Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005,...

31
Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp 1 Organic Field-Effect Transistors (FETs) Information: http://www.faculty.iu- bremen.de/course/c30 0331a/ Source: Apple Ref.: Apple Information: http://www.faculty.iu- bremen.de/course/c42 0411/ Dielectric Gate V G Neutral substrate Source Drain V D h h h h h h h h h h 10 1 1 10 -1 10 -2 10 -3 10 -4 10 -5 10 -6 10 -8 Critical dimension (m) 10 -7 10 -9 Introduction to Organic Electronics (Nanomolecular Science Seminar I) (Course Number 420411 ) Fall 2005 Organic Field Effect Transistors Instructor: Dr. Dietmar Knipp

Transcript of Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005,...

Page 1: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

1Organic Field-Effect Transistors (FETs)

Information:http://www.faculty.iu-bremen.de/course/c300331a/

Source: Apple

Ref.: Apple

Information:http://www.faculty.iu-bremen.de/course/c420411/

Dielectric

e e e e e e e e

Gate

VGNeutral substrate

Source Drain

VD

h h h h h h h h h h

101110-110-210-310-410-510-610-8

Critical dimension (m)10-710-9

Introduction to Organic Electronics(Nanomolecular Science Seminar I)(Course Number 420411 ) Fall 2005

Organic Field Effect Transistors

Instructor: Dr. Dietmar Knipp

Page 2: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

2Organic Field-Effect Transistors (FETs)

3 Organic Field Effect Transistors (FETs)3.1 Introduction 3.2 The MOS structure

3.2.1 Accumulation3.2.2 Depletion3.2.3 Weak Inversion3.2.4 Strong Inversion

3.3 Basic characteristics of MOS Field Effect Transistor3.3.1 The output characteristic of a MOSFET3.3.2 The transfer characteristic of a MOSFET3.3.3 Channel Conductance and Transconductance

3.4 Field-Effect-Transistors and Applications3.5 Inversion type MOSFETs3.6 Thin Film Transistor Technologies (Accumulation type transistors)

3.6.1 Comparison of top and bottom gate TFTs3.6.2 Amorphous Silicon TFTs3.6.3 Nanocrystalline Silicon TFTs3.6.4 Poly Silicon TFTs3.6.5 Organic Thin Film Transistors

References

Page 3: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

3Organic Field-Effect Transistors (FETs)

3 Organic Field Effect Transistors (FETs)The concept of the Field Effect Transistor (FET) was proposed by Lilienfeld in 1930. The idea got practical after the pioneering work of Shockley in the early 1950’s. Today the Field-Effect Transistor is the most important electronic device used for microprocessors and semiconductor memories.

Throughout the last 50 years several field-effect transistor concepts have been developed and implemented. The most important group of field effect transistors is the class of metal insulator semiconductor field effect transistor (MISFET). Out of this class the metal-oxide-semiconductor field-effect transistor (MOSFET) structure is by far the most important structure. In this case the gate is insulated from the channel of the transistor by an insulator.

In the following the operating principle of the Metal-Oxide-Semiconductor Field-Effect Transistor will be presented. Afterwards different thin film transistor concepts will be discussed. Finally the operating concepts and the performance of organic thin film transistors will be presented.

Page 4: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

4Organic Field-Effect Transistors (FETs)

3.1 Introduction A MOSFET is a charge controlled device. Charges have to be accumulated on the gate to control the device properties. As a consequence of voltage applied to the gate a channel is formed at the interface between dielectric an substrate.

Important Parameters:

• Mobility• Threshold Voltage• On/off Ratio

Dielectric

Dielectrice e e e e e e e

Gate

VGNeutral substrate

Source Drain

VD

Schematic structure of a bottom gate thin film transistor (TFT)

Page 5: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

5Organic Field-Effect Transistors (FETs)

3.1 Introduction The induced charges in the channel of a MOSFET can be electrons or holes. Therefore, a MOSFET is an unipolar device. Either electrons or holes contribute to the current flow.

The output current of the transistor is defined to be the current between the drain and source contact. The drain current is controlled by the gate bias. The FET is in the off-state, when only a few electrons (holes) move from the source to the drain. In the on-state electrons or holes are injected via the source and flow to the drain. The MOSFET is a charge controlled device, so that the charge on the gate should be maximized. The charge on the gate can be calculated by:

The charge on the gate can be maximized by increased the dielectric constant of the gate dielectric and decreasing the thickness of the gate dielectric. For example using Aluminum oxide Al2O3 instead of using silicon oxide SiO2(classical material for silicon transistors)or an organic dielectric (common for organic transistors) leads to an increase of the dielectric constant. The electrons (holes) are capacitively coupled by the gate electrode. The gate electrode and the channel form a plate capacitor or a MOS structure.

Gdielectric

GGG Vd

VCQ ⋅⋅

==εε0 Gate charge

Page 6: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

6Organic Field-Effect Transistors (FETs)

3.2 The MOS structureThe MOS structure is the „heart“ of a MOSFET. In the following the operating principle of the MOS structure will be discussed before addressing the fundamentals of the MOSFET.

Ref.: M.S. Sze, Semiconductor Devices

Cross section of a metal oxide semiconductor (MOS) structure.

Page 7: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

7Organic Field-Effect Transistors (FETs)

3.2 The MOS structureThe energy band diagram of a MOS structure using a p-type semiconductor is shown in the figure under thermal equilibrium (V=0). Before discussing the energy diagram the following functions and energies are introduced:

Energy band diagram of an ideal MOS structure for V=0 (flat band

condition).

The work function qΦ is defined as the energy required to remove an electron from the Fermi level EFto a position outside the material (vacuum level). The work function can be defined for a semiconductor, a metal or an insulator.

The electron affinity qχ is the energy required to remove an electron from the bottom of the conduction band to the vacuum level.

qϕB

Ref.: M.S. Sze, Semiconductor Devices

Page 8: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

8Organic Field-Effect Transistors (FETs)

3.2 The MOS structure

At zero applied bias (V=0) the energy difference between the metal work function qφm and the semiconductor work function qφs is zero. As a the consequence the work function difference qφms is zero.In this case the energy band diagram is flat. This case is called flat-band condition!

02

=

++−=−≡ B

gmsmms q

Eqqqqq ϕχφφφφ

Page 9: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

9Organic Field-Effect Transistors (FETs)

3.2 The MOS structureIn the following it is assumed that the semiconductor material is p-type doped.

Energy band diagram and charge distribution of an ideal MOS structure in accumulation (V<0).

3.2.1 AccumulationFor negative voltages (V<0) applied to the gate electrode excess carriers (holes) will be induced at the SiO2-Si interface. In this case the band at the interface between the semiconductor and the dielectric is bend upwards. There is no current flow independent of the applied bias voltage to the MOS structure.

Accumulation

Ref.: M.S. Sze, Semiconductor Devices

Page 10: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

10Organic Field-Effect Transistors (FETs)

3.2.2 Depletion

For positive voltages (V>0) applied to the gate electrode the region close to the interface of the gate dielectric and the channel will be depleted. The energy bands bend downwards and the majority carriers (holes) are depleted. Therefore, this case is called depletion.

Ref.: M.S. Sze, Semiconductor Devices

Energy band diagram and charge distribution of an ideal MOS structure in depletion (V>0).

Page 11: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

11Organic Field-Effect Transistors (FETs)

3.2.3 Weak Inversion If a larger positive voltage is applied to the MOS structure, the energy bands bend downwards even more so that the intrinsic energy at the surface crosses the Fermi level. The positive gate voltage starts to induce excess negative carriers (electrons) at the SiO2 interface.

Ref.: M.S. Sze, Semiconductor Devices

Energy band diagram and charge distribution of an ideal MOS structure in weak inversion (V>0).

Page 12: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

12Organic Field-Effect Transistors (FETs)

3.2.4 Strong InversionIf the applied bias voltage is further increased the MOS structure turns into strong inversion. Strong inversion occurs when the electron concentration at the surface is higher than the doping concentration in the bulk of the material. Most of the additional charges are located in a narrow inversion layer close to the interface of the dielectric and the semiconductor.

Energy band diagram and charge distribution of an ideal MOS structure in strong inversion (V>>0).

Under strong inversion the width of the depletion layer reaches its maximum. A very small increase of the band bending corresponds to a large increase of the charges in the inversion layer and a small increase of the carrier concentration in the depletion region. Inversion

(Strong Inversion)EF

V>0

EC

EV

Ei

EFqϕB

Page 13: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

13Organic Field-Effect Transistors (FETs)

3.3 Basic characteristics of MOS Field Effect TransistorThe metal-oxide-semiconductor field-effect transistor (MOSFET) is composed of a MOS structure (MOS diode / MOS capacitor) and two contacts (pn-junctions) placed immediately adjacent to the MOS structure. The MOSFET is an unipolardevice.

Schematic cross section of an enhanced-type NMOS transistor.

Ref.: M.S. Sze, Semiconductor Devices

Page 14: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

14Organic Field-Effect Transistors (FETs)

3.3 Basic characteristics of MOS Field Effect Transistor In the following the I/V characteristic of the MOSFET will be discussed. The source contact of the MOSFET is used as a reference throughout the following discussion. If no voltage is applied to the drain and source contacts no current can flow besides the leakage current of the back to back connected diodes.

Two basic operation region can be distinguished for an MOSFET, the linear region and the saturation region.

In the first step a voltage is applied to the gate so that an inversion layer is formed in the semiconductor. In the next step a voltage is applied to the drain electrodes, while the source electrode is grounded. If the applied bias voltage is small the current flow between the drain and source is proportional to the conductivity of the channel. The channel acts as an resistor and the resistivity is modulated by the gate voltage. The drain current ID is proportional to the drain voltage. This behavior (region) is called the linear region.

As a consequence the channel behaves like a resistor, which can be modulated by the gate voltage. The electric field in the channel can be assumed to be constant.

Page 15: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

15Organic Field-Effect Transistors (FETs)

3.3 Basic characteristics of MOS Field Effect TransistorWhen the drain voltage is increased the voltage eventually reaches the point, where the thickness of the inversion (accumulation) layer is reduced to zero. This point is called the pinch-off point. As a consequence the resistance of the channel can not be modulated by the applied drain voltage anymore. The drain current is getting saturated.

Beyond the pinch off point the drain current remains essentially constant. Therefore, the number of carriers flowing from the drain to the source is essentially independent of the drain voltage. This region is called the saturation region.

Page 16: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

16Organic Field-Effect Transistors (FETs)

Drain current characteristic of a PMOS FET. The output curves can be

distinguished in respect to the linear, the pinch-off and the saturation region. Ref.: M.S. Sze, Semiconductor Devices

3.3.1 The output characteristic of a MOSFET

DSDS

TGSGnd VVVVLWCI ⋅

−−⋅=

TGDS VVVfor −<<

Drain current in the linear region

( )22 TGSGnd VVLWCI −⋅= µ

TGDS VVVfor −≥

Drain current in the saturation region

Page 17: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

17Organic Field-Effect Transistors (FETs)

Drain current characteristic of a PMOS FET. The transfer curves can be

distinguished in respect to the linear and the saturation region.

saturation region.

linearregion.

3.3.2 The transfer characteristic of a MOSFET

All necessary information like the threshold voltage and the mobility can be extracted from the experimental data (output curves and transfer curves).

Ref.: M.S. Sze, Semiconductor Devices

Page 18: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

18Organic Field-Effect Transistors (FETs)

3.3.3 Channel Conductance and TransconductanceThe channel conductance can be described by

The transconductance of in linear and the saturation region of the MOSFET is given by

( )TGSGnDS

DD VV

LWC

VIg −⋅=

∂∂

≡2

µ

DGnG

Dm V

LWC

VIg µ=

∂∂

( )TGGnG

Dm VV

LWC

VIg −⋅=

∂∂

≡ µ

Channel Conductance

Transconductance in the linear region

Transconductance in the saturation region

Page 19: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

19Organic Field-Effect Transistors (FETs)

3.4 Field-Effect-Transistors and Applications

crystalline silicon

CMOS technology

CPU, memory products

Low Cost ICs, drivers LCD displays

Amorphous silicon

Displays,smart cards

103

102

101

100

10-1

10-2

cm2/Vs

Mobility

poly silicon

Hybrid materials

Small molecules

polymers

E paper, E ink

rf information tags ?

Page 20: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

20Organic Field-Effect Transistors (FETs)

3.4 Field-Effect-Transistors and ApplicationsTwo different classes of field effect transistors exist. The first class well known from microelectronics are inversion type of device. Here an inversion layer is formed when applying a voltage larger than the threshold voltage to the gate. In this case the semiconducotor is doped and the channel is formed by the inversion of the semiconducotor. Thin Film Transistors are fundmentally different. All thin film transistor devices are accumation type the devices. Here the semiconducotor is intrinsic. The channel of the transistor is simply formed by the accumulation of charges.

Inversion (Strong Inversion)EF

V>0

EC

EV

Ei

EFqϕB

EC

EV

Ei

EF

EF

V>0

Accumulation

Inversion-type transistor (transistor in microelectronics) and Accumulation-type transistor (thin film transistor).

Page 21: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

21Organic Field-Effect Transistors (FETs)

3.5 Inversion type MOSFETs

There are basically four types of MOSFETs, depending on the type of inversion layer. If the transistor is in the off-state for VG equal to zero, we speak about enhancement transistors (NMOS and PMOS). The threshold voltage VT has to be overcome before the channel starts to conduct. Depending on the doping of the substrate the threshold voltage can be positive or negative and the gate voltage has to be positive or negative to turn the transistor on.

Page 22: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

22Organic Field-Effect Transistors (FETs)

If the transistor is already conducting for VG equal to zero we speak about a depletion transistor (NMOS and PMOS). The transistor is already depleted. For example in the case of a p-type substrate a n-type channel is already formed. The channel is formed by „physical“ charges. Therefore, the transistor already conducts for VG. Depletion mode transistors have a threshold voltage, but the threshold voltage is shift to higher positive or negative voltages.

Cross section, output and transfer characteristic of the four different types of MOSFETs.

Ref.: M.S. Sze, Semiconductor Devices

3.5 Inversion type of MOSFETs

Page 23: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

23Organic Field-Effect Transistors (FETs)

Low cost substratesLarge areas Low temperature (150-300°C)

No Photolithography⇒ Printing technologiesNo Vacuum Systems⇒ Processing at ambient conditionProcessing at very lower temp.⇒ Processing at room temperature

Specification Materials

Amorphous, Nanocrystalline,and Poly silicon.

Small MoleculesPolymers

Silicon thin film electronics

Organic thin film electronics

3.6 Thin Film Transistor Technologies (Accumulation type transistors)

Page 24: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

24Organic Field-Effect Transistors (FETs)

3.6.1 Comparison of top and bottom gate TFTs

Dielectric

GateVG

Neutral substrate

Source Drain

VD

n+

Schematic cross section of a top gate (staggered) thin film transistor (TFT).

n+

Amorphous silicon TFTs are realized as top or bottom gate structures! Silicon nitride is used as an gate dielectric.

Poly silicon and nanocrstalline TFTs with high mobility can only be realized as top gate structure. The gate dielectric has to be silicon oxide!

Organic and polymeric TFTs are realized as top or bottom gate structures!

Schematic cross section of a bottom gate (inverse staggered) thin film

transistor (TFT).

Gate

VG

Source DrainVD

n+ n+

Dielectric

n+

Page 25: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

25Organic Field-Effect Transistors (FETs)

3.6.2 Amorphous Silicon TFTs

Advantages: Inexpensive and reliable technology

Applications: Large area applications Mainly Active Matrix Liquid Crystal Displays (AMLCDs)

Disadvantages: Relatively low (electron) mobility: ~1cm2/Vs, Stability, Bias stress effects, Performance is most likely not good enough for oLED displays

Page 26: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

26Organic Field-Effect Transistors (FETs)

Deposition:

Plasma Enhanced Chemical vapor deposition (PECVD)

Deposition Temperatures below 300°C

High hydrogen dilution

High excitation frequencies

Material:

30-50nm nucleation layer

Column-like growth

Typical crystalline volume fraction 85%

3.6.3 Nanocrystalline Silicon TFTs

Page 27: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

27Organic Field-Effect Transistors (FETs)

3.6.4 Poly Silicon TFTs

Advantages: High electron mobilities (close to single crystalline silicon), High stability

Applications: High resolution projector displays, Drivers for LCD displays and OLED displays

Disadvantages: Expensive, High processing temperatures (>400°C), High off currents

Page 28: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

28Organic Field-Effect Transistors (FETs)

3.6.5 Organic Thin Film Transistors

Pentacene, C22H14 :

• Aromatic hydrocarbons based on linear arranged benzene rings

• Tendency to form highly ordered films at low temperatures

• Electronic transport limit : >1 cm2/Vs (electrons / holes)

• Fabrication: Thermal Evaporation:

• Substrate temperature: 60-70°C

• Not compatible with standard semiconductor processing

Retreat Nanomolecular Science, Spring 2004, Dr. D. Knipp

Substrate view

Schematic cross section of a bottom gate thin film transistor (TFT)

Dielectric

e e e e e e e e

Gate

VGNeutral substrate

Source Drain

VD

h h h h h h h h h h

Page 29: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

29Organic Field-Effect Transistors (FETs)

2.5µm

Pentacene film on thermal oxide

(5-10nm)

3.6.5 Organic Thin Film TransistorsPentacene on thermal oxide

Atomic force micrographs of thermally evaporated pentacene films

Pentacene film on thermal oxide

(50-70nm)

2.5µm

Page 30: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

30Organic Field-Effect Transistors (FETs)

3.6.5 Organic Thin Film Transistors

Electronic properties

0

1

2

3

4

5

6

-30 -25 -20 -15 -10 -5 0 5 10 1510-13

10-11

10-9

10-7

10-5VD=-20V

VD=-1V

VTHVD=-20V

gate voltage [V]

Dra

in c

urre

nt [

A]

Squa

re ro

ot d

rain

cur

rent

[10

3⋅√

A]

Pentacene on silicon nitride

( )

( )

⋅=µ

−µ=

−>

⋅=µ

−−µ=

−<

DGG

psat,eff

2TG

peffGD

TGD

DGG

plin,eff

DTGD

peffGD

TGD

IdV

dC

1WL2

VVLWCI

VVV:regionSaturation

IdV

dC

1WL

2V

VVVLWCI

VVV:regionLinear

Page 31: Introduction to Organic Electronics Organic... · Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp Organic Field-Effect Transistors (FETs) 4 3.1 Introduction A MOSFET

Introduction to Orgamoc Electronics, Fall 2005, Dr. D. Knipp

31Organic Field-Effect Transistors (FETs)

References

Pope and Swenburg, Electronic Processes in organic crystals and polymers, 2 ndEd., Oxford

Organic molecular crystals, E.A. Sininsh EA and V. Capek.

http://researchweb.watson.ibm.com/journal/rd45-1.html

(Special Issue of IBM journal on organic electronics)

http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-973Organic-OptoelectronicsSpring2003/CourseHome/

(Organic optoelectronic lecture MIT)

http://hackman.mit.edu/6976/overview.html

(Seminar on Flat Panel Displays)