging electric cars through a

regular connection takes approximately 6-8 hours. However, there is a lot of variation in charging

times depended on the charging speed as well as the current state of the battery. To fully charge

an EV at home currently takes approximately 18 hours at a Level 1 charger in the US (AC 110 V; 15

A; 1.4 kW). This can be reduced to approximately 4 hours with a Level 2 charger (AC 220V/230V;

30A; 6.6 kW). The shortest charging time of less than 30 minutes is achieved when a Level 3 fast

charger (DC 400-600V; up to 300A; up to 150kW) is used (Dickerman & Harrison, 2010). Currently,

the most common charging system is 6.6kW. There also is a 3.3kW 220V 15A home system, which

can be upgraded to a maximum of 22kW AC at additional investments. Also among car

manufacturers there are differences as for example Tesla uses 10kW and 20kW chargers, while

Renault uses 3-43kW 3-phase on-board chargers. However, charging hardware is gradually

becoming powerful and thus faster over time.

Charge Levels Level 1

Cordset (private)

1.5kW, 120VAC, 15A

Level 2

Wall-mount (private/public)

6.6kW*, 240VAC, 30A**

Level 3

DC Fast-charge (public)

20-120kW, 400-600VDC, up to 300A

Driving Range 8km (5 mi) per 1h charge 36km (22 mi) per 1h charge 110-270km (70-168 mi) per 30min charge

4.4 kWh Toyota Prius 3 - 4h 0.75 - 1h Not available

9.2 kWh Volvo XC90 T8 6 - 8h 1.5 - 2.5h Not available

12 kWh Mitsubishi Outlander 8 - 10h 2 - 3h ±80% in 30 min

16 kWh Chevy Volt 10 - 12h 2.5 - 3.5h Not available

22 kWh BMW i3 14 - 15h 3,5 - 4h 24 kW: ±80% in 30 min

32 kWh Nissan Leaf 16h - 20h 4.5 - 5h 50 kW/400V/125A: 80% in 20 min

85 kWh Tesla S 85 56 - 60h 13 - 15h 120 kW: ±80% in 40 min

Table 3 - Indication charging time of EVs from ful l depletion to ful ly charged 6. Compiled from: EURELECTRIC; Fastned

6 The estimated charging times mentioned above are an indication and may vary due the dependence on temperature, state-of-charge

of the battery, age of the battery, and charging power fluctuations. Especially during charging the last 20% of battery capacity the charging speed decreases.

Page 21: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 13

There are two main types of charging: AC charging and DC charging. Basic slow charging is

based on the AC current which is supplied by the grid. In this situation every car needs its own on-

board charger which increases weight and vehicle costs due to more and thicker copper wiring as

well as the transformers. With DC fast charging the DC fast charging station transforms the power

from the grid to DC and supplies this directly to the car battery. In this way, the infrastructure can

be shared with other users and due to the higher power faster charging is possible. There are

different types of fast chargers, which normally add approximately 80 kilometres of range to an

EV’s battery in approximately 20 minutes. However, the time it takes to fast charge an EV battery

is also heavily dependent on the state-of-charge as current batteries can only be fast charged until

approximately 80% (Lievense, 2016). At the moment, the maximum rates in public use are 45 kW

AC, and 150kW DC. Thus, ICEs are still leading in this area as they can increase their range with

over 300 miles in less than 5 minutes (EURELECTRIC, 2011; Herron, 2015). In the near future, more

and more affordable, easy-to-use, convenient, and compatible charging options will be demanded

as we are living in an era where consumers expect products and services to be delivered quickly,

anywhere, and at any time (Barendrecht, 2016; Lievense, 2016).

Fig. 7 – Overview types of charging : AC home charging, AC public charging, and DC fast charging

Networks of public chargers are rapidly expanding and fast charging stations have already

been deployed along highways and near other high density traffic points. The first public charging

pole in The Netherlands was installed in 2009 by the collaborative organization ELaad. In 2014 the

number of public charging points rose from 3,521 to 5,421, while the amount of semi-public

charging facilities at destinations grew most rapidly, from 2,249 to 6,439. The number of private

charging points rose from approximately 18,000 to 28,000. Also in fast chargers there was a

significant increase as the number of fast-chargers grew from 106 to 254 (Netherlands Enterprise

Agency, 2015). This increase in the availability adds to the two-sided network effects. The more

charging capacity is available; the more people are willing to buy an EV as their acceptance

considerations are more easily met. However, the more people have an EV the more charging

capacity will be necessary to full fill their demand.

Until recently, faster chargers were not identified as a necessity as the average Dutch EV

driver just drives around 37 kilometres each day (CBS, 2012, 2015). However, fast chargers can

play a major role in making EVs more convenient and functional as you can use them for longer

distance trips which extend the range of the current EVs (Haaren, 2012). This function was the

Page 22: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 14

main reason for rolling out fast chargers on high density traffic locations along or next to highways,

but fast chargers might also be a feasible solution for dealing with the steep increase and expected

future demand for charging facilities. Especially in or nearby dense urban areas fast charger can

offer a quicker charging solution with more convenience. As around 46% of the approximately

16.5 million parking spots in the Netherlands are only privately accessible and a large part belongs

to offices, only a small percentage of the car owners have the opportunity to charge on private

ground or in their garage. Hence, most people in the Netherlands have to park on the street or at

common parking lots (8.73 million spots) (P1, 2008). (Potential) EV drivers who are not able to

charge at private locations should also have access to public charging infrastructure. Therefore,

regular charging poles and fast charging facilities can play an important role in fulfilling the

charging demand of the growing amount of electric powered vehicles in cities and other urban

environments (figure 7). These public charging facilities can be placed in residential areas, parking

locations or along the road. However, as mentioned earlier the balance is still unclear. In the future

there will probably be a combination of fast- and slow charging facilities. However, the balance is

also highly dependent on the investments the stakeholders are willing to make as well as the

demand for fast chargers in different urban locations.

Charging Options

Available to User

Home

Work/Destination

Charging

Public Charging

Home + Work + Public 1st 2nd 3rd

Only Public n.a. 2nd 1st

Only Work + Public n.a. 1st 2nd

Only Home + Public 1st n.a. 2nd

F ig. 8 – Charging Preferences based on the charging possibi l i t ies by user type

Following queueing and production management theory it can be said that there is a certain

charging demand that needs to be fulfilled. This task can be executed by two types of machinery:

regular charging poles or the fast charging facilities. The former requires a smaller investment, but

also has a lower throughput time and thus capacity. The latter is the more expensive option due

to a high initial investment and a high impact on the grid. However, it also provides the highest

throughput time. These fast charging facilities come in roughly two forms which influence the

costs. Some fast charger operators install a whole structure, such as a modern gas station,

containing solar panels, and battery storage. Within cities it is also possible to install a roadside

fast charging system next to the road or a parking spot and use mainly power supplied by the grid.

Hence, this is probably the most efficient option for dense urban areas with less open space.

Currently, the public charging infrastructure in the Netherlands is mainly financed by the grid

operators and municipalities. Larger cities organize tenders to make private parties invest in public

charging infrastructure (Elzakker, 2016). The grid operators, or distribution system operators

(DSO’s) have two roles: to place interoperable charging poles and connect the charging

Page 23: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 15

infrastructure to the grid. The DC chargers are primarily financed through private initiatives as well

as some public funding by municipalities and the state.

A new development in charging is the so-called inductive charging. This technology makes

use of an electromagnetic field to transfer electricity to an EV through the air. However, as this

technique is still juvenile, very expensive to implement as a large scale public charging alternative,

has a low energy transfer efficiency, and is only able to charge at a level which is comparable to a

level 2 slow charger, this study does not take inductive charging methods into consideration as a

solution for public charging infrastructure. However, inductive charging can be considered as a

convenient option for private charging facilities and maybe when (green) energy prices reach a

very low point it will make sense to implement this technology in the public charging

infrastructure.

2.1.3 Drivers of E-mobility

Until recently, it remained unclear what the main drivers behind the acceptance and adoption

of (PH)EV’s were, what the magnitude of growth would be over time, and which barriers needed

to be overcome to facilitate large-scale (PH)EV adoption. To determine how investments in public

charging infrastructure should be balanced it is important to have better understanding of the

drivers of e-mobility. Now these factors have become more clear. The pace of the electrification

of transportation seems to be heavily dependent on the degree of cross-industry collaboration as

well as how effectively consumer acceptance considerations are met. In this respect, the

availability of public charging locations can be seen as one of the key enablers of boosting the

market acceptance and awareness of (PH)EVs (Coffman, Bernstein, & Wee, 2015; Gerkensmeyer,

Kintner-Meyer, & DeSteese, 2010; Pedersen, Tsang, Wooding, & Potoglou, 2012; Sierzchula,

Bakker, Maat, & Van Wee, 2014; State, Vehicle, & Plan, 2015; Clover, 2015; Dr. C. Herron, personal

communication, January 26, 2016; H. Jankowski, personal communication, March 9, 2016).

Technological advancements

The rapid pace of EV adoption in The Netherlands can be explained by numerous factors.

First, the automotive industry made huge investments resulting in enormous strides forward in

the electrification of mobility.7 New technologies emerged and lighter materials are used. Second,

although we are not there yet, standardisation also increased over time. Standardisation in

technology-based markets affects both innovation and the diffusion of new technologies (Tassey,

2000). These ongoing technological advances strengthen the electrification trend resulting in

increased usability and affordability of EVs. For example, the earlier mentioned developments in

charging technology and the introduction of DC faster charging enables EVs to be charged at a

faster pace. At a certain point, faster charging will probably even become a necessity as an

increased battery capacity results in increasing charging times.

Also battery technology improved in terms of quality as well as capability to store energy.

This resulted in an improved range which makes it easier for EVs to meet the acceptance

considerations of consumers and reduces range anxiety (Hidrue, Parsons, Kempton, & Gardner,

7 Appendix I provides a brief overview of the electric vehicle history and rapid interested created during the last 25 years

Page 24: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 16

2011a). Considering charging methods and battery improvements we are currently waiting for the

next generation of batteries to be mass-produced (Clover, 2015; Dr. C. Herron, personal

communication, January 26, 2016; H. Jankowski, personal communication, March 9, 2016).

Technically every EV should have at least 85kWh capacity in the near future, which increases the

range of EVs further and handle higher charging rates (Murray, 2014; M. Langezaal, personal

communication, January 25th, 2016).

Automotive Industry & OEM Manufacturer Collaboration

Recently, automotive industry leaders made hybrid electric vehicles and battery electric

mobility one of their main priorities and they are now launching an increasing number of EV

models every year (KPMG, 2016). Some manufacturers, like Volvo and Mercedes-Benz, already

proposed to have at least one electric version of every model. This increased supply extended the

product range and resulted in a significant increase in the adoption rates of EVs. Sales went up

and currently all indications point in the direction that this growth will continue. For example, in

the Netherlands alone the amount of registered electric powered vehicles has more than doubled

over the past two years (RVO, 2016)8. However, a point which is often ignored is that the current

EV and battery/lithium production capacity is not sufficient to achieve the (probably inflated) 2020

goals set by several governments (Energy, 2011; Todd, Chen, & Clogston, 2013). Therefore, the

production capacity of EVs and their batteries as well as the rest of the supply chain needs to be

ramped up, otherwise this will negatively affect the reduction of battery prices (Kamp, 2016; van

Mersbergen, 2016).

Price

Over time, the price of electric vehicles has dropped significantly, making them more

affordable to the larger public. This is mainly due to two factors: declining battery costs and

reduced charging costs. Technological developments in battery production processes lower the

battery costs which directly affect the price of an EV due to the fact that the total EV costs consists

for about 30% of battery costs (Cluzel & Douglas, 2012; Lloyd Dixon, Isaac R. Porche III, 2002;

Randall, 2016). Consecutively, this lower price of EVs, as well as other in-home applications of

batteries, increases demand for batteries which enables economies of scale and thus again lowers

production costs (Mitsubishi Corporation, 2015; Neubauer & Pesaran, 2011). The growing battery

market attracts new players which accelerate competition and innovation, driving further price

reductions. Expectations are that battery prices will be driven further down and eventually EVs

become affordable for the mass market. In the Netherlands, where most people buy used cars the

creation of a second-hand market is the key to success. But on a global scale, when new battery

factories are completed this can have huge effects on the costs due to economies of scale (Bullis,

2014). Especially now car manufacturers, such as Tesla and Volkswagen, are planning on building

their battery mega factories. Current battery costs range between €200-€250/kWh. With

economies of scale the price level should be able to head for €100/kWh in 2020 and for 2022 it is

predicted that EVs will cost the same as their ICE counterparts (Randall, 2016; The Boston

8 Appendix II provides a graphical representation of EV adoption

Page 25: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 17

Consulting Group, 2010). Batteries currently make up a third of the costs of an electric vehicle so

have a direct impact on the total cost of EVs as and thus also on the demand.

Fig. 9 – Battery cost development and expected yearly battery power demand Source: BNEF

Besides battery costs, charging costs also declined over time which makes an EV a more

attractive alternative for cars with an internal combustion engine. Energy costs show a decline

over the long term, while the costs of gasoline and other fossil fuels is much more volatile and has

increased significantly (Federal Statistical Office, 2016; Patel, 2015). Currently there are

approximately 25 providers of slow charging facilities active in the Netherlands. The cheapest way

to charge your car is at home for ± €0.23/kWh. However, a small initial investment of

approximately ± €250 for level 1 charging and ± €1250 for level 2 charging is necessary. These

costs are lower than public level 2 charging poles as the latter need a separate metering. Slow

charging at a public facility costs approximately ± €0.30/kWh depended on the service provider,

while fast charging costs ± €0.60/kWh (IDO-Laad, 2016) .

We can conclude that with the shift towards a new techno economic paradigm the general

price profile is radically modified by the growing cost advantage of the new infrastructure (e.g.

EVs). This happens through a decrease in price (as operational volume decreases the unit cost)

and better market reach of users which results in greater economies of scale in production and

distribution (Perez, 2009). However, to fully benefit from economies of scale the number of

charging polls should be increased by thousands according to charging pole manufacturers.

Institutional Influences

Governments play a major role in the transition from organic fuel towards electric:

governments are heavily focused at accelerating the introduction and worldwide adoption of

electric vehicles by applying subsidies and other incentives.

At the level of the European Union, car manufacturers are pushed to lower the total CO2

emissions of the cars they produce. Producing and selling EVs is a way to achieve these

requirements set by the legislative bodies. On a national level the Dutch state supports local

governments with investments in charging infrastructure. However, to receive support local

Page 26: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 18

authorities need to invest partial local or obtain private investment in order to qualify for state

funding of charging infrastructure. Like in other countries, municipalities currently decide on a

case specific basis which type of charging infrastructure suits their community best. Municipalities

are currently mainly investing in more slow charging poles in (semi) public areas. There are targets

for the numbers of (PH)EVs. Yet, there is no national target for the number of charging poles nor

for the number of fast charging facilities. Currently, most municipalities in the Netherlands follow

a placement strategy based on demand and do not know how charging will evolve (Elzakker, 2016).

Other incentives which directly affect EV sales are temporary lower road taxes on EVs and

lower additional tax liability (“bijtelling”). However, this trend is changing as tax levels are

gradually reconciled for PHEVs in The Netherlands as well as the UK and several other countries,

but the additional tax liability for EVs remains unchanged at 4% until at least 2020 (Vogel, 2015).

These subsidies seem to be necessary to lower costs and eventually reach the mass-market stage.

Current expectations are that governments must offer these incentives until at least 2020 (Hidrue

et al., 2011a). Around 2020, prices of EVs will be more reachable for the larger public. Concerning

the grid operator’s financials, it can be concluded that they are also for a large part financed by

the government. So a loss on a certain connection can be seen as a form of indirect subsidy.

Municipalities also play a major role in the adoption of EVs as they have a heavy stake in the

investments and placement of charging facilities. They can provide special EV charging spots and

incentivise EV adoption by lowering parking fees for EVs while charging or providing special EV

parking spots. As personal vehicles are accountable for the major part of CO2 emissions by road

transportation modes and people tend to be more aware of the sustainability threat this opposes

to the environment, we see that municipalities are increasingly planning to reduce the air pollution

in their cities (Brady & O’Mahony, 2011; CBS, 2015). Regulations are becoming more strict and

larger cities such as Utrecht, Rotterdam, and Amsterdam are introducing environmental zones in

the city centres. Municipalities initially started with financing public slow charging facilities, but

when EVs became more visible in 2011 and a total of 1000 EVs was driving around a significant

proportion of the projects were set to a hold due to the lack of funding. Currently, it becomes

increasingly difficult to realize more public charging locations due to policies and budgetary

constraints. Now a larger infrastructure is demanded more private investments are key to develop

the EV public infrastructure (Dr. C. Herron, personal communication, January 26, 2016; Pedersen,

Tsang, Wooding, & Potoglou, 2012; Todd, Chen, & Clogston, 2013).

Investments of the Private Sector

The current EV charging landscape in the Netherlands has been privatised and consists of

around 20 Charge Point Operators (CPO) and approximately 10 Mobility Service Providers (MSP).

The CPO is responsible for supply, installation and maintenance of charging points, as well as a

repair service, while the MSP handles the sales of mobility products and services. They are

responsible for the charging subscriptions, the charging cards, apps, and payment transactions

(Lievense, 2016). New private players are currently entering the EV charging market. A good

example of a fast charging provider is Fastned. Fastned is the largest operator of fast chargers near

highways in the Netherlands. They try to realize a nationwide network of at least 200 fast charging

Page 27: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 19

stations in order to enable long-distance travelling and they just opened their 50th charging station

in Goes, The Netherlands. Another example is the Amsterdam-based EV leasing company

MisterGreen, which is also setting up a fast charge network. Thus, private parties enable adoption

by providing better services and more convenience for EV drivers. Concerning the private parties,

two types of motives can be identified: the larger parties who are investing for the long-term and

those who are more short-term oriented and just expand infrastructure in order to earn subsidies

and hopefully enjoy a profit (Barendrecht, 2016; Dr. C. Herron, personal communication, January

26, 2016).

2.1.4 Conclusion

The expansion of the (PH)EV charging infrastructure is considered as an exciting phase in the

electrification process due to the abundance of parties and the significant investments involved.

We showed that EV adoption can be compared with several technology adoption and diffusion

theories such as TAM, innovation cycles, and shifts in the techno economic paradigm. The level of

adoption is highly dependent on the available technology and charging infrastructure, and the

demand for public charging infrastructure is highly dependent on EV adoption. It is also clear that

the ever increasing fleet of electric vehicles and their drivers demand a stable and accessible range

of charging solutions. In the near future, more and more affordable, easy-to-use, convenient, and

compatible charging options will be demanded as we are living in an era where consumers expect

products and services to be delivered quickly, anywhere, and at any time. In order to cope with

the increased demand for power the current charging infrastructure needs to be scaled up, which

automatically entails that the amount of charging facilities needs to be expanded. Currently, it is

unclear what the balance between charging solutions will be.

However, it is evident that a large-scale charging infrastructure

will be needed to charge the batteries of all EVs as home and

destination chargers can only partially fulfil this demand (Todd

et al., 2013). In this respect, high-speed fast charging facilities

can play an important role in fulfilling the charging demand of

the growing amount of electric powered vehicles in urban

environments. Our results provide more insights into the

balance between these fast charging facilities and regular

charging poles and how this balance differs in locations with a

different rate of urbanisation.

2.2 Literature Review

Most studies were initially related to the technical aspects of EVs such as technical

components, power trains, efficiency, charging, and battery capacity (Anseán et al., 2013; Votano,

Parham, & Hall, 2004). However, as technical knowledge advanced and electric driving seemed to

become more feasible, interest for the economic and business aspects of electric driving grew and

studies started to focus on electric driving from a customer and society perspective.

At the moment, there is a certain level of consensus in the academic field studying electric

vehicles and most knowledge is developed among different themes. For example, some studies

Fig 10. – Infrastructure focussed EV adoption cycle

Page 28: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 20

are focused at determinants of electric vehicle adoption and customer willingness to switch to EVs

(Egbue & Long, 2012; Sierzchula et al., 2014). Also consumer considerations of price, range, PHEV

performance and running cost were studied (Hidrue, Parsons, Kempton, & Gardner, 2011b;

Mcmanus & Senter, 2009; Yu, Li, & Tong, 2015). Studies show that EVs currently are already able

to fulfil a large part, even up to 95%, of the personal transportation needs (Gonder, Markel,

Thornton, & Simpson, 2007; Pearre, Kempton, Guensler, & Elango, 2011). However, potential

customers with no prior EV experience probably underestimate the usability of EVs. Some other

studies focused more on the adoption and diffusion process of (PH)EVs and how electrification

developed over time (Russell Hensley, Knupfer, & Krieger, 2011). The earlier mentioned business

related theories, such as Roger’s innovation diffusion theory (Rogers, 1976), the techno economic

paradigm theorem (Perez, 2009; Schumpeter, 1939), technology adoption models (Davis, 1989;

Venkatesh et al., 2003), network externalities (Shapiro & Varian, 1999) and network effect theory

(Lassila & Koivuranta, 2011; Li, Xing, Tong, & Yiyi, 2015; Shapiro & Varian, 1999; Yu et al., 2015)

are applicable to the trends in charging infrastructure as well as the adoption of EVs.

A large part of the studies existent today focus is at the charging behaviour of individuals.

Smith et al. (2011) found that there are trends in parking times of EV’s which follow the normal

schedule of a working person. During the day, there is a peak from approximately 9 PM up until 7 AM,

while people mostly park at work from 9 AM to 3 PM (R. Smith, Shahidinejad, Blair, & Bibeau, 2011;

Spoelstra, 2014).

In addition, some studies focused more on the future of the industry and tried to predict the

total market value or adoption and diffusion of PHEVs (Becker, Sidhu, & Tenderich, 2009;

Borsboom et al., 2010; Ernst&Young, 2010; Richard Hensley, Knupfer, & Krieger, 2014; Mcmanus

& Senter, 2009; Randall, 2016). Lately, new research in the area of energy supply emerged. This

research focused more on the effects of EVs on the power grid, smart grids and vehicle to grid

solutions (V2G). Examples are the (peak) loads and capacity it would consume as well as the

distribution system itself (Gerkensmeyer et al., 2010). A recent study and calculation by

Bloomberg New Energy Finance revealed that if EV growth continues to grow at the current 60%

rate, the next oil crisis might be caused by EVs due to the drop in demand for crude (Randall,

2016).

Fast charging and charging infrastructure in general is a relatively new topic and therefore

research dedicated to these areas is relatively scarce. As fast charging stations are currently mainly

deployed near highways, the strategic and financial aspects of investing in fast-charging

infrastructure in urban environments are unclear. Some research has been conducted in the area

of charging infrastructure. But also here most studies cover technical issues such as how fast

charging influences fluctuations on the grid. It was found that a 10% increase of EVs in China would

result 17.9% growth of the daily peak demand, while 20% increase in EV penetration would result

in a 35.8% increase in peak loads (Qian, Zhou, Allan, & Yuan, 2011; Xiao, Huimei, Chen, & Hongjun,

2014). In order to cope with this issue other studies have been conducted on how fast charging

stations should be designed to minimize their influence on the grid. A solution is presented in form

Page 29: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 21

of adding an energy storage system which saves energy during the whole day9. This system can

them be activated when the demand exceeds the average power supplied by the grid in order to

avoid huge peaks or make better use of solar energy (Aggeler et al., 2010; Bai, Yu, & Lukic, 2010;

Neubauer & Pesaran, 2011). The costs of fast charging were studied by Schroeder and Traber

(2012) however they did not take in account the balance between fast and regular charging

solutions and whether there is demand for faster charging within urban environments.

Another study theoretically compared normal charging to fast charging in the context of

public, home and work places locations. It was found that on the one hand normal charging is the

most suitable technology for at home and workplaces. On the other hand, it argued that fast

charging might be a more suitable technology for highway and public areas. From this can be

derived that fast charging can be a good solution to be offered in public accessible areas.

Moreover, there was no support for implementing battery swapping stations (Römer,

Schneiderbauer, & Picot, 2013). However, as it was purely a theoretical argumentation which

neglects the fact that there already is an infrastructure in place, the balance between both

charging solutions remained unclear. Concerning the future demand, it was found that increasing

home charging power above the current level 1 and 2 rates would add little to the utility of EV

drivers. The main reason for this is the long parking time. Increasing the power of workplace

charging facilities can offer significant utility benefits to a select group of high mileage commuters

or visitors. However, in order to increase the utility of the majority, broadly available public

charging has the capability to bring lower mileage drivers to a near-100% utility while it at the

same time strongly increases the utility of high mileage drivers (Neubauer & Wood, 2014).

Several studies are focussed at optimization of deployment of charging locations. Most of

them use complex optimization models in order to determine the size of EV charging stations.

These models are mainly based on expected demand and simulates the number of electric vehicle

based on the distribution of residents (Feng, Ge, Liu, Wang, & Feng, 2012; Shi & Lee, 2015). Also

interesting is that almost all this research took place in Asia and the US. Examples are the Battery

Lifetime Analysis and Simulation Tool for Vehicles (e.g. BLAST-V), the Future Automotive Systems

Technology Simulator (e.g. FASTSim) and the Drive-Cycle Rapid Investigation, Visualisation and

Evaluation Analysis (e.g. DRIVE)(Wood, Neubauer, & Burton, 2015). However, these studies do not

compare different charging solutions.

Also concepts from the field of system design, accounting, and financial management can be

applied this specific study which is in essence an investment decision problem: investments in

public charging infrastructure need to be made in order to cope with future EV charging demand.

However, the costs structures of the charging solutions have not been compared in detail yet and

it is unclear how different costs factors of fast charging and regular charging poles are related to

each other. Therefore, it is currently hardly possible to balance investments in charging

infrastructure from a rational perspective. Providing an overview of these costs will partially solve

9 Currently, Stedin, Alfen and MisterGreen run a cutting edge Smart Solar Fast Charging System pilot next

to the A2 in Haarrijn (Utrecht, the Netherlands).

Page 30: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 22

this issue. Theory around investment allocation, and productivity provides a rough framework for

this problem (Darlington, Innes, Mitchell, & Woodward, 1992; V. L. Smith, 1961). Taking this

perspective, regular charging poles can be seen as a relatively cheap machines which increase

charging capacity. However, due to their technical specifications and lower cost they also have a

lower throughput-time (charging takes longer due to the lower power) and thus lower effect on

the total charging capacity when compared to fast charging stations. A fast charging station can

be compared to a high capacity machine which increases charging capacity. However, the high

productivity fast charging stations also come at a higher initial investment cost when compared to

regular charging poles.

Research focussed on the pollution levels of EVs in comparison to conventional cars found

that EVs are more efficient than the current ICEs and one kilometre of electric driving saves up to

150 grams of CO2. Well-to-wheel literature also shows us that EVs are probably also more

economical and sustainable in terms of the pollutions created from production up until

demolishment (TNO, 2015). EVs should be produced and driven on green energy in order to

benefit to the fullest, as EVs tend to produce more fine particles (PM2.5 and PM10) than regular

vehicles (Timmers & Achten, 2016). This is mainly due to their heavier weight which results in

more break dust as well as more wear and tear of tires, as battery capacities increase and thus

vehicle weights can decline this effect will be minimized.

From the literature, it can be concluded that as EVs are a relatively new area of interest and

early research mainly focused on technical issues like battery capacity, power trains and technical

attributes of charging systems. It is only since recently that a shift of attention towards the links

between EVs and the wider society, including non-technical issues, is becoming visible in the

academic literature. Most of these studies are focusing on different aspects of electrification of

transportation and are now scattered over different fields such as technology, economics, public

administration, and business. In addition to academic literature there is a vast amount of

information available in the form of reports by all kinds of formal institutions ranging from

automotive industry reports to (consultancy) outlooks and conference articles. In the area of EV

charging infrastructure there is literature available, but most of this is technical in nature or mainly

focussed at energy and grid management. Thus, research in the area of fast charging in urban

environments is relatively sparse. A couple of recent studies focussed at the location of the

charging stations and propose models and basic concepts for optimal deployment. However, the

cost and benefit structures of fast charging stations and fast charging need from the consumer

side are not considered in detail. This study will add value to the EV literature by clarifying which

factors play a role in investments in public fast charging infrastructure, how they are related to

each other and tries to create a tool for balancing these investments based on the need for fast

charging. By doing so, this study adds value to the existing EV literature and thereby solves a small

part of the puzzle.

Page 31: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 23

3. Conceptual Framework Industry analysis showed that charging infrastructure plays an important role in the

attractiveness of EVs. From the literature review it became clear that non-technical literature on

charging methods is still relatively sparse and there is no generally accepted model to provide

support for balancing investments in public fast charging and regular charging facilities across

different levels of urbanisation based on fast charging need, especially not across different urban

environments. In order to get more insights into the balance between charging methods it is key

to get to know the exact costs of the solutions as well as whether demand for each solution differs

across different degrees of urbanisation.

3.1 Cost Structures of Public Charging Facilities

Therefore, this study first analyses the costs structures of fast charging and regular charging

in order to calculate the exact costs of a charging solution and identify factors which have the most

impact on the costs of the charging solutions. It is expected that the connection costs (which are

often ignored) have a large impact on the total cost, as they probably make up for a large part of

the total cost in public charging projects (figure 9). It is also expected that fast charging facilities

require a multiple of the initial investment costs of regular charging poles due to the fact that they

need a larger grid connection. Finding out which variables have the largest impact on costs and

how these cost factors relate to each other results in an extensive overview of the cost structure

of public charging infrastructure. This study follows earlier literature and compares the capital

expenditure (initial investment) costs as well as the operating costs (exploitation costs) of both

fast charging and regular charging poles (Schroeder & Traber, 2012). The focus is on the following

cost drivers: cost of parts, the real costs of the connection, installation as well as required permits.

In order to determine the costs of a fast charging station this study will limit itself to a couple of

cases in which fast charging stations have been deployed. This is inevitable as the phenomenon is

still relatively new and not all projects were (financially) completed yet, thus the amount of data

available was relatively scarce.

3.2 Urbanisation Effects on Costs and Charging Behaviour

Another important part of this study is to determine the effects of the degree of urbanisation

on the earlier identified costs as well as the charging behaviour. The effect of the degree of

urbanisation of the location of a charging facility on the connection costs was analysed in order to

determine whether the real connection costs are higher or lower across certain degrees of

urbanisation. This follows the logic that the more rural a certain environment is, the greater the

probability that extra cables and labour is needed in order to connect the charging facility.

Ultimately, this helps gaining more insight in the cost structures of both solutions can help to make

better decisions on public charging infrastructure investments in urban and non-urban areas,

which leads us to the first hypothesis:

Hypothesis 1: the level of urbanisation is negatively related to the costs of the connection of

public charging poles

Page 32: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 24

Römer, Schneiderbauer, and Picot (2013) suggested that fast charging might be a preferable

solution for charging in public environments, but the balance between regular charging poles and

fast charging facilities within environments with different levels of urbanisation remained

ambiguous. The benefits of public charging infrastructure are heavily dependent on consumer

charging behaviour and charging pole utilisation (connection time/parking time, charging time,

distance travelled), technical (capacity, charging power, vehicle efficiency),

environmental/societal (reduction CO2 and NOx) and economic factors (EV adoption over time,

charging price). Parking times (e.g. connection times) can play an important role in the

effectiveness of fast charging: in places where people already park shortly they can probably really

benefit from fast charging. We assume that the majority of the citizens in urban environments

tend to be more dependent on public charging infrastructure than inhabitants of more rural areas

as the latter can more easily charge at their private charging pole. Therefore, location

characteristics such as the degree of urbanisation in a certain area might also influence the

charging pole utilisation, and thus the need for faster charging which results in the following

hypothesis:

Hypothesis 2: the degree of urbanisation is positively related to the charging pole utilisation

(e.g. parking time)

In order to determine the need for faster charging at every location we follow the main line

of thought that when the parking time at a regular charging pole is relatively short and the car has

been charging until it was disconnected, a fast charger would have performed a better job during

that specific transaction. So we assume that when the charging time (almost) equals the

connection/parking time there was a need for faster charging during that transaction. However,

we are interested in whether this need for fast charging differs between locations with different

urbanisation rates. We expected that locations with a very high degree of urbanisation have

shorter parking times on average, while more rural locations with a low degree of urbanisation

have longer parking times (connection times) and thus benefit more from regular (or private)

charging poles as there is a lower need for faster charging. Suburban neighbourhoods where

people charge when they come back from work are expected to have a lower utilisation rate due

to the long average parking time and thus enough opportunity to be fully charged with regular

charging poles. Therefore, the influence of location (degree of urbanisation) on the parking time,

and thus charging pole utilisation, will be analysed by making use of the charging transaction data.

This will identify cases in which a fast charger could have been more beneficial.

3.3 Business Case

Finally, the findings from the cost analysis in combination with the results from the location

and charging behaviour analysis provide insights in the balance between investments in both

charging methods. Ultimately, this will lead towards an indication of the preferable balance

between regular charging poles and fast charging facilities in different public locations and a

business case for both charging solutions. It will also indicate whether there are any differences in

the balance between different levels of urbanisation. Figure 11 presented below provides an

overview of the conceptual model.

Page 33: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 25

F igure 11 . - Conceptual Model - Level 2 Charging Pole (CP) & Level 3 Fast Charging (FC)

Although, much attention was paid to the data gathering and preparation process this study

can still be subject to potential measurement errors. For example, it could be the case that the

data used is incomplete due to underreporting or data flaws. This could affect the outcomes and

averages used. Due to the high rate of development and change in the industry the results and

assumptions of this study should be taken “as-is” for the current market situation.

H1

H2

Page 34: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 26

4. Methodology As mentioned before, the main goal of this study is to provide an overview of the cost

structures of public charging facilities as well as to determine the influence of the degree of

urbanisation on fast charging need and thus the balance of fast and regular charging facilities. We

take a demand perspective and analyse transaction data in order to identify cases in which faster

charging would have been preferable. From the combined findings a societal business case will be

presented. Due to the exploratory nature of this study, it takes a quantitative approach and

combines data from numerous sources. By comparing fast and regular charging solutions on costs,

capacity and need it is possible to ultimately approximate the balance between them within

different urban environments.

As we have seen, the main stakeholders of charging infrastructure projects are governmental

organisations, grid network operators, investors, knowledge hubs and fast charger exploiters.

Contacts consulted were: municipalities (e.g. Municipality of The Hague), subsidizing

governmental institutions (Rijkswaterstaat), grid operators (e.g. Stedin), energy suppliers (e.g.

Eneco), and other firms investing in charging facilities (e.g. Allego, Fastned, MisterGreen). For the

quantitative analysis data was collected by using and combining data from these sources.

Considering the rapid developments in the EV landscape and ensuring the validity of this study

only the most recent data available was used. The quantitative data used was complemented by

several interviews with stakeholders and experts in the field. The interviews, meetings, and

conferences with important stakeholders provided additional insights and supported the

interpretation and validation of the data. Moreover, the interviews helped with the identification

of trends, adding cost and benefit data, and determining the factors affecting investments in fast

and regular charging facilities.

Fig 12. Parameters potential ly inf luencing the cost structure and balance between charging solutions

Page 35: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 27

As already mentioned this research focus is on the Dutch EV market as the Netherlands is

currently one of the countries with the highest (PH)EV density in the world (Kamp, 2016, Rapier,

2015; Trigg et al., 2013). The methodology used is in line with the aim of the paper: (1) to gain

more insight in the cost structure of public charging facilities in urban environments (capex and

opex of fast charging stations and regular charging poles), (2) to determine how these investment

properties are related to each other, (3) to gain insights in the effects of urbanisation on the need

for and balance of investments between fast charging facilities and regular charging facilities.

4.1 Quantitative Sample & Data

4.1.1 Public Charging Costs Analysis

In order to determine the cost structure of public charging infrastructure, quantitative cost

data of public charging infrastructure from different stakeholders was used. In addition, numerous

online data sources and earlier research including industry and consultancy reports were used to

provide an overview of the costs of public charging infrastructure.

Regular Charging Pole Costs:

Concerning the costs of regular charging poles the municipality of The Hague, ELaadNL and

EVBox provided data and estimations on the regular charging poles. In addition, Stedin provided

raw SAP cost information on all connections made by Stedin in 2015. This database was filtered

based on the DVO code in order to retrieve the charging pole projects (2x 35A and 2x 25A). The

dataset consisted of 619 regular charging pole cases including the performed activities, real costs

and benefits for the grid operator. This includes internal and external labour, materials and

supplements costs. Eventually, connection data was combined with the degree of urbanisation

per four number postal code derived from the CBS Statline database “Kerncijfers Wijken en

Buurten 2015” in order to determine the influence of the degree of urbanisation on the

connection costs (H1)10. The connection costs which are determined by the Dutch law were derived

from the fixed tariffs for network operators. The current price level of the equipment was derived

from pricelists of several public charging pole manufacturers/providers (Rexel, ICU, ABB, EVBox

and van Barneveld) and validated by findings of a research by the TU of Eindhoven as well as an

interview with the municipality of The Hague (Elzakker, 2016; Hoekstra & Steinbuch, 2014).

Furthermore, four regular charging cases were investigated in more detail by interviewing

the project managers and twelve outliers were validated in-depth in order to make sure the cost

data was correct and reduce the chance of flaws in the data. Here out of twelve cases one case

was found in which costs were allocated to the project in a wrong manner as the project included

costs of a gas installation. This data flaw was removed and it could be concluded that the sample

provides an accurate and valid prediction of the average connection costs.

Fast Charging Facility Costs:

The costs of fast charging facilities were determined using combined data provided by

Fastned and the municipality of The Hague on the average costs of their fast charging facilities as

10 Al l the above mentioned data is combined in the Excel which is supplement to this study.

Page 36: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 28

well as data retrieved from interviews with several other fast charging providers (MisterGreen and

Allego). Furthermore, Rijkswaterstaat provided some additional insights in the costs for locations

along highways. However, at the moment the costs for a station alongside the highway are very

low (less than €750) and therefore neglected in this study.

The costs for the connection of fast charging stations was derived from Stedin by performing

an in-depth analysis of four fast charging projects which were interesting from the perspective of

this study. Also here the connection costs which are paid by the party asking for the connection

were derived from the fixed tariffs of the network operator as well as through an internal dataset

with all these articles and their prices. The project managers were questioned in order to clarify

the projects.

4.1.2 Balancing Charging Solutions: The Effect of Urbanisation & Charging Behaviour

The balance between fast charging and regular charging poles and the difference between

the levels of urbanisation was approached from a demand perspective. To determine the need for

faster charging, charging behaviour in general and across different urbanisation levels needed to

be analysed. For the charging behaviour a large dataset from Stichting ELaadNL containing regular

charging pole transaction data was used. This dataset included charging times and connection

times (parking) in every area and from this data the utilisation (and idle times) of charging poles

could be derived. Due to the enormous growth in the number of EVs in the Netherlands only

transaction data from 2015 was assumed to be useful. In order to determine the charging

behaviour of EV drivers. The dataset contained 390459 observations of which 89725 observations

were transactions of 10 kWh or more. The latter can be seen as FEV transactions as most PHEVs

are technically not able to charge more than 10 kWh in one transaction due to their restricted

battery capacity. Concerning the fast charging stations, Stedin provided data on the connections

and current throughput of 15 fast charging providers across different levels of urbanisation in

order to approximate the current charging behaviour at fast charging stations.

To determine the urbanisation rate of every transaction, the dataset “Kerncijfers Wijken en

Buurten 2015” of the CBS was matched with the ELaadNL dataset based on four number postal

code. The CBS dataset contained local information such as the degree of urbanisation and the

number of vehicles per household, population density based on the postal code. The new dataset

was also merged with data from the Klimaatmonitor/JIVE Database (Dutch Ministry of

Infrastructure and Environment) from which the current number of regular and fast charging poles

as well the number of electric vehicles per region could be added. Additionally, travel data from a

large CBS database, “GrootVerkeersOnderzoek (GVO) 2014” was used for determining consumers

travel distances. This dataset contained travel detailed data of more than 116.000 people. The

travel distance of individuals tends to not change much over time thus the most recent year

available was used (2014). Using this data average travel distances and car use was determined

for every postal code at all levels of urbanisation. A short analysis showed that the average travel

distance differs across different levels of urbanisation. People in more rural areas tend to drive a

bit more in terms of mileage (Appendix III.VI & III.VII). However, as the observed differences across

different levels of urbanisation were relatively small and taking into account that the current EV

Page 37: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 29

driver is not the mass consumer we assume that the distance someone drives is on average the

same. The transaction data provided by ELaadNL as well as Stedin’s data on the fast charging

connections allowed for quantitative analysis of the current charging behaviour in different urban

environments. The results provide new insights in the charging demand as well as charging

behaviour among different levels of urbanisation.

Urbanisation Effects

Degree of Urbanisation

The level of urbanisation for unique postal codes was retrieved from the CBS Woonwijken en

Buurten 2015 dataset. This dataset contained the urbanisation levels of 3877 neighbourhoods and

municipalities. Established by the Dutch Central Bureau for Statistics (CBS), the degree of

urbanisation per postal code has a scale from 1 to 5 and is calculated based on the number of

households per km² in a certain area11. For convenience, the degree of urbanisation was recoded.

A higher number now represents a higher degree of urbanisation: (1 → 5; 2 → 4; 3 → 3; 4 → 2; 5

→ 1).

Degree of Urbanisation Rates Classification (CBS)

5 = very strong urbanisation: >= 2500 households per km2 Large city centres with tall buildings

4 = strong urbanisation: 1500 - < 2500 households per km2 City centres & dense suburbs

3 = moderate urbanisation: 1000 - < 1500 households per km2 Suburbs & village centres

2 = weak urbanisation: 500 - < 1000 households per km2 Small villages

1 = non-urban: < 500 households per km2 Rural areas

Table 4 – Degree of Urbanisation based on CBS data ( inverse recoded)

Following this categorisation, the degree of urbanisation dependent on the location, can be

conceptualised as follows:

Fig. 13 – Schematic representation of different degrees of urbanisation

11 CBS, 2016 https://www.cbs.nl/nl-nl/maatwerk/2006/08/toelichting-kerncijfers-postcodegebieden-2004

1

2

1

5 4

Page 38: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 30

Charging Behaviour and Charging Pole Utilisation

The database containing public charging pole transaction data has been provided by ElaadNL.

From this dataset, containing 390.459 observations, the charging time and connection time was

derived for each transaction. In addition, the level of urbanisation at a certain charging location

was added to this dataset based on postal code. The dataset contained the following variables:

Operationalisation of Transaction Dataset Variables

Charging Point ID

Transaction ID

Connector ID

RFID card ID at start

RFID card ID at end

Charging Point Connection (kWh)

Starting Time Transaction

End Time of the Transaction

Starting Time Charging

Ending Time Charging

Postal Code

Meter Value start

Meter Value end

Intermediate Readings

Intermediate time stamps

* Vehicle Type (PHEV or FEV)

* Frequency Used Per Day

* Energy Transfer per Session

* Connection Time

* Number of Sessions

* Utility Level

* = can be extracted/matched/calculated f rom the data | • = used • = not directly used

Table. 5 – Transaction Dataset var iables

After processing the data and adding the postal codes as well as the urbanisation rate of the

location of every transaction (matching based on the charging pole ID) we were left with a dataset

containing the transactions of 1622 regular charging poles spread over the country (out of 1678

in the full dataset). The total sum of connection times as well as the utility levels, charging times,

connection times, the number of sessions, and number of unique visitors. were used to calculate

the (potential) benefit side of the equation.

The utilisation of the fast charging stations was approximated by making use of connection

and throughput data of 15 fast charging stations from different fast charging providers. The data,

retrieved from Stedin, contained the monthly throughput in kWh for 2015 and 2016. As some

stations were installed more recently data on these stations was only available for a shorter time

span. As weighted averages based on the sum of all months were used the transaction volumes

between the different station were still comparable. All degrees of urbanisation were included,

Page 39: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 31

except for a location with a very strong degree of urbanisation (e.g. 5 -> 1) as fast charging has not

been deployed at such a location yet. Hence, no real life data was available.

4.1.3 Business Case

After the descriptive analysis, the last stage of this study will be the integrative part where

findings are translated to the wider society and policy makers by providing an Excel sheet which

combines all the gathered data. Data from Fastned and the study of Schroeder and Traber (2012),

in combination with facts and estimations derived from conversations with experts in the field

such as Stedin, MisterGreen and Allego were combined in order to get more insight in the business

case of fast charging. Furthermore, RVO’s data was used to determine EV vehicles adoption and

the current number of electric vehicles (FEV & PHEV) on the roads in the Netherlands. Data from

EV manufacturers were used to determine the weighted average energy consumption of Dutch

EVs. The data from the CBS was used to determine travel distances and thus calculate expected

local charging demand.

4.2 Qualitative Data

Although the focus of this study is at the quantitative analysis of public charging infrastructure

and especially the costs side. Some qualitative data was gathered in order to validate the

assumptions, the model and gain insights in the trends as well as the perspectives and visions of

the stakeholders. This information was collected through a couple of personal interviews, informal

conversations, conferences, and two telephone interviews. When permission was granted by the

participant, these interviews were recorded. During each interview notes were made and directly

after the conversation notes of the participants’ behaviour as well as the interview in general were

denoted in order to make sure that the maximum information is captured. The interviews took

place in a semi-structured format due to the variety of people and roles interviewed.

The structure for most interviews was set up to include at least parts of the following items

(dependent on the role of the interviewee, see Appendix 3 for the interviews and notes):

1. General introduction and presentation of the research as well as the permission to record the interview

2. Trends: “What are, according to you, key trends in the electrification of mobility? a. In which direction are we heading? b. What do you expect of new technologies, for example inductive charging?

3. Who are the key actors and stakeholders in the process of investing in EV infrastructure? What are their roles?

4. What are the most important factors or determinants of investments in public charging infrastructure?

a. How are these cost and benefit factors related to each other? b. How much do they weight in relation to the total investment? c. Do you have any numbers or financial approximations of the costs/benefit of a regular charging pole/fast charging station?

Page 40: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 32

5. What is your opinion about fast charging? a. opportunities and applications b. drawbacks c. and how about your opinion of the transition towards e-mobility in general?

6. Do you have any or any articles, reports, useful data et cetera at your proposal I should definitely take a look at?

7. Closure: Do you have any remarks or other things you would like to add?

The unstructured approach allowed for steering towards the research question while at the

same time less related topics can be discussed or specific information can be retrieved. It can be

those topics which provide the relevant insights and as a participant touch up on a specific point

which turns out to be rather important but previously overlooked this can still be incorporated in

the model.

The persons interviewed are all heavily involved in charging infrastructure projects and their

information and insights were regarded as valuable for the creation of the model as well as

validation of the values derived from all the data. The people visited are stated in Appendix V.

4.3 Analysis and Estimation Techniques

For the data analysis several techniques were used to compile all the data. This was especially

important as the (raw) data was delivered in different formats from numerous of different

sources. In order to draw conclusions from the gathered data, calculations were made on the raw

data. Afterwards, all filtered data and the output of the raw data is compiled in one Excel sheet

which provides an overview of the cost and benefit factors of investments in public charging

infrastructure. From this the relationships can be derived as well as the business cases. The

findings from the data should be in line with remarks and perspectives derived from the

interviews.

Page 41: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 33

5. Data and Findings In this section, the results from the data will be presented according to answering the last three

sub questions which were introduced earlier:

What are key cost factors of strategic investments in fast and regular charging facilities

and how do these relate to each other?

Does the need for faster charging change across different levels of urbanisation and thus

influence the balance between regular charging poles and fast charging facilities?

Is there next to a business case also any social value created?

These questions will be answered by an extensive descriptive analysis as well providing the results

of the regression analysis. In the end, we will use the findings and apply them to a real life case in order

provide an example of the costs and benefits of public regular and fast charging infrastructure in

different urban environments.

5.1 Costs of Public Charging Solutions

5.1.1 Costs of Regular Charging Poles

Charging pole connection data revealed that out of the 619 regular charging pole projects

investigated 601 cases (96.6%) were a 3x 25A charging pole and 21 cases (3.4%) were 3x 35A

charging poles. The weighted average costs of a new charging point connection were €1807.47,

with a standard deviation of €1298.69. It was found that in 95% of the cases the connection costs

fell in between the €1704.96 and €1909.98. Furthermore, significant difference between the mean

costs of 3 x 25A charging poles and 3x 35A charging poles was found as the variances were not

equal according to the Levene’s Test for Equality of Variances (Appendix III.I). However, as the

costs are not clearly normally distributed and the highest frequencies show up around the mean

while both distributions have approximately the same shape, the costs data distribution was also

tested by performing a non-parametric Mann-Whitney U Test to compare the medians of the

project costs (Appendix III.II). From this test with a significance of 0.290 and a Z-value of -1.059

(Wilcoxon W: 5657; Mann-Whitney-U: 5426) can be concluded that the distribution in costs of the

3x25A charging pole connections are not statistically higher than the 3x35A charging pole

connections. As industry also shifted toward 3 x 25A connection, we will use a weighted average

for the total connection costs.

Table 6 – Descr iptives Connection Costs of Regular Charging Poles

[Data]

Level 2 Public charger

Connection Costs n

mean

std. Dev Std. Error Lower Bound Upper Bound Minimum Maximum

3 x 35A 21 1.392,49€ 1.388,43€ 137,93€ 1.124,36€ 1.660,61€ 210,14€ 2.660,40€

3 x 25A 598 1.822,04€ 1.314,55€ 53,76€ 1.728,59€ 1.950,46€ 72,83€ 10.564,00€

Total: 619 € 1.807,47 1.298,69€ 52,20€ 1.704,96€ 1.909,98€ 72,83€ 10.564,26€

95% C.I. for mean

Page 42: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 34

Fig. 14 – Skewed Distr ibution of connection costs (μ = €1807,47; σ = €1298,69),

From the analysis of 174 detailed cases it became clear that the largest cost driver within the

connection costs are the services and internal and external labour. These account for around 70%

of the total connection cost. Also the high maximum costs of €7534.00 was caused by a project

which required a lot of extra labour. Furthermore, the overhead costs in the sample are €460.86

on average per charging pole project, while the material costs for making the connection are in

general relatively low (μ = €208.15; σ = 411.88).

Table 7 – Detai led break-up of the major connection costs from a grid operator perspective

Break-up Connection Costs Grid

Operator - Detailed Cases n mean std. Dev Std. Error Lower Bound Upper Bound Minimum Maximum

Services & Labour Costs 155 1.367,31€ 996,56€ 80,05€ 1.209,18€ 1.525,44€ 185,00€ 7.534,00€

Materials 160 208,15€ 411,88€ 32,56€ 143,84€ 272,46€ -€ 5.149,00€

Overhead 173 460,86€ 381,51€ 29,01€ 403,61€ 518,11€ 27,00€ 3.103,00€

Total: 174 € 1.904,45 1.525,34€ 115,64€ 1.676,22€ 2.132,69€ -€ 10.977,00€

Page 43: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 35

Concerning the activities in every charging

connection project, we see that the activities which

are performed in most of the cases are: a 3 to 3 phase

change with a relative occurrence of 31,01%, extra

length (1.4%), and change of the electric patterns

(1.24%). Activities which are mandatory in a

substantial number of cases are the required permits

for digging (23.26%), municipality permits (11.87%),

and the klic-report to announce that you are going to

dig in a certain area so that other companies can check

whether this will harm their assets (2.64%)12.

Fig. 15 – Spread of different cost drivers regular charging poles

When the above mentioned costs are combined with the other identified costs of regular

charging facilities, such as the hardware, planning and infrastructure costs the initial investment

costs for a single regular charging pole can be determined. The table presented below provides

an overview of all the costs we calculated based on industry data. The price of the hardware was

derived from a quick scan of the currently available charging poles which are suitable for use in a

public environment. The costs of the connection and the hardware are the largest cost drivers.

12 Appendix III.III presents a pie chart of these different activities

Page 44: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 36

Table 8 - Cost overview regular charging pole costs

However, the current proven lifetime of charging poles is approximately 7-8 years. Therefore,

you will need two regular charging poles in 15-year period, which is the expected life time of a fast

charging station. This will double the investment costs of a regular charging pole when compared

to a fast charging station. The cost findings are in line with the costs Schroeder and Traber (2012)

claimed. However, the average investment the grid operator has to make on each project (±€1800)

and the grid upgrade (± €970) which is necessary in some cases has often been ignored as a cost

in research. The person demanding the charging pole only has to pay the regulated installation

costs including optional extra meters (which only occurred in 1.4% of the project). As this fee was

€624.98 in 2015 the grid operator has to co-invest the excess €546,74 (σ = 1301,08) for every

charging pole installed. Due to this, the project result is negative in 95% of the cases and falls

between -€669.64 and -€423.85, which can be seen as a long term infrastructure investment, but

also a form of subsidizing.

Level 2 Public Charging - Initial Investment (CAPEX)

Hardware Avg. Price

Level 2 Public Charger (such as ICU Twin) € 2.300,00

Coordination

Location Decision, Planning & Coordination € 300,00

Installation

Materials € 180,00

Outsourced Labour € 229,30

Supplements € 60,78

Sub Total: € 470,00

Connection CPO € 1.299,49

3 x 25A, 17 kVA including 25m cable + permits € 1.807,47

Grid upgrade (net verzwaring trafo) € 969,31

Sub Total: € 4.076,26

Grid Operator Revenue -€ 1.299,49

Total costs CP & GO: € 2.800,00

Infrastructure

Bricklaying: ±10m² walkway per (€40/m²) € 350,00

Signage

Signage and road markings € 250,00

TOTAL INITIAL Y1 INVESTMENT: € 6.470,00

Dominant cost: Hardware & Connection

Page 45: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 37

Effect of the Degree of Urbanisation on Connection Costs

In order to determine the balance between fast charging and regular charging poles we

determine whether there is a difference in connection costs due to the degree of urbanisation of

the location a charging projected is carried out (H1). A Kruskal-Wallis H test showed that there was

a statistically significant difference in costs between the different degrees of urbanisation, χ2 =

9.481, p = 0.050, with a mean rank cost score of 291,08 for the lowest urbanisation rate 1 (n =

159). The other mean ranks were: 357,48 for degree of urbanisation 2 (n = 45. 299.31 for degree

of urbanisation 3 (n = 124); 340.86 for degree of urbanisation 4 (n = 122) and 300.72 for degree of

urbanisation 5 (n = 169)13.

Furthermore, it was found that the highest average costs occur in areas with a degree of

urbanisation of 2 (μ = €2084,64; σ = €1356,27), while the lowest mean was found in the more rural

areas in terms of the number of households per square kilometre (μ = €1655,42; σ = €111,49).

Fig 16.1 – Dis tr ibution of Total Project Costs among 5 levels of urba nisation

13 Appendix III.IV Shows the statistics from the Kruskal Wallis Test (connection costs by DoU)

Page 46: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 38

We also noticed that charging poles in the densest areas (degree of urbanisation 5 on average

have a bit lower connection costs than the

projects in sub-urban environments (DoU:

4). This might be a positive for the supply of

(fast) charging infrastructure within city

centres. In addition, it can be concluded

that almost every level of urbanisation has

some project which tend to turn our more

expensive than other. In these projects,

high cost activities such as steered drillings,

were applied. Despite the fact difference

were found across different levels of

urbanisation, hypothesis 1 can be rejected

as the connection costs were not positively

related to the degree of urbanisation.

Fig 16.2 – Distr ibut ion of Total Project Costs among 5 levels of urbanisation (1 = rural , 5 = urban)

Operating Costs of Regular Charging Poles

Analysing the fixed exploitation costs of regular charging poles resulted in an average yearly

operating cost of €565,66. Depreciation on the current assets will add €328.57 per year to this.

The main cost factors turn out to be connection and hardware related: maintenance and the

connection fees. When the depreciation of the hardware and infrastructure is added (€368.57) by

using straight line depreciation as well as the present value of the additional investment in a new

charging pole after 7 years (€233.51) we come at an annual operating cost of €1268.19 for a curb

side public installation. Variable electricity costs need to be added but these are dependent on the

amount of energy used. The electricity costs are estimated to be: €0,15 per kWh for corporates.

Table 9 - Regular Charging Pole Connection Costs Overview

Approximate Exploitation Costs incl. depreciation per year (OPEX) € 1.268,19All costs

CPO Maintenance € 220,00Maintenance labour € 200,00

Cleaning station/terrain € 20,00

CPO Connection € 268,66Grid Connection € 168,66

Communication (wifi, cellular connection) € 100,00

CPO Miscellaneous € 77,00User services € 20,00

Back-Office (overhead) € 20,00

Insurance € 12,00

Unforseen € 25,00

Optional: Hard/Software Upgrade € 25,00

CPO End of Life Time Costs per year 5% discounted € 100,45y7 Removal € 1.030,00

y7 Salvage Value -€ 300,00

Page 47: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 39

At the end of the 7-year life time of the regular charging pole (appendix V), the salvage value is set

equal to a conservative €300, while the removal costs are €1030 (EY, 2015).

The total present value of an investment in a charging pole in 15 years including the one-time

connection, exploitation, removal and replacement costs equals ±€23000 (€23040.94) for the CPO

and grid operator. When only the CPO costs are included we have a total cost of ±€20000

(€20703.52).

5.1.2 Costs of Fast Charging Facilities

The costs of fast charging facilities were calculated by investigating four fast charging cases

from which estimates have been made based on the cost information, data from the interviews

and conversations with project managers (appendix V).

Connection Costs Analysis

The connection cost of the four fast charging projects are presented below. Also here labour

and the hardware are the largest cost influencers, while the overhead costs are also a significant

part of the total costs.

DoU Project Total Costs

Connection

Internal

Labour

Services Materials Supplements

& Overhead

Revenue (Grid

Operator) =

Cost CPO

1 50066030 € 58.370,15 € 1527,47 € 46.911,92 € 1679,46 € 8051,30 € 17333,52

1 50070066 € 70.339,47 € 5562,28 € 58.836,18 € - € 5940,96 € 7250,74

1 50070189 € 18.681,91 € 1424,69 € 7.148,85 € 9278,60 € - € 9939,62

4 50083020 € 33.483,89 € 1647,36 € 8.297,35 € 17032,71 € 305,02 € 22396,67

Mean (n = 4) € 45.218,86 € 2.540,45 € 30.298,58 € 9.330,26 € 4.765,76 € 14.230,14

Avg.

Estimate:

±€45000 ±€2500 ±€10000 -

€30000

±€10000 ±€5000 ±€15000

Table 10 – Overview of the fast charging pro jects cost structures

Furthermore, it became clear that all projects needed extra meters of cable (µ = 212.4 meter;

minimum 60 meter; maximum 410 meter) and one project included an extension of the middle

current grid, which also increased cost. One project also needed an extra temporary generator in

order to supply the nearby petrol station with power while connecting the charging station. The

rent alone was around €1600 (appendix V). Three

out of four projects included a grid transformer

replacement and two a controlled drilling

underneath a high way which can easily increase

costs by several thousands of euros (appendix V).

The difference between the revenue and total

costs of every project and thus the additional costs

for the grid operator are approximately €30000 on

average per fast charging connection (μ =

€30988.72). Fig. 17 – Estimated contribution total costs

Page 48: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 40

Table 11 – Activi t ies in the four fast charging connection projects

The connection costs for the charging operator (which is the revenue for the grid operator)

are €3844.76 per connection 3x 125A until 175kVA and every extra meter of connection length

costs €46.79 (Stedin, 2016). These costs are approximately €15000 (µ = €14230.14; min = €

7250.74; max = € 22396.67).

When we look at the charging station within a more urban environment (project 4) it was

found that these costs are comparable to the average of the four projects. However, material costs

were higher due to the extra (aluminium) cable length as all slots in the nearest distribution station

were already occupied. It is expected that this is quite often the case in the denser populated

areas, especially the older city centres. However, rural areas will often have the same issue as here

the nearest distribution station can be far away from the planned fast charging location. So, in

contrast to regular charging poles there are no major differences in connection costs across

different levels of urbanisation were found.

Other Costs

Complementary to the connection costs our results show that fast charging stations also

demands significant investments in assets. The size of these investments is a dependent on the

location and attributes of the facility: a whole structure or only curb side charging. For example,

only providing a curb side installation may be much more attractive from a financial perspective

then when investing in a full service fast charging station. An overview of the cost estimations is

presented on the next page.

Activity Occurance Specification Occurance Percentage Project 1 Project 2 Project 3 Project 4 (Urban)

S10135 - Extension Midcurrent Grid: MS-net t/m 13 kV (compleet) 1 25,00% 115 meters

S10149 - Payment to the government (retributie) 2 50,00% X X

S10152 - Distribution station till 13 kV voor grid (extension) 1 25,00% X

S10212 - Connection >3*125A t/m 175kVA 3 75,00% X X X

S10213 - Extra cable length >3*125A t/m 175kVA 3 75,00% 147 meters 330 meters 410 meters

S10342 - Connection > 175 kVA t/m 630 kVA (special) 1 25,00% X

S10348 - Change of the electricity patttern due to capacity increase 1 25,00% 60 meters

S10353 - Permitsfor Gridextension 3 75,00% X X X

S10354 - Asset permits 4 100,00% X X X X

S10380 - Change of the tranformer (nettrafo t/m 13(10)/0,4kV) 1 25,00% X

S10503 - Orientation Report (preventive maintenance) 1 25,00% X

S10504 - Klic-report, digreport Kadaster ihk WION 1 25,00% X

S11920 - Rental of a generator 400 kVA 1 25,00% X

SOWERK-JES Installation of a nettransforamtor structure (netstation) 23 kV 2 50,00% X X

Page 49: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 41

Level 3 Public Fast Charging - Estimation Initial Investment (CAPEX) Hardware Avg. Price

Level 3 Charger € 25.000,00

Coordination

Location Decision, Planning & Coordination € 2.500,00

Connection CPO: 3 x 160A t/m 3 x 250A, max 175 kVA incl 25m cable € 14.230,14

GO: Materials € 9.330,26

Outsourced Labour € 30.298,58

Supplements € 4.765,76

Sub Total: € 58.625,00

Grid operator Revenue: € -14.230,14

Total costs CP & GO: € 44.394,86

Installation

Installation charger € 2.500,00

Sub Total: € 2.500,00

Infrastructure

Curbside Assumed to be equal to the costs of a new parking spot (P1, 2008) € 3.500,00

Station Civil Works (new station) € 50.000,00

Structure (building and foundation) € 35.000,00

Solar Roof (Fastned/MisterGreen) € 40.000,00

Signage

Curbside Signage and road markings (curbside installation) € 1.000,00

Station Signage and road markings (station installation) € 20.000,00

Safety (security et cetera) € 5.000,00

TOTAL INITIAL Y1 INVESTMENT: Curbside (1 Fastcharger): € 78.894,86

Station (2 Fastchargers): € 249.394,86 Station (1 Fastcharger): € 224.394,86

Dominant cost: Hardware & Connection & Infrastructure (CPO Only)

Fig. 18 – Overview Estimated Costs Fast Charging Faci l i ty (Curb side & Stat ion)

Concerning the costs of a fast charging station, the costs of the connection and charging

hardware have the highest impact on the total costs. These are respectively 56,27% and 31.69%

in case of a (cheaper) curb side facility and 19.78% and 11.14% in case of a fast charging station.

In addition, the high investment costs occurring for grid operators makes up a significant part of

the total costs too as well as the high costs of the structural building itself in case of a full station.

Operating Costs Fast Charging

The exploitation costs of a fast charging facility are approximately €12000 per year. However,

when the depreciation (straight line) of the assets is included (charging hardware – 7 years; station

Page 50: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 42

and infrastructure - 15 years) the exploitation costs per station are in between €10000 - €30000

for a fast charging station and €10000 - €20000 for a curb side station. The curb side station has

lower costs due to the absence most of the expensive infrastructure. However, the infrastructure

might also provide extra benefits in form of advertisement space and room for the placement of

solar panels which makes the solution more sustainable and reduces the impact on the grid.

Fig. 19. – Estimation of the operating costs of fast charging infrastructure

5.1.3 Total Investment and Costs per Public Charging Solution

From the results presented above can be derived that there is quite a significant “gap”

between the “real” connection costs and the project results. The tables below provide an overview

of the aforementioned costs. Fast charging stations are the most expensive charging solution and

can be considered as capital intensive assets. Curb side fast charging connected to the grid

demands less infrastructure due to the absence of a rooftop and are the cheapest fast charging

method. However, only discussing the costs is not fair when comparing both charging solutions.

Following theories around investment allocation and strategic production planning regular

charging poles can be seen as a relatively cheap machines which increase charging capacity, but

due to their technical specifications they also have a lower throughput-time (charging takes longer

STATION Approximate Exploitation Costs incl. depreciation per year (OPEX) € 27.805,22

Approximate Exploitation Costs € 12.075,00

CURBSIDE Approximate Exploitation Costs incl. depreciation per year (OPEX) € 18.105,22

Approximate Exploitation Costs € 12.075,00

All costs

CPO Maintenance € 4.300,00Maintenance € 1.800,00

Maintenance Labour € 1.000,00

Cleaning € 1.500,00

CPO Connection € 3.100,00Grid Connection € 2.400,00

Communication (wifi, cellular connection) € 700,00

CPO Miscellaneous € 4.675,00User services € 25,00

Back-Office (overhead) € 150,00

Insurance € 250,00

Unforseen € 4.000,00

Optional: Hard/Software Upgrade € 250,00

CPO End of Life Time Costs per year 5% discounted € 128,27y7 Removal € 2.500,00

y7 Salvage Value -€ 500,00

CPO Investment Costs: Yearly Depreciation (SL) € 13.571,43Life Time 15

Chargepoint [7 years] € 3.571,43

STATION Infrastructure [15 years] € 10.000,00

CURBSIDE Infrastrucutre [15 years] € 300,00

CPO 1x Additional Investment (Replacement/Upgrade) - Present Value Year 7 € 2.030,52Pole Replacement/Hardware in Y7 (replace pole €20000 in 7Y) € 20.000,00

So we assume that in the life time of 1 Fast Charging station, ±2 charging poles are needed

Page 51: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 43

due to the lower power) and thus lower effect on charging capacity than fast charging stations. In

contrast, a fast charging station can be compared to a high capacity machine which also increases

charging capacity, but the high productivity of fast charging stations comes at a higher initial

investment cost when compared to regular charging poles. In addition, when EV sales really take-

off it is easier for the grid operator to install 1 fast charging station then a lot of charging poles. In

order to make a fair comparison the costs per capacity delivered were calculated in order to

compare the solutions. These results are presented in chapter 5.3.

Level 2 - Regular Charging (11kW, max 22 kW)

Grid Operator Costs CPO Costs ONLY

Cum. Present Value 15y Costs (5%) €23.040,94 €20.703,52

Initial Investment Year 1 € 6470.00 € 4500,00

Exploitation Costs per year (incl. depreciation) € 1270,00 € 1270,00

Exploitation Costs per year (excl. depreciation) € 565.66 € 565.66

Table 12 – Overview Total Costs Regular Charging Project (1 pole, 2 sockets)

Level 3 - Fast Charging (50kW)

Grid Operator

& CPO Costs

Grid Operator

& CPO Costs

CPO Costs

ONLY

CPO Costs

ONLY

Location Curb side Station Curb side Station

Cum. Present Value 15y Costs (5%) € 298.784,33 € 554.667,02 € 268.619,61 € 524.502,30

Initial investment Year 1 € 78.894,86 € 224.394,86 € 48.730,14 € 194.230,14

Exploitation

costs per year (incl. depreciation)

€ 18.105,22 € 27.805,22 € 18.105,22 € 27.805,22

Exploitation

costs per year (excl. depreciation)

€12.075,00 €12.075,00 €12.075,00 €12.075,00

Table 13 – Overview Total Costs Fast Charging Project ( 1 pole, 2 sockets)

5.2 Charging behaviour, charging pole utilisation and fast charging need

The charging behaviour of EV drivers in general (5.2.1) as well as charging pole utilisation in

different urban environments (5.2.2) was analysed to identify the fast charging need across

different levels of urbanisation. This section presents the answer of the sub question mentioned

earlier:

Do different degrees of urbanisation influence the charging behaviour and thus the need for faster

charging, hence the balance between regular charging poles and fast charging facilities?

As well as, the results of hypothesis 2:

H2: the degree of urbanisation is positively related to the charging pole utilisation

Page 52: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 44

5.2.1 Current Charging Behaviour

Charging Behaviour at Charging Pole Level

Analysis of the transaction data resulted in up-to-date insights in the charging behaviour of

Dutch EV drivers. First, we analysed the 390459 of transactions over time at the charging pole

level. These transactions took place at 1678 charging poles. The average number of transactions

per charging pole was 232 with a minimum of 1 and a maximum of 1537 in 2015 (µ = 232.69; σ =

224.361). Thus, a charging pole is used approximately 0.6356 times a day, which entails that on

average not more than one car makes use of a public charging pole every day. In 2015, every

regular charging pole had 51 unique users on average. Furthermore, it can be concluded that the

average transferred energy per charging pole per session is 8.7099 kWh (σ = 3.97431) with an

average charging time of 2.49 hours (µ = 2.4894; σ = 0.6936) while the average connection time

at each charging pole equals 6.37 (µ = 6.370; σ = 4.40064) hours. Hence, EV drivers connect almost

2.6 times longer than they charge which has a negative effect on the charging pole utilisation. This

is also the reason that you need at least two times more regular charging poles then when they

are better utilised.

Charging Behaviour at Transaction Level

When we analyse the charging behaviour at the transaction level without grouping on

charging pole an average connection time of 7.05 hours per transaction is encountered (σ = 8.860;

min = 0,0167 hours; max = 298,246 hours). The average charge time equals 2.5459 hours which is

close to the aggregated average on charging pole level (σ = 1.773).

Table 14 – Overview of the average charging behaviour calculated on charging pole level

When we analyse the transactions which are surely only FEVs the average transaction time

as well as the charging time is longer. Which makes sense as these cars have larger batteries.

Charging Behavior per Charging PoleN = 390459 transactions @ 1678 charging poles Energy per Session (kWh) Total energy demand (kWh) Number of sessions

Yearly Sum 3304777,138 390459

Average per pole (µ) 8,70986743 1969,473861 232,693087

Max Average per pole (µ) 47,52461538 15716,981 1537

Min Average per pole (µ) 0,28 0,56 1

STDEV 3,973120664 1980,454224 224,2941078

VARIANCE 15,78568781 3922198,932 50307,84681

Connection time (h) Charge time (h) Utilisation

Average Yearly Sum per pole 1641,911202 592,4075192

Average per pole per transaction (µ) 6,370037302 2,489359596 0,667993619

Max Average per pole per transaction (µ) 67,35495833 9,600556863 1

Min Average per pole per transaction (µ) 0,09225 0,09225 0,110215795

STDEV 4,399332419 0,693379913 0,16536423

VARIANCE 19,35412574 0,480775703 0,027345328

Page 53: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 45

Table 15 – Overview of the average charging behaviour calculated on charging pol e level

Furthermore, it was found that the number of transactions as well as the total amount of

energy demanded has increased over time, but the total energy (kWh) delivered per session

declined over time (µ = 8.710). When we compare this to the fast growth in the number of EVs,

the growth of the number of transactions seems to lack behind. Which is probably caused by

PHEVs which are not charged.

Fig 20. - Transaction frequency per day has increased over time while the average energy charged per

session decl ined

Also the connection times are showing a similar distribution as found in other research. There

are demand peaks between 08:00 and 09:00 as well as between 17:00 and 19:00. The

disconnection slightly differs from the connection peaks: people disconnect, travel, and the

reconnect again. The disconnection peak starts around 15:00 which is in line with the findings

parking time findings of Smith et al. (2011). Hence, the current charging behaviour cycle which

mimics the daily schedules of EV drivers is one of the main causes of the shortage of charging

facilities EV drivers experience (AD, 2016). However, it will be unlikely that people adjust their

charging behaviour as they are probably not willing or able to disconnect or connect their vehicle

at certain points in time. For example, during the night or even when the weather conditions are

bad. A result is that when the number of EVs grows, the number of charging poles needs to grow

at an even faster pace. This also reveals the competitive edge of fast charging as here, in theory,

the connection time almost equals the charging time.

Charging Behavior per Charging Pole (FEVs ONLY)N = 89725 transactions @ 1622 charging poles Energy per Session (kWh) Total energy demand (kWh)Number of sessions

Yearly Sum 1553339,631 89725

Average per pole (µ) 17,5698 957,6693 55,32

Max Average per pole (µ) 60,3 12885,97 406

Min Average per pole (µ) 10,07 10,07 1

STDEV 7,27829 1251,547 63,192

VARIANCE 52,973 1566371,002 3993,252

Connection time (h) Charge time (h) Utilisation

Average Yearly Sum per pole 592,0878 223,9554

Average per pole per transaction (µ) 8,9034 3,8809 0,6481

Max Average per pole per transaction (µ) 90,49 12,99 1

Min Average per pole per transation (µ) 1,28 1,27 0,15

STDEV 5,75268 0,86559 0,18497

VARIANCE 33,093 0,749 0,034

Page 54: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 46

Fig 21. - Connection and disconnection dis tr ibution dur ing the day on d ifferent levels of urbanisation

for PHEV and FEV transactions

Plotting the number of transactions during the day for only FEVs there is not much difference

in the charging behaviour across different levels of urbanisation regarding the peaks. However,

most FEV drivers tend to charge overnight as a lot of them plugin during the evening and

disconnect early in the morning.

Fig 22. - Connection and disconnection distr ibution during the day on different levels of urbanisation

for FEV transactions

5.2.2 Charging Behaviour Across Different Levels of Urbanisation

When we investigate the differences between the levels of urbanisation on the full

transaction data set of 390459 transactions we can spot diversity in the charging duration and

Page 55: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 47

thus charging pole utilisation. First, data was aggregated on charging pole level and then on

urbanisation level. This resulted in the average sessions per day as well as the energy transferred

per session across the different levels of urbanisation. The average number of sessions per day

was the highest in environments with a very strong urbanisation rate: 1.2246 sessions per public

charging pole per day. Rural locations had the lowest number of sessions per day (µ = 0.3918). The

charging pole with the highest utilisation rate had 1537 transactions in 2015, which means that

on average 4.2 cars per day connect to this station. Like the rest of the top 10 charging poles in

terms of the number of transactions, this station had an urbanisation rate of 5 (except for one

charging pole located in an area with an urbanisation rate of 2 and next to a lot of shops).

Overall, it can be concluded that the utilisation of regular charging poles is still an issue. In

some cases, this might be due to the fact that there is a no need to disconnect or a high parking

density resulting in unwillingness to disconnect and search for an alternative parking spot.

However, as there is a shortage of charging poles in some neighbourhoods and also taking into

consideration the expected increase in EVs, the current utilisation rates of regular charging poles

are considered to be too low.

Current Charging Behaviour per Level of Urbanisation – Regular Charging N = 390459 transactions Regular Charging Pole 11 kW

Degree of Urbanisation 1 (Rural) 2 3 4 5 (City Centre)

(n = 73033) (n = 72156) (n = 78111) (n = 80075) (n = 87084)

Energy per Transaction [kWh] 8.55814 8.52647 8.57985 8.87594 7.84981 Avg. Connection Time per Transaction (hours) 7.2226 6.8171 7.1826 7.1562 6.9091 Avg. Charge Time per Transaction (hours) 2.5664 2.4850 2.5631 2.6746 2.4453 Efficiency During Transaction [1 = 100%] 0.6253 0.6304 0.6075 0.6216 0.6209

Avg. Sessions per pole per year [#] 143.2 195.02 241.83 285.98 446.58 Avg. Sessions/day [#] 0.3923 0.5343 0.6625 0.7835 1.2235 Avg. Utilisation Rate (Connected/Year) 0.1181 0.1518 0.1983 0.2336 0.3522 Capacity/day [kWh] 3.3576 4.5557 5.6846 6.9544 9.6043

Table 16 - Charging behaviour across different levels of urbanisation 14

When we analyse the transactions of only FEV vehicles across different levels of urbanisation

we can spot several differences in the energy transferred per transaction as well as the charge

time. The connection time tends to be longer due to the larger battery capacity. In very strong

urbanised environments people tend to connect, e.g. park, the longest. Which is probably due to

high parking pressure in these environments. It also became clear that the within the city centres

there is the highest FEV density when looking at the average number of FEV charging sessions at

a single pole.

14 Can also be found in Appendix VII

Page 56: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 48

Current Charging Behaviour per Level of Urbanisation (FEVs Only – Regular Charging) N = 89725 transactions Regular Charging Pole 11 kW

Degree of Urbanisation 1 (Rural) 2 3 4

5 (City Centre)

(n = 17697) (n = 17194) (n = 18212) (n = 19099) (n = 17523)

Energy per Transaction [kWh] 16.95035 17.33368 17.36653 18.19645 16.63647 Avg. Connection Time per Transaction (h) 10.66169 10.54743 10.47044 10.74369 11.09700 Avg. Charge Time per Transaction (h) 3.97156 3.93280 4.02434 4.23991 4.05646 Efficiency During Transaction [1 = 100%] 0.56628 0.55314 0.54822 0.55444 0.54836 Avg. FEV Sessions (>= 10 kWh) per pole/year [#] 36.79 48.03 58.19 69.45 89.86 Avg. FEV Sessions/day [#] 0.10079 0.13158 0.15942 0.19027 0.24619 Avg. Utilisation Rate (Connected/Year) 0.04478 0.05783 0.06955 0.08517 0.11383 Capacity/day [kWh] 1.70850 2.28092 2.76865 3.46231 4.09576

Table 17 - Charging behaviour across different levels of urbanisation for FEV transact ions 15

The charging behaviour at fast charging stations was also analysed by using Stedin’s

transaction data. In total 189 transaction months at 14 fast charging stations were analysed over

a time span from January 2015 to May 2016. Fast charging stations currently handle on average

approximately 2 transactions per day (μ= 1.8; max = 3.3 in highly urban areas) (Fastned, 2016a).

Stations in denser urban areas tend to be used a more often and fulfil around 2-3 transactions per

day. However, it is expected that these amounts will increase over time. What also became clear

from the data is that charging locations have a learning period. The first period the number of

sessions increases, then stabilises and slowly continues to increase with time. This is probably due

to the fact that people need to get used to the new charging location.

Current Charging Behaviour per Level of Urbanisation (Fast Charging)15

N = 15 stations Fast Charging Station 50 kW

Degree of Urbanisation based on Density (# of stations analysed)

1 (Rural) 2 3 4 5 (City Centre) (n = 5) (n = 6) (n = 1) (n = 2 (n = 0)16

Energy per Day [kWh] 24.4249 38.0267 35.0667 35.2231 n.a. Energy per Transaction [kWh] 13.5694 21.12597 19.48148 11.74103 n.a. Avg. Connection Time per Transaction (hours) 0.27139 0.42252 0.38962 0.23481 n.a. Avg. Charge Time per Transaction (hours) 0.27139 0.42252 0.38962 0.23481 n.a. Efficiency During Transaction [1 = 100%] 0.98 - 1 0.98 - 1 0.98 - 1 0.98 - 1 0.98 - 1 Avg. Sessions per pole per year [#] 657 657 657 1095 1095 Avg. Sessions/day [#] 1.8 1.8 1.8 3 3 Avg. Utilisation Rate (Connected/Year) 0.020354 0.031689 0.029222 0.029351 n.a. Max. Theoretical Capacity/day @ current connection time [# sessions] 88 56 61 102 n.a. Income per Session €4.75 €7.39 €6.82 €4.11 n.a. Income per Day €8.55 €14.78 €12.28 €12.33 n.a.

Table 18 - Charging behaviour across different levels of urbanisation at fast charging stat ions

15 Can also be found in Appendix VIII 16 As there are no fast chargers in areas with a very high rate of urbanisation as most fast chargers are

currently near high density roads/highways, no data was available.

Page 57: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 49

Effect of the Degree of Urbanisation on Charging Pole Utilisation

In order to check the whether the difference in utilisation (non-parametric) between the five

degrees of urbanisation is significant, a Kruskal-Wallis test was performed on a 10% subsample

with 39040 transactions. The difference turned out to be significant (χ²=33,276; df = 4; p = 0,000).

Degree of Urbanisation N Mean Rank

UtilisationRate

1 7337 19789.26

2 7151 19785.22

3 7905 18901.38

4 7980 19547.82

5 8667 19614.09

Total 39040

Table 19 - Kruskal-Wall is test

To test the predictive power of urbanisation on charging pole utilisation (H2) a linear

regression was performed on the whole sample (N = 390459). This, according to the ANOVA,

resulted in a significant model with a good fit between the data and the regression (p = 0.000).

There was a really small correlation (R = 0.007) which entails that the total variation in utilisation

cannot be explained by the degree of urbanisation (R²=0,000). Hence, the predictive value of the

model also turned out to be very low as a change of the level of urbanisation would result in a

decrease of the utilisation rate by just 0.2%. It can be concluded that the degree of urbanisation

has only a minimal effect on how people tend to utilise charging poles. The regression formula for

determining the utilisation of a charging point would be: 0.626 - 0.002 * (Degree of Urbanisation).

Descriptive Statistics

Mean Std. Deviation N

UtilisationRate 0.62094829489 0.335751553854 390459 Degree of Urbanisaton 3.09 1.422 390459

Correlations

UtilisationRate Degree of Urbanisation

Pearson Correlation UtilisationRate 1.000 -.007

Degree of Urbanisation -.007 1.000

Sig. (1-tailed) UtilisationRate . .000 Degree of Urbanisation .000 .

N UtilisationRate 390459 390459

Degree of Urbanisation 390459 390459

Model Summary

Model R R² Adjusted R²

Std. Error of the Estimate

Change Statistics

R² Change F Change df1 df2 Sig. F Change

1 .007a .000 .000 .335744079998 .000 18.384 1 390457 ,000

a. Predictors: (Constant), Degree of Urbanisation ANOVAa

Model Sum of Squares df Mean Square F Sig.

1

Regression 2,072 1 2,072 18,384 ,000b

Residual 44013,909 390457 ,113

Total 44015,981 390458

a. Dependent Variable: UtilisationRate b. Predictors: (Constant), Degree of Urbanisation

Table 20.1 – Regression of Degree of Urbanisation on Uti l isation

Test Statisticsa,b

Utilisation Rate

Chi-Square 33.276 df 4 Asymp. Sig. 0.000

a. Kruskal Wallis Test b. Grouping Variable: Degree of Urbanisation

Page 58: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 50

Coefficientsa

Model Unstandardized Coefficients

Standardized Coefficients

t Sig. 95,0% Confidence Interval for B

B Std. Error Beta Lower Bound Upper Bound

1

(Constant) ,626 ,001 486,694 ,000 ,623 ,628

Degree of Urbanisation

-,002 ,000 -,007 -4,288 ,000 -,002 -,001

a. Dependent Variable: UtilisationRate

Table 20.2 – Regression of Degree of Urbanisation on Uti l isation

From the results of can be concluded that the differences in charging behaviour across

different levels of utilisation are significant. However, when analysing the relationship there is a

negative effect and the predictive power is very low (R = 0.007; β = -.002). Therefore, hypothesis

2 (the degree of urbanisation is positively related to the charging pole utilisation) is rejected.

Fast Charging Opportunity Across Different Levels of Urbanisation

Now we found that the degree of urbanisation differs among the five levels of urbanisation

and has significant but minor influence on the charging pole utilisation transactions in which the

EV was not fully charged can be identified. In these transactions, the car was disconnected before

it automatically stopped charging as a result of being fully charged. Thus, the connection time

equals the charging time which was recoded in a 0 or 1 (1, when fully charged). In such cases a fast

charger would have added extra capacity to the cars battery in the same amount of time and is

therefore assumed to be more effective. It became clear that out of 390459 transactions, 103681

(26.6%) transactions were disconnected while the EV was not fully charged and in 14418 cases the

connection time was equal to or shorter than 20 minutes (3.7%).

Eight scenarios were created and the occurrence of a fast charging opportunity in each

environment is displayed in the table below.

Scenario Description Scenario and Case Requirement

1 Connection Time = Charging Time

2 (Connection Time * 0.80) ≤ Charging Time

3 (Connection Time * 0.90) ≤ Charging Time

4 (Connection Time * 0.95) ≤ Charging Time

5 (Connection Time * 0.99) ≤ Charging Time

6 Connection Time ≤ Avg. Fast Charging Time [20 minutes]

7 Connection Time ≤ Max. Fast Charging Time [30 minutes]

8 (Connection Time * 0.99) ≤ Charging Time & Connection Time ≤ 30 minutes

Table 21 – Scenar ios for identifying the need for faster charging across different degrees of

urbanisation

Scenario 1 entails all transactions which were not fully charged at the time of disconnecting.

Scenarios 2 till 5 also include all cases in which the car was fully charged, but the car was

disconnected relatively shortly after it was fully charged. These are the cases were someone might

have wanted to leave earlier. Scenario 6 and 7 include all transactions in which the connection

time was relatively short. Scenario 8 combines all these features. The results of the scenarios are

presented in the table on the next page.

Page 59: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 51

DoU 1

(n = 73033)

2

(n = 72156)

3

(n = 78111)

4

(n = 80075)

5

(n = 87084)

All

(n = 390459)

Scenario μ σ μ σ μ σ μ σ μ σ μ

1 0.276 0.446 0.274 0.446 0.253 0.435 0.253 0.435 0.274 0.446 0.2655

2 0.418 0.493 0.423 0.494 0.397 0.489 0.410 0.492 0.417 0.493 0.4127

3 0.368 0.482 0.375 0.484 0.347 0.476 0.356 0.479 0.371 0.483 0.3630

4 0.342 0.476 0.351 0.477 0.322 0.467 0.328 0.469 0.347 0.476 0.3378

5 0.301 0.459 0.307 0.461 0.286 0.451 0.285 0.451 0.308 0.462 0.2973

6 0.030 0.171 0.037 0.188 0.031 0.173 0.033 0.177 0.035 0.185 0.0331

7 0.047 0.212 0.061 0.238 0.050 0.217 0.053 0.224 0.056 0.230 0.0455

8 0.0390 0.194 0.0509 0.220 0.0435 0.204 0.0454 0.208 0.0481 0.214 0.0455

Table 22 – Proportions of transactions in which the EV was not ful ly charged across dif ferent degrees

of urbanisat ion

To test the relationship between the fast charging opportunity in scenario 1 (0 or 1) and the

level of urbanisation (1-5) a Chi-squared test was performed (χ² = 26,371; p = 0,000)17. According

to the Phi and Cramer’s V test the association between the level of urbanisation and the fast

charging opportunity for a certain transaction turned out to be rather low, but was significant

(value = 0,026; p = 0,000). The detailed output is presented below, from which can also be derived

that most opportunities for fast charging occurred in highly urban areas as well as the less urban

areas. Furthermore, it can be concluded that respectively 27% of the EVs was not fully charged at

the time of disconnecting. A higher percentage entails a probable higher need for faster charging.

In the next section the capacity will be used to calculate estimate balance between regular

charging facilities and fast charging facilities.

Chi-Square Tests

Value df Asymp. Sig. (2-sided)

Pearson Chi-Square 26.269a 4 .000

Likelihood Ratio 26.371 4 .000

Linear-by-Linear Association .870 1 .351

N of Valid Cases 39040

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 1933,37.

Table 23.1 – Chi-square test for association between the DoU and the fast charging opportunity

Table 23.2 – Chi-square test for association between the degree of urbanisat ion (1 -5) and the fast charging

opportunity (0/1) F ig. 23 Fast charging opportunity per DoU

17 The cross tabulation can be found in Appendix III.V

Symmetric Measures

Value Approx.

Sig.

Nominal by Nominal

Phi .026 .000

Crame

r's V

.026 .000

N of Valid Cases 39040

Page 60: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 52

Taking into account the characteristics and benefits of fast charging, the scenarios 1, 5, and

7 are the most interesting from a feasible fast charging perspective. Therefore, scenario 8 was

created and a cross tabulation was made. This scenario includes all cases in which the car was not

fully charged plus a 1% extra on the connection time in order to include cases in which the car was

disconnected very shortly after it was fully charged as well as an overall connection time of less

than 30 minutes. After randomly balancing the sample sizes this resulted in the following chances

of a fast charging need in each urban environment:

DoU & FC

Opportunity

1

(n = 72156)

2

(n = 72156)

3

(n = 72156)

4

(n = 72156)

5

(n = 72156)

All

(n = 360780)

Scenario 8 μ σ μ σ μ σ μ σ μ σ μ σ

0.0391 0.194 0.0508 0.220 0.0434 0.204 0.0455 0.208 0.0481 0.214 0.0454 0.2082

95% C.I. (L.B.|U.B.) 0.0377 0.0405 0.0492 0.0524 0.0419 0.0449 0.044 0.047 0.0465 0.0497 0.0447 0.0461

Table 24 – Descriptives of Degree of Urbanisation & Fast Charging Opportunity

Also for scenario 8 a Chi-squared test was performed in order to assess the relationship

between the degree of urbanisation and the fast charging opportunity within scenario 8. This

resulted in a significant χ² of 140.819 (p = 0.000).

a. 0 cells (0,0%) have expected

count less than 5. The minimum

expected count is 3280,53.

Table 25 – Chi-squared test DoU & Fast Charging Opportunity

To assess whether the differences between the levels of urbanisation of scenario 8 are

significant a Welch Anova was performed. First, the sample sizes were equalised by taking a

random sample in order to increase the reliability of the test. This could be done as testing showed

this had no major effect on the means. The total number of observations was decreased by 29679

transactions to 360780 transactions, 72156 per urbanisation level. The descriptives including the

95% confidence intervals per degree of urbanisation can be found in figure 26. In order to test the

homogeneity of the variance a Leven’s test as executed (Levenes: 133.271; df1: 4; df2: 360775; p

= 0.000). As this test is significant equal variances could not be assumed. However, as the Welch

test (34.115; p = 0.000) for unequal variances was significant, the difference between means is

still proven to be statistically significant (F=33.200; p=0.000).

Test of Homogeneity of Variances

Levene Statistic df1 df2 Sig.

133.271 4 360775 .000

Welch ANOVA

Sum of Squares df Mean Square F Sig.

Between Groups 5.753 4 1.438 33.200 .000

Within Groups 15627.841 360775 .043

Total 15633.594 360779

Table 26 – Homogeneity of Variances and Welch ANOVA results

Chi-Square Tests

Value df Asymp. Sig. (2-

sided)

Pearson Chi-Square 140.819 a 4 .000

Likelihood Ratio 142.244 4 .000

Linear-by-Linear Association 29.679 1 .000

N of Valid Cases 390459

Page 61: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 53

Robust Tests of Equality of Means

Statistica df1 df2 Sig.

Welch 34,115 4 180303,095 ,000

Brown-Forsythe 33,200 4 358252,937 ,000

a. Asymptotically F distributed.

Difference between means fast charging opportunity (scenario 8) across different degrees of urbanisation

Multiple

Comparisons

(I)

CBSDoURe

code

(J)

CBSDoURe

code

Mean

Difference (I-J)

Std. Error Sig. 95% Confidence Interval

Lower Bound Upper Bound

Dunnett T3 1.00 2.00 -.01167* .00109 .000 -.0143 -.0091

3.00 -.00430* .00105 .000 -.0068 -.0018

4.00 -.00640* .00106 .000 -.0089 -.0039

5.00 -.00898* .00107 .000 -.0115 -.0064

2.00 1.00 .01167* .00109 .000 .0091 .0143

3.00 .00737* .00112 .000 .0047 .0100

4.00 .00527* .00113 .000 .0026 .0079

5.00 .00269† .00114 .060 .0000 .0054

3.00 1.00 .00430* .00105 .000 .0018 .0068

2.00 -.00737* .00112 .000 -.0100 -.0047

4.00 -.00211 .00109 .338 -.0047 .0005

5.00 -.00468* .00110 .000 -.0073 -.0021

4.00 1.00 .00640* .00106 .000 .0039 .0089

2.00 -.00527* .00113 .000 -.0079 -.0026

3.00 .00211 .00109 .338 -.0005 .0047

5.00 -.00258† .00111 .079 -.0052 .0001

5.00 1.00 .00898* .00107 .000 .0064 .0115

2.00 -.00269† .00114 .060 -.0054 .0000

3.00 .00468* .00110 .000 .0021 .0073

4.00 .00258† .00111 .079 -.0001 .0052

Dunnett t

(2-sided) b

1.00 5.00 -.00898* .00110 .000 -.0117 -.0063

2.00 5.00 .00269* .00110 .048 .0000 .0054

3.00 5.00 -.00468* .00110 .000 -.0074 -.0020

4.00 5.00 -.00258† .00110 .063 -.0053 .0001

Table 27 – Difference between means of the fast charging opportunity among groups. * The mean

difference is s ignif icant at the 0.05 level. † The mean difference is s ignif icant at the 0.10 level b. Dunnett t -

tests treat one group (5) as a control, and compare al l other groups against i t .

It can be concluded that only the difference between the degree of urbanisation 3 and 4 is not

significant (p = 0.338). The difference between a degree of urbanisation of 4 and 5, as well as 5 and

2, is only significant at a significance level of 0.1 (p = 0.060; p = 0.079).

Page 62: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 54

5.3 Balancing Public Charging Solutions

In this section all the prior results are combined in order to estimate the balance between

fast and regular charging stations. The balance is based on the current charging behaviour analysis

in combination with the fast charging need as well as the capacity of the charging solutions. Finally,

the costs per kW will be presented as well as the breakeven volumes of each charging solution.

Prior analysis showed that a need for faster charging is present within every level of

urbanisation, but there are also significant differences among the levels of urbanisation (see table

28). Overall, at least 4.54% of the transactions would have benefitted from faster charging. The

demand for faster charging will probably be the highest in areas with weak urbanisation (e.g. a

degree of urbanisation 2) as well as areas with a very strong urbanisation (e.g. a degree of

urbanisation 5) as respectively 5.08% and 4.81% of all transactions would have benefitted from a

fast charger. Suburban areas (degree of urbanisation 3 and 4) have a slightly lower chance that a

transaction is a potential fast charging transaction (µ3 = 0.0434; µ4 = 0.0455). The lowest need for

fast charging can be found in rural areas, where only 3.91% of the transactions turned out to be a

potential fast charging transaction. By using these averages and combining them with the current

charging demand, the balance between fast and regular chargers can be approximated.

DoU & Fast

Charging

Opportunity

1 (Rural)

(n = 72156)

2

(n = 72156)

3

(n = 72156)

4

(n = 72156)

5 (urban)

(n = 72156)

All

(n = 360780)

Scenario 8 μ σ μ σ μ σ μ σ μ σ μ σ

0.0391 0.194 0.0508 0.220 0.0434 0.204 0.0455 0.208 0.0481 0.214 0.0454 0.2082

95% C.I. (L.B.|U.B.) 0.0377 0.0405 0.0492 0.0524 0.0419 0.0449 0.044 0.047 0.0465 0.0497 0.0447 0.0461

Table 28. – The percentage of transactions which would have benefitted from fast charging

In our sample we already calculated that the average utilisation of a public charging pole lies

around 0.685 transactions per day. The best occupied public regular charging pole in the sample

facilitated 1730 sessions in one year thus 4.740 transactions per day which equals 4-5 cars a day.

From this the demand for charging was derived:

DoU & Energy Demand 1 (Rural)

(N = 72156)

2

(N = 72156)

3

(N = 72156)

4

(N = 72156)

5 (Urban)

(N = 72156)

Ntotal = 360780 μ σ μ σ μ σ μ σ μ σ

Avg. Energy Demand per Session

[kWh]

8.5561 8.0789 8.5268 8.04402 8.5820 8.20554 8.8579 8.86823 7.8475 7.19259

Max. Energy Demand per Session

[kWh]

87.19 91.50 88.83 87.88 79.09

Energy Demand Total [kWh] 617371.85 615261.70 619241.71 639148.25 566242.96

Avg. Number of Sessions per

Regular Charging Pole per Day 0.3923 0.5343 0.6625 0.7835 1.2235

Max. Obs. Number of Sessions per

Regular Charging Pole per Day 2.655 2.948 2.945 2.871 4.211

Avg. Number of Sessions per Fast

Charging Station per Day 1.8 1.8 1.8 3 3

Max. Estimated Sessions per Day 88 56 61 102 102*

Table 29 – Charging statis tics across different DoU (*Assumed to be at least the same as DoU 4)

Page 63: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 55

The total energy demand per charging solution in the current situation can now be calculated

by making use of the total energy demand in our sample as well as the occurrence of a fast

charging opportunity:

𝐹𝑎𝑠𝑡 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝐷𝑒𝑚𝑎𝑛𝑑 = (𝐹𝑎𝑠𝑡 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦)𝑖 ∗ 𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑚𝑎𝑛𝑑𝑖

𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝐷𝑒𝑚𝑎𝑛𝑑 = (1 − 𝐹𝑎𝑠𝑡 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦)𝑖 ∗ 𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑚𝑎𝑛𝑑𝑖

Where 𝑖 = 𝑡ℎ𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑢𝑟𝑏𝑎𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛

The number of sessions necessary to fulfil the demand was calculated by:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝑠 𝑡𝑜 𝐹𝑢𝑙𝑓𝑖𝑙 𝐷𝑒𝑚𝑎𝑛𝑑 = 𝐷𝑒𝑚𝑎𝑛𝑑𝑗

𝐴𝑣𝑔. 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶ℎ𝑎𝑟𝑔𝑒𝑑 𝑝𝑒𝑟 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝑖𝑗

Where 𝑗 = 𝐷𝑒𝑚𝑎𝑛𝑑 𝑇𝑦𝑝𝑒 (𝑒. 𝑔. 𝐹𝑎𝑠𝑡 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑜𝑟 𝑅𝑒𝑔𝑢𝑎𝑙𝑟 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔)

Consecutively, the number of charging solutions needed to fulfil this number of sessions was

calculated by making use of the average number of sessions per charging solution.

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = 𝐷𝑒𝑚𝑎𝑛𝑑𝑗

𝐴𝑣𝑔. 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝐷𝑎𝑦𝑖𝑗

In addition, the same was done only using the minimum observed number of fast charging

opportunity and maximum observed fast charging opportunity as well as the minimum and

maximum number of sessions per charging solution to define the boundaries. This resulted in the

following balances:

DoU & Fast Charging

Opportunity

1 2 3 4 5 All All

(N = 72156) (N = 72156) (N = 72156) (N = 72156) (N = 72156) (n =

360780) (n =

360780)

Scenario 8 μ σ μ σ μ σ μ σ μ σ μ σ

0,0391 0,194 0,0508 0,220 0,0434 0,204 0,0455 0,208 0,0481 0,214 0,0454 0,208

95% C,I, (L,B,|U,B,)

0,0377 0,0405 0,0492 0,0524 0,0419 0,0449 0,044 0,047 0,0465 0,0497 0,0447 0,046

DoU & Energy Demand 1 2 3 4 5

(N = 72156) (N = 72156) (N = 72156) (N = 72156) (N = 72156)

Ntotal = 360780 μ σ μ σ μ σ μ σ μ σ

Avg. Energy Demand per Session Regular Charging [kWh]

8,55610 8,079 8,52680 8,044 8,58200 8,206 8,85790 8,868 7,84750 7,193

Avg. Energy Demand per Session Fast charging [kWh]

13,56940 21,12597 19,48148 11,74103 11,74103*

Max. Energy Demand per Session [kWh]

87,19 91,5 88,83 87,88 79,09

Energy Demand Total [kWh] 617371,85 615261,7 619241,71 639148,25 566242,96

Avg. Number of Sessions per Regular Charging Pole per Day

0,3923 0,5343 0,6625 0,7835 1

Max. Obs. Number of Sessions per Regular Charging Pole per Day

2,65500 2,94800 2,94500 2,87100 4,21100

Avg. Number of Sessions per Fast Charging Station per Day

1,8 1,8 1,8 3 3

Max. Estimated Sessions Fast Charging per Day

88 56 61 102 102*

Table 30. – Maximum and minimum number of sessions per DoU (* Assumed to be at least equal to DoU

4)

Page 64: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 56

Fig. 24 – Consolidated data and balance between fast and regular charging solutions (1 connection

each) across different levels of urbanisat ion based on the current (2015) demand and fast charging

opportunity. An extended version can be found in Appendix IX.

Considering the business case, a rough calculation estimates the minimum number of

sessions necessary to play break-even on a charging solution. As the breakeven point is heavily

dependent on the number of EVs making use of a charging solution, thus the utilisation, we also

show the effects of an increase in utilisation on the attractiveness of both fast charging solutions.

The curb side fast charging solution was also added to the model which showed that due to the

lower costs, this might be most preferable alternative when the charging demand really takes off.

As discussed earlier, fast charging opportunities are most likely to occur in low urban areas

(degree of urbanisation = 2) and in high urban environments (degree of urbanisation = 5) such as

(near) city centres. Taking a demand perspective and the total charging demand at each degree of

urbanisation the balance will become 1 fast charging station on approximately 150-200 public

regular charging poles in rural areas. This includes charging along highways. As in these areas the

regular public charging poles are already more spread out this entails that fast charging will mainly

function as a way to travel longer distance or fuel up when commuting. In more urbanised

environments the balance will be around 1 fast charging facility on 150 to 100 regular charging

poles. In the city centres the balance based on the current demand and fast charging opportunity

is the highest at 1 fast charging opportunity on 70 regular charging poles. The minimum and

maximum value ranges are also presented. These are based on the minimum and maximum

number of sessions a charging solution needs to fulfil the demand, thus at maximum efficiency

and at minimum efficiency. These numbers may be perceived as high but considering the density

and number of potential users per square kilometre it should be a realistic amount. As the

balances presented in figure 24 also take in consideration the current charging demand, the

balance increases for every level of urbanisation.

Ntotal = 360780 μ σ μ σ μ σ μ σ μ σ

Energy Demand Total [kWh]

Fast Charging Demand [kWh]

Min | Max 23274,92 25003,56 30270,88 32239,71 25946,23 27803,95 28122,52 30039,97 26330,30 28142,28

Regular Charging Demand [kWh]

Max | Min 594096,93 592368,29 584990,82 583021,99 593295,48 591437,76 611025,73 609108,28 539912,66 538100,68

Fast Charging Opportunity Occurence 0,0391 0,9609 0,0508 0,9492 0,0434 0,9566 0,0455 0,9545 0,0481 0,9519

min | max 95% C.I. 0,0377 0,0405 0,0492 0,0524 0,0419 0,0449 0,0440 0,0470 0,0465 0,0497

Demand Based Balance FC | RCP 1,00 24,58 1,00 18,69 1,00 22,04 1,00 20,98 1,00 19,79

Number of Sessions to fullfill the demand FC | RCP 1778,95 69334,46 1479,47 68490,69 1379,52 69024,31 2476,89 68872,65 2319,75 68685,14

Number of Fast Charging Stations | Regular Chargin Poles 988,30 176738,37 821,93 128187,70 766,40 104187,64 825,63 87903,82 773,25 56138,25

Current Demand & Capcity Based Balance FC | RCP [#] 1 179 1 156 1 136 1 106 1 73

Min. Number of Sessions to fullfill the demand FC | RCP 1715,25 69233,45 1432,88 68375,24 1331,84 68916,08 2395,23 68764,41 2242,59 68569,70

Min. Number of Fast Charging Stations | Regular Chargin

Poles19,49 26076,63 25,59 23193,77 21,83 23401,04 23,48 23951,38 21,99 16283,47

Min. Balance Fast Charging| Regular Charging (Best Case) 1 1338 1 906 1 1072 1 1020 1 741

Max. Number of Sessions to fullfill the demand FC | RCP 1842,64 69435,48 1526,07 68606,14 1427,20 69132,54 2558,55 68980,88 2396,92 68800,59

Max. Number of Fast Charging Stations | Regular Chargin

Poles1023,69 176995,88 847,82 128403,78 792,89 104351,01 852,85 88041,96 798,97 56232,61

Max. Balance Fast Charging| Regular Charging (Worst Case) 1 173 1 151 1 132 1 103 1 70

593232,61 584006,41 592366,62 610067,00 539006,67

24139,24 31255,29 26875,09 29081,25 27236,29

617371,85 615261,70 619241,71 639148,25 566242,96

5

(N = 72156) (N = 72156) (N = 72156) (N = 72156) (N = 72156)Degree of Urbanisation & Energy Demand

1 2 3 4

Page 65: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 57

Fig 25. Breakeven points of Charging Solutions

From this can be derived that with the current charging rates the regular charging poles will

break-even at almost 1200 transactions per year (1196.54 transactions of 8.709867 kWh each)

when all costs are included. This means 3-4 average charging transactions per day. In contrast, fast

charging stations will start to play breakeven at 10-15 transactions per day.

The model can be used by municipalities, grid operators and other stakeholders to provide

an indication for the need for fast charging within a specific area as well as the balance between

regular charging poles and fast charging facilities. The only information they need are the degree

of urbanisation of the area, approximate (future) charging demand of the area (number of EVs,

average travel distance and EV efficiency) and average connection and charging times of the EV

drivers in order to derive the fast charging need. It is recommended that a demand approach is

pursued as there should be a certain levels of demand in order to justify the investments in public

charging infrastructure.

-€ 40.000,00

-€ 30.000,00

-€ 20.000,00

-€ 10.000,00

€ 0,00

€ 10.000,00

€ 20.000,00

€ 30.000,00

€ 40.000,000

,0

0,8

1,6

2,5

3,3

4,1

4,9

5,8

6,6

7,4

8,2

9,0

9,9

10

,7

11

,5

12

,3

13

,2

14

,0

14

,8

15

,6

16

,4

17

,3

18

,1

18

,9

19

,7

20

,5

21

,4

22

,2

Estimation of the Number of Sessions per Day in Order to Break Even

Current Demand RCP Current Demand FC Current Demand FC_Curbside

Page 66: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 58

6. Discussion Reflecting on the findings to the research question presented in the introduction, this study

argues that the degree of urbanisation has a small but significant effect on the need for fast

charging and thus the balance between public fast and regular charging facilities across different

levels of urbanisation. The fast charging need was found to differ slightly among different degrees

of urbanisation. The highest amount of fast charging transactions was found in environments with

a low degree of urbanisation (2) followed by areas with a high degree of urbanisation (e.g. 5)

rejecting hypothesis 2.

Currently most fast charging stations are installed along highways. These are mostly situated

in areas with a low degree of urbanisation (2 or 1). The results imply that fast charging is also

suitable solution for increasing the charging capacity within urban and dense environments such

as (near) city centres. In addition, this study argues that the costs of regular and fast charging

facilities tend to be heavily dependent on the costs of the hardware and the connection costs as

these are the largest cost factors. According to the results, the degree of urbanisation is not

positively related to connection costs and hypothesis 1 was rejected. It was found that a fast

charging station costs between €200000 and €250000, a curb-side one around €80000 while a

regular public charging pole is installed for approximately €6000. Due to the capital intensive

nature of investments and the low utilisation rates of the current regular public charging

infrastructure a relatively high threshold has to be reached in order too break-even. With some

solutions this turns out to be even hardly possible at the current condition and when all costs are

included. Hence, it is clear that the transition towards a sustainable future of transportation comes

at a significant cost.

6.1 Theoretical Implications

This study is among the first to quantitatively explorer the value of fast charging and provides

more insights in the general balance between fast chargers and regular charging poles from a

demand perspective. In addition, it provides an up to date evaluation of the public (PH)EV charging

market as well as the first comparison of the total cost structure of these two charging solutions.

No major differences in fast charging need across different levels of urbanisation were found, but

this study did identify small differences as well as a need for fast charging in the public EV charging

infrastructure which builds up on the suggestions of Römer, Schneiderbauer, and Picot (2013). It

provides scholars, municipalities and grid operators with more theoretical insights in the

development of public charging infrastructure and especially regarding the application of fast

charging as a solution to the expected increase in charging demand in urban environments.

Although, the effects were small the degree of urbanisation play a role and should be taken into

account when placing new fast charging stations.

The extensive cost analysis provides insights in the total costs of both charging solutions and

can therefore add value to future cost and benefit analysis for public charging infrastructure. The

cost findings were in line with the findings of Schroeder and Traber (2012). A quick trend analysis

showed that there is not much decline in price for hardware over time as new equipment needs

Page 67: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 59

to be state-of-the-art when installed. Only the older model of charging solutions with less

functionality gradually become cheaper over time.

Furthermore, the charging behaviour analysis showed that the charging behaviour of PHEVs

and FEVs regarding connection time does not differ much. However, the battery capacity of both

vehicle types differs a lot. Future studies focussed at the public charging infrastructure should take

this in consideration and probably try to separate between these two categories. When there are

more FEVs faster charging is expected to be a prerequisite.

6.2 Practical Implications

According to our results, future public charging infrastructure will consist of a mix of regular

charging and fast charging. Fast chargers will be able to cater a large part of the charging demand

in the near future and the investments in fast chargers should be made early in order to ensure

enough charging capacity and foster further EV adoption. Now it has become clear that fast

charging is a part of the solution, the balances presented in this study help all parties involved to

adjust their policy and strategies on investing in public charging infrastructure and enable them to

cope with the future demand. Regarding the location, a fast charging network in The Netherlands

needs to be developed along high ways (degree of urbanisation 4) followed by in and around city

centres (degree of urbanisation 1 and 2). Having a reliable charging infrastructure in dense urban

areas is important as especially in these areas people do not always have access to private parking

lots where they can charge their vehicles. As there already is an infrastructure with old technology

in place in most cities, conventional petrol stations, the petrol stations in dense areas might be

perfectly suited to be fitted with an additional fast charging station as in a lot of cases these tend

to have over capacity on their connection.

During the last years a lot of regular public charging poles have been placed. The balance

presented in this study does not entail that these need to be removed. In these case it is better to

keep the old charging infrastructure and wait until the capacity almost matches the demand. At

that point investments in a fast charging station are more appropriate.

This study also showed that there is room for improvement regarding the utilisation of the

current infrastructure. The current utilisation rates of most regular charging poles are low which

makes it hard too break-even. Considering new charging infrastructure, it is important to have the

right supply of charging solutions in terms of capacity as well as the balance between fast and

regular charging facilities in order to keep the transition towards electric powered vehicles cost

efficient. Having too much fast chargers will result in unbalanced peak demand while installing a

lot of regular charging poles for every car is also cost inefficient at current utilisation rates as every

EV will need its own charging pole. A solution for the peak demand issue was described in form of

a battery and solar powered fast charging station. However, at the moment these turn out to be

expensive due to the high costs of battery capacity. Although, current utilisation of fast chargers

is relatively low, fast chargers will be necessary in order to fulfil the charging demand when the

adoption of EVs really takes off due to the fact that with the current utilisation rates of regular

charging poles it is not possible to charge all those FEVs.

Page 68: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 60

Pointing out the most influencing cost factors, the extensive cost analysis of regular and fast

charging facilities helps companies to focus at the right areas to reduce costs or improve cross-

industry collaboration. For example, concerning the costs, we found relatively high overhead costs

for connections at the grid operators. As the connection turned out to be one of the most

important cost drivers grid operators should try to focus at making the installation processes more

efficient. Also with planning a new fast charging location it is highly recommended to focus at

finding a location which is financially attractive as well as relatively cost efficient regarding its

connection to the grid. It was found that for example Stedin has to invest approximately €500

extra on every regular charging pole connection and these previously hidden costs can be seen as

social costs.

It also became clear that curb side and surface public charging infrastructure sometimes

requires extra trenching or directional boring to connect the station to the grid which comes at an

additional cost. In this perspective the findings suggest that installing a multi-port stations or even

multiple stations at the same location, can reduce the investment cost per charger. Garage based

installations, might be a good example of this. Here, a large part of the wiring is in place and the

wiring as well as equipment can be wall mounted which avoids the expensive digging and

(robotized) trenching. However, demand (or predicted future demand) must always exist to justify

the additional capacity. Moreover, cost efficiencies can occur due to a single trench/bore, conduit,

and wire which can be used to connect the station(s) to the grid. However, if the demand exceeds

a certain threshold a breaker box or grid upgrade may be required, which again increases costs.

Although these cost can be allocated to a greater number of stations, this (social) cost must not

be neglected. Other cost efficiencies might be possible in mobilization, repetition, permitting, et

cetera.

6.3 Limitations

This study is subject to a couple of limitations. First, the data on costs gathered from various

sources might be incomplete. Although, much attention was paid to the data and data gathering

process this study can be subject to potential measurement errors. For example, it could be the

case that the data used is incomplete due to underreporting or data flaws. This could affect the

outcomes and averages used. Due to the large amounts of data used these errors are expected to

be relatively low. However, accuracy of the data and numbers might be an issue as including all

parties involved in the data gathering process was not possible due to the limited scope of the

study. Most data was derived from a couple of cooperating organisations and it was sometimes

an issue that their numbers could not be disclosed resulting in incomplete data and assumptions

had to be made. For example, the connection data used was provided by Stedin. Their focus area

is mainly the West of the Netherlands including the largest port of the Netherlands. Although, the

places where connections were made were very diverse and a lot of projects were included other

grid operators might have different operating costs which can alter the results.

We also assumed that the FEV driver drives the same amount of distance as ICE drivers in The

Netherlands currently do. This assumption could be made as it is expected that at a certain

moment the mass market will make the change to FEVs. However, it is likely that current EV drivers

Page 69: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 61

do not have the same driving characteristics as mass market drivers. They are more early adopters

and/or business drives. The introduction of new modes of transportation might change in the

future which influences the outcomes.

The current charging behaviour is heavily influenced by the presence of regular charging

poles. In some areas there are enough charging poles, while in other there is a shortage of supply.

This might cause that for example fast charging stations within more urban environments or even

fast charging stations in general are not used regularly in the current situation, but only when it is

really necessary. For example, when an EV almost runs out of power or needs to commute over a

long distance. Furthermore, the detailed charging behaviour at the fast charging stations was hard

to estimate due to the lack of direct data. Therefore, the assumption was made that during a fast

charging transaction the connection time almost equals the charging time resulting in an

utilisation rate of 1. Furthermore, approximations were made of which the results can be diluted

by PHEVs which have been charging at fast charging stations. In the raw data there was no

separations which identify the car type were included. So, it was impossible to filter the PHEVs out

for the fast charging station transactions. Due to the smaller battery capacity of PHEVs the average

kWh charged per session at fast charging stations might have been understated.

The need for fast charging and number of sessions per day at the fast charging facilities was

determined by taking the averages. However, from the data analysis it became clear that stations

also have a certain start-up period. In this period, drivers have to find the station and start using

it which results in a slow increase of the stations through put in the first months. This could have

influenced the average. In addition, the average of the number of sessions per station per month

was calculated using all days in a month. This would negatively influence the average as it can be

the case that a station has not been used at all for a few days. So again the fast charging averages

might be underestimated and the results should therefore be seen as a minimum.

Also the results of the balance are not definitive and heavily depend on the input of the user.

Variables such as number of EVs in a municipality, the number of sessions per day, EV efficiency,

parking pressure, capacity, and home charging opportunities are important factors influencing the

final balance. Most values and variables are supported by prior research or based on extensive

data analysis, but the outcomes are negotiable and are subject to change over time. This study did

not include the current charging infrastructure which was already in place at a specific location as

it solely focussed at the transactions. Future research on a more local level should try to take this

into account.

Due to the above mentioned reasons, this study including its results and assumptions made

should be taken “as-is” for the current market situation in the Netherlands due to the high rate of

development and change in the industry. To provide an example, when writing this study, the first

urban fast charging station of the Netherlands was opened in The Hague in July 2016.

Page 70: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 62

6.4 Future Research

It is expected that the Dutch EV market will face significant changes in the upcoming decade.

Financial benefits are already being reduced, new EV models will be introduced from existing as

well as new brands entering the FEV market (Mercedes-Benz, Volvo, Volkswagen) and more FEVs

will be adopted. Probably, more environmental and pollution restrictions will be introduced on

vehicles with a conventional combustion engine, especially diesels. All these changes provide

ample research opportunities as it currently is tough to tell how these developments influence the

status-quo.

As this study identified that fast charging is also a suitable option for more urban

environments in general, future research should also focus more at the exact locations and

execution of fast charging facilities within urban environments. Also fast charging as a solution for

companies instead of work charging poles is an interesting topic. It would also be interesting to

investigate factors other than connection costs which determine the suitability of a location in

terms of demand. For example, which locations in The Hague are feasible to install fast charging

stations and how to make sure the locations are in the optimal spot in order to be profitable (or

the least costly) and efficiently used. Curb side and surface installations of regular charging poles

are likely to be more expensive than for example parking garage based installations. As with the

latter the wiring and equipment can be wall mounted and there mostly is excess capacity on the

grid. It can be investigated whether this option is more preferable from a cost and benefit

perspective.

Interesting would also be to study how the general public and EV drivers are reacting to fast

charging and their willingness to change their charging behaviour. For example, to charge ten

minutes on their way home or nearby their home in a more urban environment. Which facilities

need to be in place to cater those people and what do they expect. From a cost perspective it is

also important to educate EV drivers and change their charging behaviour. The effects of social

charging or parking penalties when needlessly occupying a charging location needs to be

investigated in order to find the most effect solution for changing this behaviour and make

efficient use of the available charging infrastructure.

Other travelling options and scenarios should also be investigated. For example, what will

happen if the hydrogen car makes an enormous leap or when autonomous driving takes off. Will

the charging infrastructure and all its investments become obsolete or is it possible to use the

connections in order to create and supply hydrogen? Also other trends in transformation need to

be incorporated as a lot is unclear about the future of our ways of transportation. However, what

is clear is that dense areas and metropoles such as Shanghai will directly benefit from electric cars

as it can reduce smog. To travel between these cities and hubs high speed trains might offer more

advantages than EVs, which make fast chargers along highways less necessary. However, there

probably is a location factor which plays a role as for example in The Netherlands, this scenario is

less likely to happen as metropoles are more closely together. Especially, when battery capacity

increases and people have to fast charge just one time in every two weeks EVs will gain a lot of

popularity.

Page 71: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 63

Another interesting area to study would be focussed at the legal matter around fast charging

and public charging infrastructure policies. For example, which method is more efficient in

enabling an interoperable and reliable charging infrastructure: the free market, a highly regulated

approach or governmental rollout.

Considering charging techniques, more research should be directed towards efficiency. Not

only efficiency during charging, but also the energy conversion process and battery technology.

The efficiency of EVs should also be investigated and improved even further if possible, because

the less energy is needed to charge a vehicle and the more efficient the charging process is the

less charging infrastructure and thus investments are necessary.

Page 72: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 64

7. Conclusion This study presents the results of a quantitative analysis based on cost and transaction data

of current public charging solutions. Its provides an overview of the cost structures of public

charging solutions and elicits whether there is a difference in the balance between public fast

charging and regular charging facilities across different levels of urbanisation by answering the

following research question: How should strategic investments in public charging infrastructure

(e.g. fast charging and regular charging facilities) be balanced across different levels of

urbanisation based on the current costs as well as the charging behaviour of EV drivers? By making

use of collected charging transaction data consisting of 390459 transactions this study identified

the need for faster charging across different levels of urbanisation and confirms that fast charging

can be a suitable solution for fulfilling a significant proportion of the (future) charging demand. It

based the balance on the total demand per degree of urbanisation, the number of potential fast

charging transactions, the number of regular transactions and the charging behaviour per degree

of urbanisation (e.g. the utilisation, connection and charging times).

First, the industry, trends, and current state-of-the-art were analysed from which it became

clear that EV charging infrastructure is an important driver of EV adoption and the EV industry

develops at a rapid pace. Furthermore, some restricting economic, social, and policy factors were

identified. These factors and the technologies which are already in place make it more difficult for

EVs to emerge as a disruptive technology and hamper the rapid development of a well-developed,

interoperable EV charging infrastructure. Increasing the capacity of the public charging

infrastructure comes at a significant cost. From the investments and cost analysis of both charging

solutions it became clear that the connection costs and hardware costs are the cost driver with

the most impact on the total costs of charging infrastructure. However, hypothesis 1 was rejected

as the connection costs were not positively related to the degree of urbanisation, but as

investments in public charging infrastructure are capital intensive, it is of key importance that

there is a right balance between fast charging and regular charging poles. The high costs of the

connection, infrastructure and hardware require a centralized network with multiple fast chargers

at limited number of locations. This is probably the most cost efficient and preferable option in

most cases. In case of a decentralized approach with fast chargers spread over multiple locations,

it is harder to cover all costs. A regular charging pole is break-even when it caters 3-4 transactions

per day, while a fast charging station needs around 15 average transactions per day.

After the cost analysis, quantitative analysis on transactions was used to determine whether

there are significant differences between in charging behaviour across different levels of

urbanisation. Although, hypothesis 2 was rejected as the degree of urbanisation turned out to be

not negatively related to the charging pole utilisation, analysing the connection and charging times

for a large number of transactions resulted in the identification of differences across different

degrees of urbanisation. In total, eight scenarios where an EV was not fully charged before the

vehicle was disconnected, or only connected for a short period time were tested. Despite the fact

that the influence and predictive power of the level of urbanisation was quite small and hypothesis

Page 73: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 65

2 was rejected, the results argue for faster chargers in environments with a low degree of

urbanisation (2) such as along highways as well as a high degree of urbanisation (5). Hence, fast

charging facilities should also be placed in and around city centres in order to fulfil the fast

charging need. The fast charging facility density will also be the highest in these areas due to a

high charging volume in these areas. The fast chargers will also be placed closer to each other than

when compared to the fast charger along highways and other high density points in areas with a

low degree of urbanisation.

In addition, the analysis of the transactions and charging behaviour did show that current

regular charging poles are inefficiently used. Utilisation rates are so low because EV drivers tend

to connect for a long time while not charging and thus unnecessarily occupying the charging

infrastructure. This was especially the case in the (sub)urban areas due to high parking pressures.

This finding provided evidence for the need of more fast chargers in urban environments as these

are more efficient and in the long run cost effective when there is enough demand.

It can be concluded that fast charging is an interesting solution which be able to fulfil a large

proportion of the charging demand of EVs. Not only now, but especially in the future. It was also

found that fast charging is a preferable solution for urban environments in cases where people do

not have access to private charging solutions or only connect shortly. However, it is key that

investments in public charging infrastructure always take the (expected) charging demand and the

total costs of installation including all previously hidden costs in consideration. Doing this will

guard reduce the total costs and speed up the transition towards e-mobility.

Page 74: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 66

Bibliography AD. (2016). Met z’n allen in de file voor de laadpaal, p. 3. Utrecht. Retrieved from

http://www.ad.nl/ad/nl/1006/Auto/article/detail/4224153/2016/01/14/Met-z-n-allen-in-de-file-

voor-de-laadpaal.dhtml

Aggeler, D., Canales, F., Zelaya-De La Parra, H., Coccia, A., Butcher, N., & Apeldoorn, O. (2010). Ultra-fast DC-

charge infrastructures for EV-mobility and future smart grids. Innovative Smart Grid Technologies

Conference Europe (ISGT Europe), 2010 IEEE PES.

http://doi.org/10.1109/ISGTEUROPE.2010.5638899

Anseán, D., González, M., Viera, J. C., García, V. M., Blanco, C., & Valledor, M. (2013). Fast charging technique

for high power lithium iron phosphate batteries: A cycle life analysis. Journal of Power Sources, 239, 9–

15. http://doi.org/10.1016/j.jpowsour.2013.03.044

Bai, S., Yu, D., & Lukic, S. (2010). Optimum design of an EV/PHEV charging station with DC bus and storage

system. Energy Conversion Congress and Exposition (ECCE), 2010 IEEE.

http://doi.org/10.1109/ECCE.2010.5617834

Becker, T. T. A., Sidhu, I., & Tenderich, B. (2009). Electric vehicles in the United States: a new model with

forecasts to 2030. Center for Entrepreneurship & Technology (CET), (1), 36. Retrieved from

http://www.www.odpowiedzialnybiznes.pl/public/files/CET_Technical

Brief_EconomicModel2030.pdf

BNR. (2016). De Minuut van de Waarheid: “Nederland tweede in de wereld met elektrische auto’s.” BNR

Nieuwsradio. Retrieved from http://www.bnr.nl/radio/bnr-duurzaam/110890-1604/gratis-de-

minuut-van-de-waarheid-nederland-tweede-in-de-wereld-met-elektrische-auto-s

Borsboom, R., Wolthuis, A., Kusters, L., & Sharpe, R. (2010). Vision for the Dutch automotive sector 2010-

2020, 40. Retrieved from www.automotive-industry.nl

Brady, J., & O’Mahony, M. (2011). Travel to work in Dublin. The potential impacts of electric vehicles on

climate change and urban air quality. Transportation Research Part D: Transport and Environment,

16(2), 188–193. http://doi.org/10.1016/j.trd.2010.09.006

Bullis, K. (2014). Will Musk’s Gigafactory Gamble Pay Off? Retrieved January 29, 2016, from

http://www.technologyreview.com/news/526126/does-musks-gigafactory-make-sense/

Carlson, R. B., Shirk, M. G., & Geller, B. M. (2010). Factors Affecting the Fuel Consumption of Plug-In Hybrid

Electric Vehicles. The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition,

289–294.

CBS. (2012). Personenauto’s rijden gemiddeld 37 kilometer per dag - Webmagazine. Retrieved January 8,

2016, from http://www.cbs.nl/nl-nl/menu/themas/verkeer-

vervoer/publicaties/artikelen/archief/2012/2012-3579-wm.htm

Page 75: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 67

CBS. (2015). Jaarmonitor Wegvoertuigen: Kilometers (2014). Retrieved from

http://www.cbs.nl/NR/rdonlyres/6190B458-17B5-45CB-9117-

F704242316E5/0/4756Jaarmonitor_wegvoertuigen_12112015.pdf

Clover, I. (2015). Market Overview: Storage Systems in Germany. PV Magazine: Photovoltaic Markets &

Technology, (July), 1–29. Retrieved from http://www.pv-magazine.com/fileadmin/PDFs/pv-

magazine_Storage_Special_Jul_2015.pdf

Cluzel, C., & Douglas, C. (2012). Cost and performance of EV batteries: Final report for The Committee on

Climate Change. Cambridge. Retrieved from http://www.element-energy.co.uk/wordpress/wp-

content/uploads/2012/06/CCC-battery-cost_-Element-Energy-report_March2012_Finalbis.pdf

Coffman, M., Bernstein, P., & Wee, S. (2015). Factors Affecting EV Adoption : A Literature Review and EV

Forecast for Hawaii. Honolulu. Retrieved from

http://evtc.fsec.ucf.edu/publications/documents/HNEI-04-15.pdf

Covert, J. (2016, April 4). Tesla’s Model 3 is smashing sales records. New York Post. New York. Retrieved

from http://nypost.com/2016/04/04/teslas-model-3-is-smashing-sales-records/

CROW. (2015). Naar een klimaatneutrale samenleving. Retrieved March 3, 2016, from

http://kpvvdashboard.blogspot.nl/

Daimler AG. (2016). Benz Patent Motor Car, the first automobile (1885 – 1886). Retrieved January 1, 2016,

from https://www.daimler.com/company/tradition/company-history/1885-1886.html

Darlington, J., Innes, J., Mitchell, F., & Woodward, J. (1992). Throughput accounting–the Garrett Automotive

experience. Management Accounting, 73, 32–38.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information

technology. MIS Quarterly, 319–340.

Dickerman, L., & Harrison, J. (2010). A New Car, a New Grid. IEEE Power and Energy Magazine, 8(2), 55–61.

http://doi.org/10.1109/MPE.2009.935553

Dr. Ing. h.c. F. Porsche AG. (2016). Porsche Concept Study Mission E. Retrieved April 6, 2016, from

http://www.porsche.com/microsite/mission-e/international.aspx

Economist, T. (1999). Catch the wave. Retrieved May 8, 2016, from

http://www.economist.com/node/186628

Egbue, O., & Long, S. (2012). Barriers to widespread adoption of electric vehicles: An analysis of consumer

attitudes and perceptions. Energy Policy, 48(2012), 717–729.

http://doi.org/10.1016/j.enpol.2012.06.009

Energy, U. D. of. (2011). One Million Electric Vehicles By 2015 - February 2011 Status Report. Retrieved

April 6, 2016, from

https://www1.eere.energy.gov/vehiclesandfuels/pdfs/1_million_electric_vehicles_rpt.pdf

Page 76: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 68

English, A. (2015). Porsche calls for new fast-charging standard for electric cars. Retrieved April 6, 2016,

from http://www.telegraph.co.uk/motoring/motor-shows/frankfurt-motor-

show/11868196/Porsche-calls-for-new-fast-charging-standard-for-electric-cars.html

Ernst&Young. (2010). Gauging interest for plug-in hybrid and electric vehicles in select markets Contents,

1–32.

EURELECTRIC. (2011). European electricity industry views on charging Electric Vehicles. April, (April), 17.

Retrieved from http://www.eurelectric.org/media/26100/2011-04-18_final_charging_statement-

2011-030-0288-01-e.pdf

EY. (2015). Stichting EVNetNL: Indicatieve waardeberekening en verkenning mogelijke verkoop/overdracht

opties. Rotterdam.

Faria, R., Moura, P., Delgado, J., & De Almeida, A. T. (2012). A sustainability assessment of electric vehicles

as a personal mobility system. Energy Conversion and Management, 61, 19–30.

http://doi.org/10.1016/j.enconman.2012.02.023

Fastned. (2016a). Annual Report Fastned 2015.

Fastned. (2016b). How fast charging works. Retrieved April 6, 2016, from

https://fastned.nl/nl/blog/post/what-is-fast-charging-2

Federal Statistical Office. (2016). Prices: Data on energy price trends (Vol. 49). Retrieved from

https://www.destatis.de/DE/Publikationen/Thematisch/Preise/Energiepreise/EnergyPriceTrends

PDF_5619002.pdf?__blob=publicationFile

Feng, L., Ge, S., Liu, H., Wang, L., & Feng, Y. (2012). The planning of charging stations on the urban trunk

road. Innovative Smart Grid Technologies - Asia (ISGT Asia), 2012 IEEE. http://doi.org/10.1109/ISGT-

Asia.2012.6303340

Gerkensmeyer, C., Kintner-Meyer, M., & DeSteese, J. G. (2010). Technical Challenges of Plug-In Hybrid Electric

Vehicles and Impacts to the US Power System: Distribution System Analysis. Retrieved from

https://www.smartgrid.gov/files/phev_distribution.pdf

Gonder, J., Markel, T., Thornton, M., & Simpson, A. (2007). Using global positioning system travel data to

assess real-world energy use of plug-in hybrid electric vehicles. Transportation Research Record:

Journal of the Transportation Research Board, (2017), 26–32.

Haaren, R. Van. (2012). Assessment of Electric Cars ’ Range Requirements and Usage Patterns based on Driving

Behavior recorded in the National Household Travel Survey of 2009 (Vol. 1). Colombia. Retrieved from

http://www.solarjourneyusa.com/HowFarWeDrive_v1.3.pdf

Hensley, R., Knupfer, S. M., & Krieger, A. (2011). The fast lane to the adoption of electric cars. McKinsey

Quarterly, (1), 10–14. Retrieved from

http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=58571616&site=ehost-live

Page 77: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 69

Hensley, R., Knupfer, S. M., & Krieger, A. (2014). Electrifying cars: How three industries will evolve. McKinsey

Quarterly. Retrieved from

http://www.mckinseyquarterly.com/Automotive/Strategy_Analysis/Electrifying_cars_How_three_in

dustries_will_evolve_2370

Herron, D. (2015). German automakers pushing ComboCharging System to 150 kiloWatts for future-proof

DC fast charging. Retrieved January 29, 2016, from http://longtailpipe.com/2015/11/16/german-

automakers-pushing-combocharging-system-to-150-kilowatts-for-future-proof-dc-fast-charging/

Hidrue, M. K., Parsons, G. R., Kempton, W., & Gardner, M. P. (2011a). Willingness to pay for electric vehicles

and their attributes. Resource and Energy Economics, 33(3), 686–705.

http://doi.org/10.1016/j.reseneeco.2011.02.002

Hidrue, M. K., Parsons, G. R., Kempton, W., & Gardner, M. P. (2011b). Willingness to pay for electric vehicles

and their attributes. Resource and Energy Economics, 33(3), 686–705.

http://doi.org/10.1016/j.reseneeco.2011.02.002

Hoed, R. van den. (2016). Applying data science on charging infrastructure: benchmarking 5 regions in the

Netherlands. In Professor Energy and Innovation. Amsterdam: AVERE. Retrieved from

https://s3.amazonaws.com/bizzabo.users.files/IgND3u5QV2ZfpyHyfle6_Robert van den Hoed.pdf

Hoekstra, A. E., & Steinbuch, M. (2014). Naar een Green Deal voor de kostendekkende uitrol van openbare

laadpunten. Eindhoven. Retrieved from

https://pure.tue.nl/ws/files/3949117/45154153502720.pdf

Hull, D. (2014). “Charge rage”: Too many electric cars, not enough workplace chargers. San Jose Mercury

News. Retrieved from http://www.mercurynews.com/business/ci_24947237/charge-rage-too-

many-electric-cars-not-enough-workplace-chargers

IDO-Laad. (2016). Oplaadkosten: Door de bomen het bos niet meer zien. Retrieved May 29, 2016, from

http://www.idolaad.nl/blogs/content/rick-wolbertus/2016/laadtarieven.html

KPMG. (2016). KPMG’s Global Automotive Executive Survey 2016. Retrieved from

https://www.kpmg.com/CZ/cs/industry/Automotive/Documents/KPMG_GAES_2016_locked.pdf

Lassila, J., & Koivuranta, K. (2011). Network effects of electric vehicles - Case from Nordic country. Proc.

CIRED 21st Int. Conf. Electr. Distrib, (0773), 6–9.

Leurent, F., & Windisch, E. (2011). Triggering the development of electric mobility: a review of public

policies. European Transport Research Review, 3(4), 221–235.

Li, S., Xing, J., Tong, L., & Yiyi, Z. (2015). The Market for Electric Vehicles : Indirect Network Effects and Policy

Design.

Liu, Z., Wen, F., & Ledwich, G. (2013). Optimal Planning of Electric-Vehicle Charging Stations in Distribution

Systems. Power Delivery, IEEE Transactions on. http://doi.org/10.1109/TPWRD.2012.2223489

Page 78: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 70

Lloyd Dixon, Isaac R. Porche III, J. K. (2002). Vehicle Production and Lifecycle Cost. Driving Emissions to Zero:

Are the Benefits of California’s Zero Emission Vehicle Program Worth the Costs?, 31–74. Retrieved from

https://www.rand.org/content/dam/rand/pubs/monograph_reports/MR1578/MR1578.ch4.pdf

Lutsey, N. (2015). Global milestone: The first million electric vehicles | International Council on Clean

Transportation. Retrieved January 8, 2016, from http://www.theicct.org/blogs/staff/global-

milestone-first-million-electric-vehicles

Mathews, L. (2015). Porsche’s electric car charges faster than your smartphone | Science! | Geek.com.

Retrieved April 6, 2016, from http://www.geek.com/science/porsches-electric-car-charges-faster-

than-your-smartphone-1634163/

Mcmanus, W., & Senter, R. (2009). Market Models for Predicting PHEV Adoption and Diffusion. University of

Michigan Transportation Research Institut, (46827).

Mitsubishi Corporation. (2015). Price of Core Components Key to EV Proliferation: Cutting Prices through

Economies of Scale. Retrieved January 29, 2016, from

http://www.mitsubishicorp.com/jp/en/mclibrary/business/vol1/page2.html

Murray, C. (2014, September). Lithium Chemistries Head List of Next-Gen EV Batteries. Retrieved January

27, 2016, from

http://www.designnews.com/author.asp?section_id=1366&doc_id=273177&cid=nl.dn14&dfpPPara

ms=ind_182,industry_auto,industry_alt,bid_318,aid_273177&dfpLayout=blog

Netherlands Enterprise Agency. (2015). Electromobility in the Netherlands. Utrecht. Retrieved from

https://www.rvo.nl/sites/default/files/2015/04/Electromobility in the Netherlands Highlights

2014.pdf

Neubauer, J., & Pesaran, A. (2011). The ability of battery second use strategies to impact plug-in electric

vehicle prices and serve utility energy storage applications. Journal of Power Sources, 196(23), 10351–

10358. http://doi.org/10.1016/j.jpowsour.2011.06.053

Neubauer, J., & Wood, E. (2014). The impact of range anxiety and home, workplace, and public charging

infrastructure on simulated battery electric vehicle lifetime utility. Journal of Power Sources, 257, 12–

20. http://doi.org/http://dx.doi.org/10.1016/j.jpowsour.2014.01.075

Nijland, H., Hoen, A., Snellen, D., & Zondag, B. (2012). Elektrisch rijden in 2050: gevolgen voor de leefomgeving.

Den Haag. Retrieved from

http://www.pbl.nl/sites/default/files/cms/publicaties/PBL_2012_Elektrisch rijden in

2050_500226002.pdf

P1. (2008). De toekomst van parkeren. P1 Parkeer Dossier vijf, april 2008. The Hague. Retrieved from

https://www.p1.nl/fileadmin/pdf/P1_dossier5_1apr08.pdf

Patel, T. (2015). Fossil Fuels Losing Cost Advantage Over Solar, Wind, IEA Says. Retrieved January 29, 2016,

from http://www.bloomberg.com/news/articles/2015-08-31/solar-wind-power-costs-drop-as-

Page 79: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 71

fossil-fuels-increase-iea-says

Pearre, N. S., Kempton, W., Guensler, R. L., & Elango, V. V. (2011). Electric vehicles: How much range is

required for a day’s driving? Transportation Research Part C: Emerging Technologies, 19(6), 1171–

1184.

Pedersen, J. S., Tsang, F., Wooding, S., & Potoglou, D. (2012a). Bringing the electric vehicle to the mass market

a review of barriers , facilitators and policy interventions. Working Paper. Retrieved from

http://www.rand.org/content/dam/rand/pubs/working_papers/2012/RAND_WR775.pdf

Pedersen, J. S., Tsang, F., Wooding, S., & Potoglou, D. (2012b). Bringing the electric vehicle to the mass market

a review of barriers , facilitators and policy interventions. Working Paper.

Perez, C. (2009). Technological revoltions and techno-economic paradigms. Technology Governance and

Economic Dynamics, (20), 1–26.

Qian, K., Zhou, C., Allan, M., & Yuan, Y. (2011). Modeling of Load Demand Due to EV Battery Charging in

Distribution Systems. Power Systems, IEEE Transactions on.

http://doi.org/10.1109/TPWRS.2010.2057456

Randall, T. (2016). Here’s How Electric Cars Will Cause the Next Oil Crisis. Retrieved April 4, 2016, from

http://www.bloomberg.com/features/2016-ev-oil-crisis/

Rapier, G. (2015). These are the countries with the most electric cars. Business Insider. Retrieved from

http://uk.businessinsider.com/countries-with-the-most-electric-cars-2015-7?r=US&IR=T

Rogers, E. M. (1976). New Product Adoption and Diffusion. Journal of Consumer Research, 2(4), 290–301.

Retrieved from http://www.jstor.org/stable/2488658

Römer, B., Schneiderbauer, T., & Picot, A. (2013). Driving the Economy through Innovation and

Entrepreneurship: Emerging Agenda for Technology Management. In C. Mukhopadhyay, B. K.

Akhilesh, R. Srinivasan, A. Gurtoo, P. Ramachandran, P. P. Iyer, … H. M. Bala Subrahmanya (Eds.),

Driving the Economy through Innovation and Entrepreneurship: Emerging Agenda for Technology

Management (pp. 487–498). India: Springer India. http://doi.org/10.1007/978-81-322-0746-7_40

RVO. (2016). Cijfers elektrisch vervoer. Retrieved December 4, 2015, from

http://www.rvo.nl/onderwerpen/duurzaam-ondernemen/energie-en-milieu-innovaties/elektrisch-

rijden/stand-van-zaken/cijfers

Schroeder, A., & Traber, T. (2012). The economics of fast charging infrastructure for electric vehicles. Energy

Policy, 43, 136–144. http://doi.org/10.1016/j.enpol.2011.12.041

Schumpeter, J. (1939). Business cycles: A Theoretical, Historical and Statistical Analysis of the Capitalist

Process. NBER Books, 1950(1939), 461. http://doi.org/10.1016/j.socscimed.2006.11.007

SER. (2013). Mobiliteit en transport. Rapport Energieakkoord. Retrieved from

http://www.ser.nl/~/media/files/internet/publicaties/overige/2010_2019/2013/energieakkoord-

Page 80: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 72

duurzame-groei/energieakkoord-duurzame-groei-9.ashx

Shapiro, C., & Varian, H. R. (1999). Information rules: a strategic guide to the network economy. ACM SIGMOD

Record (Vol. 32). Boston, Massachuetss: Harvard Business School Press.

http://doi.org/10.1145/776985.776997

Shi, R., & Lee, K. Y. (2015). Multi-Objective Optimization of Electric Vehicle Fast Charging Stations with

SPEA-II. IFAC-PapersOnLine, 48(30), 535–540. http://doi.org/10.1016/j.ifacol.2015.12.435

Sierzchula, W., Bakker, S., Maat, K., & Van Wee, B. (2014). The influence of financial incentives and other

socio-economic factors on electric vehicle adoption. Energy Policy, 68, 183–194.

http://doi.org/10.1016/j.enpol.2014.01.043

Smith, R., Shahidinejad, S., Blair, D., & Bibeau, E. L. (2011). Characterization of urban commuter driving

profiles to optimize battery size in light-duty plug-in electric vehicles. Transportation Research Part D:

Transport and Environment, 16(3), 218–224. http://doi.org/10.1016/j.trd.2010.09.001

Smith, V. L. (1961). Investment and Production: A Study in the Theory of the Capital-using Enterprise. Harvard

University Press.

Spoelstra, J. C. (2014). Charging behaviour of Dutch EV drivers. Retrieved from

http://dspace.library.uu.nl/handle/1874/297327

State, W., Vehicle, E., & Plan, A. (2015). Increasing Adoption of Plug-In Electric Vehicles, (January).

Sulzberger, C. (2004). An early road warrior: electric vehicles in the early years of the automobile. Power

and Energy Magazine, IEEE, 2(3), 66–71.

Sweeting, W. J., Hutchinson, a. R., & Savage, S. D. (2011). Factors affecting electric vehicle energy

consumption. International Journal of Sustainable Engineering, 4(3), 192–201.

http://doi.org/10.1080/19397038.2011.592956

Tassey, G. (2000). Standardization in Technology-Based Markets. Research Policy, 29(4), 587 – 602.

http://doi.org/10.1016/S0048-7333(99)00091-8

Tesla Motors. (2012). Model S Efficiency and Range. Retrieved April 6, 2016, from

https://www.teslamotors.com/nl_NL/blog/model-s-efficiency-and-range

Tessum, C. W., Hill, J. D., & Marshall, J. D. (2014). Life cycle air quality impacts of conventional and alternative

light-duty transportation in the United States. Proceedings of the National Academy of Sciences of the

United States of America, 111(52), 18490–5. http://doi.org/10.1073/pnas.1406853111

The Boston Consulting Group. (2010). Focus Batteries for Electric Cars. Outlook. Retrieved from

http://www.bcg.com/documents/file36615.pdf

Timmers, V. R. J. H., & Achten, P. A. J. (2016). Non-exhaust PM emissions from electric vehicles. Atmospheric

Environment, 134, 10–17. http://doi.org/10.1016/j.atmosenv.2016.03.017

Page 81: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 73

TNO. (2015). Energie en milieu aspecten van elektrische personenvoertuigen. TNO-Rapport. Delft. Retrieved

from http://www.nederlandelektrisch.nl/file/download/33742992

Todd, J., Chen, J., & Clogston, F. (2013). Analysis of the Electric Vehicle Industry. Cleaning the Clean Energy.

Retrieved from

http://www.iedconline.org/clientuploads/Downloads/edrp/IEDC_Electric_Vehicle_Industry.pdf

Trigg, T., Telleen, P., Boyd, R., & Cuenot, F. (2013). Global EV Outlook: Understanding the Electric Vehicle

Landscape to 2020. International Energy Agency (IEA), (April), 1–41. Retrieved from

http://www.iea.org/publications/freepublications/publication/name-37024-en.html

van Bergen, W. (2016). Energiesector hekelt concurrentie Alliander. De Financiele Telegraaf, p. T22.

van der Laan, M. (2015). USEF Position Paper: Electric Mobility. USEF Position Paper, 1.2(October), 1 –10.

Retrieved from www.usef.info/Handlers/DownloadFile.ashx?File=85

van Mersbergen, S. (2016). Alleen maar elektrische auto’s in 2025 moet haalbaar zijn. Retrieved May 23,

2016, from http://www.ad.nl/ad/nl/1006/Auto/article/detail/4273027/2016/03/31/Alleen-

maar-elektrische-auto-s-in-2025-moet-haalbaar-zijn.dhtml

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology:

Toward a unified view. MIS Quarterly, 425–478.

Verkeersnet. (2014). Laadpalen nodeloos bezet. Retrieved May 2, 2016, from

http://www.verkeersnet.nl/13099/laadpalen-nodeloos-bezet/

Vogel, C. (2015). Autobelastingen in 2015, 2016 en 2017. Retrieved January 28, 2016, from

http://www.mkbservicedesk.nl/10120/autobelastingen-2015-2016-2017.htm

Votano, J., Parham, M., & Hall, L. (2004). A comparative study of emerging vehicle technology assessments.

Chemistry & …. Retrieved from

http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract

Wood, E., Neubauer, J., & Burton, E. (2015). Measuring the Benefits of Public Chargers and Improving

Infrastructure Deployments Using Advanced Simulation Tools. Retrieved from

http://www.nrel.gov/docs/fy15osti/63422.pdf

Xiao, H., Huimei, Y., Chen, W., & Hongjun, L. (2014). A survey of influence of electrics vehicle charging on

power grid. Industrial Electronics and Applications (ICIEA), 2014 IEEE 9th Conference on.

http://doi.org/10.1109/ICIEA.2014.6931143

Younes, Z., Boudet, L., Suard, F., Gerard, M., & Rioux, R. (2013). Analysis of the main factors influencing the

energy consumption of electric vehicles. Electric Machines & Drives Conference (IEMDC), 2013 IEEE

International. http://doi.org/10.1109/IEMDC.2013.6556260

Yu, Z., Li, S., & Tong, L. (2015). Market Dynamics and Indirect Network Effects in Electric Vehicle Diffusion,

(Shanjun Li). Retrieved from http://arxiv.org/abs/1502.03840

Page 82: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 0

Appendices

Appendix I: The History of the Electric Powered Vehicle

Compiled from: U.S. Department of Energy (http://energy.gov/articles/history -electric-car & http://www.afdc.energy.gov/vehicles/electric_basics_hev.html )

The History of the Electric Powered Vehicle

1st Small-Scale Electric Cars (HU, NL, US)

1st Crude EV (Anderson)

1st EV Debuts (US)

EVs Gain Popularity

EVs Reach Their Heyday (3/10)

Edison Takes on EV Batteries

Porsche: World's 1st Hybrid EV

Model T (with Electric Starter) Deals a Blow to Electric Vehicles

Steep Decline in Electric Vehicles

Gas Prices Soar: Interest in Electric Rises Again

Electric Vehicle on the Moon (NASA Lunar Rover)

The Next Generation of Electric Vehicles

Sebring-Vanguard Leader in Electric Vehicle Sales

Interest in EVs Fades: Low Gas Prices, High Performance

Regulations Renew EV Interest

GM's EV1

1st Mass-Produced Hybrid: The Toyota Prius

Significant Investments in (Battery) Technology

Tesla Roadster

Investments in Charging Infrastructure

Chevrolet Volt/Opel Ampera | Nissan LEAF

Tesla Model S

EV Battery Costs Start to Drop (50% in 4 years)

20+ PHEVs & 35+ Hybrid Vehicles Available

New Investments in Technology and Increase in Choice

Investments Infrastructure (Technology): Home Charging, DC Fast Charging, Battery Change Stations et cetera

More Investments in Infrastructure Neccesary to Cope with the Charging Demand of an Increasing Number of (PH)EVs

±1828 -1835

1832 1889 - 1891 1899 - -> 1900 - 1912 1901 1901 1908 - 1912 1915 - 1935 1968 - 1973 1971 1973 1974-1977 1979 1990 - 1992 1996 1997 1999 2006 2009 - 2013 2010 04-07-1905 2013 2014 2012-2016 2012-2016 2016 - ?

165

years:

1825 -

25 years:

1990 - 2015

EV P

op

ular

ity

(Ind

icat

ion

)

Page 83: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 0

Appendix II: EV Adoption over Time

Source: RVO

Page 84: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 1

Source: RVO, based on Stichting Elaad, EV-BOX B.V., Nuon, Essent and The New Motion (till 31-10-2012) and Oplaadpalen.nl (till 30-11-2012). For 2014 the numbers consist of an estimation based on ELaad,

Nuon and Essent. From April 2014it is unclear from the data whether Oplaadpalen.nl charging poles are (semi)public or not.

Page 85: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 2

Appendix III: Statistical Output

III.I Regular Charging Pole Connection Costs: 2x25A vs 2x35A

Independent Samples Test

Real Connection Costs: Difference between means

of 3x 25A & 3x 35A charging poles

Levene's Test

for Equality of

Variances

t-test for Equality of Means

F Sig. t df Sig. (2-

tailed)

Mean

Difference

Std. Error

Difference

95% Confidence Interval of the

Difference

Lower Upper

Equal variances assumed 6,014 ,014 1,491 617 ,136 429,55563 288,04583 -136,11345 995,22471

Equal variances not assumed 3,083 27,580 ,005 429,55563 139,32528 143,96461 715,14666

Test Statistics: Mann-Whitney U a

Connection

Costs

Mann-Whitney U 5426,000

Wilcoxon W 5657,000

Z -1,059

Asymp. Sig. (2-tailed) ,290

a. Grouping Variable: Connection_Type

(3x25A vs 3x35A)

n mean std. Dev Std. Error Lower Bound Upper Bound Minimum Maximum

3 x 35A 21 1.392,49€ 1.388,43€ 137,93€ 1.124,36€ 1.660,61€ 210,14€ 2.660,40€

3 x 25A 598 1.822,04€ 1.314,55€ 53,76€ 1.728,59€ 1.950,46€ 72,83€ 10.564,00€

Total: 619 € 1.807,47 1.298,69€ 52,20€ 1.704,96€ 1.909,98€ 72,83€ 10.564,26€

Page 86: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 3

III.II Regular Charging Pole Connection Costs: detailed break-up

Break-up Connection Costs Grid Operator - Detailed Components n mean std. Dev

Std. Error Lower Bound Upper Bound Minimum Maximum

Services & Labour Costs

155 € 1.367,31 € 996,56 € 80,05 € 1.209,18 € 1.525,44 € 185,00 € 7.534,00

Materials 160 € 208,15 € 411,88 € 32,56 € 143,84 € 272,46 € - € 5.149,00

Overhead 173 € 460,86 € 381,51 € 29,01 € 403,61 € 518,11 € 27,00 € 3.103,00

Total Project: 174 € 1.904,45 € 1.525,34 € 115,64 € 1.676,22 € 2.132,69 € - € 10.977,00

III.III Relative Occurrence of Activities in Regular Charging Pole Projects

Page 87: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 4

III.IV Kruskal Wallis Test (Connection costs by degree of urbanisation)

Kruskal Wallis - Ranks

Degree of

Urbanisation

N Mean Rank

Cost of Connection

1 – Rural 159 291,08

2 45 357,48

3 124 299,31

4 122 340,86

5 – City Centre 169 300,72

Total 619

Kruskal Wallis - Test

Statisticsa,b

Werkl.KostenKl

antorderBK

Chi-Square 9,481

df 4

Asymp. Sig. ,050

a. Kruskal Wallis Test

b. Grouping Variable: Degree of

Urbanisation (e.g.

CBSDoURecode)

Median Test - Frequencies

Degree of Urbanisation

1 2 3 4 5

Cost of Connection > Median 68 28 58 73 82

<= Median 91 17 66 49 87

Median Test - Test Statistics

Cost of

Connection

N Median Chi-Square df Asymp. Sig.

N 619 1470,0400 11,400b 4 ,022

b. 0 cells (0,0%) have expected frequencies less than 5. The minimum expected cell frequency is 22,5.

Page 88: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 5

III.V Cross Tabulation – Degree of Urbanisation & Fast Charging Opportunity

Degree of Urbanisation * FC_Opportunity Crosstabulation

FC_Opportunity Total

0 1

Degree of

Urbanisation

1

Count 5290 2047 7337

% within DoU 72,1% 27,9% 100,0%

% of Total 13,6% 5,2% 18,8%

2

Count 5149 2002 7151

% within DoU 72,0% 28,0% 100,0%

% of Total 13,2% 5,1% 18,3%

3

Count 5891 2014 7905

% within DoU 74,5% 25,5% 100,0%

% within FC_Opportunity 20,7% 19,1% 20,2%

% of Total 15,1% 5,2% 20,2%

4

Count 5919 2061 7980

% within DoU 74,2% 25,8% 100,0%

% of Total 15,2% 5,3% 20,4%

5

Count 6236 2431 8667

% within DoU 72,0% 28,0% 100,0%

% of Total 16,0% 6,2% 22,2%

Total

Count 28485 10555 39040

% within DoU 73,0% 27,0% 100,0%

% of Total 73,0% 27,0% 100,0%

Page 89: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 6

III.VI Travel Behaviour - Travel Distances across Different Degrees of Urbanisation

As extra we studied the influence of the average travel distance per automobile for every urbanisation rate as this can affect the demand for

charging. Here it is assumed that people living in cities generally travel less distance per day than people from more rural environments. Therefore,

the latter probably has to charge more often or longer and will make more convenient use of regular charging poles in public environments or use

home charging instead. A negative relationship between the degree of urbanisation on the average travel distance of drivers was expected, we also

performed a regression on this relationship. This results were highly significant (R² = 0.125; p=0.000). Hence, the regression formula becomes:

Average Travel Distance = 16,298 – (0,682*Degree of Urbanisation)

It can be concluded the more urban a certain location is; the distance people travel by car decreases.

Average Travel Distance per day by car

N Mean Std.

Deviation

95% Confidence Interval for Mean Minimum Maximum

Lower Bound Upper Bound

1 73033 15,7044 3,0182 15,68255052758 15,72633112834 ,133430250 32,143556840

2 72156 14,8011 2,8279 14,78049101015 14,82175918495 7,738105762 24,919428130

3 78111 14,2971 2,7742 14,27772254833 14,31663374883 9,324863922 22,831909880

4 80075 13,5319 2,1984 13,51669044164 13,54714553153 8,847480553 22,532917600

5 87084 12,9272 1,9732 12,91410861639 12,94032060293 8,847480553 17,770981700

Total 390459 14,19106 2,7433 14,18244009988 14,19964960344 ,133430250 32,143556840

Model Summary

Model R R² Adjusted

Std. Error of

the Estimate

Change Statistics

R Square

Change

F Change df1 df2 Sig. F Change

1 ,353a ,125 ,125 2,566482199

632

,125 55662,641 1 390457 ,000

a. Predictors: (Constant), Degree of Urbanisation

Page 90: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 7

ANOVAa

Model Sum of Squares df Mean Square F Sig.

1

Regression 366640,402 1 366640,402 55662,641 ,000b

Residual 2571874,225 390457 6,587

Total 2938514,628 390458

a. Dependent Variable: AvgTravelDistanceDriver b. Predictors: (Constant), Degree of Urbanisation

Coefficientsa

Model Unstandardized

Coefficients

Standardized

Coefficients

t Sig. 95,0% Confidence Interval for B

B Std. Error Beta

Lower Bound Upper

Bound

1

(Constant) 16,298 ,010 1657,781 ,000 16,279 16,318

Degree of

Urbanisation

-,682 ,003 -,353 -235,929 ,000 -,687 -,676

a. Dependent Variable: AvgTravelDistanceDriver

Page 91: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 8

III.VII Travel Behaviour - Effect of Travel Distance on Charging Pole Utilisation

We also tested whether the average travel distance of drivers in a certain area has significant positive effects on the charging pole utilisation. Here

we found that the travel distance of drivers significantly correlates with the charging pole utilisation. In addition, a small significant predictive effect

was found (R²=0,002; p = 0,000) resulting in confirmation of hypothesis 4 and the following regression formula:

Charging pole utilisation = 0,551 + 0,005 * Degree of Urbanisation

Descriptive Statistics

Mean Std. Deviation N

UtilisationRate ,6209 ,33574 390459 AvgTravelDistanceDriver 14,1907 2,74337 390459

UtilisationRate AvgTravelDistanceDriver

Spearman’s Rho AvgTravelDistanceDriver Correlation Coefficient ,041** 1,000

Sig. (2-tailed) ,000 .

N 38801 38801

Page 92: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 9

Appendix IV: Transcripts and Notes of Personal Communication

Notes Conversations Project Managers & Coordinators Stedin

Regular Charging Poles: H.A. Jankowsky & D.L.E. Jaszmann

Activities & Cost Drivers:

o Connection: high proportion of costs, <80A -> grid connection (low voltage connection)

Fast Charging: R. de Bruin, M. Bos & E. van den Broek

Richard de Bruin, account manager at Stedin: “These [fast charging] connections are [in contrast to regular charging poles] directly

connected to a distribution station. Fast chargers demand a high level of power; therefore, we really have to dive into these more

difficult projects. In addition, the current chargers are mostly in a remote location, which means that we have to invest a lot of resources

to complete our duty of providing a connection.” - translated from Dutch

Activities & Cost Drivers:

o Connection: high proportion of costs, 80A – 250A -> distribution station connection (midlevel connection)

Sometimes all slots in a certain distribution station are already occupied, which results in more length and higher costs

Permit: €2600 in The Hague case

Metering and material: ±€3500

Changing the transformer or placement of a new transformer (AKA station: ±€6000 - ±€8000)

labour: ±€1200; generator supply rent: ±€1600

Extra cable, trenching and digging (2 cables necessary to reduce voltage drop, only one time the length is charged)

o Overhead: preparation, location mapping et cetera

o Optional high cost driver: controlled drilling, 33m under highway in one project: ±€10000 - ±€20000 additional costs

o Services of the contractor: ±€ 10000,-

Page 93: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 10

Notes: Key-takeaways Industry Charging Pole Manufacturers

Prices of charging poles are decreasing, however as requirements increase and the old poles with less features, updates and connectivity

are abandoned, new models stay in the same price range. Also newly implemented certification and other legal requirements add up

to the costs.

Official metering equipment which is required for public charging poles makes them more expensive than regular charging poles.

Lots of competition in the Dutch market, but there was high price pressure (and low margins) anyways, so the effects on price are small.

Price reduction driver: volume, volume, volume (+thousands)

o (EU) Standardisation of requirements is really key here, charging poles should be able to cross border as regulations are

standardised. With current legalisation it is not possible to create one charging pole which complies to all EU country regulation

at a decent price.

o The functionalities and demand for always more functionalities (by governments and municipalities) needs to stabilise.

Notes: Key-takeaways Fast Charging Operators (translated from Dutch)

Stations are quickly profitable due to onetime investment, low OPEX and high margin

Fast charging is especially promising for the future. Fast charging providers will do well within three years

Unique location is key

Currently we are waiting for the next generation of battery technology

Fast charging technology develops relatively quickly and charging voltages will go up allowing for even faster charging times. At a certain

moment I believe it will not take much longer than fuelling up your conventional car

Fast charging stations will replace fuel stations over time

Standardisation is key and more communication is necessary in order to ensure interoperability. There are too much different standards

and rules in the current industry, we need consolidation.

Page 94: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 11

Transcript Interview I: (Fast) Charging Operator, Allego Interviewee: Elbert Lievense – Fastcharge Corridor Manager The Netherlands & Belgium, Allego Date: 04 – 04 - 2016 Location: Stedin, Blaak 8, Rotterdam Time: 11:00 Duration: 1:08:43

Stakeholders Industry Trends Consumer Needs

G: Zou u een korte beschrijving van de EV-laadinfrastructuur industrie kunnen geven?

E: Je hebt drie spanningsvelden, spanningsveld van de automobielindustrie, het spanningsveld van de operator (van de laadinfrastructuur), en het spanningsveld wat aan de energiekant zit dus de Stedin’s,

Allianders, de Lianders en noem maar op. En daarboven dan weer Tennet, zoals in Belgie dan weer Elia en allemaal willen ze er (EV-laadinfrastructuur) wat mee, maar de belangrijkste is die consument. Die

consument zit eigenlijk voor het grootste gedeelte in het groepje van de automobielindustrie. Dus waar liggen die drivers om andere auto’s te gaan maken die wel kloppen bij de consumenten gedachte. Want de

mensen die nu elektrisch rijden, zoals ikzelf, en behoorlijk wat andere mensen in Nederland, dat zijn niet de échte consumenten, niet de échte elektrische rijders.

G: Meer de early adopters?

E: Mwah, ja het zijn mensen die er wat meer voor overhebben om echt elektrisch te willen rijden en die vinden het te doen, pasjes en kabels vinden ze helemaal niet erg én om de 100 kilometer te stoppen

om een half uur te laden is ook prima. Als je dat bent, dan heb je er eigenlijk niemand tot last mee, alleen als mijn buurman of buurvrouw, die tot de 70% massa behoort, als die wil gaan laden dan moet de auto

betere capaciteiten hebben. Nou, je ziet dus nu een toename, in het aantal auto’s met 250-300 of meer kilometers bereik én je ziet een toename in auto’s die sneller kunnen laden. De 50 kW die wij nu neerzetten, is

eigenlijk meer voor intermediair laden, in plaats van het echte snelladen. Het echte snel laden moet echt meer gaan lijken op tanken, dus 10 min, 200-250 kilometer erbij kunnen laden dat ligt meer in lijn met wat de

gewone consument zal accepteren. Wat zie je dus gebeuren (op het gebied van laadinfrastructuur), dat de ontwikkelingen van 50 naar 150 kW ontstaan met dezelfde parameters, dus 400V DC 125A. Je ziet dus nu

een ontwikkeling ontstaan dat de technologie die ontwikkeld was voor openbaar vervoer, dat die nu dus ook gebruikt gaat worden voor elektrische auto’s en dan kunnen we met 300 kW gaan laden.

G: Deze technologie is dus al beschikbaar en komt voort uit het laden voor elektrisch openbaar vervoer?

E: Ja, dat soort technologie gaat nu dus ook ingezet worden voor de gewoonlijke automobielindustrie. Porsche en Audi, de Mission E en de Q6 e-tron, die hebben deze technologie al aan boord. Dat is wat ik

zie en lees. Dus dan ga je naar een hoger voltage, de techniek erachter, weet je, dat zal allemaal wel, daar heb je de ABB’s en Circontrol’s voor. Het belangrijkste is dat je voor dit soort stations, de tankstations van de

toekomst, daar zijn we dus nu met een planning bezig, en dat zien we ook al in Duitsland, met het project SLAM. We hebben twee grote projecten lopen, Fast-E en SLAM. SLAM is een laadinfrastructuur project in

Duitsland, in grote steden en op de assen tussen de grote steden. Daar plaatsen wij vier laders, drie worden gesubsidieerd en eentje zetten we zelf neer vanuit het project Fast-E. Dus dan heb je een

netwerkaansluiting van 1,2 MW. Dat zijn grote aansluitingen en daar zitten dus ook gewoon leveringscontracten op die 1MW moeten aankunnen. Die capaciteit koop je dus gewoon in op het net. En dan heb je een

piek van 1.2MW als de vraag echt toe gaat nemen. Die gebruiken we momenteel nog niet, aangezien de vraag nu nog klein is. Die aansluitingen zijn één heel erg duur en het is dus allemaal gesubsidieerd want anders

zouden we er gewoon helemaal niet uitkomen. Maar SLAM wordt geen groot gedeelte gesubsidieerd door de Duitse overheid en Fast-E is gesubsidieerd door Brussel, door Europa, en dat is echt gewoon puur om die

infrastructuur neer te kunnen zetten. Het is natuurlijk een locatie aangelegenheid, want wat daar precies gaat komen is afhankelijk van wat de consument wenst. Alleen je moet altijd meelopen met de fabrikanten,

dat 800V gebeuren, 300 kW wordt echt een game changer. Hetzelfde als dat de Model 3 een gamechanger is aan de aanbodzijde.

G: Hoe snel laadt deze nieuwe manier van opladen een EV op?

E: Als je 300 kW laad, kun je theoretisch. 300 kW per uur / 60, op 1 kW +- 6 km, als je dan 10 minuten laadt zou je dan in 10 minuten ongeveer 300 kilometer kunnen rijden. Maar dat is theoretisch, dit haal je

niet. De accu, temperatuur van de accu, het batterij managementsysteem zal dat niet toelaten. Het is ook erg afhankelijk of je het volledige vermogen kunt pakken, de “state-of-charge”. Ik zelf bijvoorbeeld rij altijd

op state-of-charge.

Page 95: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 12

G: Wat houdt state-of-charge precies in?

E: State-of-charge ligt aan de hoeveelheid capaciteit die een accu. Als je kijkt, dat zijn allemaal aspecten waar dat leer je op een gegeven moment, zoals je dat ook op een gegeven moment ook weet

wanneer je moet tanken dan krijg je een signaaltje. Als je een batterij neemt dit is zeg maar 20KW in de BMW dit gedeelte gebruiken ze niet. Eigenlijk heb je effectief 18,5 als je hier onder gaat komen gaat je accu

heel snel kapot dat heeft met degeneratie te maken. Ik rij zelf dus echt op state of charge. Als ik nog 10 km heb, afgelopen zaterdag kwam ik terug uit Alphen ad Rijn van Kaatsheuvel 4 stations waar ik kan laden. Dan

pak ik echt de laatste want dan heb ik nog 10 km dan laat ie sneller. Dat soort zaken is nu gewoon nog niet zichtbaar voor die klant. En die klant is niet geïnteresseerd om dat te weten. Dus die klant weer de gewone

consument moet daar wat mee. En achter die informatievoorziening moet komen. De belangrijkste zaken waar je op een gegeven moment tegen aan gaat lopen zijn de grote aansluiting en de kosten daarvan en je

zou dus met de netbeheerder en de ander aan gelieerde partijen moeten gaan naar systematiek waarbij dus met incentives die vanuit de netbeheerder komen richting de operator of de operator dat weer door zet

naar de verschillende service providers. Dat de serviceproviders tegen de klant kunnen zeggen joh ik weet dat je in de buurt rijdt. Als je nu wil opladen betaal je maar de helft of je betaalt helemaal niks of krijgt geld

toe

G: Meer financiële incentives

E: Financiële incentives zijn Een hele belangrijke tool om te zorgen dat je op het juiste moment dat soort auto’s aan je laad infrastructuur kan koppelen. Want wat met AC laden gebeurde, waar mijn collega

mee bezig is niet zozeer social charging maar de accu onderdeel laten zijn van het elektriciteits netwerk. Wat 2009 geprobeerd wordt te bereiken met DC laders is juist het omgekeerde. Eigenlijk zou dat moeten

compenseren met meer laadpunten op het publiek terrein die 3,6 tot 11 kw kunnen laden.

G: Dat is wel interessant op zich dat je. Snel laders is echt om je auto op te laden terwijl normale laadpalen daar klik je je auto aan vast en de meeste mensen laten hem staan.

E: Pak mezelf meestal als voorbeeld als ik vanuit kantoor Mechelen kom naar huis dan is mijn accu echt helemaal leeg en kom dan om 19.00/19.30 u s ’avonds aan dan hoef ik eigenlijk niet gelijk te gaan

laden. Een auto is in 4 uurtjes vol. Dat is een i3. Die is in 3 uurtjes vol. Dus als hij om elf uur start geen probleem. Ik kan dat in de auto instellen, op het laadpunt maar ondanks dat ik zo’n techneut ben en het laadpunt

heb ik toen zelf ontworpen toen ik nog bij Alphen werkte vind ik teveel gedoe. Mijn gemakzucht, ik wel af en toe ook zelf de consument spelen waarom is er niemand die dit standaard het voor mij erin zet, dat ik kan

kiezen voor dat soort functionaliteiten zonder dat ik allemaal start-eindtijden, wil ik het elke dag of in alleen in het weekend dat je het helemaal moet instellen.

G: Of je hebt een app of zo

E: Ik kan het wel via een app. Het maakt het gewoon niet makkelijk. Je vertrektijden, instellingen klimatiseren aan of uit zetten, voordelig tarief. Teveel dit is ontworpen door techneuten, groot probleem als

je techneuten de vrije hand geeft dan wordt het complex: het heeft nog niet die Apple View? Bijna 90000km gereden waarvan 62000 km elektrisch 2 jaar tijd. Maar het moet gemakkelijk gemaakt worden en al die

systemen daar achter en de consument staat als prioriteit boven aan en daar achter heb je de CPO( charging pole operator) Je hebt de distributie net beheerder en de energieleverancier en die moeten met het

incentive programma voor zorgen dat die klant volledig ontzorgd wordt. Die CPO en de klant dat zit dan weer een serviceprovider tussen. Je kent het speelveld een beetje? Service provider daar zit weer een MSP

tussen die daar weer het zijne van vindt. Klant eigenaarschap in dat hele speelveld dat is heel belangrijk. Wij vinden dat niet belangrijk als Allego zijnde . Omdat wij puur die CPO rol spelen, dus alleen maar

infrastructuur neer zetten in samenwerking met locatie eigenaren dat zijn onze klanten omdat wij zien dat die MSP rol nu ingenomen gaat worden door de automobielindustrie. Partijen als Blue Motion /ANWB

G: dat zijn er een stuk of 18 geloof ik

E: Dus dat is een uitstervend ras, de toegevoegde waarde ontbreekt

G : Daarnaast heb je nog allemaal verschillende tarieven en dat maakt het voor de consument heel onoverzichtelijk.

E: Op dit vlak die E-rijder, dat is 90% is lease. Die lease partij gaat daar ook wat in doen, is nu nog uitbesteedt. Ze zullen in gaan zien dat dit anders wordt.

De automobiel industrie zoals BMW die heeft de charge now, Nissan heeft ook al wat met Solartrail uit Frankrijk. Ze gaan allemaal een systeem opbouwen dat de klant al hij de auto koopt bij de dealer een

pas meekrijgt. Dan is BMW de partij die afrekent, waarom BMW wil die klant omarmen BMW gaat ook accu’s leveren voor thuis laden.

G: Dit is het volledige mobiliteitspakket wat ze willen aanbieden voor de thuislader

E: BMW-energie wil bij die klant op de bestuurdersstoel zitten. Die losse MSP zoals wij die nu kennen in Nederland dat gaat allemaal uit gefaceerd worden, die worden allemaal overgenomen.

G: Dat zie ik ook wel gebeuren, een soort consolidatie.

Page 96: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 13

E: En dat is met de infrastructuur precies hetzelfde. Ben 1 van de oprichters van stichting Erad geweest. Dee overheid hier in Nederland heeft op een gegeven ogenblik gezegd laat dit liggen bij de partijen die

daarvoor opgericht zijn. Daarvan heeft Alliander toen gezegd dan richten wij zelf ook een marktpartij op. Dat mogen en dat kunnen ze Minister Kamp heeft dat ook toegegeven tegenover EZ. Maar wat ik zie in het

buitenland is juist dat de overheid de doelstellingen voor CO 2 zelf in eigen hand pakken en dus de heren de opdracht geven om dat te gaan regelen. Binnen nu en een paar jaar zal dat ook weer in Nederland

terugkomen, we hebben het geprobeerd om het aan de markt over te laten maar dat is niet helemaal gelukt.

G: Dat is natuurlijk vanwege de kosten het is gewoon duur

E: Ja natuurlijk. We hebben altijd al gezegd als je de laadpaal neemt, je pakt het netwerk erachter, dus hier heb je het abonnee overname punt, dat zit hier bij de KW uur meter en alles erachter inclusief de

centrales en de zonnepanelen enz. Als je dat los van elkaar gaat scheiden heb je een business case die weet van aansluiten en net vergoeding.Hier heb je een business case met alles erop en eraan. Als je dat los van

elkaar gaat zien, dit is te doen.

G: Voor snel laden is dit best nog wel ingewikkeld soms voor aansluitingen ed Kosten zijn hoog.

E: Die netbeheerder legt de kosten neer bij degene die het aanvraagt dat is wettelijk geregeld.Als ik samen met Mes en Green een snel lader bij Ruijven aanvraag dan zegt Stedin dat kost je € 80000 en als je

betaalt dan maak ik hem.

G: Ze mogen ook niet alles doorrekenen

E. Nee

G: Dat is ook dingetje, het is vanuit de overheid geregeld

E: Dit is gereguleerd en dit niet. Dus of het een snellader of traaglader is dat maakt niet uit. De business case op alleen de paal is mager en echt heel mager en je moet heel wat kW uurtjes verkopen om het

eruit te halen. Mag eigenlijk geen kw uren verkopen, doe je dat in tijd dan wordt in Europa ook weer gezegd moeten we het gaan harmoniseren want we zien het nu ook al weer mislopen. Dus ik verwacht dat de

regeringen van de verschillende landen zullen zeggen het gaat niet snel genoeg. Dat is ook zo en dan moeten we actie ondernemen. En als ze dan actie willen dan zullen ze weer de netwerkbeheerder de opdracht

verstrekken. Dat verwacht ik. Als je het abonnee overname punt hier legt bij het stopcontact en je hebt een klant met een pasje en dat pasje kan je koppelen aan de Eon code van de klant krijgt ie thuis 1 factuur waar

alles op staat.Deze systematiek is heel simpel en wel eens geprobeerd dit de introduceren bij energieleveranciers. Ken je het systeem van Ean codes? Als je een straat hebt met allemaal huisjes dan loopt het hier een

kabel in de stoep en een aftak mof en dan gaat er een kabel naar binnen en hier de meters. Dit stukje bij elkaar noemen ze de Ean code.

G: Is elke losse aansluiting vanaf de hoofd. Het is een afkorting. Elektriciteitsaansluitingsnummer

E: Die zit voor heel Nederland in de Database EDSN Energiedata service net

G: Dit zou betekenen dat iedereen die woonachtig is in Nederland en een eigen meter heeft zou ook zijn eigen rekening kunnen krijgen. Unique Identifier

Page 97: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 14

E: EDSN beheert alles eon codes van netbeheerders en daar zitten de distributie net beheerders in en daar zitten de E leveranciers in. De E leverancier krijgt een klant die zegt ik koop voortaan mijn stroom in

bij jou. Dan vraagt de E leverancier wat is jouw adres en als je het hebt misschien wel je Eon code 14 cijfersAls je dan hier kijkt in die database van wie is wat en wie hoort erbij. Dus die trekt de gegevens die de

distributie netbeheerder Stedin die hier in stopt incl. de slimme meters gegevens. En dat is vrij statisch. We hadden toen ook gecalculeerd wat het zou kosten om het dynamisch te maken want je gaat naar kw

waardes toe met een slimme meter. Je kan een koppeling maken van de E leverancier plus EV die Eon code’s voor de pasjes die zou je daar ook aan kunnen koppelen. Maakt het heel simpel heel overzichtelijk en dan

is de netbeheerder verantwoordelijk voor laadinfrastructuur. Alle voordelen maar ook alle nadelen. Voordeel is dat je zelf schema’s kan ontwikkelen met smart charging ( wanneer je wil laden en terug laden), maar

ben je ook verantwoordelijk voor het onderhoud ervan.De overheid heeft gezegd dat doen we dus niet. Dus nu krijgen we allemaal van die splinter partijen. Heel veel bedrijven zijn hiermee bezig Nuon, Allegro

Cofinon Green Flugs en EV Box Dit is lastig, dit gaat nog een keer terug komen. En wat betreft snel laden is natuurlijk lastig want als je dan gaat kijken kun je geen asset maken van een netbeheerder, druist tegen het

balanceren in. De meeste ongelukkige momenten heb je extra KW vermogen nodig (piekvermogen zodra iemand zich aansluit). Wat we nu aan het doen zijn doet Stedin ook al bij Harein in combinatie met

zonnepanelen en accu’s kijken wat dat voor effect gaat hebben op de business case wat aansluitkosten betreft. In de Duitsland en in België doen we dat samen met Renault en nog een aantal andere aangesloten

partijen. We zijn nu ook bezig met Vrouwenhoven instituut om daar wat meer studie op laten plaats vinden. Het is gewoon belangrijk want wij worden geconfronteerd met aansluitkosten op dit stuk. Gaan al snel

richting de 6 cijfers.

G: Puur om de aansluitkosten uit de grond te krijgen Ligt ook aan de locatie waar die dingen geplaatst worden voor boringen etc. Factoren die u uit ervaring weet van de kosten van zo’n station

E: Wat we nu heel veel zien op de 10 kvolt /15 kvolt installatie in het buitenland nog geen echt stabilisatie zoals we dat in het Nederland kennen. Ik heb in Nederland bij de firma Alphen gewerkt fabrikant

van middenspannings stations. Daar heb ik de laadpalen productie opgebouwd. In Nederland is dit vrij gestabiliseerd. Dan kun je bij zo’n net beheerder zeggen lever voor mij zo’n station ik betaal hem zelf maar je

levert dan of ik bestel hem bij Alphen zelf. Hier zijn geen rare uitzonderingen op, dat betekent dat het een vrij lage standaard prijs is. Anders in België dit moet betreed baar zijn, dus ook weer duurder. In Duitsland

afwijkende eisen van de regionale net beheerder, zijn er 900 van ieder heeft daar nog zijn eigen deelstaatje. Technische stabilisatie is heel belangrijk op het net beheerdersvlak. Als je dan heel energetisch gaat kijken

heb ik hier een 10KW aansluiting. Ga ik naar een transformateur toe die maakt er 400 volt van AC en dan ga ik naar een inverteer die maakt er weer 400 tot 800 volt DC van. Hier gaat echt heel veel verloren wat

stroom en warmte ontwikkeling betreft. Eigenlijk zou je hier in die omzetting van 10 K volt in de omzetting is 10000 en je moet dan naar 800 DC als je kijkt naar het bereik. Daar zou wat moeten gebeuren en dat is

lastig.

G: Puur technisch hoe je dat moet oplossen om het efficiënter te maken

E: en wat er nu gebeurt is dat er fysiek een huisje wordt neer gezet waar de transformateur zit van de net beheerder en de transformateur van de operator met alle. Zit wel allemaal bij elkaar maar technisch

gezien valt hier nog 20% rendement te behalen. En elke KW u die wij als operator kwijtraken door warmte of weet ik veel wat meer moeten we wel betalen. We betalen hier de meting

G: Dat in jullie beheer bij Stedin. Eigenlijk zou je dat willen integreren want het is een overbodige stap

E. Op dit stukje zit heel veel overbodig in. Dat zou anders kunnen, goedkoper, efficiënter. We zitten nog in de voorhoede. Het is wat dat betreft nog niet groot genoeg om daar stappen in te zetten. Wij zijn al

heel ver in Nederland als het gaat over harmonisatie op het netbeheerders gebied met de kleine aansluitingen . Kijk ik dan naar België met Eanders netbeheerder in Vlaanderen zeggen de asset managers een paar

duizend aansluitingen op jaarbasis daar gaan we niks speciaals voor doen.

G: Transformatoren zijn toch ook redelijk kostbaar?

E. Een station kost tussen 70000 en 150000 euro alleen het station komt de kabel en de aansluiting nog bij. Heel kostbaar. Zonder subsidie trajecten op een interessante locatie een station neer wil zetten

haal je het er nooit uit .

G. Wat voor Data . Aansluitings data Mr Green Mark Schreurs kosten puur van de aansluiting

E: Mr green zijn van ons. Mark doet de aansluitingen operations bij Mr Green. Zijn stations die wij exploiteren. Wij hebben ze neer gezet Mark investeert in de netwerkaansluiting. Zit een financiële

constructie achter. Remco in BarendrechtEigen acties bv gold card om gratis te kunnen laden. Nu 5 staan er komen er nog 8 bij snel laadstations. Worden goed bezocht in vergelijk met concurrent Vastnet. Wordt van

de laadstations bijna geen gebruik gemaakt. Bedrijf zelf bezocht.Netwerk Mr Green 20 stationsNetwerk E Motion 50 stations 15 /20 zelf Goed gebruikt Amsterdam Rotterdam

G. In de toekomst meer

E. Meer auto s verkocht maar geen stations erbij. Mensen vinden het belangrijk om een paar min van huis bij te laden

G hoe gaat het in de toekomst Thuis laden en hoe gaat het met een appartement? En bijvoorbeeld privé grond?

Page 98: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 15

E. 2050: 90% zit in steden. Anwb heeft de strategische ontwikkeling infrastructuur wat te zeggen en het gaat alleen maar naar snelladen. Ik geloof het niet. Gaat het niet alleen om snelladers dan heb je heel

veel netwerkuitbreiding nodig. 35 milj euro kostenNeg business case van 27 milj (7 milj bij slim investeren)David Peters van Stedin heeft dit goed besproken en moeten dus kijken hoe we met deze

automobielindustrie slim om moeten gaan. Elke auto is 2 huishoudens. We dit makkelijk maken anders krijgen we geen doorbraak. De neg business case is zo groot dat je hebt te maken met socialisering van kosten.

Alles wat een netbeheerder uit moet geven om dit in orde te maken moet betaald worden door de gebruikers.

G: Nu is het grotendeels belastinggeld als je de aansluiting gaat maken en je legt er iets op toe. Er zit een terug verdien termijn op maar om alles terug te krijgen.

E: Daarom is het voor de netwerkbeheerders een hoofdpijn dossier. Hoe ga je met elkaar ervoor zorgen dat. Een operator zegt maak hem maar al kost het 100000 euro.Netwerk beheerder kan zeggen dat

doen we niet en dan moet er een alternatief komen. Alternatief is opslag, dat je een kleine aansluiting maakt met opslag. De heel dag druppel je er een klein beetje stroom erin, je hebt er nog zonnepaneeltjes bij,

waterstof aggregaat. Maar dan moet je met oplossingen komen dat is altijd nog goedkoper dan alleen maar kabels leggen.Je basisnet moet je ook groter zwaarder en stabieler gaan maken en die kosten komen bij

iedereen te liggen. Dat beseffen nog steeds te weinig mensen ook bij economische zaken. Min Kamp. De netbeheerder is verantwoordelijk voor de laadpalen. Net beheerder kan dan profiteren van de slimmigheden

die je dan kan doen op dat netwerk.

G. Die operator zou je daar op kunnen zetten

E: De flexibiliteit op de paal is een business case van de operator Dus al de operator dat aanbiedt aan een netbeheerder dan wil hij daar geld voor hebben en haal je dan je beste rendement ? nee natuurlijk

niet. Je betaalt wel minder dan als je er alleen maar kabels inlegt met een beetje slimmigheid kan is dat 35 milj en aan de onderkant hadden we 7 milj stel dat ze er geld voor willen hebben stel 3 milj dan heb je 10

dan zit je nog steeds 25 milj neg business case. Dus is het slim beter is zelf de operator uit besteden en je hoeft geen commerciële tarieven te betalen voor de flexibiliteit die de operator bieden op zo’n laadpunt.

G: Eigenlijk best wel raar want de wegen vallen ook onder Rijksoverheid

E: De overheid loopt altijd achter en die weet ook niet hoe ze hier mee om moeten gaan

G: Aan de ene kant is goed maar aan de andere kant zou het toch beschikbaar moeten zijn voor iedereen. Dan is het meer een overheidstaak dan een markt

E: Veel te belangrijk om het aan de markt over te laten maar dat is mijn mening. Moet bij een overheidsorgaan liggen vanwege alle aangelegen positieve zaken van elektrisch vervoer, lucht kwaliteit fijnstof

en daarbij nog het voordeel van het energie netwerk. Vooral met die pieken. Als je mensen een incentive kan geven om niet om 12.00u of 8.00 s’ochtends of 18.00 s ‘avonds te gaan laden, als het echt niet nodig is je

geeft ze daar een incentive voor of je maakt het eenvoudig. Het blijft een lastig hoofdpijn dossier.

G: Vooral omdat het op zo’n grote schaal is. Er zijn zoveel partijen bij betrokken en dat maakt het ingewikkeld. Je gaat polderen en de oplossingen zijn 9 van de 10 keer niet wat je wilt bereiken.

E: Automobielindustrie gaat het grootste worden. Die wil ook eisen gaan stellen aan operators. Tesla wil geen afhankelijkheid in bouwen. Zet ie zelf neer en dat is laatste wat je wil. Straks heb je een

verzorgingsplaats langs de Rijksweg waar je dan 10 verschillende laders hebt staan.: stekkers zijn niet hetzelfde. Begin van de standaardisatie ken ik wel maar er is geen een automobielbedrijf die zei daar gaan we

wat mee doen, daar gaan we gewoon een aparte aansluiting voor maken. Wat gaat het worden? 3 stappen, Rotterdam centrum wil je geen auto’s meer hebben dus daar om heen krijg je een aantal transferia waar je

de auto neerzet dan kun je de stad in. Over het algemeen gaan die mensen er wat langer naar toe. Hier een combinatie van AC lader en heel beperkt DC 90/10 %. De rand erom heen krijgt een aantal tankstations wat

vooral DC gericht is, hier de woongebieden dat straatladen zal waar mogelijk AC zijn en daarom heen weer DC.Dus daar waar de auto 3 uur of langer staat zal zoveel mogelijk AC gebouwd moeten worden. En dan

krijg op verschillende randen de corridors in de zin van stad in stad uit. En tussen de steden in daar komt DC laden. Mix van 50 kw en hoger en tussen de steden in DC boven de 150Kw om het reizen te

vergemakkelijken. Ook voor de mensen die geen laadpunt hebben en daar kunnen laden en de volgende dag weer vooruit kunnen. Dat gebeurt nu al in Amstelveen, daar zitten ook mensen uit Amsterdam tussen. 4

laders. Die werken in Rotterdam of zijn daar geweest pakken de snelladers daar en rijden vervolgens naar huis. Wij kunnen niet zien of die auto in Amsterdam weer op een AC lader komt te staan. We weten uit eigen

metingen dat er heel veel Amsterdamse E rijders proberen te snelladen voordat ze de stad in gaan. Het is geen vanzelfsprekendheid.

G: En aansluitingskosten voor bv een DC station langs een rijksweg of in een stedelijk gebied zit daar verschil in.

Page 99: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 16

E: Hier moet je heel inventief mee omgaan. Staat er 1 in Rotterdam achter het Hofplein kostte € 10000 en Argos aan de Colloseumweg en die hadden capaciteit over 160 ampère nodig 125 en die kostte €

2400 alles bij elkaar. Hofplein alles bij elkaar € 16000. Dat is gewoon te duur. De stad heeft mee betaald anders hadden we het niet gedaan. Dus bij dit soort plekken moet wat gebeuren. De stad moet er wat aan

doen, deze is aandeelhouder van de distributiebeheerder dus die moet er wat aan doen en je moet meegaan kijken naar de eigenaar van de grond. Rijkswaterstaat heeft die concessies uitgegeven 2011-2012. Daar

gaat ook nog wat komen en Vastnet ziet er te weinig gebruik op plaatsvinden.Wij zitten op betere plekken. Als voorbeeld de A27 van Utrecht naar Breda. DC lader bij restaurant.Plekken gaan we onderzoeken waar

een lader moet komen. Ook een lader van Utrecht naar Den Haag. De Meern een DC lader. Laders worden veel gebruikt als ze niet van de weg af zijn en als er geen andere in de buurt is. Daar ga je het verschil in

gebruik zien. 1 milj lease auto’s Onderzoek doen naar de loc weten niet precies wat er dagelijks gebeurt. Turven van het aantal auto’s. Misschien moet er dan een 2e lader bij. Er komt prijsverschil. Mee met de

aansluiting van de restauranthouder die wil geen referentie met onze laders en zijn aansluiting. Hoe gaan we hier mee om. Hij kan niet zonder stroom bij het bakken van een hamburger. Oplaadpunten ook niet te

dicht bij elkaar. In België is dat wel het gevalA27 richting Almere en de A2 richting Amsterdam. Transferia is allemaal AC laden.In het kader wanneer je weer aangeeft terug te zijn en klaar te zijn met laden. Bv op

Schiphol de borden vluchttijden.Wij zijn bezig met een app die niet draait op de telefoon van de gebruiker maar op een soort entree bordje waar je die laadpunten achter hebt staan. Dat is mijn kenteken en ik plug

nu in. Dat is hospitality charging, mensen blijven minstens 24 uur weg en datje dus heel makkelijk aan kan geven wanneer je weer terugkomt. En zo’n vlucht is goed te plannen. Als je dat weet als operator kan je dus

helemaal meegaan met alle slimmigheden die nu gebouwd worden. Het is een combinatie van AC en DC laden. AC inderdaad 20/30% thuis en op kantoor, lager in je energie belasting dus dat is nog goedkoper ook.

G: mits er capaciteit is anders is het ook weer een investering voor de kantoren zelf?

E: Klopt, maar ik ken grote bedrijven die al tegen hun autoberijders hebben gezegd laad maar niet meer thuis. Ik krijg voor thuis ook vergoeding van 25 ct per kilometer. Ik hou 1,03 ct over van elke kw duur

die ik thuis laat. Is leuk maar hoeft niet voor mij. Als ik op mijn kantoor laad dan betaal ik 6 ct.Is aftrekbaar. Veel personeel die heel veel laat dan is er een business case te maken voor de eigenaars van de auto’s, in

ieder geval het bedrijf erachter van ga ik uitbreiden op mijn AC locatie of doe ik thuis niet meer. De toename van de range zal je dat AC laden thuis een beetje weg zien gaan

G: als je straks in 20 min 500 km in je accu kan stoppen de meeste mensen hebben dan genoeg voor 1,5 week.

E: Dan krijg je de glazen bol… hoe gaat het zich ontwikkelen. Hoofdstuk inductief laden, in hoeverre kun je dan onderdeel zijn van een heel slim netwerk. Stel ik zet hem overdag neer in Den Bosch ik woon in

Kaatsheuvel. In den Bosch wordt ie geladen met zonne-energie kom ik in de avond terug met de trein. Stroom van Eneco. Komt ik terug in Kaatsheuvel zou mijn stroom overgenomen kunnen worden zodat ik er nog

wat aan over hou. Dit is de rol van de service provider die ze nog niet spelen dan kan je er wat geld aan verdienen allen moet de stroom uit mijn auto. Dat komt nu een beetje, maar met de grotere range en eigenlijk

wordt de accu dan aantrekkelijker om juist wel te koppelen voor andere partijen maar niet voor de bereider zelf want die denkt ik genoeg erin zitten. Hoe ga je die verleiden om toch te gaan laden aan te koppelen.

Hoe meer partijen daar tussen zitten en iedereen wil daar een graantje van mee pikken des te onaantrekkelijker het gaat worden. Dat de Staat er een grotere rol in speelt is misschien wel beter Wordt een discussie.

Als je er een service provider tussen hebt zitten CPO daarna de net beheerder en de energieleverancier zij moet ervoor zorgen dat de klant inplugt 60 tot 100 kw batterij, deze helemaal vol zit en dus goed te

gebruiken is voor de inductie kookplaat van de buren. Mooi voorbeeld hoe kan de MSP ervoor zorgen dat die klant dat doet of dat nu BMW is of Green Flux, Eneco of wie dan ook en die moeten het weer doorgeven

aan de operator van die paal, dus die geld stromen dat moet aantrekkelijk blijven. De paal moet geschikt zijn, zijn technische dingen die tijd nodig hebben

G: de verdeling 90/10 Parkeertijd is het belangrijkste item en die data is beschikbaar bij de gemeentes.

E: Je kan precies achterhalen, bijvoorbeeld bij Media markt hoelang een klant binnen in de winkel is. Parkeerbeheerder kan dit ook weten en achterhalen zoals Q Park. Dat zijn over het algemeen de

exploitanten die op dat soort plekken zitten. Het grootste probleem momenteel is die last mile. Waar staat dat laadpunt? Als je de parkeergarage in rijdt en je ziet ze als staan dat is echt een voordeel, maar heel vaak

is het onbekend. Laadpalen moeten goed zichtbaar zijn. Parkeertijd is de grootste drijfveer voor de keuze of AC of DC. Werkende gebruiken een AC lader, bezoeker die hier 1 a 1,5 uur is laad buiten de stad of AC

maar dat is beperkt. Hij geeft hier punten aan waar je het beste kunt laden. Gekoppeld met je zakelijke toon kun je je energie van je pand gaan pimpen, wat doet dat nu. Heb ik een windturbine op mijn pand staan,

alles helpt. Dus tijdgebonden dat is overal. DC laden hoef je dan bij de Transferia niet echt te doen, of de Transferia moet je gaan maken als een grote parkeerplaats met een tankstation eraan. Als je zegt ik ga wat

langer parkeren dat je je auto daar neer zet of de bus pakt dat dat je een tankstation bouwt dat je de auto neerzet snel laad en de stad weer in gaat. Een grote aansluiting waarbij je dus van deze mensen weet wat

die doen, wanneer zijn die weer terug en dat je met smart charging de auto’s weer gaat prioriteren en dat je ze pakketjes toe stuurt met energie.

G: Heb je nog data / een overzicht van dingen wat betreft de kosten wat handig zou zijn?

E: Snel lader zit rond de 25000-30000 euro, voor 2 auto’s tegelijk laden 1x AC en 1x DC en kosten voor een stukje terrein inrichting

Page 100: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 17

Transcript Interview II: Municipality of The Hague Environment Legislation & Policy Consumer perspective Stakeholders Trends & Industry

Interviewee: Floris Elzakker, Project manager EV transportation, Municipality of The Hague Date: 08 – 04 - 2016 Location: Townhall of The Hague Time: 11: 00 Duration: 55: 01 G: Wat is jullie visie en beleid op het gebied van laadinfrastructuur? F: Wat is onze visie? Wat is de vraag, wat is over een jaar de vraag en het aanbod. Het vraag aanbod spel daar zijn we mee bezig. Daarbij zien wij een aantal sporen die een mogelijkheid zijn. Wij kennen de

bestaande oplaadpalen, wij weten dat er snelheid stations zijn. Wij hebben geen idee of het laden van een pantograaf, zo'n ding op een dak, voor bussen iets gaat zijn, wij weten niet wat inductieladen gaat doen, wij weten niet wat waterstof gaat doen, wij weten niet wat mierenzuur gaat doen, wij weten niet wat de autonome auto gaat doen, maar wij weten wel dat al die ontwikkelingen ergens in de toekomst mogelijk gaan zijn. Om te zorgen dat wij onszelf niet te veel laten remmen door te zeggen ja een laadpaal is niet meer nodig, want wij gaan allemaal inductie laden, leuk dat wij dat gaan doen en dat wij de techniek helemaal ondersteunen. Maar nu is de techniek nog niet zover en gaan wij bouwen wat wij kunnen. Er is veel vraag en aanbod en wij zorgen ervoor dat het aanbod zo goed mogelijk aansluit bij de vraag. Dat is ons centrale uitgangspunt en ons doel:

G: Dus jullie beleid is daarop gebaseerd? F: Ons beleid is gebaseerd op dat wij zeggen vraag en aanbod bij elkaar aan moeten sluiten. De politiek (gemeente en wethouders) die vragen dan hoeveel laadpalen komen er dan? Wij roepen altijd, het

worden er 1000 maar het worden er nooit precies 1000. Dat is gewoon omdat de politiek een getal wil horen. Als op het moment 600 nodigen zijn komen er 600, als er 900 nodig zijn komen er 900, als er 2000 nodig zijn komen er 2000. Dat is ons uitgangspunt wij zeggen 1000 maar als wij er meer willen moeten wij dat hier weer intern voor elkaar krijgen.

G: De verhouding normale laadpalen en snelladers: de vraag is welke kant gaat dat dan op? F: Wordt het alleen maar snelladers of wordt het alleen maar thuisladen of wordt het een mengelmoes? Wij weten het niet. wat wij wel weten is wat onze visie is, onze visie is een combinatie van. Wij

zeggen de auto kan het best opgeladen worden waar hij standaard geparkeerd is. Dat is in de wijken, in de parkeergarages op het P+R terrein. Wij proberen de laad infrastructuur waar de auto stilstaat zoveel mogelijk bij elkaar te brengen Daar ga ik eerst even op verder en daarna ga ik over op de snelladers:

G: Dus de parkeertijd is het belangrijkste deel? F: Ja de parkeertijd is het belangrijkste waar wij nu op focussen, waar de auto nu al stilstaat daar is de behoefte om te laden. Dat is het goedkoopste om te doen omdat daar kleine aansluitingen naartoe

moeten, het ruimte beslag en het is het makkelijkste. Het enige wat er moet gebeuren is dat er een laadpaal bij moet. Laadpalen trekken vrij veel stroom zo'n 3x 25 ampère, op het moment als je daar een Zoë of een Tesla aanzet, die kan 3 fasen laden, dan heb je 11 KW per uur eruit. Een gemiddeld huishouden gebruikt ongeveer tussen de 7 en 10 KW per 24 uur dus zo’n ding trekt 24x zoveel stroom als een huis, dat zijn even de verhoudingen, die ken jij natuurlijk heel goed. dus die verhoudingen kan je aanhouden. Dat betekend dat je op het moment dat je laadpalen in de straat zet dat het na een tijdje eindig is voor het stroomnet, op het moment dat je in een straat 80 huizen heeft en je zet er 3 laadpalen bij: die trekken 3x 24 is 72 huishoudens met zijn 3én dat is totaal uit evenwicht. Dat is iets waar we heel erg bewust van zijn dat het een risico is voor het stroomnet. Daar zijn we heel erg mee bezig om een manier te zoeken hoe wij dat kunnen opvangen, een van die manieren is het slim laden of te zorgen dat de Zoë zich niet de eerste drie uur vol slurpt maar op het moment dat het net het kan hebben. Dat zijn de proeven: flexpower, social charging en slim-laden Die gaat er vanuit de gebruiker bepaalt wanneer de accu vol is en vervolgens bepaalt de paal (de slimme software) de input, de aanwezig stroom en de vraag van stroom, hoeveel stroom naar die auto kan. Heel concreet is dat als je om zes uur s ’avonds thuis komt met je Zoë en je plugt hem in dat hij dan wacht tot het s ‘nachts twee uur is en dan is er stroom over en laad hij op. Dat is deel 1 met de normale palen. Daarnaast hebben wij de snelladers, de snellaadstations. Wij gaan op twee strategische plaatsen in de stad snelladers plaatsen, de snellaadstations. Die plaatsen wij niet bij een parkeervak, maar op een soort kiss-en ride strook, het lijkt het meest op een tankstation qua vormgeving zodat de auto daar sneller kan laden. Zo’n station heeft een aansluiting van 3x 250 ampère t.o.v. normaal 3x 25 ampère.

G: Die kan dus ook sneller opladen, een soort tankstation van de toekomst? F: Ja. dat is in de beeldvorming zo, die plaatsen wij voor onze behoefte in de stad, die behoefte zit op een paar punten. Wij willen alle mensen die volledig elektrisch rijden en op de openbare plaatsen zijn

aangewezen om te laden: dat is 2x een selectieve groep die is volledig afhankelijk van onze laadinfrastructuur. Wij kunnen niet altijd garanderen dat er laadpalen vrij zijn, wij proberen te zorgen dat er voldoende laadpalen zijn, Wij kunnen wel zeggen dat op een laadpaal met twee punten zitten ongeveer vijf auto’s.

Page 101: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 18

Er zitten meerdere auto's op een laadpaal en dat die auto's kunnen wisselen op het moment dat hij vol is, kun je meer auto's hebben dan plekken. De volledig elektrische rijder gaat daarbij nat, want op het moment dat hij niet zeker weet dat hij vol is kan hij de volgende dag niet weg, dat is hartstikke klote voor de elek. rijder, dus zie je dat veel mensen in de problemen komen. Wij krijgen regelmatig een noodkreet in onze mailbox van: help er zijn veel te weinig laadpalen, ik rij volledig elektrisch en ben van jullie afhankelijk. er wordt fout geparkeerd, dat kunnen wij handhaven, er zijn te weinig vakken, dan zetten wij een extra kruis. Op het moment dat er een laadpaal te weinig is, dan is onze doorlooptijd minimaal 8 weken voordat er een extra laadpaal bij staat. De doorlooptijd bij Stedin is dus 2 maanden en de elektrisch rijder heeft dan 2 maanden een probleem. Voor ons is het belangrijk om een alternatief te bieden en zijn de snellaadstations heel belangrijk.

G: Dus jullie kijken echt vanuit het consumenten/klant perspectief? F: Ja, de eerste dimensie is de elektrische rijders. Wij kunnen nu aan alle elektrische rijders zeggen: beste elektrische rijder in den haag heb je honderd procent kans dat je je auto kan vullen. Wij streven

ernaar dat je ongeveer binnen 5 minuten auto rij tijd je auto kan vullen. of dat vanaf je woonadres is of extra rijtijd daar zijn wij nog niet helemaal over uit. Daar zoeken we op toegangswegen naar de stad extra locaties uit. Dat is 1 groep: we denken dat die groep de snel laad stations niet veel gaan gebruiken. vooral mentaal belangrijk is. Als ik een elektrische auto heb (niet van mijzelf maar van de gemeente) dan plan ik voor mijzelf een onmogelijke rit uit om mijzelf te trainen van hoe denkt een elektrische rijder, zodat ik die gedachtegang kan volgen. Ik ben pas van Den Haag naar Wageningen gereden. Wageningen is meer dan 100km een Zoë kan 130 km rijden op de accu, dan zit je te denken waar ga ik hem volgooien en zie dat Wageningen 7 laadpunten heeft in het centrum waar ik terecht zou kunnen, er zit alleen op de heenweg een snellaadstation en niet op de terugweg, dus ik moet op de heenweg snelladen, weet je wat ik vertrek gewoon en dan zie ik wel. Kom ik bij de Zoë aan, zie ik dat hij 70 procent vol is, dat veranderde scope, ga ik instappen moet ik wat plannen. Dus de hele gedachtegang, waar zitten de laadpunten waar zitten de noodoplossingen (snelladers) daarvan bepaal ik of ik wel of niet naar de laadpaal doorrijd. Dat is doelgroep 1, de 2e doelgroep is de veel rijders. De taxiondernemers proberen we te verleiden om elek te gaan rijden omdat die heel veel binnenstedelijke kilometers maken. De taxichauffeurs doen hun best om zoveel mogelijk beren op de weg te zijn, dat is logische, die zijn wat conservatiever, die zeggen help snellader nodig en wij antwoorden hoeveel rijdt zo’n taxi nou per dag, zij antwoorden ja, wat als ik een verre rit heb naar Schiphol en dan weer een, en weer een dat gaat toch niet. Ja moet niet al te bijhand antwoorden hoevaak heb jij op 1 dag, 4x een rit naar Schiphol heen en terug zonder pauze. die hebben eens per twee weken zo’n ritje, zeker met straatvervoer, de geplande ritten hebben dat vaker, maar zeker met straatvervoer. Zij willen dat gevoel van vrijheid over hebben. Voor ons is de uitdaging om taxibranche te verleiden, als er snelladers zijn in de stad, is dit dus geen probleem. De 3e groep is MKB, met name in de stad. Die rijden per dag soms maar 30 km. Zij hechten veel waarde aan mogelijkheid dat er iets heel bijzonders is. Wij bouwen onze snellaadstations op dit moment dat ze er zijn, niet noodzaak dat ze gebruikt worden, daar zit nuance verschil in. Wij zien wel doordat ze er zijn minder laadpalen plaatsen, plaatsen, waar we voorheen verplichting hadden nu up to date zijn. Stel dat we verslappen breekt minder de pleuris uit doordat wij kunnen zeggen. Dat is vanuit de rijder beredeneert, waar kan het,

Het Stedin gedeelte, zoals wij dat noemen., waar is de stroom en wat zijn de plekken waar de stroom naartoe kan en met name waar de stroom over, stroom kan altijd overal naartoe, wat is de verhouding

normale laadpalen en snelladers. Die verhouding weten wij nog niet, die weet nog niemand, die is nog nergens binnenstedelijk. Wat we gaan doen: we hebben met Fastned de afspraak, de snellaadstations die binnenstedelijk worden gebouwd, die bouwt Fastned in opdracht van ons, wij betalen ze en bepalen de plek, vormgeving, zij mogen hun logo erop plakken en mag ten hoogste het onderhouden. maar de inkomsten gaan naar ons, is niet veel geld, wij zijn van de kosten baten, vast net is van merk, beheer onderhoud:

G: Dat is niet overal toch bij Fastned? F: Bij Fastned is bijna alles van hunzelf en in Den Haag is een aantal van hun en een aantal van de gemeente. Hier in de stad zijn op dit moment zijn er 4 snel laders waarvoor vergunning is aangevraagd. twee

zijn van Fastned en twee van de gemeente en op alle vier staat het Fastnedlogo. Wij hebben met Fastned afspraak gemaakt dat de records van ons zijn. G: De data dus? F: Ja klopt de data. aan de hand van de data, charge id, en passnummers kunnen wij uitlezen, zit er overlap in , in de pasnummers die de normale laadpalen gebruiken en de pasnummers die de snelladers

gebruiken. Dat soort analyses kunnen wij cirkels trekken. Snel laad Laan van Meerdervoort waar zijn de locaties die dezelfde automobilisten gebruiken, dus wij kunnen zo meteen berekenen, hey, de snel laad LVM heeft een bereik van een meters, reistijd. dat gaan we onderzoeken ben benieuwd wat daaruit gaat komen. We zijn heel benieuwd of de snelladers goed gebruikt gaan worden, ten tweede zijn wij benieuwd hoe verschuift het gebruik van de normale laders, naar de snelladers. Dus het zou kunnen zijn dat de normale laadpalen helemaal niet meer gebruikt worden, het zou kunnen.

Doordat wij al die data hebben kunnen wij het gedrag een op een analyseren. Deze gebruiker gebruikt eerst 1 x per week de laadpaal, nu 3x per week deze paal en 1x per week de snellader, dat is interessant. op basis daarvan gaan wij bepalen hoe er verdicht moet worden op basis van de snelladers. Dat is vanuit de gebruiker. Op het moment dat Stedin gaat zeggen, beste gebruik team, beste gemeente Den Haag, in die straat mag er geen enkele laadpaal meer bij dan is het moment dat wij met Stedin een op een om de tafel moeten gaan om te bespreken snappen jullie de urgentie en wat is de mogelijkheid om de verduurzaming van het wagenpark toch door te zetten.

Dat is heel grofweg het algemene verhaal. Nu mag jij weer een zetje geven.

Page 102: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 19

G: Je kan dus niet zeggen we zetten in de hele straat een laadpaal en moet je de hele straat opengooien en moet je alle leidingen weer gaan vervangen en transformatoren, dat is natuurlijk heel kostbaar. Ik denk dat dit verhaal wel duidelijk is vooral met die locatie is heel interessant. Jij zegt ik vooral naar kosten van hoeveel kan je er neerzetten van bijv. 1 snellaadstation en neem je dat consumentenverhaal zeg maar mee. dat is nu nog niet mogelijk omdat die data er bijna nog nergens is. Jullie hebben straks wel een uniek project in de stad in een stedelijk gebied.

F: Wij zijn de eerste die dat echt binnenstedelijk als doel hebben ja. G: Dan heb ik verder wel wat vragen die zijn meer kosten gerelateerd. Bijv. de kosten voor het project van snelladen, ik weet niet hoeveel jij daar vanaf weet.

F: Het is allemaal, bedrijfsgevoelige info, ik zal het in order groottes doen en dan mag je het zelf proberen te herleiden. G: Ik heb zelf ook wat andere informatie erover. F: Goed zo, want daar moet je altijd mee oppassen. de kosten voor laadpaal zit in aanschaf, beheer en onderhoud. Dat betekend dat wij met onze laadpalen boer, dat is ecotap, vaste prijs, ongeveer tussen 3

en 5 duizend per locatie, daarmee staat paal visie in grond. G: Dus met tegelwerk inclusief. F: Ja, precies, inclusief ik wil niet eens weten het aantal tegels, ik probeer dat op afstand te sturen. Voor dat bedrag staat hij er, en moet het nog blijven doen dus het onderhoud. Daarvoor betalen wij een

bedrag aan ecotap, dat ligt tussen de 25 en 40 euro per maand per paal om die laadpaal in de lucht te houden. dan hebben wij er geen omkijken meer na, al het onderhoud is voor ecotap, als die omver wordt gereden. Ja maar je hebt ook 500 palen in de stad, dus dat is logisch. Vervolgens komt er een inkomstenstroom terug onze kant op omdat de stroom wordt verkocht, wij mogen als gemeente geen stroom verkopen dus bieden laaddienstverlening aan en in ruil voor die verlening betaalt de elektrisch rijder en krijgen we geld voor terug. Dat is bij de normale laadpaal en daarbij is het omslagpunt waar we het beheer en onderhoud terugverdienen, dat verdienen we ongeveer terug als een laadpaal een maandomzet heeft van tussen de 250 en 300 kilowatt uur per laadplaats gemiddeld. Dat zijn ruime marges gezien de concurrenten.

G: Dat snap ik, en verschilt ook zeker per stad en ranges. F: De ranges liggen best laag bij normale laadpalen. De snellader is een heel stuk duurder, een normale tussen 3 en 5duizend, kosten een snellader voor 1 auto tegelijk kost ca. 40.000 de snellader zelf, en dat

is de lader. op het moment dat je op een laadstation 2 snelladers wil kost het al 80.000 euro. en vervolgens willen wij het landschappelijk ook inrichten dus dat het er goed uitziet, dus zit je per locatie al snel boven de ton. Daarnaast hebben wij ook bij de snellader, beheer en onderhoud. dat is dan weer een bedrag wat wij aan .Fastned gaan betalen voor beheer en hosting en zit een onderdeel.

Een aansluiting van 3x 25 ampere, het vastrecht van Stedin weet ik nog niet uit mijn hoofd. dus kan kom je snel over 1000 per snellaadstation, tussen 1000 en 2000. zoals je hoort we weten het ongeveer niet precies. Daarbij weten wij niet hoeveel auto’s daadwerkelijk op 1 snellaadstation geladen gaan worden.

Stel dat wij van de meeste optimale variant uitgaan waar het snellaadstation door 1 auto per 20 minuten gebruikt gaat worden allebei de laders.

G: Dus fulltime bezetting? F: Dan heb je 3 auto’s per uur per lader, zes auto’s per uur per station, en dat hou je dan een uur of 8 vol per dag, 50 auto’s per dag uit. Voor 50 per dag heb je investering van meer dan 100.000 euro en heb

je een abonnement van tussen 1000 en 2000 euro van 50 auto’s per dag, van een normale laadpaal waarbij je 2 auto's per dag hebt, voor tussen de 40 euro waarbij je 1 auto hebt, 40 omrekenen naar die andere. volgens mij 2 auto’s tegenover 50, vastrecht x 25 doen, 40 x 25 is 800, dat is precies 1000. stel dat 50 auto's fulltime intensief gebruik gaan maken van een snelheidsstation en 50 auto's op normale laadpaal. kosten meegenomen, van de normale kant en de bovenkant.Snelladen is dus gewoon veel duurder, voor ons als gemeente maar ook voor de elek. rijder. want we gaan een iets hoger tarief rekenen.

G: Ja klopt, dus ook voor de service dat je sneller kan laden en de aansluiting? F: Ja, voor de service en dat je sneller kan laden en sneller is duurder. Voor het plaatje, de hele utopie is dat snellader voor ons als gemeente voordeliger is dan laadpalen. De optie is dat 5 auto's per dag

volledig gebruik maken van het snellaadstation die situatie zie ik nog niet zo snel gebeuren dat het zo hard gaat. G: Nog nergens gezien inderdaad. Oké dat schetst wel een goed beeld van jullie kant. F: Voor ons zijn de financiën (ik ken het hele verhaal wel) maar ons zijn de financiën niet het belangrijkste uitgangspunt. De rijder is belangrijk en de netbeheerder. Die is nog niet het belangrijkste maar we

weten dat hij wel op een begeven moment op de rem gaat trappen. op het moment dat hij op de rem gaat trappen moeten we met z’n allen, de netbeheerder. G: of de charging pool operator? F: Dan moeten wij om de tafel zitten van hey wij hebben in probleem in die wijk, hoe kunnen we in de toekomst ervoor zorgen dat er gewoon gereden kan worden. Dan moet je er samen uit kunnen komen.

Page 103: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 20

G: Net zoals een het plan: 100 procent elektrisch in 2025? dat is wel erg optimistisch en niet eens haalbaar denk ik? F: De reacties op de kamer waren verdeeld, degene die wat verder stonden zeiden: goh wat geweldig, eindelijk wat zicht op. Zo stond ik er zelf in van eindelijk de politiek werd wakker dat ze er iets van

moeten vinden, de andere kant zijn ze helemaal gek geworden, dat kan helemaal niet, straks gaat elek. vervoer de boeman zijn dat benzine vervoer vervangt. Er zijn wisselende reacties erop. ik zou het fijn vinden als er mooie maatregelen komen, stel dat het Rijk gaat zeggen (het gaat wel richting miljard denk ik) dus veel geld naar de netbeheerder dat het allemaal aankan, dan is het ook weer opgelost, wat de consequenties zijn om dat voor elkaar te krijgen. Het is in ieder geval fijn dat ze roepen wij willen het, op basis van dat ze het willen mag je het gaan uitwerken en wordt het betaalt.

G: Zowiezo, mijn persoonlijke mening is dat het goed is dat ze een visie neerleggen dat je ergens naartoe kan werken. Ze hebben ook al een energieakkoord van 2035 waar ook al een deel in staat. Er ligt

nog zoveel oude infrastructuur, ik zelfs denk dat 1 miljard nog laag bedrag is. F: Ik weet dat er voor Lomboknet een paar ton is uitgegeven. G: Maar om dat voor heel Nederland te doen? F: Als Lomboknet meer dan €350.000 voor een 20tal laadpuntjes kostte…. G: Haha, ja dan zie ik het niet echt gebeuren, dat wordt miljarden. F: ik denk dat Lomboknet is, worden wij helemaal platgelopen door mensen van ik wil dat ook, ik wil mijn zonnepanaal aansluiten op de laadpaal, ja leuk dan moet je of een hele grote batterij in de grond

graven dat je die buffer hebt, of zoek het maar uit en lever het terug, wij kunnen dat nog niet, op g4 verband is er heel veel kennis beschikbaar en die delen wij ook weer. de g4 plus de metropoolregio Amsterdam die werken super goed samen, maar we moeten niet allemaal die proef van lomboknet gaan doen, want dat is zo meteen de prehistorie, wat er over 5 jaar is is lomboknet van nu prehistorie, daar ben ik van overtuigd, dus je moet nu niet overal streven dat lomboknet het uitgangspunt is want over 5 jaar is zwaar verouderd. Nu briljante dingen doen, en we moeten dat gebruiken om weer verder te gaan. En dan zijn er nog steeds hele dure investeringen in het net nodig, maar op basis van de kennis die we nu hebben gaan we zeggen van dan 10 meervoudig of dan 10 x te weinig.

We weten het allemaal nog niet, daarom zeggen wij tegen Den Haag we bouwen wat er nu nodig is. G: Oké, dan nog een puntje met vergunningen. dat is iets van de gemeente want bijv. snellaadstations hebben natuurlijk vergunningen nodig en voor een normale laadpaal dus ook. Kan je daar nog iets

over uitweiden? F: Ja, de normale laadpaal is het makkelijkste. De paal zelf is vergunning vrij, voor de graafwerkzaamheden minder dan 25 mtr. (afstand die Stedin hanteert) is alleen melding meer dan 25 mtr. is

graafvergunning. Laadpaal zelf is vergunning vrij net als lantaren en er is een verkeersbesluit nodig voor doelgroepen, namelijk voor aanmelding doelgroepen voor vakken opladen. dat is een vrij simpel proces. Voor het snellaadstation: ook al gaan wij de eerste snellaadstations bouwen, we weten het echt nog niet. Ook al werk ik als projectleider, en heb het op 20 verschillende manieren uitgezocht om vergunning te vragen ik weet het nogsteeds niet en zo wat het ook bij de normale laadpalen in het begin, ik had het bij alle nodige collega’s gevraagd. en zo is het ook bij de snellaadstations, we hebben in ieder geval de graafvergunning nodig bij stroom verder dan 25 meter, zeker bij zwaardere aansluitingen gaat het soms om 300/400 meter.

G: Zoals bijvoorbeel het project aan de Laan van Meerdervoort is 310 meter? F: ja klopt.voor de werkzaamheden is er geen bestemmingsplan wijziging nodig De snellader is nog steeds vrij omdat we geen verkeer hebben. dat hebben wij in de gemeentelijke verordening dat

oplaadpalen vergunningvrij zijn, als de gemeente ze plaats en er is overleg met de adviescommissie openbare ruimte, dat is intern gelul, we zijn immers ambtenaren, goed dat wij dit hebben maar af en toe is het vervelend. We hebben de verharding, geen vergunning. als er een opbreek vergunning nodig is op het moment dat het nodig is weten wij niet. De overkapping die Fastned graag wil is als het goed is volledig vergunning vrij, want hij valt altijd niet zijne bouwwerk, er is een speciale cat. als het minder dan aantal m3 is, dan is het een hele makkelijke procedure, we hoeven dus ook geen bouwvergunning, dat is er eentje die lang zou duren, en voor archeologie is er niks aan de hand voor het snellaadstation omdat er alleen verhard wordt, voor de archeologie is er ook niks aan de hand om dat de impact voor de bodem ook klein is. de archeologie zegt als het meer is dan 4m2 en halve meter diep dan (precies weet ik het niet) dan moet de archeologie er iets van zeggen. En Fastned heeft dat gewoon heel slim gedaan: oh het is meer dan 4m2, dan gaan wij op 3.5 zitten. oh het is zo diep, dan gaan wij.. etc. dus die hebben helemaal gekeken naar de regelgeving..

G: Dus daar hebben ze dan zo'n station op ontwikkeld. Die archeologie regelgeving zijn dus landelijke regels? F: Voorzover ik weet wel, maar gemeentes kunnen daar aanvullen beleid op hebben. De wet is: de gemeente zou het kunnen verzwaren maar niet verlichten op de wet. G: De kosten zijn dus gewoon de openbare tarieven? F: Klopt, dat zijn de kosten niet. het gaat om leges, een paar honderd euro:

Page 104: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 21

G: Dan de subsidies, jullie hebben bijv. de 2 snel laadstations gesubsidieerd, althans die zijn van jullie dus en jullie krijgen daar ook inkomsten uit. Zijn er verder nog dingen die jullie sponseren van het hele energiebeleid en het uitrollen van laadpalen?

F: De grootste subsidie die zit verkapt, dat wij de KWh prijs bepalen. Doordat wij alle laadinfra in bezit hebben bepalen wij wat de prijs is, die is bij de laadpalen 25 cent per kWh en bij de snelladers 35 cent per kwh, wij zien dat andere marktpartijen andere tarieven rekenen, die dan beduidend hoger zijn.

G: Normaal is het geloof ik 25 cent voor gewone laadpaal en 65 voor snellaadstation? F: Ik weet dat Allegro bij de snelladers 50 cent per minuut rekent, en ik weet dat er een aantal een heel hoog starttarief rekent, Wij rekenen geen starttarief, wij vinden dat de Toyota Prius net zo goed moet

rijden en opladen als de Tesla. Wij doen het vanuit luchtkwaliteit, dat project is onze financieringsbron en voor de buitengebieden, de Prius en Tesla rijdt schoon allebei even goed, en dat de tesla 100 procent schoon is, och ik als elek. rijder fanaat vind dat perfect maar als beleidsdoelstelling vinden wij daar niks van.

G: Dus jullie hebben gewoon een budget om de luchtkwaliteit te verbeteren en daaruit worden die soort projecten gefinancierd? F: Ja, het oorspronkelijke project bij de gemeente Den Haag komt uit de NSL gelden, Nationaal Samenwerking verband Luchtkwaliteit, ik weet niet of je daar wel eens van gehoord hebt? NSL is een jaar of 6

geleden in het leven geroepen, voor de luchtkwaliteit problematiek in de groten steden aan te pakken, daarbij had de gemeente Den Haag een budget van 200 miljoen euro dat de luchtkwaliteit weer schoner wordt in een paar jaar tijd. Daarbij is ook het project elektrisch vervoer gefinancierd maar ook tal van andere maatregelen. Daar trekken wij onze gelden uit, wij hebben het zo geprognotiseerd dat wij ook voldoende dekking hebben dat dat ook voldoet, wij hoeven dus ook niet schuldig te voelen t.o.v. een andere organisatie als een SZW te weinig geld heeft, we hebben allemaal geoormerkt geld.

G: Het komt dus niet uit de gemeente. F: Klopt, het geld dat aan luchtkwaliteit is besteed moet ook aan luchtkwaliteit worden uitgegeven en het geld dat aan elektrisch vervoer is besteed moet ook daaraan worden uitgegeven. Wij hebben dus

ruimte om te schuiven, op het moment dat ik meer geld aan snelladers geef, heb ik minder geld om aan de normale laadpalen te besteden. G: Dus vanuit innovatief oogpunt is dat dus ook wel goed om het sneller te laten gaan. F: Ja, wij hebben niet een interne strijd om het geld te houden maar met het rijk. Wij doen samen met Rotterdam, Den Haag en Utrecht. en Zij zeggen steeds je moet aan de voorwaarden blijven voldoen. dus

niet onze wethouder van financiën, dat is wel prettig. G: Dan nog over de co2 reductie dus luchtkwaliteit, kan je daar iets over vertellen, ik weet niet of daar nog cijfers aanhangen?... Ik weet dat dat heel moeilijk is. F: Wij gebruiken daar cijfers van die online staan. O.a. Klimaat monitor G: In Rotterdam zijn ze daar ook mee bezig met milieuzones. F: Den Haag heeft een betere luchtkwaliteit dan Rotterdam, Rotterdam heeft het echt heel zwaar. Wij zeggen dat 1km. elektrisch rijden 109 gram co2 bespaart. die hebben wij op internet gevonden. G: Dat is dus de gemiddeld uitstoot dan dat hij anders op benzine zou rijden. F: Voor ons het is Smart resultaat, van hoeveel co2 is het nou, daar worden wij niet op afgerekend. Wij worden wel afgerekend dat de snellaadstations en laadpalen er komen en dat de politiek G: En dan er geen klachten komen dat men niet kan laden. F: Je hoort het over hoelang ik moet nadenken. Wij doen wat goed is en ik ben er van bewust dat er voldoende laadpalen moeten komen, afhankelijk van de vraag en wat dat dan precies is, is aan onze

expertise en wij hebben gelukkig een wethouder die ons daar vrij in laat en in vertrouwd: G: En het kosten plaatje van die grammen, ik heb er op gezocht maar is moeilijk te vinden. F: Er is niet gezegd dat 100 gram zoveel waard is. Dat wordt heel ingewikkeld, hoeveel is mensenleven waard, dat is een studie opzicht.Die km kost 25 cent, want het is ongeveer 25 cent per kWh, 5 eurocent

per 100 gram, maar zo werkt het niet helemaal want je hebt ook afschrijvingen en dergelijke

Page 105: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 22

G: Dan over parkeerplaatsen, is daar ook data van , hoeveel kost 1 parkeerplaats en hoeveel levert het op? F: Parkeerplaatsen kosten een aantal duizenden per jaar om in stand te houden, is best duur. Wij zeggen dat door het plaatsen van het laadpaal wij geen parkeerplaats weghalen maar door het plaatsen

veranderd te parkeerdruk. Op de laadplaatsen mogen alleen elek. auto’s staan, dat betekent dat conventionele auto’s er niet mogen staan, voor deze auto's veranderd de parkeerdruk dus. Wij zeggen niet de parkeerplek is weg, want anders zou de elek. auto in de wijk hebben gestaan en staat nu daar. Wij proberen als er 5 elek. auto’s in de stad komen dat er 2 laadplekken komen dat het netto dus niks betekend voor de conventionele auto's. Maar op het moment dat dat elek. auto’s niet aan het laden zijn blijft de plek dus leeg en heb je wel invloed. Dat is een heel smal evenwicht waar wij met redelijk emotionele bewoners te maken hebben, des te dichter je bij de bewoner zit des te gevoeliger zoiets ligt. Alles wat betaald parkeren is volgt men het beleid van de normale auto alleen er zit een stekker aan.

G: Dus het is niet zo dat je gratis kan parkeren? F: Dat is in Den Haag niet zomaar in sommige andere steden wel. G: Dan nog een ding wat betreft het zicht, als er in een straat heleboel laadpalen zijn, ik kan me voorstellen dat dat niet zo mooi is, hoe gaan jullie daar mee om? F: Wij plaatsen de laadpalen volgens de criteria lijst, als je daarom vraagt wil ik je die nog wel toesturen. Die lijst zegt plaats de palen waar men zo min mogelijk last heeft, dus niet voor iemand zijn voordeur,

niet waar iemand vanuit zijn raam er vol op kijkt, wel bij voorkeur binnen 25 meter van het stroomnet, tegen een blinde gevel en ze moeten er gewoon komen, mensen vinden bijv. een lantaren paal ook niet mooi maar dat hoort bij het straatmeubilair.

G: Wat is jou visie m.b.t. het verdelen van de snelle palen en de normale palen in het centrum en de buitenwijken? F: Mijn visie is dat iedereen die de mogelijkheid heeft om op eigen terrein te laden dit doet. Dit is goedkoopste, je kan altijd laten en is dichtbij. G: Is dat 10 procent? F: Die percentages ken ik niet, in Den Haag hebben niet zoveel mensen eigen terrein. Mensen die dat hebben zie ik op eigen terrein laden en niet openbare infra. Mensen die de gedachte hebben ik ga naar

een openbare plaats om daar energie in mijn auto te stoppen, daar komt de cultuurverandering in. De snelladers zie ik als een niche die niet belangrijk zijn voor het totale systeem maar wel als back up, daarbij kan het zo zijn dat de batterijen gaan groeien, Tesla heeft nu een batterij van 85 kwh, stel er is een 250 kwh, daar kan je dan 1500 km op rijden. die heeft vele stroom nodig, als die komt dat je hem thuis oplaadt maar niet elke keer helemaal vol. Dan laadt hij 11 kw per uur is tachtig kwh per nacht (uitgaande van huidige trage snelheid) is 80 x 5 kan je 400 km rijden. Dus met die grote accu’s gaat nog steeds iedereen thuis laden, want wie rijdt er nou 400km per dag.

G: Het duurt natuurlijk wel langer voordat zo’n accu vol is. F: Maar zo’n accu rijd je niet iedere dag leeg, en waar laad je hem dan liever op dan op de oprit. Die snelladers zijn wel belangrijk als ik met mijn 250 kwh naar Spanje wil gaan rijden. dan zou ik wel snelladers

willen hebben. G: het is mogelijk dat je die snelladers niet in de hele straat kan zetten. F: Dat zou ook niet hoeven, als ik zo’n accu heb en ik zet hem een hele nacht aan kan ik weer een week vooruit. Er zijn mensen die altijd met een volle accu willen rijden maar dan moeten wij sturen dat je

alleen mag laden als je minder dan 50 procent vol hebt. Ik weet niet of dat technisch mogelijk is. Maar dan zal de penetratiegraad behoefte niet 100 procent te zijn. Als iedereen een snellader heeft mag het ook voor iemand zijn deur, dan als het uitzonderingen zijn. Nu is zo’n laadpaal een privé plek maar dan is het een openbare voorziening in de straat. Dan heb je bij 80 auto's misschien 6 laadpalen nodig.

G: Je zou kunnen reduceren, dat je 1x per week je auto helemaal vollaad bij een snellaadstation en dat je de hele week dan weer vooruit kan. F: Wij hebben nu 3x 25 ampère aansluitingen. Het kan zijn dat Stedin straks tegen ons zegt zullen we afspreken dat het 3x 15 wordt, dus minder op voorwaarde dat het s 'nachts tussen 11 en 7 dan 3x 40

wordt. Dat is voor Stedin gunstig want de auto’s gaan niet laden wanneer de normale avond piek zit, dus het stroomnet kan het gewoon aan, en is voor ons gunstig want alle auto's zitten gewoon vol. G: Huizen verbruiken dan ook minder dus je hebt dan overcapaciteit. F: Wat de bedragen precies zijn weet ik niet, want ik moet het grote verhaal kennen. Het straatladen is belangrijker, want de snellader wil nu de stroom hebben, als je de snellader naast een energiecentrale

gaat zetten dan is het weer een ander verhaal, want anders blijft je transporteren. G: De andere optie is met opslag, dat kan ook om de pieken eruit te halen. F: Dat zijn alle scenario’s en ken die, maar nu ben ik bezig te bouwen voor wat er allemaal voor nodig is.

Page 106: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 23

Transcript Interview III: (Fast)Charge Operator, MisterGreen Interview – (Fast) Charging Pole Operator

Interviewee: Renke Barendrecht - MisterGreen Date: 08 – 04 - 2016 Location: IJdock, Amsterdam Time: 15: 30 Duration: 47: 53 Stakeholders Cost & benefits G: Jullie hebben momenteel een snellaad project lopen bij Harijn, samen met Stedin, kun je hier kort wat meer over vertellen?

R: De A2 bij Harijn heb ik het ook over gehad met Stedin wat wel een goed project was. Qua inkomsten is het ook een goed project voor een snel laadstation. Voor Fastned zijn ze moeilijk om de gegevens te

geven. Ik heb het idee dat het lastig is om rendabel te zijn voor hun per station. Het is voor hun ook moeilijk om de investeringen terug te verdienen. Zij richten zich meer op de lange termijn en voor grotere

aantallen.

G: Hebben jullie nog andere inkomsten naast de kilowatturen?

R : Wij verhuren onze stations met advertentie ruimte. Je kan een station adopteren. Bij de A2 hebben we het verhuurd aan travelcard. Een bedrijf die doet pasjes voor leaserijders voor de afrekening van

brandstof. En we hebben zon zelfde pasje voor de snellader. En we hebben auto’s nu met hun wrapping verpakt en daar krijgen wij nu geld voor.

G: Een iets ander businessmodel dan Fastned?

R: Fastcharging networks zal altijd ergens op de overkapping of de paal vermeld staan. Dat is het idee erachter dat het herkenbaar blijft en het een netwerk is van een bedrijf. Maar je kan dus als bedrijf er

eentje adopteren en dan wordt het jouw station. Onder de naam fastcharge network. We hebben dus lease en dan mister green fastcharging network die de station bouwen. En dan hebben we ook nog een BV

charge….. EN dat is eigenlijk de business wat bedrijven zich kunnen aanmelden om te adopteren. Maar als je naar fastchargingnetwork website gaat dan kan je ook al het adoptie model zien.Want fastcharging doet

het met de gemeente samen, den haag bijvoorbeeld. Zei krijgen dan de inkomsten uit de huur en de data uit de paal. Twee stations en die zijn ook door Fastned gebouwd.

G: Twee stations? En ze zijn dus van de gemeente?

R: Ja, ze hebben het verdeeld. Want data is tegenwoordig goud waard.

G: De stations hebben we gehad. De kosten? Wat is jouw visie op de kosten. Welke kosten posten zijn er? Hoe verhouden ze zich?

R: Hier heb ik onderzoek naar gedaan. De aansluiting is potentieel de grootste kostenpost. Pittige bedragen. Als je geluk hebt ben je voor 5000 klaar. Dan kan je in principe 2 laders op aansluiten. Als er meer

moeten komen moet je opschalen naar een compact station. Maar als er zo’n vraag is dan is er op dat moment makkelijk te verklaren aan investeerders om geld beschikbaar te krijgen. Maar nu hebben we besloten

om simpele, de hoogste klasse spanning te doen. Je hebt die kosten wat varieert van 5-25000 euro. Ligt eraan hoever je verwijderd zit van het netwerk. Dan heb je nog de verdeelkast van de elektricien en de arbeid

ook 5000 euro al snel. En dan kom je nog bij de snel laders uit. Daar kan je kiezen. We hebben een aantal op proef en we hebben er een aantal die we via onze partner huren.

G: Een soort lease?

R: Ja een soort lease.

G: En jullie hebben niet een bepaalde leverancier dat je afspraken kan maken?

R: Nee, we hebben geen hardware afspraken. Gelukkig want het blijkt ook dat sommige fabrikanten echt duidelijk een minder waardevol product leveren. Die zaten heel vaak met storingen. Zeker als je er

maar eentje hebt staan.

Page 107: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 24

G: Een welke kosten range moet je denken voor snel laders?

R: Ja 20-25000 ongeveerVoor gewoon het kastje zeg maar en de bijbehorende hardware. Ja. Ik hoop dat het in de toekomst wel naar beneden gaat. Want het is wel echt de grootste kosten post. Want dat is

vaak net zo veel als de aansluiting en andere dingen.

G: Ja, dus zeg maar de snel laders tussen de 20 en 25 dat is dan inclusief alles en faciliteiten, gebouw etc.? Of echt alleen de kast.

R: Ja, echt alleen de snel lader is 20-25

G: En je zei dat het verwacht dat het naar beneden gaat. Door de grotere vraag?

R: Ja, de productie die gaat opschalen en……

G: Of zijn er nog innovaties mogelijk. Dingen die technologisch beter kunnen. Dat het daardoor gedreven wordt

R: Ja absoluut. Ik weet niet of je wel eens de binnenkant gezien hebt van een snel lader? Het is echt bizar wat daar in zit. Alleen maar printplaten en invertors. Echt achtelijk veel techniek in zo’n klein kastje.

Maar ik zie dat niet heel snel gebeuren, want ik ben geen techneut. Weinig verstand van elektrotechniek. Qua techniek zal de prijs niet veel dalen, maar wel dat er schaalvoordelen zullen optreden bij nieuwe

productielijnen.

G: Daar dacht ik ook aan, maar misschien nog interessante innovaties. Dan nog een dingetje vergunningen. Jullie moeten vergunningen aanvragen om die dingen neer te zetten.

R: De gemeente hoeven we pas bij het bouwen te vragen. Rijkswaterstaat moeten we vergunningen aanvragen. Dingen als een overkapping … aanvragen. De magneten voor zo’n lader heb je de vergunning

van Rijkswaterstaat nodig

G: Is het een lang proces?

R: Het kan echt heel lang duren. Sommige locaties hebben we 10 maanden gewachtDus het duurt lang voordat je weet dat je kan beginnen. Fastned heeft natuurlijk overkappingen.Ja, die gaan we ook

neerzetten. En als er vraag is van een adverteerder is het voor ons veel voordeliger om een station te gaan bouwen.Dan valt het meer op natuurlijk.En het moet natuurlijk goed staan. In een bosrijk gebied is de

reclame niet zichtbaar vanaf de snelweg en de zonnepanelen leveren veel minder op.

G: Jullie hebben ook zonnepanelen op de overkappingen zitten?

R: Ja standaard

G: En doen jullie ook wel iets met opslag van energie of denk je daar over na?

R: Alleen bij de A2. Ik heb dat zelf onderzocht. Als je gaat kijken naar kilowattuur opslag. Als je de goedkoopste per kWh zijn in Amerika voor zo’n 35000 dollar. Dat kan je omrekenen naar 35000 euro

inclusief invoerrechten. Als je dan daarnaast nog de batterijen wil vullen met lokale stroom en als je ziet hoeveel energie er in een accu van een auto gaat. Dan moet je al gauw denken aan, toekomstgericht, 500 kWh

batterij opslag en dan zit je aan een investering van 800.000 euro minimaal. En als je dan gaat kijken hoever de prijs moet dalen voordat het gaat kruisen met wat je aan net kosten betaald denk ik niet dat het

levensvatbaar is. Economisch is het niet slim. Er ligt zo’n goed netwerk. Het slaat nergens op om er zo moeilijk over te gaan met opslag van je eigen energie. Het wordt misschien anders als je toestemming krijgt voor

een windmolen bijvoorbeeld.

G: Die kan je niet overal neerzetten natuurlijk

R: Het is wel mijn droom om energie uit windmolens te halen met eigen opslag. Het zou heel mooi zijn.Dan moet eerst de prijs naar beneden.De netwerk kosten blijven constant. Behalve de prijs van

elektriciteit zal gaan dalen. Dus wordt het doorkruist nog moeilijker. Dus ja ik zie het op grote schaal wel gebeuren bij netbeheerder als die op tijd mee gaan met de revolutie om energie te bufferen. Op kleinere

schaal is het niet te doen. .. rijn is een mooie demonstratie maar economisch niet te doen.Is ook testen om te kijken wat er technologisch haalbaar is. Wat kan er en hoe wordt er op gereageerd. En bijvoorbeeld dit

zou met zonnepanelen te zijn. En het is ook niet voordelig om de hele dag de batterijen op te laden om pieken te voorkomen. Die pieken is in Amerika een veel groter punt want daar heb je hele hoge belastingen op

piekmomenten. In Nederland is dat 1.89 per kW. Niet rendabel dus. Je kan veel beter ene eigen contact station neerzetten. Dan kan je, tesla 12 auto’s met 130kw tegelijk opladen. Van je eigen bedrijf.

Page 108: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 25

G: Het netwerk hier is op dit moment te goed om … Oké dan is dat duidelijk.

R: Als je me een mailtje stuurt kan ik je een tabel laten zien.

G: Doen jullie dat op geografie?

R: Het wordt op concessie uitgegeven. Waar we mogen bouwen daar gaan we bouwen. Op alle locaties waar wij op ingeschreven hebben is allemaal in de Randstad. Dat wordt interessant, maar wel lang

wachten.

G: Dus jullie hebben gewoon ingeschreven in stedelijke gebieden. EN hoe kijk je in de toekomst naar het feit dat mensen geen eigen plek hebben om te laden. Hoe denken jullie die te gaan voorzien qua

infrastructuur? Een balans tussen snel laders en normale laders.

R: In Amsterdam gaan we 2000 ac laders bij bouwen. Maar als de volgende generatie snel laders 150 kW kunnen laden dan kan je denken dat je dan 10-15 minuten, als je de laatste percentages ook vol wil

stoppen, bezig om 300 km bij te stoppen. Dat is net als bij benzine en dat is waar we naar toe willen. De generaties daarna zal sneller gaan en met meer radius. Uiteindelijk is het niet schaalbaar. Je kan niet op iedere

parkeerplek een ac paal neerzetten. Dat kost gewoon veel te veel geld. Je gaat naar een situatie dat je net als met je benzine auto naar de oplader gaat op het moment dat je ziet dat je accu leeg is. Ik denk niet dat de

AC palen vervangen gaan worden als ze stuk gaan, behalve als je ene echte oprit hebt. Dan kan je heel goedkoop je eigen stroom er in stoppen. Eigen opritten gaan daar heel erg van profiteren. Mensen zonder zal er

geen AC lader zijn.

G: Dat zie je ook in centra van steden?

R: Ja, want het is veel makkelijker om een snel lader neer te zetten. Zelfs de groenteboer op de hoek als hij daar business in ziet. Er zullen veel meer snel laad station komen dan we nu tankstation hebben.

G: Een interessante visie. Hij komt ook wel overeen met de andere mensen die ik gesproken heb van Eneco. Rondom het centrum willen we snel laders. En in het centrum komt vooral AC laders.

R: Ja, dat zie je veel idd.

G: Maar dat wordt op den duur uit gefaseerd omdat ook centra misschien auto vrijer worden. Steeds meer milieu zones. Nog een vraagje over de data. Ik heb wel data van de gewone laad palen.

Hebben jullie gegevens over hoe veel snel laad stations gebruik worden? Op een dag of aantal sessies?

R: Dat ligt aan de locatie. …Rijn tegenover Friesland. Gemiddeld 5 a 6 per dag gemiddeld per station. In …rijn misschien wel 2 of 3 dubbele.

G: Dat is interessant om te weten voor het model. Want ik wil kosten van station tegenover de kosten van normale laadpalen. En dan alle kosten, aansluiten, netbeheerders, maatschappij.

R: Zelfs met 100% kolen energie is het nog steeds 30% schoner met elektrische auto’s.

G: Qua efficiëntie zijn ze al redelijk goed. Hoeveel marge zit daar nog in? Is dat veel?

R: Nee, dat is natuurkunde. That’s it.

G: Dan hebben we de verdeling gehad. Hoe zie jij het wat meer de toekomst op het gebied van EV? Qua laden? Nu heb je een netbeheerders deel en dan naar de transformator. Zie je daar

mogelijkheden om het efficiënter te krijgen? Misschien te technisch.

R: Ik denk dat we uiteindelijk gaan naar een netwerk wat gewoon helemaal DC is. Zonder omvormers. Dan kan je een heel stuk uit de snel laders weg laten. Ik weet niet of dat mogelijk is technisch. Het

hoogspanningsnetwerk is nu AC? Ja, anders heb je veel spanningsverlies.Er is nu een ontwikkeling gaande dat het DC kan gaan worden zonder spanningsverlies. Er zitten ook wel voordelen aan DC. Dat is ene optie.

Ook kan je kijken naar een snel lader die geautomatiseerd wordt voor zelfrijdende auto’s.Gemeentes weten niet wat inductie gaat doen, maar natuurkundig gaat het hem niet worden. Tenzij je hele goedkope

energie hebt. Of je moet heel dichtbij de grond zitten met wegen als een biljartlaken.Nee nee nee.

Page 109: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 26

G: Vooral een verdeling tussen snel laders en langzaam uitfaserende normale laders.

R: Als ze er staan kan je ze gebruiken, maar ze zullen niet vervangen worden. Met die palen zit je tegen een maximale grens van 22 kW. De grootste is 28kW AC.Ja. Dat is gewoon te langzaam. Ik niet dat

iedere auto een batterij gaat krijgen van 200kWh. Maar om zo’n auto vol te krijgen ben je 6 uur bezig. Dat is niet wenselijk voor iemand die onderweg is. Om mensen uit ene benzine auto te krijgen moet je die

overstap zo makkelijk mogelijk maken. Dus dan valt AC af.Ook de state of charge speelt natuurlijk een rol. Dus denk dat de mensen ook gestuurd moeten worden om op bepaalde mensen te gaan laden.Mensen die

snappen het niet. Op onze palen staat nu stickers met wist u dat laden vooral snel gaat tot 80%. Ik zie heel veel sessies van hybriden die de AC stekker erin stoppen. Die paal die accepteert het en je betaald per

minuut. Veel lease rijders die de rekening zelf niet zien. Dat is wel heel belangrijk, de educatie. Eigenlijk wil je het zo hebben dat je ze ook niet hoeft te vertellen hoe het moet. De communicatie tussen de paal en de

auto wordt steeds beter. En ook de andere kant op. Daar zijn ze mee bezig. Dat is handig voor mensen die op een garage pad staan.

G: Zijn er verder nog dingen waarvan jij denkt dat het interessant is voor mijn onderzoek?

R: De balans is 100% snel laden. Zo snel mogelijk op alle plekken van tankstations ook snel laders beschikbaar maken.

G: Mensen geven aan dat laad palen ingewikkeld zijn. Aanbieders van snel laad palen moet dat een marktwerking zijn of zou de overheid meer een rol moeten spelen? Want het is geen overzichtelijke

markt of wel?

R: Er zou zeker meer regelgeving bij moeten komen. Hier in Amsterdam wordt het al toegepast. Er is een tender uitgeschreven voor de snel lader bij CS. Je krijgt nu ook in Amsterdam snel laadstations. Daar

heeft de gemeenten gezegd dat ze geen starttarief willen en er is een maximale prijs per kWh en dan kijken wie er op af komt. Nu zijn er situaties met maandelijkse tarieven met pasjes wat heel ondoorzichtig is.

Eigenlijk zou op de paal moeten staan wat je betaald, zodat mensen ook een keuze kunnen maken.

G: Omdat het nieuw is, is het lastig voor overheden om beleid te maken. Omdat ze alles willen uitzoeken. Dan gaat het voor jullie te langzaam?

R: Een lokale overheid zegt wel van: Dit willen we.

G: Het is wel een beetje een rat race voor alle locaties die vrij komen. Hoe ervaar je dat?

R: Onze locaties zijn voor ons. Wij hebben daar nu 15 jaar het alleen recht. Maar er komen wel aanvragen binnen bij ons om andere partijen toe te laten. Maar die partijen weten niet zo goed waar ze

moeten zijn. Er zijn maar weinig partijen met een idee van …. Dus daar zie ik geen concurrentie in.

G: De grootste kosten zitten in de aansluiting en neerzetten van de snel lader ansicht. Fluctueren die kosten heel erg?Jullie betalen niet alles. Er is een deel voor de netbeheerder. Wat vind je van de

regulaties?

R: Fantastisch. Het is soms wel wachten op de netbeheerder tot er een nieuw aansluitingspunt is gemaakt. Het is een logische reactie, maar wij lopen geld mis.

Snel laders trekken meer vermogen, dus er moeten nieuwe leidingen liggen in de meeste gevallen.Ligt er aan hoeveel leiding capaciteit ze nog hebben. Overal hebben ze nog genoeg capaciteit of het punt is

te ver verwijderd van het netwerk en dan moet er een nieuw voedingspunt worden gebouwd. En dat is zonde van het geld.Ja, daarom willen zij graag weten hoe dat in elkaar steekt qua kosten.

G: Nog iets toe te voegen?

R: Acceptatie is super interessant. Ook met Uber wat zij willen met zelfrijdende elektrische auto’s. We zijn al aan het samenwerken. Met een elektrische deel taxi die met een druk op de knop mogelijk maakt

om mensen op te halen of af te zetten onderweg.

G:. Het enige wat daar ontbreekt, is een zelfsturende auto. Er moeten nog wel stappen gezet worden voor autonoom rijden.

R: Ja, het gaat super hard. Ik rijd in de tesla met auto pilot en ik raak een half uur lang het stuur niet aan op de snelweg. Hij geeft gas en remt. Het kan ook buiten de snelwegen, maar dan moet je echt je

handen bij het stuur houden. Maar het is leuk om te kijken hoever die kan gaan.Het is vooral heel erg wennen voor de consumenten.Maar het is zo mooi om niet meer te hoeven sturen. Het is zonde van je tijd. Ja, je

kan andere dingen gaan doen.Ik wil zo snel mogelijk een auto zonder stuur.

Page 110: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 27

G: Dan krijg je kwesties met wie er verantwoordelijk is.

R: Het is gewoon veel veiliger. Volvo heeft al aangegeven dat zij verantwoordelijk zijn bij een ongeluk. Dan kan je als wetgever veel sneller handelen.

G: Heb je inzicht in de reacties van mensen die snel laders gebruiken? IS het vooral positief? Heeft het lang geduurd voordat mensen?

R: Het is positief want zodra er een nieuwe lader is op de route die mensen gebruiken. Dan zijn ze blij dat er eentje op de route ligt. Maar snel laders zijn gewoon duur. Ze zijn thuis gewend 21% te betalen.

De snel lader is 60 meer. Bij ons betaald je 30 cent per minuut. Dat geeft aan hoe lang je kan blijven staan of tot die 80% kan gaan. Het duurt 2 minuten voor 1 kWh. Dan zit je op 60 cent. Drie keer zo duur als thuis.

Als particulieren daar achter gaan komen dan komen de vragen waarom we zo duur zijn. Wij moeten de investering eruit halen.

G: Is er een indicatie voor de terug verdien tijd? 5-10 jaar? Of langer?

R: Ligt eraan. Nu is het met een snel lader met 5 sessies per dag. Dan ben je wel in 5 jaar terugverdiend.De levensduur van een AC paal is nu op dit moment 6-7 jaar.

G: Zo kort?

R: Ja, technologisch gezien omdat het zo snel gaat.

Transcript Interview Question: Minister of Economic Affairs Interview – Government

Interviewee: Henk Kamp – Minister van Economische Zaken, Dutch Minister of Economic Affairs Date: 16 – 04 - 2016 Location: TBM, TU Delft Time: 16: 30 – 17: 00 Duration: 00: 01: 42

G: U heeft veel gesproken over energie in Nederland en de EU, het Energieakkoord en de transitie naar een duurzamere samenleving. Nu zien we momenteel ook een transitie op het gebied van

mobiliteit. Namelijk de transitie naar elektrische voertuigen. Wat is het beleid van overheid op dit gebied, uw visie hierop en hoe ziet de overheid elektrische voertuigen en het laden hiervan in de toekomst

samengaan.

H: De gang naar elektrische auto’s zal zeker door zetten en de techniek zal steeds verder gaan. Electrische auto’s zullen heel goed aansluiten bij de transitie en duurzame energie. Wat je ziet is dat wij, met de

name de windenergie die wordt opgewekt op momenten dat wij weinig vraag naar elektriciteit hebben en die opslag van elektriciteit zal heel goed s ’nachts in die accu ’s van de elektrische auto’s kunnen. Dus je hebt

s ‘nachts een overschot aan elektriciteit dat gaat in die accu’s van die auto’s en de volgende dag kun je daar je transport mee verrichten. Het zou heel goed zijn. Wij zijn druk bezig om het elektrische vervoer te

stimuleren en Nederland is nr 2 van de wereld wat betreft het aandeel van elektrische auto’s in een totaal aantal verkochte auto’s. De Kamer is ook zeer ambitieus wat dat betreft, nog veel ambitieuzer dan wat

realistisch is daar zijn we in de kamer over bezig. Maar goed de beweging is er en volgens mij is die beweging die niet meer gestopt zal worden. Ik denk als je in de automobielindustrie voor in de toekomst moet

investeren dan in de batterij techniek, Laadpalen en elektrische auto’s.

Page 111: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 28

Appendix V: Overview of Conversations and Consultations

Date Organisation Name I Role Location Address Duration

donderdag 14 januari 2016 Eneco Prof. Dr. Ing. M. Steinbuch Professor Automotive

Technology - TU Eindhoven Auditorium

Eneco World

Marten Meesweg 5, Rotterdam

01:00:00

donderdag 14 januari 2016 Eneco K. Aksular Clearwater Innovations /

Partnership Manager BMWi Auditorium

Eneco World

Marten Meesweg 5, Rotterdam

01:00:00

vrijdag 15 januari 2016 Stichting ElaadNL A. Wagners Manager Innovation and

Development Electric Mobility

Erasmus Universiteit Rotterdam

Burgemeester Oudlaan 50

00:27:00

maandag 18 januari 2016 Stichting ElaadNL Elaad Management Team Stichting ElaadNL

Utrechtseweg 310, KB42

03:00:00

maandag 25 januari 2016 Fastned M. Langezaal CEO Fastned

woensdag 27 januari 2016 University of Newcastle

Prof. Dr. C. Herron Managing Director of Zero

Carbon Futures / Professor of Practice Newcastle University

Stedin Rotterdam

Blaak 8, Rotterdam

01:00:00

donderdag 11 februari 2016 Stedin R. de Bruin Accountmanager Stedin Stedin

Rotterdam Blaak 8,

Rotterdam (7e) 01:15:00

maandag 7 maart 2016 KNAW n.v.t. Data Manager DANS n.v.t. 00:10:00

dinsdag 8 maart 2016 Stedin D. van Groenenstein Project Coordinator, interim-

projectleider Stedin De

Meern Rijnzathe 6,

Utrecht 01:20:00

woensdag 9 maart 2016 Stedin H.A. Jankowsky Sr. Projectleider A&V Proces

Noord Stedin Delft

Energieweg 20, Delft

01:00:00

woensdag 9 maart 2016 Stedin D.L.E. Jaszmann Projectleider A&V Proces

Noord Stedin Delft

Energieweg 20, Delft

00:30:00

woensdag 9 maart 2016 Stedin J. Kraakman Portfoliomanager Elektriciteit Stedin

Rotterdam Blaak 8,

Rotterdam 00:10:00

woensdag 16 maart 2016 Stichting ElaadNL N. Refa Data Manager Stedin

Rotterdam Blaak 8,

Rotterdam 01:00:00

Page 112: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 29

vrijdag 18 maart 2016 Stedin D. van den Bos Projectleider Stedin Heinoord 00:30:00

vrijdag 18 maart 2016 Stedin E. van den Broek Projectleider Stedin Heinoord 01:00:00

dinsdag 22 maart 2016 Stedin M. Bos Projectcoordinator Stedin Delft Energieweg 20,

Delft 01:15:00

maandag 4 april 2016 Allego E.W. Lievense Sr. Business Development &

FastCharge Corridor Manager The Netherlands & Belgium

Stedin Rotterdam

Blaak 8, Rotterdam

01:25:00

maandag 4 april 2016 Stichting ElaadNL N.Refa Data Manager stedin

Rotterdam Blaak 8,

Rotterdam 00:09:00

maandag 4 april 2016 Ministerie van Economische Zaken / EU

H.Kamp Minister Economische Zaken TU Delft Faculteit TBM 01:00:00

dinsdag 5 april 2016 Stedin F. van Gent Projectcontroller A&V

Procesmatig Stedin Delft

Energieweg 20, Delft

00:35:00

vrijdag 8 april 2016 Gemeente Den

Haag F. van Elzakker

Projectleider Elektrisch Vervoer

Gemeente Den Haag

Spui 70, Den Haag

01:00:00

vrijdag 8 april 2016 MisterGreen R. Barendrecht Manager Operations

Fastcharging MisterGreen

IJdock 159, Amsterdam

01:00:00

woensdag 13 april 2016 AVERE E-Mobility Conference 2016

dinsdag 19 april 2016 Cleaner Car Conference -

PwC R. Smokers TNO

PwC Amsterdam

Westgate II, Thomas R.

Malthusstraat 5, Amsterdam

03:30:00

maandag 6 juni 2016 Evbox M. Bayings Sr. Product & eMobility Expert

dinsdag 7 juni 2016 EY R. Drost Senior Manager | Cleantech &

Sustainability Services EY Amsterdam

Page 113: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 30

Appendix VI: Indications of the balances across different levels of urbanisation

Degree of Urbanisation Indication of the balance between fast and regular charging stations based on current demand

5 = very strong urbanisation: >= 2500 households per km2 1 : 73

4 = strong urbanisation: 1500 - < 2500 households per km2 1 : 106

3 = moderate urbanisation: 1000 - < 1500 households per

km2

1 : 136

2 = weak urbanisation: 500 - < 1000 households per km2 1 : 156

1 = non-urban: < 500 households per km2 1 : 179

Page 114: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 31

Appendix VII: Current Charging Behavior per Level of Urbanisation – Regular Charging

N = 390459 transactions Regular Charging Pole 11 kW

Degree of Urbanisation 1 (Rural) 2 3 4 5 (City Centre)

(n = 73033) (n = 72156) (n = 78111) (n = 80075) (n = 87084)

Energy per Transaction [kWh] 8.55814 8.52647 8.57985 8.87594 7.84981

Avg. Connection Time per Transaction (hours) 7.2226 6.8171 7.1826 7.1562 6.9091

Avg. Charge Time per Transaction (hours) 2.5664 2.4850 2.5631 2.6746 2.4453

Efficiency During Transaction [1 = 100%] 0.6253 0.6304 0.6075 0.6216 0.6209

Avg. Sessions per pole per year [#] 143.2 195.02 241.83 285.98 446.58

Avg. Sessions/day [#] 0.3923 0.5343 0.6625 0.7835 1.2235

Avg. Utilisation Rate (Connected/Year) 0.1181 0.1518 0.1983 0.2336 0.3522

Capacity/day [kWh] 3.3576 4.5557 5.6846 6.9544 9.6043

Page 115: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 32

Appendix VIII: Current Charging Behavior per Level of Urbanisation - Fast Charging

N = 15 stations Fast Charging Station 50 kW

Degree of Urbanization based on Density (# of stations

analyzed)

1 (Rural) 2 3 4 5 (City Centre)

(n = 5) (n = 6) (n = 1) (n = 2 (n = 0)

Energy per Day [kWh] 24.4249 38.0267 35.0667 35.2231 n.a.

Energy per Transaction [kWh] 13.5694 21.12597 19.48148 11.74103 n.a.

Avg. Connection Time per Transaction (hours) 0.27139 0.42252 0.38962 0.23481 n.a.

Avg. Charge Time per Transaction (hours) 0.27139 0.42252 0.38962 0.23481 n.a.

Efficiency During Transaction [1 = 100%] 0.98 - 1 0.98 - 1 0.98 - 1 0.98 - 1 0.98 - 1

Avg. Sessions per pole per year [#] 657 657 657 1095 1095

Avg. Sessions/day [#] 1.8 1.8 1.8 3 3

Avg. Utilisation Rate (Connected/Year) 0.020354 0.031689 0.029222 0.029351 n.a.

Max. Theoretical Capacity/day @ current connection time

[# sessions] 88 56 61 102 n.a.

Income per Session €4.75 €7.39 €6.82 €4.11 n.a.

Income per Day €8.55 €14.78 €12.28 €12.33 n.a.

Current Charging Behavior – Fast Charging [1/2]

Page 116: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 33

DoU & Energy Demand 1

(N = 72156)

2

(N = 72156)

3

(N = 72156)

4

(N = 72156)

5

(N = 72156)

Ntotal = 360780 μ σ μ σ μ σ μ σ μ σ

Avg. Energy Demand per Session [kWh] 8.5561 8.0789 8.5268 8.04402 8.5820 8.20554 8.8579 8.86823 7.8475 7.19259

Max. Energy Demand per Session

[kWh]

87.19 91.50 88.83 87.88 79.09

Energy Demand Total [kWh] 617371.85 615261.70 619241.71 639148.25 566242.96

Avg. Number of Sessions per Regular

Charging Pole per Day 0.3923 0.5343 0.6625 0.7835 1.2235

Max. Obs. Number of Sessions per

Regular Charging Pole per Day 2.655 2.948 2.945 2.871 4.211

Avg. Number of Sessions per Fast

Charging Station per Day 1.8 1.8 1.8 3 3

Max. Estimated Sessions per Day 88 56 61 102 102*

Current Charging Behavior – Fast Charging [2/2]

Page 117: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 34

Appendix IX: Overview Balance between Regular Charging and Fast Charging across Different Levels of Urbanisation

Ntotal = 360780 μ σ μ σ μ σ μ σ μ σ

Energy Demand Total [kWh]

Fast Charging Demand [kWh]

Min | Max 23274,92 25003,56 30270,88 32239,71 25946,23 27803,95 28122,52 30039,97 26330,30 28142,28

Regular Charging Demand [kWh]

Max | Min 594096,93 592368,29 584990,82 583021,99 593295,48 591437,76 611025,73 609108,28 539912,66 538100,68

Fast Charging Opportunity Occurence 0,0391 0,9609 0,0508 0,9492 0,0434 0,9566 0,0455 0,9545 0,0481 0,9519

min | max 95% C.I. 0,0377 0,0405 0,0492 0,0524 0,0419 0,0449 0,0440 0,0470 0,0465 0,0497

Demand Based Balance FC | RCP 1,00 24,58 1,00 18,69 1,00 22,04 1,00 20,98 1,00 19,79

Number of Sessions to fullfill the demand FC | RCP 1778,95 69334,46 1479,47 68490,69 1379,52 69024,31 2476,89 68872,65 2319,75 68685,14

Number of Fast Charging Stations | Regular Chargin Poles 988,30 176738,37 821,93 128187,70 766,40 104187,64 825,63 87903,82 773,25 56138,25

Current Demand & Capcity Based Balance FC | RCP [#] 1 179 1 156 1 136 1 106 1 73

Min. Number of Sessions to fullfill the demand FC | RCP 1715,25 69233,45 1432,88 68375,24 1331,84 68916,08 2395,23 68764,41 2242,59 68569,70

Min. Number of Fast Charging Stations | Regular Chargin

Poles19,49 26076,63 25,59 23193,77 21,83 23401,04 23,48 23951,38 21,99 16283,47

Min. Balance Fast Charging| Regular Charging (Best Case) 1 1338 1 906 1 1072 1 1020 1 741

Max. Number of Sessions to fullfill the demand FC | RCP 1842,64 69435,48 1526,07 68606,14 1427,20 69132,54 2558,55 68980,88 2396,92 68800,59

Max. Number of Fast Charging Stations | Regular Chargin

Poles1023,69 176995,88 847,82 128403,78 792,89 104351,01 852,85 88041,96 798,97 56232,61

Max. Balance Fast Charging| Regular Charging (Worst Case) 1 173 1 151 1 132 1 103 1 70

593232,61 584006,41 592366,62 610067,00 539006,67

24139,24 31255,29 26875,09 29081,25 27236,29

617371,85 615261,70 619241,71 639148,25 566242,96

5

(N = 72156) (N = 72156) (N = 72156) (N = 72156) (N = 72156)Degree of Urbanisation & Energy Demand

1 2 3 4

Page 118: Investing in Public Electric Vehicle Charging Infrastructureaccess to a well-developed, interoperable charging infrastructure. The objective to have 20 million EVs on the road by 2020

M a s t e r T h e s i s P a g e | 35

Nomenclature & Definitions

AC = Alternating Current

BNF = Bloomberg New Energy Finance

CPO = Charge Point Operator

DC = Direct Current

DSO = Distribution System Operator

EV(s)= Electric Vehicle(s)

EVSE = Electric Vehicle Service Equipment (Charging Equipment)

Fast Charging = DC charging (43kW or more)

GM = General Motors Company

GO = Grid Operator (Stedin, Alliander et cetera)

HU = Hungary

ICEs = Internal Combustion Engine

MSP = (e)-Mobility Service Providers

NL = The Netherlands

PHEV(s)=Plugin Hybrid Electric Vehicle(s)

Regular charging = Slow Charging = AC charging below 43 kW

SER = Sociaal Economische Raad

Slow charging = Regular Charging = AC charging below 43 kW

TAM = Technology Adoption Model

US = United States

V2G = Vehicle to Grid