Influence of Axial n Radial_performance_turbine_messegee

221
This document was downloaded on March 12, 2013 at 15:37:49  Author(s) Messegee, James Allen. Title Influence of axial and radial clearances on the performance of a turbine stage with blunt edge non-twisted blades. Publisher Monterey, California. U.S. Naval Postgraduate School Issue Date 1967 URL http://hdl.handle.net/10945/12330

Transcript of Influence of Axial n Radial_performance_turbine_messegee

Page 1: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 1/221

This document was downloaded on March 12, 2013 at 15:37:49

 

Author(s) Messegee, James Allen.

TitleInfluence of axial and radial clearances on the performance of a turbine stage with bluntedge non-twisted blades.

Publisher Monterey, California. U.S. Naval Postgraduate School

Issue Date 1967

URL http://hdl.handle.net/10945/12330

Page 2: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 2/221

NPS ARCHIVE

1967

MESSEGEE, 3.

m

A?Sffli

I H Iffi

INFLUENCE G'F AXIAL AND RADIAL CLEARANCEON THE PfiRLFORMANCE OF A TUfcSINE STAGEmm mum msh non-twisted blades

JAMESAILEM

MESSEGEE

;' H

.

'/,

mwfflm

JBH

nil

Page 3: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 3/221

SCHOQb

Page 4: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 4/221

Page 5: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 5/221

Page 6: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 6/221

3?

Page 7: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 7/221

Page 8: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 8/221

INFLUENCE OF AXIAL AND RADIAL CLEARANCES

ON THE PERFORMANCE OF A TURBINE STAGE

WITH BLUNT EDGE NON-TWISTED BLADES

by

James Allen Messegee

Lieutenant, United States Navy

B.S., University of Washington, 1959

Submitted in partial fulfillment of the

requirements for the degree of

AERONAUTICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL

September 1967

Page 9: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 9/221

ABSTRACT

This thesis was undertaken to determine the effects of axial

and radial clearances on the performance of a single stage turbine

with blunt leading edges and non- twisted blades. A series of tests

was conducted on the so-called Mod II Turbine using the Transonic

Turbine Test Rig of the Turbo-Propulsion Laboratory, Department of

Aeronautics, of the Naval Postgraduate School. The results of these

tests are presented together with a comparison of the experimental

results and results predicted by a three-dimensional turbine perform-

ance calculating method. In addition, measured flow conditions up-

stream of the stator, between the stator and the rotor, and at the

rotor discharge are presented and compared with predicted values.

Page 10: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 10/221

LIBRARY

NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIF. 93940

TABLE OF CONTENTS

Section Page

1. Introduction 14

2. Turbine Description 15

3. Test Installation 16

4. Analysis and Data Reduction 19

5. Description of Performance Tests 29

6. Results and Discussion of Performance Tests 31

7. Description, Results and Discussion of Flow Surveys 37

Bibliography 47

Appendix

I Formula Development for Mean Streamline Analysis 112

II FORTRAN IV Computer Program for Performance 120

Data Reduction

III Reduced Performance Data 137

Page 11: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 11/221

Page 12: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 12/221

LIST OF TABLES

TABLE Page

I. Mod. II Turbine Design Parameters 48

II. Measured Data for Turbine Performance Tests, 49

Transonic Turbine Test Rig.

III. Mod II Turbine Test Runs in 1967 50

IV. Chronological Record of Mod II Turbine Tests in 1967 51

V. Stator Exit Flow Survey Results of Run 66 53

VI. Rotor Exit Flow Survey Results of Run 67 54

Page 13: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 13/221

Page 14: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 14/221

LIST OF ILLUSTRATIONS

Figure Page

1. Mod II Turbine Stator (View showing stator entrance) 55

2. Mod II Turbine Stator (View showing stator exit) 56

3. Mod II Turbine Stator (View showing blade profiles) 57

4. Mod II Turbine Rotor (View showing rotor entrance) 58

5. Mod II Turbine Rotor (View showing rotor exit) 59

6. Mod II Turbine Rotor (View showing blade profiles) 60

7. Mod II Turbine Blade Profiles 61

8. Mean Streamline, Design Point Velocity Diagram 62

9. TTR Test Cell Piping Installation 63

10. Transonic Turbine Test Rig 66

11. Transonic Turbine Test Rig (View showing turbulence 65

reduction screens with stator and rotor removed)

12. Arrangement of Mod II Turbine Blading in Test Rig 66

13. TTR Stator Assembly and Shroud 67

14. Rotor Bearing Support Assembly and Mod II Turbine 68

Rotor

15. Thermodynamic Process of Fluid in an Axial Turbine 69

Stage

16. Velocity Diagram of a Turbine Stage 70

17. Vector System for the Rotor Assembly 71

18. Efficiency vs. Referred Rotor Speed, Varied Axial 72

Clearance

19. Efficiency vs. Referred Rotor Speed, Varied Axial 73

Clearance

20. Efficiency vs. Referred Rotor Speed, Varied Axial 74

Clearance

21. Efficiency vs. Referred Rotor Speed, Varied Axial 75Clearance

Page 15: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 15/221

Figure Page

22. Referred Mass Flow Rate vs. Pressure Ratio, Varied 76

Axial Clearance

23. Referred Mass Flow Rate vs. Pressure Ratio, Varied 77

Axial Clearance

24. Referred Dynamometer Torque vs. Referred Rotor Speed, 78

Varied Axial Clearance

25. Referred Dynamometer Torque vs. Referred Rotor Speed, 79

Varied Axial Clearance

26. Efficiency vs. Isentropic Head Coefficient; Turbines 80

in General

27. Theoretical Degree of Reaction vs. Referred Rotor 81

Speed, at Tip Radius, Varied Axial Clearance

28. Theoretical Degree of Reaction vs. Referred Rotor 82

Speed, at Hub Radius, Varied Axial Clearance

29. Theoretical Degree of Reaction vs. Referred Rotor 83

Speed, Predicted vs.Measured

30. Efficiency vs. Isentropic Head Coefficient; Varied 84

Radial Clearance

31. Efficiency vs. Isentropic Head Coefficient; Varied 85

Radial Clearance

32. Efficiency vs. Isentropic Head Coefficient; Varied 86

Radial Clearance

33. Efficiency vs. Isentropic Head Coefficient; Varied 87

Radial Clearance

34. Referred Mass Flow Rate vs. Pressure Ratio, Varied 88

Radial Clearance

35. Referred Dynamometer Torque vs. Referred Rotor Speed 89

36. Referred Dynamometer Torque vs. Referred Rotor Speed 90

37. Efficiency vs. Referred Rotor Speed, Predicted vs. 91

Measured

38. Efficiency vs. Referred Rotor Speed, Predicted vs. 92

Measured

39. Efficiency vs. Referred Rotor Speed, Predicted vs. 93Measured

Page 16: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 16/221

Figure Page

40. Efficiency vs. Referred Rotor Speed, Predicted vs. 94

Measured

41. Referred Mass Flow Rate vs. Referred Rotor Speed, 95

Predicted vs. Measured

42. Referred Mass Flow Rate vs. Referred Rotor Speed, 96

Predicted vs. Measured

43. Referred Dynamometer Torque vs. Referred Rotor Speed, 97

Predicted vs. Measured

44. Referred Dynamometer Torque vs. Referred Rotor Speed, 98

Predicted vs. Measured

45. Referred Horsepower vs. Referred Rotor Speed, 99

Predicted vs. Measured

46. Referred Horsepower vs. Referred Rotor Speed, 100

Predicted v&« Measured

47. Illustration of Pressure Survey at Stator Entrance 101

48. Total Pressure Variation with Peripheral Position at 102

the Stator Entrance

49. Illustration of Stator Discharge Pressure Survey 103

50. Static Pressure vs. Blade Diameter, Stator Discharge 104

Survey

51. Absolute Velocity vs. Blade Diameter; Stator Discharge 105

Survey

52. Absolute Velocity vs. Blade Diameter; Rotor Discharge 106

Survey

53. Absolute Velocity vs. Blade Diameter; Rotor Discharge 107

Survey

54. Static Temperature vs. Blade Diameter; Rotor Discharge 108

Survey

55. Absolute Flow Outlet Angles as Function of Radius; 109

Measured vs. Predicted

56. Referred Velocities and Relative Rotor Outlet Angle 110

as Function of Radius

57. Mod IITurbine Rotor 111

Page 17: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 17/221

Page 18: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 18/221

TABLE OF SYMBOLS

Symbols

2A Cross-sectional area (in )

a Flow channel throat diameter (in)

2 2C Conversion factor, 2gJc (ft /sec - R)

c Specific heat at constant pressure for air (0.24 BTU/lb - R)p m

D Diameter (in.)

F Force (lb )

2

g Gravitational constant (32.174 lb -ft/lb -sec )m t

H Total enthalpy (BTU/lb )

h Blade height (in»)

h Static enthalpy (BTU/lb )

HP Horsepower

 l Unit vector

J Conversion factor (778.16 ft-lb /BTU)

j Unit vector

IT Unit vector

k. Isentropic head coefficient (dimensionless)is

M Moment (ft-lbf)

M Absolute Mach number (dimensionless)

M_ Relative Mach number (dimensionless)

m Mass flow rate (slugs/sec)

N Rotational speed (RPM)

n Unit vector directed outward from a surface

P Total pressure (psia)

p Static pressure (psia)

R„ Gas constant for air (53.345 ft-lb ,71b - R)O t m

Page 19: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 19/221

R Root mean square radius (in.)m

r Radius (in.)

r Theoretical degree of reaction (dimensionless)

2S Surface where fluid enters or leaves a control volume (in.)

s Distance between blades (in.)

s Entropy (BTU/lb -°R)m

T Static temperature (°R)

T Total temperature (°R)

t Blade thickness at the trailing edge (in.)

U Peripheral velocity (ft/sec)

V Absolute velocity (ft/sec)

W Relative velocity (ft/sec)

W Flow rate (lb /sec)m

Z Number of blades in a blade row

Greek Letters

o< Absolute flow discharge angle (degrees)

P Relative flow discharge angle (degrees)

fr Ratio of specific heats for air (1.401)

6 Referred pressure ratio (dimensionless)

^ Loss coefficient (dimensionless)

Y) Efficiency (dimensionless)

Q Referred temperature ratio (dimensionless)

£ Area restriction factor or blockage factor (dimensionless)

/° Density (lb /sec)m

$ Flow function (dimensionless)

CO Angular velocity (radians /sec)

Page 20: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 20/221

Subscripts

a Axial direction

ax Area normal to the axial direction

CL Closure plate

E Equivalent thermodynamic property

h Blade hub

i In the axial direction or around the machine axis

is Isentropic

L Labyrinth seals

m Mean streamline

N Properties at the flow measuring nozzle

Properties at the entrance to stator blades

P Properties in the plenum ahead of stator assembly

p Denotes forces due to pressure

R Rotor

r Radial direction

REF Referred value

S Stator

t Blade tip

TH Theoretical value

u Peripheral direction

1 Properties at the exit of the stator

2 Properties at the exit of the rotor

Page 21: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 21/221

1. Introduction

The Mod II Turbine is a test model of the fuel pump drive turbine

designed by Professor M. H. Vavra of the Department of Aeronautics,

Naval Postgraduate School, for an advanced liquid rocket engine. It

was designed for good off-design point performance, ruggedness, and

simplicity. Good off-design point performance was needed because the

rocket was to produce variable thrust over a large percent variation

of full thrust. Ruggedness was a design criteria because the rocket

must endure stop-start operations. Simplicity of design provides ease

of manufacture and low unit cost. In addition, the Mod II Turbine was

designed to allow for adequate space in the blades for internal cool-

ing passages. The foregoing considerations lead to a turbine design

with thick non- twisted blades which have blunt leading edges.

The amount of test data which is available on turbine designs of

this type is very limited. Turbine designers have a particular need

to know what effects are induced in turbine performance by varied

clearances between the stator and rotor and between the rotor tips

and the shroud. This project hopefully helps fill this need.

The Transonic Turbine Test Rig located at the Aeronautics

Propulsion Laboratory of the Naval Postgraduate School provides a

unique test bed for determining the effects of axial and radial clear-

ances on the performance of turbines at varied pressure ratios and

speeds. This report covers the testing of the Mod II Turbine in the

Test Rig at two radial clearances, five axial clearances, four pres-

sure ratios, and varied rotational speeds between 10,000 and 19,000

RPM.

The author is very appreciative of the many hours of cheerful

assistance during the equipment set-up and data acquisition given by

Page 22: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 22/221

Mr. Jim Hammer of the Department of Aeronautics. Also, the willing

assistance of Lt. P. M. Commons, U.S.N, and the helpful advice given

by Lt. R. H. Harrison, U.S.N, are greatly appreciated. Particular

thanks are given to Professor Vavra for his patient instruction and

guidance.

2. Turbine Description

Figures 1, 2, and 3, and Figures 4, 5, and 6 are photographs of

the Mod II Turbine stator and rotor, respectively. The turbine is a

single stage unit of the reaction type. Pertinent turbine dimensions

are listed in Table I together with the design point performance

parameters. Unless otherwise specified, the values in Table I refer

to the mean blade radius. Most of the dimensions given in Table I

are self-explanatory; however, the following quantities need to be

defined more clearly. The throat diameter, a, shown in Fig. 7, is the

minimum distance between the blades at the mean radius. The throat

area, A , is defined astn

A.. = 2 ah (1)

th

Definitions of the absolute and relative exit angles, o( andft , are

shown in Fig. 8. Figure 8 depicts the so-called velocity triangles

for the Mod II Turbine at the design conditions. All angles are

measured from the axis. Positive angles are measured to velocity

vectors with peripheral components in the direction of the rotor

rotational speed vector, U. Definitions of the loss coefficients

and other performance parameters listed in Table I are presented in

Section 4. During the designing of a turbine, loss coefficients must

be assumed in order to determine proper areas for the flow channels.

Page 23: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 23/221

Large losses can result from improper area design. Turbine designers

usually use experimentally determined loss coefficients. The loss

coefficients used in designing the Mod II Turbine and listed in Table I

were derived from experimental data presented by Klein .

3. Test Installation

The turbine was tested on the Transonic Turbine Test Rig, here-

after referred to as the TTR. The TTR is designed and instrumented to

determine the performance characteristics of a turbine stage at varied

axial and radial clearances, and to measure the flow properties before

and after each blade row. It has the unique capability of determining

mean flow conditions in a turbine without introducing flow disturbing

probes into the flow stream. Detailed descriptions of the TTR instal-

lation, instrumentation and data reduction techniques are presented by

2Commons . This discussion will be limited to the salient features of

the TTR from which performance data on the Mod II Turbine were obtained.

Compressed air is used as the working fluid in the TTR. It is

supplied by a twelve stage axial compressor located in a test cell

adjacent to the TTR. The supply air enters the TTR test cell at the

inlet valve for Tank 1 as shown in Fig. 9. Tank 1 is a settling tank

and plenum chamber for the exhauster and for Tank 2. The exhauster is

used to lower the pressure in the test hood below atmosphere to obtain

large pressure ratios across the turbine being tested.

Klein, Armin, Experimentelle Nachprufung eines Berechnungsver-

fahrens fur axiale Stromungsmaschinen am Beispiel einer Turbinenstufe.

Forschg. Ing-Wes. 31 (1965) Nr. 5.

2Commons, P. M. , Instrumentation of the Transonic Turbine Test Rig to

Determine the Performance of Turbine Inlet Guide Vanes by the Application

of the Momentum and Moment of Momentum Equations (NPGS Thesis, Sept. 1967)

Page 24: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 24/221

Air for the turbine leaves Tank 1 through the flow rate nozzle

and goes into Tank 2 which is the settling tank for the turbine plenum.

The flow rate nozzle is instrumented with total pressure taps and a

total temperature probe ahead of the nozzle and static pressure taps

downstream of the nozzle. The air path from Tank 2, through the

turbine inlet valve, and into the test hood to the turbine plenum is

shown in Fig. 9.

Figure 10 is a cross-section of the arrangement inside the test

hood. The turbine plenum is supported independently from the stator

assembly and surrounds the upstream end of the stator assembly. The

plenum is instrumented with total temperature and total pressure probes

A small amount of air leaks from the plenum through the labyrinths that

seal the plenum pressure from the pressure inside the hood. Air flows

radially from the plenum into the stator assembly, thence through the

turbulence reduction screens to the stator. Six fixed total pressure

probes and two moveable total pressure and temperature Kiel probes are

located between the screens and the stator. The total pressure probes

are fixed at a radial distance which approximately divides the flow

entering the stator into equal mass flow rate increments. The fixed

probes and the conical turbulence reduction screens are shown in

Fig. 11.

The closure plate, shown in Fig. 12, is attached to the stator

assembly by a cylindrical member and a spoked wheel type flexure

device, which is instrumented with strain gages to determine the

torque and the axial force transmitted from the closure plate to

the stator assembly. Also, the cavity between the closure plate

and the stator assembly is instrumented with a static pressure port.

Page 25: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 25/221

Static pressure ports are arranged along the shroud at %-inch

intervals beginning at the exit of the stator. The arrangement of

these ports on the downstream end of the shroud is shown in Fig. 12.

The radial clearance between the rotor tips and the shroud is

determined by the inside diameter of the shroud. Different shrouds

are available for installation on the test rig to provide varied

radial clearances.

The entire stator assembly is supported by flexures which allow

the assembly to move in the axial direction and around the axis.

Reluctance type force gages are located between the moveable stator

assembly and the fixed structure. The force gages measure the axial

force, and the moment about the axis, which are transmitted from the

moveable stator assembly to the fixed structure.

The rotor is cantilevered from the rotor bearing support stand.

Figure 14 shows the rotor mounted in the bearing stand. Two sets of

matched precision ball bearings support the rotor shaft. The bearings

are lubricated by an oil mist system.

The axial distance between the stator and rotor is varied by

sliding the rotor bearing assembly in the support stand. The bolt

at the top of the rotor bearing support stand locks the sliding

assembly in the desired axial position.

A quill shaft connects the rotor shaft to the dynamometer shaft.

A six-spoked flux cutter is fitted to the dynamometer end of the quill

shaft. The flux cutter passes through the field of a magnetic pickup

from which the RFM of the rotor is obtained.

The dynamometer is an air brake device which is cantilevered

from the dynamometer bearing support stand. The dynamometer bearings

are similar to the rotor bearings. A twenty inch long arm is attached

Page 26: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 26/221

to the shaft between the dynamometer bearing stand and the dynamometer.

The arm acts on a reluctance type force gage from which the dynamometer

torque is determined. Table II lists the quantities recorded during

a performance test run. All pressures are measured on a mercury

manometer, except the pressure differential across the flow nozzle

which is read on a water filled, U-tube. All the temperatures are

obtained from Iron-Cons tantan thermocouples referenced to an ice bath.

4. Analysis and Data Reduction .

General

The turbine performance data were analyzed with a one-dimensional

mean streamline approach. Steady axisymmetric flow conditions were

assumed to exist at the entrance and discharge of each blade row.

Adiabatic flow conditions were assumed to exist through the entire

stage. The mean flow conditions were assumed to exist at the root

mean square of the blade radii, hereafter referred to as the mean

radius, R . The mean radius is found asm

Rm=LJ

J (inches) (2)

where R = radius of blade tip (inches)

R_ = radius of blade hub (inches)

For simplicity in the following development, the mean radius will be

considered constant through the stage. In the actual calculations,

the variation in mean radius between the stator blades and the rotor

blades was taken into account. The major portion of the data reduction

calculations was performed by the IBM 360 digital computer located at

the Naval Postgraduate School.

Page 27: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 27/221

Flow rate

The flow rate through the turbine is the flow rate through the

flow measuring nozzle less the flow rate through the labyrinth seals.

Thus

ft s WN - W,, 0)

where

W = Flow rate through the test turbine (lb /sec)m

W„ Flow rate through the flow measuring nozzle (lb /sec)N ° m

W_ = Flow rate through the labyrinth seals (lb /sec)L m

The flow rates through the flow nozzle and through the labyrinth seals

are determined by measuring the applicable quantities listed in

Table II. The calibration methods and data reduction formulae are

3discussed by Commons..

Stage entrance properties

The total pressure at the stator entrance, P^ , is taken as theto

average pressure indicated by the six fixed pressure probes. The

validity of this assumption is explored in Sec. 7. The total temper-

ature, T , is obtained from the Kiel probes.

Stator discharge properties

The fluid properties at the stator discharge and the stator

performance parameters are obtained by determining the velocity triangle

at the stator exit. The peripheral component, V , of the absolute

velocity is obtained by application of the moment of momentum law to

the fluid contained in the stator assembly. From the derivation

presented in Appendix I,

3Ibid. Sec, 4

Page 28: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 28/221

V„, = (Mcl +Ms )9/kRm(4)

where

V = Peripheral component of absolute velocity at the statorUl

exit, (ft/sec)

M = Moment applied to the stator assembly by the moment capsule

shown on Fig. 12. (ft-lbf)

M = Moment applied to the stator assembly by the closure plate\jLi

(ft-lbf)

The axial velocity component, V , is found by application ofal

the conservation of momentum law to the fluid in the stator assembly.

From Appendix I,

where

r

(5)

V = Axial velocity component at the stator discharge (ft/sec)al

F = Force applied to the stator assembly by the axial force gage

(See Fig. 13^ (lbf)

F = Axial force applied to the stator assembly by the closureLiJj

plate (lb )

F = Net pressure force acting on stator assembly. (lb )

(See Appendix I, p. 112). .

2p = Static pressure at any radius at the stator exit. (lb /in.

Refer to Appendix I, p. 112 , for the solution to the pressure integral

given in Eq. (5)

Page 29: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 29/221

Since the continuity equation must be satisfied by the fluid flow

through the stator, the axial velocity component, V , may be determinedal

as,

Refer to Appendix I, p. 112 , for the derivation of Eq. (6).

In the data reduction computer program, contained in Appendix II,

both Eq. (5) and Eq. (6) are satisfied by an iteration procedure which

determines a compatible static pressure distribution in the radial

direction at the stator exit. The stator exit velocity is then found

as

 *lk (7)

Referring to Fig. 16, the stator absolute discharge angle is

The relative axial velocity component is

•* *r«(-fc> (8)

v v*< (9)

(10)

and the relative peripheral component is

where

CJ rotor rotational speed (rad/sec)

The relative velocity is now found as

and the relative stator discharge angle is

ft. 7.N-

1

(J* ) (12)

Page 30: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 30/221

Page 31: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 31/221

Combining Eqs. (16) and (17)

£• . 1 3

^C 29^[WVp)Y] (19)

TO ^

Cis

anaverage value of the stator effectiveness. In the actual

flow passage through the stator the major part of the losses is due

to the boundary layers which form along the surfaces of the blades.

In fact, expansions along streamlines away from the bounding surfaces

should be nearly isentropic. For this reason, it is quite difficult

to obtain a meaningful average stator loss coefficient by measuring

the flow properties with probes introduced into the flow stream.

Obviously, it would require a great number of points to be measured

very near the surfaces. Herein lies the significant advantage of the

TTR with the force capsule arrangement which gives mean flow conditions

by measuring external forces on the stator assembly. The stator

efficiency is given by

7fs 1 -

?, (20)

The flow function $ is given by Vavra as

and the isentropic flow function as

The stator flow restriction factor or blockage factor is defined as

4Vavra, M. H. , Problems of Fluid Mechanics in Radial Turbomachines

Parts I & II. Von Karman Institute Course Note 55a . Rhode-Saint-

Genese, Belgium: Von Karman Institute for Fluid Dynamics, March 1965,

Page 32: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 32/221

Rotor discharge properties

By considering the flow through the rotor relative to the moving

rotor blades, the fluid properties at the rotor exit can be determined

in a manner quite analogous to the method applied to the flow through

the stator.

The peripheral component of the relative velocity at the rotor

exit is found from the moment of momentum equation. From Appendix I,

P. 112,

K= WWf - Mo 9/ . (24)

where

WL = moment measured by the dynamometer force capsule. From

Appendix I, p. 112, the axial component of the relative velocity is

Wtt - *&&. (25)

where the static temperature at the rotor discharge is found by

combining the energy and continuity equations as

T - SlcpAttf lj-. 2ft' Ra* / WJi t» Wi1

m^.,1 ,,,s'*- *h& v-w&wh^-^-T&r^ 'i

<26)

The various velocity components and discharge angles for the rotor

exit can now be computed. From Fig. 16,

it, « w* <28 >

K* IVUl + V (29)

Page 33: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 33/221

V* = C < + Vu\ j

Vz(30)

is,= rAN

-' (£> (3D

•Jk-1 - 1

<fc>(32)

Analogous to the stator loss coefficient, the rotor loss coefficient

is defined as

3«W»*w

(33)

where

W = relative velocity at the rotor exit if the expansion2th

through the rotor were isentropic, (ft/sec).

This expansion is shown in Fig. 15 from (PW ;T_) to (P ,T. ).

IS

W is calculated as2th

 •» a^'+IsJ^Wty* *]}* (34)

The efficiency of the rotor is defined by

% Z 1 - £ (35)

Stage performance parameters

The overall efficiency of the turbine stage is that percent of

the isentropic temperature drop across the stage which is used in

developing work output. The isentropic temperature drop across the

stage, AT , is shown in Fig. 15. It is computed asis

Page 34: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 34/221

AT* =*.£)- (Ve^] (36)

'to

AT. is often expressed in terms of a theoretical velocity,

C , aso

AT. =- (37)

The temperature drop which represents the work output is shown on

Fig. 15 as AT . It is computed asw

ATW = -££-. (38)

or, by Eulers turbine equation, as

ATW = U (Vt, -«*)/$J«j,

The efficiency is then computed as

(39)

(40)

This efficiency is known as the total to static efficiency.

The isentropic expansion across the stage is considered to start at

the total pressure ahead of the stage and extend to the static

pressure after the stage. The kinetic energy of the fluid leaving

the stage is considered as a loss.

The percent of AT. associated with a theoretical isentropic

expansion across the rotor from p, to p is known as the theoretical

degree of reaction. In terms of velocities it is defined as

* = i- 3r woU6

Page 35: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 35/221

r is an important stage parameter. It is an indication of the

amount of acceleration experienced by the flow in each row of blades

*in the turbine stage. Using Eqs. (18), (36), and (37), r is expressed

as

r* . (2ial' - 1

(42)-

(i^,»*i -

*The values of r at the hub and tip are computed by substituting p,

and p for p., in Eq. (42).

The peripheral speed of a turbine rotor, U, is usually a fixed

value which is determined by the allowable stress level in the rotor

blades. For this reason, II is commonly used to define dimensionless

stage performance parameters.

The isentropic head coefficient, k. , relates the isentropic

energy change across the stage to the peripheral speed by the relation

tu <£>' mThe work coefficient k relates Lhe actual work accomplished in

wr

a stage to the peripheral speed as

k. is used by designers to estimate the number of stages

necessary to handle a given isentropic energy change at any given

peripheral speed, U. Similarly, k is used to estimate the flow rate

through a stage necessary to produce a specified amount of power at any

given speed U.

Page 36: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 36/221

In order to compare the results of the performance tests from run

to run, and with predicted results, the NA.SA reference system is

employed. The reference parameters are defined as

Q =yR ' Tt

>f1.401X58.35X518.4) (45)

for air

S « VstS.4 (*«

and

£= Vfc.7 (47)

The performance values which are measured on the TTR and then

reduced to referred values are flow rate,

(48)v = W A6 (lb /sec)m

dynamometer moment,

M>«<-\ (ft-lbf)

horsepower,

HP = HP/REF

4jr(hp)

(49)

(50)

and rotational speed

N RPC =N/ (rpm) (51)

5 . Description of Performance Tests

The performance tests were conducted from January through August

1967. The turbine was operated about 150 hours while performance data

were being taken. Table III lists the test parameters used in each run,

Page 37: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 37/221

The first series of test runs was performed at a radial clearance

between the rotor tips and the shroud, AlT , of 0.033 inch. Prior

to each run, the axial clearance between the stator and rotor, Ax,

was set at the desired position. Five axial positions, Ax, of

0.200, 0.0410, 0.620, 1.000 and 1.500 inches, were used in the first

set of tests. The second series of tests was performed at a radial

clearance, AlT , of 0.015 inch. Since the changes in performance

parameters with a change in axial clearance were found to be small

at the original radial clearance, it was decided to conduct the final

set of tests at only three axial clearances; namely, L x of 0.200,

0.410, and 1.000 inch.

At each combination of axial clearance, L x, and radial clearance,

AT, the turbine was tested at four pressure ratios across the stage,

(P /p )* namely, at 1.3, 1.4, 1.5, and 1.6. An additional pressure

ratio, (P /p9) of 1.45, was examined during run number 63.

The test data items shown in Table II were recorded at a number

of rotational speeds, N, between 10,000 RPM and 19,000 RPM, at each

combination of radial clearance, axial clearance and pressure ratio.

The pressure ratios listed in Table III are approximate due to the

difficulty experienced in holding exact pressure ratios while varying

the RPM. This was a particular problem during the initial tests

conducted with the exhauster operating. As experience was gained and

better techniques were developed, it became possible to hold the pressure

ratios to within one-half a percent of the desired pressure ratio.

The torque absorption capacity of the dynamometer limited the

range of head coefficients, k , over which the tests could be performed.

The maximum head coefficient obtained in these tests was about 3.6.

Page 38: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 38/221

A chronological list of the test runs is given in Table IV.

Also included are the important changes made on the TTR, the duration

of each run, and any difficulties occuring during the run. The chief

mechanical difficulties encountered were fluctuations in input pressure

due to fluctuations of the axial compressor, slippage of the dynamometer

torque arm during the run, and force capsule calibration changes due to

changes in capsule temperature. These difficulties as well as several

other minor difficulties were easily overcome by minor design changes.

Calibration checks were made on the force capsules and the dynamometer

arm position at the end of each run. With this information and the sta-

bility of the input pressures during the. runs, the author feels that

runs 56 through 63, run 68 and run 78 yielded the most accurate perform-

ance data.

6. Results and Discussion of Performance Tests

General

A complete set of raw data and reduced performance data for TTR

test runs 51 through 80 is filed in the Turbo-Propulsion Laboratory

Office. Reduced data for test runs 58 through 63, 68, 77, and 78 are

contained in Appendix III. The performance parameters used in Appendix

III have been defined in Sec. 4. In order to illustrate particular

phenomena, some of the data from Appendix III have been graphically

displayed in Figs. 18 through 56. Figures 18 through 29 are plotted

to show the influence of axial clearance from the stator to the rotor,

Ax, on the turbine performance. The influence on the turbine perform-

ance of the radial clearance between the rotor and the shroud, Ah, is

illustrated in Figs. 30 through 36. Figures 37 through 46 are graphical

Page 39: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 39/221

comparisons between the results of test runs 59 and 68, and perform-

ance characteristics predicted for the Mod II Turbine by the three-

dimensional prediction method described by Harrison .

Influence of axial clearance

The most important finding of this study is that the total to

static stage efficiency increases with increasing axial clearance up

to an axial clearance, A x, of about 1.000 inch. This was found to be

true at both radial clearances used in these tests. Figures 18 and

19 show efficiency versus referred rotor speed at a stage pressure

ratio, P /p 9 , of 1.3 for radial clearances, AP, of 0.033 inch and

o

0.015 inch respectively. Data scatter in Fig. 18 precludes a quanti-

tative analysis of the increase in efficiency with increase in axial

clearance. But in Fig. 19, the data are smooth enough to state with

certainty that the total to static stage efficiency increases about

one point with an increase in axial clearance, A x, from 0.200 to

1.000 inch. Similar results are shown for a pressure ratio, (P /p )

o

of 1.4, in Figs. 20 and 21.

Equation (40) shows that for a given stage pressure ratio, P /p ,

o

a given inlet total temperature, T , and a given rotor speed, N, the

o

stage efficiency is a function of the dynamometer torque, M, , and the

mass flow rate, W. The influence of varied axial or radial clearance

on efficiency can then be defined as a function of changes in mass flow

rate and changes in dynamometer torque. By comparing referred mass

flow rates, the effects of varied inlet temperature conditions need not

be considered. Moreover, the changes of mass flow rate with changes in

Harrison, R. G., An Analysis of Single Stage Axial-Flow Turbine

Performance Using Three-Dimensional Calculating Methods, (NPGS Thesis,

Sept. 1967).

Page 40: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 40/221

rotor speed are quite small. Therefore, for a given radial clearance,

the influence of changes in axial clearance on the flow rate can be

depicted by plotting referred mass flow rate as a function of pressure

ratio. This was done for a radial clearance, AT, of 0.015 inch in

Fig. 23 and for a radial clearance, hlT , of 0.033 inch in Fig. 22. The

conclusion drawn from Figs. 22 and 23 is that increased axial clearance

has little effect on the mass flow rate.

Similarly, to show the influence of varied axial clearance on the

torque produced by the turbine, the referred dynamometer moment was

plotted against the referred rotor speed. These plots are shown in

Figs. 24 and 25. It can be concluded from these graphs that the increase

in efficiency with an increase in axial clearance is primarily the result

of an increase in produced torque.

To summarize the last three paragraphs, the Mod II Turbine will

operate most efficiently at an axial clearance, A x, of 1.000 inch.

At any other axial clearance the torque will decrease and the mass flow

rate will remain about the same.

During the test runs, the most noticeable effect as the axial

clearance was increased was an increase in the static pressure at the

stator tip and a decrease in the static pressure at the stator hub.

This phenomenon is apparent in all test data. The pressure change

shows up in the reduced performance parameters as a change in the

theoretical degree of reaction. The theoretical degree of reaction

increases at the tip and mean radii and decreases at the hub radius

with increasing axial clearance. To show a typical result, the theo-

retical degree of reaction at the tip and hub were plotted in Figs. 27

and 28 for run 78.

Page 41: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 41/221

Page 42: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 42/221

guides the flow particles into the rotor flow channel at a more optimum

angle as the axial clearance is increased. It has been demonstrated

with stationary cascades on a water table that the axial distance between

blade rows greatly influences the stream paths of the flow particles.

However, the flow through a stationary row and a moving row of blades

might produce different conditions.

The change in pressure distribution may be due entirely to unsteady

conditions caused by the moving rotor blades passing through the wakes

of the stator blades. If this is the case, these phenomena will not be

observed on a rectilinear cascade. In an unsteady f low^so-called

Reynolds stresses are produced which must be added to the force field

calculated from mean momentum flow. Experimental investigations about

the magnitude of Reynolds stresses in turbomachines seem to be non-

existent in the available literature. Further studies with the TTR and

Mod II Turbine should provide some answers to these important unsteady

flow questions.

Influence of radial clearance

The total to static efficiency increased from one to four percent

when the radial clearance between the rotor tips and the shroud was

decreased from 0.033 inch to 0.015 inch. Figures 30 through 33 show

the efficiency as a function of the isentropic head coefficient for

pressure ratios of 1.3, 1.4, 1.5, and 1.6. There is no clear relation-

ship between the efficiency change and pressure ratio, RPM, or axial

clearance. It can be concluded, by comparing Figs. 18 through 21 and

Figs. 30 through 33, that the efficiency of the Mod II Turbine will

increase about three percent, if the radial rotor tip clearance is

decreased from 0.033 inch to 0.015 inch. This increase is apparently

independent of RPM, axial clearance and pressure ratio.

Page 43: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 43/221

The most interesting finding was that the increase in efficiency

with decrease in radial clearance is mostly due to a decrease in mass

flow rate. That is, if all other conditions are the same, the Mod II

Turbine will develop the same torque at a radial clearance of 0.015

inch as it will at 0.033 inch but at less mass flow rate. This fact

is graphically portrayed by Figs. 34, 35, and 36. Figure 34 shows the

referred mass flow rate as a function of stage pressure ratio for both

radial clearances of 0.015 and 0.033 inch. Figures 35 and 36 are plots

of referred dynamometer torque as a function of referred RPM for various

stage pressure ratios at radial clearances of 0.015 and 0.033 inch,

respectively. By comparing Fig. 35 with Fig. 36 it can be seen that the

torque developed by the turbine is nearly independent of radial clearance

It should be noted that the pressure ratios portrayed in Fig. 35 are

slightly different from those in Fig. 36. This fact must be considered

on comparing the two figures since the torque developed by a turbine is

very dependent on the stage pressure ratio.

Figures 37 through 40 show the experimentally determined stage

efficiencies on the same plots with predicted efficiencies as a function

of referred rotor RPM. The predicted values are depicted by the curves

and the experimental values by the plotted points. The experimentally

determined efficiencies can be seen to be from one to three percent

lower than the predicted values at both radial clearances. This dif-

ference is mostly attributable to a difference in measured and predict-

ed mass flow rates. Figures 31 and 42 are plots of the mass flow rates,

and Figs. 43 and 44 are plots of the dynamometer torque. The predicted

and measured torque data are generally quite closely in agreement.

Likewise the predicted and measured power data, shown on Figs. 45 and 46,

agree very well.

Page 44: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 44/221

7 . Description, Results and Discussion of Flow Surveys

General

Flow surveys were conducted with temperature and pressure probes

before the stator, between the stator and rotor, and at the rotor

discharge. The surveys were conducted to gain data from which compar-

isons could be made with predicted flow properties and flow properties

calculated from the mean streamline analysis method presented in

Section 4. In addition, the flow survey ahead of the stator was

conducted to gain a measure of the validity of the basic assumptions

of the mean streamline analysis.

Flow survey upstream of the stator

A number of flow surveys were made with the two Kiel probes

located upstream of the stator entrance. Total temperatures and total

pressures were recorded at one-tenth inch increments between the radii

of 3.7 inches and 5.0 inches from the TTR axis. Figure 47 depicts the

results of a typical pressure survey with the Kiel probe on the left-

hand side. The total pressure can be seen to vary about 2.5 percent

between the stator hub and tip radii. The same distribution of pres-

sure was found by the survey data of the other Kiel probe. The tem-

perature data from all traverses showed the total temperature was nearly

constant at all radii. Therefore the assumption that the fluid prop-

erties at the stator entrance are uniform is not entirely satisfied.

The reason for the low total pressure at the hub radius is that

the flow particles are accelerated around the hub curvature much more

than the particles which follow a path at a greater radius. Since a

constant loss coefficient is associated with the screens, the particle

which passes the screen with the greatest velocity will incur the

Page 45: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 45/221

greatest increase in entropy. Further, since no appreciable amount

of energy is transferred in the process, all particles enter the

stator at the same energy level (i.e., total temperature). However

the particles near the hub are at a higher entropy level and there-

fore at a lower total pressure; thus, they have less energy available

for the expansion across the stage.

The non-uniform pressure causes two problems with the mean stream-

line analysis. First, the total pressure measured ahead of the

stator must be measured at such a location that it represents the

pressure at the mass averaged mean streamline radius. Secondly, the

loss coefficients determined by the analysis will not be exactly

representative of the loss coefficients which would exist for uniform

flow conditions.

The positions of the fixed total pressure probes are at very nearly

the same radius as the mass flow weighted mean streamline measured at

the stator exit as shown in Fig. 47. It is therefore felt that the

total pressure is very nearly representative of the mean condition. A

design change of the TTR to allow for flow surveys immediately up-

stream of the stator blades would permit the researcher to make a more

quantitative analysis of the flow in this region. The one- dimensional

analysisis

designedto

yield first-cut estimatesof loss coefficients

and other design parameters. Therefore, it is felt the non-uniform

conditions at the stator entrance do not significantly detract from

the usefulness of the calculated results.

The assumption of axisymmetric flow conditions is apparently quite

valid. The differences in pressure measured by the right and left Kiel

probes at any radius were less than one percent of the absolute pressure.

Page 46: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 46/221

Further, the maximum variation in pressure indicated by the six

fixed probes was always about one percent. A typical result is

shown in Fig. 48.

Flow survey at the stator discharge

Pressure and temperature surveys were conducted at the exit of

the stator nozzles during runs 64, 65, 66, 77, and 80. Two 5-hole

flow probes built by the United Sensor Corporation, type DA 125, were

used on different occasions for the pressure surveys. These probes

measure yaw and pitch angle, and total and static pressure. The total

pressure and yaw angle are considered exact as read. However, the

static pressure must be corrected for pitch angle, Mach number, and

immersion effects. Additionally, the pitch angle must be corrected

for Mach number and immersion effects. Calibration curves supplied by

the manufacturer are filed in the Turbo- Propulsion Laboratory Office

by instrument serial numbers. Since the Mach number of the flow at

the stator discharge was much larger than the Mach number at which

the probes were calibrated, it was necessary to linearly extrapolate

the calibration data. The temperature surveys were conducted with a

locally manufactured, shielded Iron-Constantan thermocouple.

During run number 66, traverses were made at six peripheral positions

from stator blade number four to blade number three. Ten data points

were taken at each peripheral position. The position of each data point

is shown in the plane of the stator blade trailing edges in Fig. 49.

The calculated velocity distribution from the hub to the tip is shown

in Fig. 50 for data points 21 through 30 and 31 through 40. These

points were taken about half-way between the blades. The continuity

equation was checked by

il z ( 2Trr/°V&,dir (52)

Page 47: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 47/221

Equation (52) was integrated in an approximate manner by dividing

the flow annulus into small increments, calculating the density and

axial velocity that existed at the mean radius of each increment, and

summing as

W=?rr|tf/«,r4r ; £,r£. (53)

The only quantity on the right side of Eq. (52) which was neither

known nor calculated from the measured flow probe data was the static

temperature in the density relation. This temperature was found from

the energy equation as

T.Tt. - £|3V>

wThe results of this calculation are listed in Table V. The mass

flow rate calculated from the survey data is 4.718 lb /sec. The massm

flow rate measured by the flow nozzle reduced by the labyrinth leakage

flow is 4.430 lb /sec. Thus the survey probe data apparently yield

a mass flow rate which is about six percent too high. However, it

must be kept in mind that the position of data points 21 through 30

was in the region where the flow is nearly isentropic. Therefore it

can be assumed that the mass averaged axial velocities are six percent

smaller than the velocities listed in Table V. This reasoning can

lead to the calculation of an approximate loss coefficient as follows.

The mass averaged axial velocity is found as

V*, Ui T7   * (4.718) <55 >

Page 48: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 48/221

where

V , axial velocity from Table VI at the radius, R , whichal

J m

divides the flow channel into equal increments of mass flow,

W = flow rate from Table VI.

.*W = measured flow rate.

Then

w*. Jl°± a1  = 585C*Vsec) (56)

1   c«%   cos^o.r

where

V 1 = mass averaged stator exit velocity

of = measured stator exit angle at radius, R .

1 m

The stator loss coefficient can now be calculated as

>» -VlVg9J^P - 1- 585 >g (32.1 7)-na.a = o.Qfcf

^s

=Tt.Cl-^/p)^]

  SMLl-Cfin-* (57)

where

p. = static pressure measured by the flow probe at Rl m

P = mean total pressure at the stator entrance

o

T = total temperature measured at the stator entrance,

o

The temperature surveys at the stator exit indicated that the total

temperature was very nearly constant at all radii.

The results of the survey data are graphically compared to the

predicted results on Figs. 55 and 56. The absolute exit angles, of,,

coincide very closely with the exit angles computed in the mean stream-

line analysis. However, the mean velocities from the mean streamline

analysis were consistently higher than the measured velocities.

Page 49: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 49/221

Flow survey at the rotor discharge

Pressure and temperature surveys were conducted at the rotor

discharge during run numbers 67 and 76. During run number 67 the

total inlet temperature, T , total pressure, P , and the RPM were

o oset to the same values as used in the traverse at the stator exit

conducted during run 66. Therefore, the results from run 67 can be

used with the results of run 66 to determine the actual velocity

triangles at any blade radius. Similarly the inlet conditions of

run 76 match run 75. The power developed by the machine can then be

determined and compared to the power measured. Likewise, other

performance variables can be computed and compared with the results

of the mean streamline analysis and the predicted values.

Figure 52 shows the velocity distribution at the rotor exit,

measured during run 67, and computed by the method described previously

for the DA- 125 type probe. On the other hand, Fig. 53 shows the

velocity distribution computed with the following assumptions:

1. The total pressure, P , and total temperature, T , are

2t2

assumed correct as measured by the probes.

2. The static pressure, p , is taken as the atmospheric

barometric pressure.

3. The static temperature is then computed from

\ = Ttl ifVpJ

*(58)

4. The velocity is computed as

V = [26J-^(Tti -Ta)JK

Page 50: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 50/221

It is felt this method of data reduction is more accurate

than the method which uses the probe calibration curves supplied by

the vendor. Since immersion effects on static pressure measurements

can be quite large , and are not taken into account, the calibration

curves cannot be considered exact.

Since the absolute rotor exit angle, o( has been measured, the

axial and peripheral velocity components may be computed from

t^VkCofOfe (59)

and

Vy2=\4Stn<*2 (60)

Also, the relative velocity components are obtained from

WAz= V*t (6D

and

WUt=Vu2

- U* (62)

Then, the relative discharge flow angle is

j92= TW

Table VI lists the results of run 67. The mass flow rate was

computed as

It

ft B £,;7f?£ Vdt*r (64)

n,

Because of the shape of the pressure probe, data points could be

taken only at greater distances from the shroud than 0.16 inch.

This condition made it necessary to assume the velocity distribution

between the shroud and the measuring stations closest to it. Similar

to the assumption used to develop Eq. (89), Appendix I, the axial

1 Wyx (63)>2   Waz

Page 51: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 51/221

velocity distribution was considered to be linear from zero at the

shroud to the nearest measured velocity. With this assumption, the

mass flow rate was determined to be 4.42 lb /sec. This value coincidesm

closely with the mass flow rate of 4.41 lb /sec measured by the flowJ m

nozzle.

The radius which divides the mass flow into two equal parts was

found to be 4.361 inches. By comparison, the root mean square radius

used in the computer program for the rotor is 4.187 inches. This

difference causes the derived peripheral velocity from Eq. (24) to be

in error by about six percent. Therefore, all quantities calculated

by Eqs. (25) through (33) will be in error also. Because of this

discrepancy, the rotor exit velocities, flow angles, and loss coef-

ficients obtained by the mean streamline analysis method should be

considered only as approximations of the actual values.

The power produced by each increment of rotor area was computed

from

AHP =||/(V^) (65)

The formulas for calculating the variables in Eq. (65) are listed in

Table VI.

From a summation of these increments, the total power developed

by the rotor was determined to be 63.3 horsepower. The power calcu-

lated by Eq. (38) from the measured dynamometer torque and the RPM was

62.1 HP for the data from run 66 and 63.1 HP for the data from run 67.

The results of the flow survey from run 67 are compared to the

predicted results given by Harrison , on Figs. 55 and 56. It is felt

that the discrepancy between predicted and measured exit angles is

Harrison, loc . cit.

Page 52: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 52/221

caused by the separated flow regions in the rotor which were not taken

into account in the prediction method. In Fig. 5 dark areas can be

seen at the tip and hub of the rotor blades. These areas consist of

oil and dust which accumulated on the blades during the runs because of

separations at these locations. Also in Fig. 57 dark areas can be seen

along the blade near the hub, as well as dark lines that point radially

outward. Apparently thick boundary layers or separated flow regions

exist in these areas. The dark lines are probably caused by dust

particles being thrown outward by centrifugal forces.

8. Recommendations

The following recommendations are not presented as original

thoughts of the author, but rather as a listing of the logical steps

which should be undertaken as a continuation of this study.

1. Blade shapes geometrically similar to the Mod II blading

should be tested in the Rectilinear Cascade Test Rig of the Naval

Postgraduate School. The loss coefficients found in the present

study could be validated and the interesting changes of the pressure

distribution with axial clearance could be investigated.

2. The non-steady flow conditions caused by the rotor passing

through blade wakes of the stator should be examined in greater detail.

The wake patterns could be measured by hot wire anemometers now avail-

able. The change of the pressure distribution with axial clearance

may be related to non-steady flow phenomena.

3. The TTR should be modified to obtain more uniform flow con-

ditions at the stator entrance. A fix that should be attempted is to

remove the turbulence reduction screens and to insert anouter wall

Page 53: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 53/221

contour in the channel leading to the stator entrance. If this change

is unsuccessful in reducing turbulence and increasing uniformity, then

the TTR stator assembly should be fitted with a larger diameter inlet

pipe. Also, it would be very useful to have the capability of conduct-

ing a flow survey immediately upstream of the stator entrance.

4. Further performance tests should be conducted on the Mod II

Turbine. Particularly, tests at higher head coefficients should be

performed after the water brake dynamometer becomes available. It may

be determined that the relationship between efficiency and axial clear-

ance is a function of head coefficient.

Page 54: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 54/221

BIBLIOGRAPHY

1. Vavra, M. H., Aero-Thermodynamics and Flow in Turbomachines .

New York, London: John Wiley and Sons, Inc., 1960.

2. Vavra, M. H. , Problems of Fluid Mechanics in Radial Turbomachines,

Parts I and II. Von Karman Institute Course Note 55a .

Rhode-Saint-Genese, Belgium: Von Karman Institute for Fluid

Dynamics , March 1965

3. Vavra, M. H., Problems in Axial Turbines , Unpublished notes for

Course Ae 432, NPGS , September 1966.

4. Klein, A., Experimentelle Nachprufung eines Berechnungsverfahrens

fur axiale Stromungsmaschinen am Beispiel einer Turbinenstufe .

Forch. Ing-Wes. 31 (1965), Nr. 5.

5. Commons, P. M. , Instrumentation of the Transonic Turbine TestRig to Determine the Performance of Turbine Inlet Guide Vanes

by the Application of the Momentum and Moment of Momentum

Equations . NPGS Thesis, September 1967.

6. Harrison, R. G. , An Analysis of Single Stage Axial-Flow Turbine

Performance Using Three-Dimensional Calculating Methods . NPGS

Thesis, September 1967.

Page 55: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 55/221

TABLE I

MOD II TURBINE DESIGN PARAMETERS

ITEM SYMBOL UNITS STATOR ROTOR

Number of Blades z 19 18

Blade Height h in. 1.435 1.618

Hub Radius rh

in. 3.398 3.300

Mean Radius rm

in. 4.188 4.188

Tip Radius rt

in. 4.851 4.918

Throat Diameter a in. 0.4635 0.5400

Throat Area A uth

. 2in. 12.705 15.610

Axial Exit Area Aax

. 2in. 37.65 41.77

Exit Angle <* deg. 68

Relative Exit Angle fi deg. 9.2 -66.4

Loss Coefficient <r 0.079 0.093

Blockage Factor » 0.970 0.965

Isentropic Head Coef. K.is

2.56

Work Coefficient Kw*

r

2.14

Theoretical Degree

of Reaction

0.435

Efficiency (Total to

Static^ ?o/o 83.80

Rotational Speed N RPM 14,200

Stage Pressure Ratio Pto

/P2

1.484

Page 56: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 56/221

TABLE II

MEASURED DATA FOR TURBINE PERFORMANCE TESTS

TRANSONIC TURBINE TEST RIG

Desired

Quantity

Measured

Item

Measured

Units

Symbol Computer

Character

1. FLOW RATE

Flow nozzle total pressure

Flow nozzle total temperature

Pressure differential across

flow nozzle

Turbine plenum total pres-

sure

2. STATOR ENTRANCE PROPERTIES

Stator entrance total pres-

sure

Stator entrance total tem-

perature

3. STATOR DISCHARGE PROPERTIES

Stator tip static pressure

Stator hub static pressure

Force exerted on stator

assembly by the axial force

capsule

Moment exerted on stator

assembly by the stator

torque capsule

Static pressures at the end

of the shroud

Axial force exerted on the

stator assembly by the

closure plate

Moment exerted on the stator

assembly by the closure pla

4. ROTOR DISCHARGE PROPERTIES

Static pressure in the test

hood

Dynamometer torque

Rotor rotational speed

in. Hg.

millivolts

in. H2

in.Hg.

in.Hg.

millivolts

in. Hg

in. Hg.

counts

counts

in.Hg.

counts

counts

:e

in.Hg.

counts

RPM

tn

tn

to

to

M

P P15' 1

P P17' 18

P P

19' 20

CL

MCL

hd

*D

N

PNDZ

TNDZ

DH

PSPL

PTPL

TTPL

PTIP

PHUB

FAX

TORQ

P15-P20

CLFAX

CLTRQ

PHD

DYNAR

RPM

Page 57: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 57/221

Page 58: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 58/221

TABLE IV

CHRONOLOGICAL RECORD OF MOD II TURBINE TESTS 1967

Run No. Date Duration Remarks

(Hrs)

51 1-26 3.5 Dynamometer arm slipped, put set screw in arm

52 2-3 2.5 Tested hood for leaks, tested dynamometer

2-9 Tested waterbrake, slight bearing problem

53 4-3 3.0 Dyna. capsule 25 counts off at shut down

54 4-24 5.25fc

Px = 1.6 & 1.8, dyna. capsule off 30 counts

55 4-25 Checked dyna. capsule at various temperatur&s

by heating with a lamp. - very temp, sensitive

-50 to +17 counts

Installed constant temp, environment system

around dynamometer capsule

56 5-11 3.0p

Performance test at *°/pz = 1.4 with dyna.

capsule; took tare readings during run. Dyna,

checked good at shut-down

57 5-16 2.5 Used spring capsule to check dyna. readings

obtained during run 56 - satisfactory

58 5-31 6.0 Good data - no apparent problems

59 6-1 6.0ii ii it

60 6-5 5.5it ii ii

61 6-7 3.0ii ii ii

62 6-9 4.0ii tt it

63 6-13 5.0ii ii ii

67

6-14

to

6-21

Replaced shroud with new shroutf? Ar = 0.015 in.;

cleaned all probes & lines with high press. N~ .

Unable to calibrate closure plate axial force

device. Designed new device & assembled mach

w/o closure plate instrumentation

64 6-23 6.5 Temp. & press, traverse at stator exit. Y.C.

DA125 S/N 926

65 6-26 3.5ii it ii ii ii ii ii

66 6-27 5.5 60 data point pressure traverse at stator exit

with DA125 S/N 926, 10 data points with S/N 928

for comparison.

6-28 5.0 Temp. & press, traverse at rotor discharge.

Y.C. D.A. 125, S/N 926. Two peripheral positions

checked about 30° apart .-readings less than

± 0.25 cm. HO. difference

Page 59: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 59/221

TABLE IV (cont.)

68 7-5 6.5 Good performance data - no apparent problems

69-76 7-10 44.0 All dyna. readings during these runs are

to possibly in error. Set screw had worn a grove

8-5 in the shaft causing slippage. Discoveredduring run #77. Also A.C. compressor very

unstable.

7-20 Installed new closure plate axial force

flexture. Calibrates good.

75 7-31 Traverse before stator with left & right Kiel

probe. Transverse aft of stator with S/N 928.

76 Traverse aft of rotor with S/N 928

77 Discovered torque arm movement during run -

made calibration of movements.

78 Spring; capsule dynamometer used

79 Checked capsule calibrations

80 Traverse aft of stator with S/N 928

Page 60: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 60/221

<

CO m CO v£) vO v£> vO i—l

V coQloo • CO CO O o vO CO 1—1 <f

o CO 1—1 CM CO -d- -d- < m m

?-vO CM I— ON CO CM r^. 1— i—i r-l

CTN O I—I CO -4 ON CO 1—1 o m1—1 CM CM CM CM CM co •o- m m

3 vt m o i—i CM CM co

2* CM ON CO r-l CM ON CO r> r-l CM1 CN vO r-l r-J 1—1 CM CM CO co

CM r^ i—i vt CO CM vO o < - in3 m o CO 1^ m CO CM O ON K vO

in <f <t <r <t <t <t- CO CO CO

«> <•]

o o co m -cf <o CO CM m CO1— CO <t I--- On i—i CO vO CO 00m in m m m vO n£> v£) vO v£>

i

CO m o CM r- ON —I CM vO vO

•^ COi— CO vO CO <r n£> o m CO 00On i—i ON ON 00 r^- m MD m r^

<J r- m -* <t <t <t <}- -d- <t oO o o o o O o O o o

o vO on CO fNi CM r^ CM vO CO£cm o r-l CO vO 00 i—i CO vO CO 00

LO m m m m n£> n£> M3 vO \D

* VO o o o «tf r-l ON CO r^ <ton o o r-l r-l CM r-l CO <r COr-l CM CM CM CM CM CM CM CM CM

LO o O O O O O o o CO

^P CM m m m m m m m m CMJ-i C CM i—i i—i —1 r-l i—i r-l i-j —I O

«3 O o o o o o o O o Oo

•r-l

4J a ^m

4J <U *— oCO r-l ON vO «* r-l CO m CM CMm m o- <t <t <f CO CO CO 00

co h ** m m m m m m uo m m m

o•h co /^v CO i—i r^ r-J vO ON CO I

s* CO r^4J CO oj

on r^ <t CM On vO •<t i—i ON 00

4-> r4T^M r^ r^ i^ f> ^ *£> v£> vO ^ m

W PH d, i—i i—i r-l r-l r-l —I i—i i—i <— i—i

wa)

4J

3 /->

I—I (1) •

OH .«On

CM o,r-l

CM <f co «tf CM CMco bO X <U

43 C g, CO ON ON O O O o o O i—l

<J ^ v_ vD vO VO Pv. r- r^- r-v. r~- r~- r-.

^v.

>. o4J CD

•i-l CO

O  * 4Ji-J <4-l CO •vl- CO i—l CM m on m ON VO

QJ v_/ -cl- vO CO I—I CO m r-~ o CM CM

> in m m *£> vO n£> vO r^. r\ (•V.

co

3 ^•H 3 i—i vO i—i vO r-l vO i—i vO i—i CM

•O M -H r^- m «* CM i—l ON CO vO m <tcs ^-^

}-i <t <t <r <r -.-f CO CO co CO CO

4-1

a a4-1 -r-l

co O i—i CM CO <t m ^O r> CO o> oO PM CM CM CM CM CM CM CM CM CM co

o CJ

CU QJ

CO

r~\

W

u u 4-)

 4-1a] M-l

v-' w v-'

CM 4-1

i—l  4-1 r^v^ \s r N

CM I—

O R)

vO S3 r3 >COs_^

l + II

J-l i— CM r-l r

1=3>

33

 ZII

>«^

II QJ

II t-t 5-i

3 1—1 a>

Z> rS rS3

m vO

o / S r-4

d) U CO

w 0)CO >

4-1 * *— s-\

<4-l 4-1 CJ

v^ <4-l h- QJ

\s CO

i—l N. 4-1

Vr-l

& M-l

COK u

O c <CJ •H

I—l

>

CO

>

r4

II II

CM

II

1—1 i—i it

CO 3 •IS

> > <*

3CO

H

U00

QJ

4J

CO

r4

gr-l

4-1

a)

r4

3co

CO

QJ

S

CM

Page 61: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 61/221

pa

CO

ICO

co

iCO

CO

s

P4

(0

•H

CO

(0u(0

Q.

5»as st sO P-i co in <f ro CM ON in o m r-- NO CM

o\ r> 00 nO 00 st r^ On <* in 00 On ro CM CM moo CM 1—1 i—i 1—1 o 00 in m CM p*« r-J CM ON NO oo

«c* i—i m m in in o- st <t <r ro ro CM I-l r-l o

rl o st r»» <t CM ON v£> CO r-l 00 in CM ON r- <* 1—1

3 i - 1—1 o on 00 r*» m <* CO CM o On CO vO LO <t ron0 ^O m m in n in n in in <r <J <* <r <r St

^ CO o in >n sO o o o m o o m 00 o o o^^3 CJN o O —I CM o- vO r^ 00 o CM ro <f r«» OO NO

st LO m m in in in m m NO vO SO NO vO NO NO

rf r* r-v CM CM ps CO

^  ° r-» o r-l CM CM 1—1 o CM m ON 00 r-J On •0 ON

> on H 1— i—l 1—1 1-1 i—i ON 00 l>. NO m nj I—l 1— CM

co ro 00 r^ as sD i—i o oo CM CM ro

4CM St r-v

S«CO O CM CO CM O r— <»• CM o NO r-l CM o men i— •4 st «* <t CO CO co CO CM CM r-l r-l r-l Oo o O O o o O o o o O O O O o

m

O

st

/*t-. CO CM S* m sO r- •

1—1 CO «J* 00 <t i-l m • CO^CO no nO 00 On ON 00 NO m 4 ro o po CM o CM o

CM CM <M CM CM CM CM CM CM ol CM r-l r-l r-l On I-l

Jf*

co 00 vO in X* co O CM O SO c J --cr ro ^Oso • o

O i-i CM CM CM c-l r-i O On 00 OO NO ro • r— •

CM CM CM CM CM CM CM CM H r-l i-l i—l —I ON 1-1  -»

ON CM st o o 00 O <r iO -t 00 CM ro Cs st

-J* ,

ro •> CM <t CO <t 00 ON ON NO r- CM r— ON r-l •vi- NO • CO

CO CO o 1-1 r-4 O CO NO NO >* I—l 00 es O sj oCM CM CO

i—i

CO co CO C-l CM CM CM CM I—l r-i r-l

mON I-l

st«* H sO CO CI H CO ON co m m ON sO CM NO CO

*r«» r»» m -t st m I-- CO On o c-l <f r~v ro CO CO

J*^ CO CO CO 00 00 00 00 00 OO ON On On ON ON ON ON

* on ON as as ON ON On ON ON ON ON ON ON On ON ON

t-. m r*> CO o ao CO 00 ,-- St CO ro so On o CMso to o vO >o 00 sO I-l CO r-- <t C-i r-l CO m stLT) m lO st St st m no vO nO l> CO ON On On ONas as ON ON ON On On ON On ON ON ON On ON o. ON

H -T as Oi co r— m co CO — m 'Xl On m m CM

-1 m o m NO CO <t ou sO CM •t m m ro CM CO

<*-£ 00 CO ON ON ON On (O l*» rs r- NO m1 --f St sto o o o o O o o o O o o o O o o

^ H r-t 1-4 1-1 I-i i-l r-l H i—i r-l r-l H i—i r-l 1—1 r-l

^r inh a CM in- 'H on cs m^ w o o i—

(

1 1 l-i r-l r-l , 1 r-i 1— r-l r-l i-i r-l r-l oo o O o o O o O o o O o o o o o

itf?

ro CO (#1 CO CO l'l en cO CO tn n ro ro CO CO co

r- c-l l*» r*» 1 v 1- i> r»< 1 i r>> r

- r - r-- 1-1-

•H f- i - NO m <t CO r-i H o ON CO t-- NO m •t CO

-t f 4 <4 t st 4 r t rn CO (O CO ro (O ro

4J

C•HO ir, SO H CM rn 4 m SO 1

- iJU a o H i.S CO stPi H r-l M r-l —j 1-1 I—l

Ma)

?oa0)

CO

uOXSOCM

COSO

W

00

2 O pi

Eco

oPi coII r-

mst M nono co r^

- «mst (Ur-l II

II

II CMCM -U

55 P* H

CM

st•

st

II

w

S \

o 3 s*-

•s)

> olO1 ir

CSi 3 u>

%^^— > v-/r—

i^ ^ r-

fe= ^ r-

^ ^3

IIit

N %r> 5

00

vl

00

N

K

rV

o

sS

GO

cr->

u. k)r

^M* II

f-l CM

U)

oSw»

CO

inrUO

«sl

5x*^v al-s

1 in

^̂N

o

^-^K vJD

L. s3

<IC

*

^ w> C

CM^

IIII 4

%

14

^m NO

Page 62: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 62/221

«£££

FIGURE 1

MOD II TURBINE STATOB ( After tests)

(View showing stator entrance)

55

Page 63: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 63/221

Page 64: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 64/221

U;

-»->

m •**~^

t> CO

+J a>

r-*

i* •HV <i-

•-> O<i-. i-

< P.v~'

VIX •o

8cd

i—i

< -Oe-co bO

Cw •H

E 8CQ X.« to

E1

i •H1

  t>N S

cos

Page 65: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 65/221

FIGI:

P1 er ba

ranre)

58

Page 66: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 66/221

FIGURE 5

MOD II TURBINE RCTOR (After tests)

(View showing rotor exit)

59

Page 67: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 67/221

P 8 )

60

Page 68: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 68/221

-3,  1364

PERIPHERAL WRECTIOM „

pOTOp

St- 1.4349

FIGURE 7

MOD II TURBINE BLADE PROFILES

Page 69: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 69/221

m

UJ

00

UJ

Page 70: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 70/221

5

c

C

CJ

UJ

O

Page 71: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 71/221

C5MPC

Eh

o w

inft.

PC

o

CO

Page 72: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 72/221

FIGURE 11

\NSONIC TURBINE TEST RIG

(View showing turbulence reduction

screens with stator and rotor removed)

Page 73: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 73/221

C\J

ot-t

CC

e-«

w(a

fi

onO<c

CO

w w

B HCS CQ

E B

£

O

S

ICC

5

Page 74: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 74/221

K\

Wa.

C5

QO

CO

o

CQ

COCO

CO

IX£-

E-<

>^WWVWWW

Page 75: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 75/221

68

Page 76: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 76/221

T»osT

t,A <>

o-te, B TE2 -i—

4 AT,8

W 2w2TH

ATW

i.

Nott. U, = U2C = 2g J Cp

FIGURE 15 THERMODYNAMIC PROCESS OF FLUID IN AN

AXIAL TURBINE STAGE

Page 77: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 77/221

STATOR EXIT PLANE

Vd,* Wo,

ROTOR EXIT PLANE

Lvur** Wu8 *J

FIGURE 16 VELOCITY DIAGRAM OF A TURBINE STAGE

Page 78: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 78/221

FIGURE 17

VECTOR SYSTEM FOR THE ROTOR ASSEMBLY

Page 79: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 79/221

84

82

80

78

o

| 74

Ho

9. 72i

O)

a

£70

^68

66

64

62

60

58

56

54

t~+

MZ \ ** >^-'

^> A

^V

pto

- I.O

Radial Clearance = 033 in

\ \N\\

\\

Axial Clearance+ I.OOOin.

A --0.4IOin.

\^

O C .200in

10,000 11,000 12,000 13,000 14,000

Referred Speed N/fg- WM)

FIGURE 18

15,000

Page 80: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 80/221

o 00 CD «* OJ

g

00 (D00 N N N h- co (0 <0

Efficiency Totol - Static T) (%)

Page 81: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 81/221

m

o5'

3O«<

Hoo

I

CO

o

84

82

80

78

76

74

? 72

# 70

68

66

64

62

60

58

56

54

-+-*-_

^-r  i—-

~o^>-£i

X^ A \

OX N

pto

1 4

Radial ()learan<:e = 0.033in.

Axial Clearance

I.OOOiA 0.410 ir

n.

i.

O 0.200i n.

11,000 12,000 13,000 14,000 15,000

Referred Speed N/fzr (RPM >

FIGURE 20

16,000

Page 82: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 82/221

Efficiency

To

asrr ^

^ >*

o

1

w 72«»

o Pto/% = 1.40

Ar =0.015

Ax = I.OO0

in.

D26

68 Ax = 0.410 a

DO

Of

12,000 13,000 14,000 15,000 16,000

Referred Speed N/jd (RPM)

FIGURE 21

17,000

75

Page 83: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 83/221

Page 84: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 84/221

Page 85: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 85/221

Page 86: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 86/221

Page 87: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 87/221

90%

80%

70%

60%

50%

^-o

^>^

/>*= 5

r*= 25 /

-

1.5 2.0 25 3.0 4.0

FIGURE 26

Page 88: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 88/221

CO

<0

c —0)

(0

c3cr

c

3CC

c

-O•l.OOOin.

ii

X<

c

oo

- ©J -

II

< I

OOii

13 <

\

5;

ii

< /

<

1

1

r

/

1

\

FIGURE

27

THEORETICAL

DEGREE

OF

REACTION

(T

TIP

RADIUS)

Ar

=

O.OI5

in.

1

\

-V

'

I

\<

o

1

a

I

I

\ 1 -\ \ \

\

\

<

\\D

\ <1 (D

i

i^

\<

1

a

1

\i

\i

ii \1

Ii ro - o b

P Nc

a.* a~ C

£

£IO

(O IT)

ro

ID

O o

CVJ

ID

d

—» o 0) QO kIf) 10 <r <r <r

o o o o o

<0

6

oooNT

Oo

(0

oIC

oo

CJ

oo

oo

81

Page 89: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 89/221

00 h- (0 ID

O Q O oO O O o

ooq.o

Q.

CO

82

Page 90: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 90/221

Q.

QC

OUJ

&UJu.UJ

0)

>

zo

<UJ

0>

0J

UJ

tr.

U. 3o 2uj

*•

UJ

©UJo

<ot-UJ

<T

OUJX

Page 91: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 91/221

9? S0?°

8OD

Oto

Page 92: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 92/221

c 00 0>3 CO ID

n~ <_0) to

N» 0> oo*

>3

CO *;

o o^^ o o

X d o o< <•»—*•

5

UJ £

10

ozUJ

o

u.LU

u cID

5d

HoO

:

/f:o b

01

D

o >

\c

i

^^

o

IO

ro

in

cvj

ii

E

IO

COCO

w

ocvi

CO

8 GO CO tf _p  Z

CVJ O

Page 93: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 93/221

55

O* £ Q

CVJ

k<1 O

o

IO

10ob

,

o

•/O

o

1

g1

-1

<

o

\

>o91

©

\

c

\\

UJ °\oCUJ

\.

Qtf

ID

ro**

cIO

O OJ

ro *II

E

or•w

IO

CVICO

w

QOJ

<0

OJ

00

OCO s

(O <3 OJ O

Page 94: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 94/221

8

3£OoQ

8Q

o

Ito I

UJ

ou.u.

UJ

Page 95: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 95/221

QC

5< QC

QCQC

I 1J

U. Si(0

s§O<a §3

QC H

S uj <3

It

o-j

3 <

§

(0

in

<P

5 o

*>

<M

Page 96: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 96/221

IO o IO **-

CM (VJ—

CD

_J

2 00

IO

Page 97: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 97/221

CMo

2 60

Page 98: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 98/221

Q.

oLUcr

<rLU

u.LU

a:

en

> ro

LU ©

SZu.LU

o

CO

I

_l

o

CM

COoCO

00S *

2e B $ $ s i

Page 99: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 99/221

Page 100: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 100/221

1

/

co

 £

s- £

roi

OK

CO

g

a>

i

/

?.

/

/

/

/

/

/

f

<n 2a.

/

a:

aUJ

/ °

o

/

J-1

1

—1

1

<<3

<1

<1

QC

QCUJU.

Y

VS

RE

39

:ienc

LIRE

I

\

\

\

EFFIC FIG

*

 

ao

a>wOa>

C

if

w C<3 C

q^IqCM it 1.51

0.033in.

A

Ax=

I.OOOin

o

\

i

eni

\

\

\

_i

1

\

\

\

\\

V

\X

a) a> 2

) Cl

: ?i $ CII ifI 55 SJ

Page 101: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 101/221

00

CD

0.o *-» <T

5s. nGC UJ

CE

o:

UJ

5 o u.Ui

X oc

>

>

o

z UJUJ ct

o Du.

ou. u.

C\)UI

o

1CO

^m1

_J

SI § S 15 SpSgR CDCD

COCD CD

CSJ

CD

0)

00

Page 102: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 102/221

3.7

3.6

3.5

34

W0

\ SEC./33

3.2

3.1

3D

.. .

Q

1.60

o°oo o

1. 51

^s***^ * *

^^^—L A A1.40

1* K * T =

' 3'

.

.Expet•. ResuH

X X -X * X X

^-13. .

.p2 1 40 £\

J[

1.51 c

1.60 c

J

)

3

8 9 10 II 12 13 14 15 16 17 18

tyfe*I0 3 (RPM)

VARIATION OF REFERRED FLOWRATE WITH REFERRED RPM

Ar= 033in. Ax = l.000in.

FIGURE 41

Page 103: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 103/221

8 9 10 II 12 13 14 15 16 17 18

H/j0 *I0-3(RPM)

VARIATION OF REFERRED FLOWRATE WITH REFERRED RPMAr = O.OI5ln. Ax«l.000in.

FIGURE 42

Page 104: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 104/221

12 13 14 15 16

}(Aq xI0-3(RPM)

REFERRED MOMENT VS REFERRED RPM

FIGURE 43

97

Page 105: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 105/221

(FT- LB)

10 II 12 13 14 15

H/j£xlCT3 (RPM)

REFERRED MOMENT VS REFERRED RPMAx =1.000 In. Ar a O.OIOin.

FIGURE44

16 17 18

Page 106: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 106/221

64

62

60

58

56

^ i

G  ME ^ a

l.60\

°oo (5^^(*T

52

50

48

HP46

^44

42

40

38

36

5^^LSI

-^ AA

*-s*A

VA 1.40

34

32

30

28

26

241

~~L. )r^**^

 —E:xper

* •X *

Results

*xII

X

X

Pto . 1.31

** 1.40 A— 1.51 o

I

1.60 °

j3 <) 1 1 i i2, I3 I 4 1 5 1 6 I7 18

nTIs * ,0 3 (RPM)

REFERRED POWER VS REFERRED RPMAr=0.033in. Ax » I. 000 in.

FIGURE 45

Page 107: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 107/221

64

62

60

58

56

54

52

50

HP>to

46

44

42

40

38

36

1A

_

a

60-

Bs a D

d—

—-o<-©„*© o

aS,NJ-30

G

AA A

A

t*wnAr B««ii Ite-

A A

A

1.40

- 4^ = >3° *

P2 1.40 A

_ 1.50 o

1.60 a

A

OH

32

30

28

26

X 1

 -*-

X J( ^*v^ 1K..J0

I

2

jC >v

10 II 12 13 14 15 16 17

lyte x IO 3 (RPM)

REFERRED POWER VS REFERRED RPM

Ar=O.OI5ln. Ax «|.000 In.

FIGURE 46

18

Page 108: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 108/221

v>

i

Radius (inches)

Page 109: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 109/221

c

•5 eo oo •J

CO

O1s

I

co

«D

O+CM _

O

w

S

eOCM

I

w

OeCO

I 2

O

CO

£

< o<r ui

Mi sui UJ

CL S

f *

Z

s w

IJ <5 fe

S

s

UI

UJ Icc Hs

h-

-I <

I

in

(E

wUJCO a)

cc

ccO DUJ ©

u.  ^

UJ

z

>-

CO

COro

b

(t>HU|)°*d OJOttOid 10401

I

Page 110: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 110/221

Page 111: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 111/221

DCin) X(in

9.70)

0»a.StOior i ip

/i \

i \/ \

/ >

r */

/

//

/

/

9.30 0.2n

= 1.4

/

//

WW '*900 RPM

/

/

8.90 0.4

/ ///

*

/

// /

A*) '/>-' // /' /

//

8.50 0.6

1/1/ '1/ '

Ji *

//

8.10 0.8/if

Measu red Pressure

/

7.70 1.0

Distribution v

j Between Blades

K /

/

Measu red Pressure

7/y

Pred icted P ressure Distrib

tum a

ution

nd

7.30 1.2

Distribution —\ Between Blades \

V-To S

Com

Satisfy Momerlinuity.

/ '/

/

6.90 1.4

* 1/ /

._-£&y I

32 3

Pr

STA1

3

•ssure

rOR Dt

FI6UR

3

(in Ha

5CHAR<

E 50

4

)

3E SUR

3

VEY

5 36

104

Page 112: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 112/221

D(m) X(in)

9.70

9.30 0.2

8.90 0.4

8.50 0.6

8.10 0.8

7.70 1.0

7.30 1.2

690 1.4

pto

1 A

,

\

\ \

\ '

\ \

N\ \

V \

h-=I- = 13,900 RPM

1

Measured Velocity \

| Between Blades-^ * \ ^—

\ \- \ \

»

\ \\ \\ \

Measured Velocity

L Between Bladee

% \

yo

- lionnMean veiuuuy iiurnA m

Ttoomeiitum a Continvnty

v— v —

\\\»

\\

\ 1

1

\

I*

<^

\ \

\ \

\ »

\ \

\ »

\ %— \ \

\ »

\

I

I

\

1

500 600 700

Velocity (ft/sec.)

STATOR DISCHARGE SURVEY

FIGURE 51

800

Page 113: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 113/221

DOn) X(in)

y.ooo u|

— uo• Rntrtr Tin

\\\\\

>

noior lip

9.436 0.2

s\\

\

\9.036 Q4

6

3

8.636 0.6

6

8.236 Q8V

7836 1.0

p

P

7.436 1.2

jO

7.036 1.4

 •)

6.636 1.61

100 200 300

Velocity (ft/sec)

ROTOR DISCHARGE SURVEY

FIGURE 52

400

Page 114: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 114/221

0(ia) X(in.)

9.838 f—

9.436 0.2

9.036 0.4

8.636 0.6

8.236 0.8

7.836 1.0

7.436 1.2

7036 1.4

6.636 1.8

100 200 300

Velocity (ft/s«c)

ROTOR DISCHARGE SURVEY

FIGURE 53

400

Page 115: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 115/221

D(in) X(in)

9.836 i

9.436 0.2

9.036 0.4

8.6360.6

8.236 0.8

7.836 1.0

7.436 1.2

7.036 1.4

6.636 1.6

Tinr*

9 noior lip

4

*•

Q

Q

//o

y

/o

fo

o/

O

X

1.0 II 1.2

Temperature (MV)

ROTOR DISCHARGE SURVEY

FIGURE 54

1.3

Page 116: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 116/221

73

72

71

Ql 70

(deg.)

69

68

67

TiStator Outlet

91

o © •^>©

_Exp<jr. Points—

©^

©© |P

3.0 3.4 3.8

r,(in.)

4.2 4.6 5.0

ABSOLUTE FLOW OUTLET ANGLESAS FUNCTION OF RADIUS

(Ax=l.000in.,Ar=0.0l5in., P /P^ 1.40, RPM/J<9= 13,934)

FIGURE 55

30

25

20

15

a?dIO

(deg.)

5

-53.0

A*iRotor Outlet]

ft

O © ©'Oft© y — ©

3X

©o°°

GO

©

3.4 3.8 4.2

rg

(in.)

4.6 50

Page 117: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 117/221

700

A3JLrt 4 c*/-itor Outlet

-

xd^D | OTOT

600

1

^°O

1|Vo

Exper Points—-^ >w .

500

-ahJ

o

•ia=

*

300

i

n o o

(F17SECI

Rotor Outlet'

a °0 „ an

200

VZ

W100

3X

O-^^—* - 

f\

o

o °

% O 2 .4 3 8 4.2 4.6 5.0r, and r2 (in.)

REFERRED VELOCITIES AS FUNCTION OF RADIUSA r»OOI5 , P

fo/Pz=I 40, yW= 13,934

-80

-75

&-70(deg.)

-65

-60

-55

o

3

V)

X O

o

° fi

oo Q

oo

30 34 4.6 5.0.6 42ra (in.)

RELATIVE ROTOR FLOW OUTLET ANGLE AS FUNCTION

OF RADIUS (Ar=O.OI5 ,f\ /P2 =l.40,JfJe7 = 13,934)FIGURE 56

Page 118: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 118/221

r-

w1=5

o

is-.

COcr.

Qs

I I  

Page 119: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 119/221

APPENDIX I

FORMULA DEVELOPMENT FOR MEAN STREAMLINE ANALYSIS

A. The peripheral component of the velocity at the stator exit is

determined by applying the moment of momentum equation to the fluid

contained in the stator assembly. The assumed control volume sur-

rounds the fluid in the assembly. It is assumed that significant

flow separations do not exist, and the fluid shear stresses at the

entrance and exit of the control volume are thus negligible (see

gVavra ). With this assumption the moment of momentum equation may

be written for this application as

M = -fSo

Js x v> dm8e

+ /tiJ? x V, dm«, (66)

where

M Moment applied to the control volume by the stator assembly.

S Surface where fluid enters the control volume,o

S1

Surface where fluid leaves the control volume.

The vector conventions for Eq. (66) are depicted on Fig. 13. Since

net pressures which could produce moments on the stator assembly

do not exist, pressure integrals have been omitted from Eq. (66).

In the axial direction the component of M is

MC= -J/

tn Vu.dm,. + J/

f(rj Vu, dA tl (67)

gVavra, M. H. , Aero-Thermodynamics and Flow in Turbomachlnes . New York,

London: John Wiley and Sons. Inc., 1960, r94.

Page 120: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 120/221

The air enters the stator assembly from the plenum in a radial

direction. Therefore the peripheral velocity component, V , is

o

zero. Thus

Since the average flow conditions are assumed to exist at the

mean radius, Eq. (67) can be integrated to yield

ML

= Km VUl m (68)

The moment applied to the inside of the shroud by the rotating

fluid downstream of the stator exit is considered small. Thus, the

moment applied to the fluid by the stator is the sum of the moment

applied to the stator assembly by the stator assembly moment capsule,

and the moment applied to the stator assembly by the closure plate J

hence

Ml a Mt+ Mc (69)

where

M Moment applied to stator assembly by the stator assemblys

moment capsule. (ft-lbf)

Mp = Moment applied to stator assembly by the closure plate.

Substituting Eq. (69) into Eq. (68) and with m W/g, there is

B. The axial velocity component at the stator exit is obtained by

applying the conservation of momentum law to the same control volume

as used above. For this application the momentum equation may be

written as

F r - J$ dm Sa + 4 V?cfiT)f,+ J;;^'PodS.-/s;-«,i?

1 dS1 (7 i)

Page 121: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 121/221

where

F Force applied to the fluid by the stator assembly. The

vector field conventions are shown in Fig. 13.

Since neither n. nor V. have a component in axial direction, the

vector component equation in the axial direction is

f= t L v«.<K -t/t|-Pids, (72)

The pressure integral cannot be integrated unless the pressure

distribution at the stator exit is known. The pressures at the tip

and hub of the stator are recorded and the distribution is assumed

to be linear. The static pressure at any radius, r, at the stator

exit is therefore assumed to be

f,-^^T^t)Cn' K) (73)

where

p. Static pressure at radius, r, at the stator exit.

p, Static pressure at the stator hub.

p Static pressure at the stator tip.

r, Radius at the stator hub.h

r Radius at the stator tip.

The pressure integral in Eq . (72) can now be integrated as

Std%, **niiifiW-ti)+te&(£££ (74)

T z

and the velocity integral as

/.MK ^ A *v*>% (75)

Page 122: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 122/221

The axial force applied to the fluid in the stator assembly is

reacted to by the sum of the forces applied to the assembly by the

axial force capsule, the closure plate, and the net pressures;

that is.

where

(76)

F Force applied to the stator assembly by the axial force

capsule (lbf)

F = Force applied to the stator assembly by the closure

plate (lb )

SF = Force applied to the stator assembly by the net pressure

force (lb,.)

Figure 13 shows the applicable areas used in Eq. (77) for

determining the net pressure force.

2£ a-*L-

A *+ pbA b +pt A c + ft Ae + VAh.

(77)

With Eqs. (74), (75), and (76); Eq. (72) is solved as

(r

V-r-^-£3

)}9/w

(78)

The thermodynamic properties of the fluid at the stator discharge

and the performance parameters for the stator can now be calculated.

Referring to Fig. 15, the static temperature is

Page 123: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 123/221

From the equation of state the density is

<? ' */lUT,(80)

The equation of continuity can now be checked as

*= W*, ; A, = A« Kt#1 (so

where

A = Effective axial flow area at the stator exit.

A = Actual axial flow area at the stator exit.ax

1

K = Factor to account for finite thickness of the statorte

l

blade trailing edges.

9K is given by Vavra from cascade data aste

l

t,y ^3

Ktefl-T^'00 ^ VS (82)

te1

10-

where the variables in Eq. (82) are shown in Fig. 7.

The axial velocity component at the stator exit may be obtained

independently from the momentum methods mentioned previously by

combining Eqs . (79), (80), and (81). First, the static temperature

is obtained by combining Eqs. (79), (80), and (81). The resulting

quadratic equation gives

T. 9JcP A^ zf

f1

2W*R,> / ViH

nA.-|

'

R*\V* lL 9J<p A*f>*

k2SJrp ''t.-'-l  I (83)

Using Eq. (79) the axial velocity component is found as

VM , lziT<r(Tt0 -T,)-vt,2h

(84)

9Vavra, M. H. , Unpublished notes for course Ae 432, Naval Postgraduate

School, 1966.

Page 124: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 124/221

C. The peripheral component of the relative velocity at the rotor

discharge is found by the application of the moment of momentum

equation to the fluid contained between the rotor blades. With the

same assumptions as used previously, the component of the relative

moment of momentum equation in the axial direction is

ft.« -?£ (R,Wu, + ft>^)c/m

8j+J^i

(«,WMl+wRf)Q'rnK (85)

where

M. = Moment exerted on the fluid between the rotor entrance

and exit.

The vector field conventions are shown in Fig. 17. Once again, the

shear stresses at the entrance and exit surfaces are considered

negligible. Therefore Eq. (85) is only valid when large separated

flow conditions do not exist.

Substituting W/g for m and integrating

(86)Mi - (WUz

- WU( ) Kr*ty/g

M. is a negative quantity and is equal to the moment applied to

the rotor shaft by the dynamometer, M_, plus the moment absorbed by

the rotor and dynamometer bearings. The bearing losses were calculated

and found to be of the order of one-tenth of one percent of the power

produced by the Mod II Turbine. Therefore, the bearing losses were

ignored. Substituting M^ for (-)M. in Eq. (86) gives

WU2.= Wu, -9M D//?^ (87)

The relative axial component, W , is determined by satisfyingaz

the equations of continuity and energy. The continuity equation is

W^^A z WAl J Ai»Aa*Ktn (88)

Page 125: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 125/221

where

A„ = Effective axial area at the rotor exit.

A = Actual axial area at the rotor exit.ax

2

K = Factor to account for finite thickness of the rotorte

2

blades at the trailing edges.

Equation (82) must be modified slightly for the rotor because

of rotor tip clearance effects. This is accomplished by assuming one-

half of the area between the blade tips and the shroud to be the effect-

ive flow area of the tip clearance flow. K is thente

2

M 1- w c»\)M \ K'

+

(f^l(89)

where t , s_, and a are shown in Fig. 7 and where:e2

2 2

Ar = Radial clearance between the rotor tips and the shroud.

r = Tip radius of rotor blades.'2

r, - Hub radius of rotor blades.h2

For the relative flow field, with no change of mean radius across

the rotor, the energy equation can be written as

\ = Ti

+ Wf x T =rz+<r (90)

where

T = Equivalent temperature (see Fig. 15).

T. = Static temperature at the rotor exit.

W„ = Relative velocity at the rotor exit.

Rearranging Eq . (90) and replacing W_ by the components W and W>

Tt

' T, * W\ -vil - v&, (9i)

Page 126: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 126/221

where the unknowns are T. and W .

I a2

By the equation of state

f - Ve.T.(92)

where

p_ = Static pressure at the rotor exit = pressure in the test hood

Combining Eqs. (88), (91), and (92) and solving for T„ by the quadratic

equation

Then by Eqs. (88) and (92)

u/ - VVR& T* (94)

Page 127: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 127/221

APPENDIX II

FORTRAN IV COMPUTER PROGRAM FOR PERFORMANCE DATA REDUCTION

A. Inputs

The input variables and their units are explained in comment

statements in the executive program. The FORTRAN input statements are

contained in Subroutine INPUT.

B. Outputs

Three output forms are included in the program.

1. A printout of the input variables is accomplished by Subroutine

INPUT

2. A printout of the general performance results is accomplished

by Subroutine OUTPUTA.

3. A printout of the referred stage performance parameters is

accomplished by Subroutine OUTPUT.

Samples of the last two output forms are contained in Appendix III.

Page 128: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 128/221

<Njro«tmooooooooooooooor*-x o^ ro>tmv0^ao

OOC1  •»* ^H»—4—« i It l«-^

ooooo ooooooooooo ooocoo

* *^» »Oco *>

Xt- oz •» in

ZD»N •»*» «» » —N-C— - —O o—•

•»<

—odd om ino—f-cc^x IT- —irouj »

3a; r> — Of srwir-sj-»iazoc 0l<— U.(\Jw »-o

uu Q.0CwI t-HO LU3—<— tO

i O—h- h->u \ a »<o>-h- -»h-_J Q.O— o>~»— in—

o »avt » »{\l »O aj ~'ILL X —.00 -J ——UL -^mccooao 3TO.Q. oox o—« *<r »

STa » rnma m*^—— «-»

00

o «-—0> 0Q_J • _j mMin * jrx>: D«ooa.-»- •—1— aa ~ IXlALOaJDM——00 (-UCZQ a.<.'——Oitmoi— CL »mI ^oo^a.insX «~wk_ — ~3<\l •>C\|_I-— •UJ —O—' > OOiCL ~;S<X—

1— >IU.- LfMTth- »0 » »<0o 2: xo ww_j~• Lf>-~—«h-in< -zai JQ^UC -OOOJ--x. m— » •xo irv^ :nm ivj —i '

oo^cvjm if\>o^coc^o^^fMm>*-moh-cooO'^rsjpo>t

OOOOO OOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOO

_j>oa. »xt— —>aa<o>o> *

t->3:OOCJ» •> «

o0CT«-h

—iO>

_J *

a. -3.• OrO

t—x •3QH•4-Z50

 £oo »-x

OX>-0< o——»z—H- x »w—*-— -s: _iaa »

X ^XCD— U- O-O—a**:—<-^—. > U.C?X(>O •— (— X-* »—O—IX3IO * 3 »3—<

+<. r\joo—» »ir>Q_ » »xun— »r» »aUJ — a.ZlLUJO—-' •——_ «—O X—*—'C?

'_> CJ3 «- aCLUino_J—OC<t-lT h-a<z X-»>—aa-iri«omi/> <?— <c?t— co

3 zti~nax<-.a-rvjoujo. Xsoxxrx «w0.yicza.-iM>ir »i— <—oaO ^-_| »l—— I— XO-^ •> • —— (_) <q_ •• »

U_ ^JO.—'^QC •• » »Q.~->fMO< ••-y^i—

x oki/)Du——— ook^il cm ».x^:UJ Zhl-OI-OO^— iflliM-—X 5TriC-'>0

Ql X »-2<_) »m jvno —-~ »<1 •> ^Ot —• I••

^.3^-.w«.«lr\cx-<~t o cl<'-'

_. •~OQ^u.NT_iv.a.>oujoiri- 3'Ji:< ^ X ^ 3 Jh X O •• »J* »-irt—• i. »  Z3j_ r\j ^- j;j12<i/1'-<-•—»—•

——'i/),v oca: x

Z izjct-'iiaaiaoowozi:•—<<rcr

uj i—i<a_juj ••••• »iMj>i-iir\i.a r,^a'j •>

s. O ^>-«£0:*:——— • .— rsj— _j »o'.j» »—

'

—— CL> •OOOOOk-uOt—<<[— • •»•— Q.—0£C£«-'C313—»'JJtnirMrMf\.5U. K-UJO fM-<:<w _> »JJ»-< m m

_l 4.Q. »-t/llL_l——ww LJ-lJ— -U(Xi^UQ.vJh- X iXOJX ——»-~-~-~ —— w~— ^^^— _j

r\JCVk— U •'~h— Xj-JUOOCa »—» » •• »0£ i--^ '_*«— _3 mwhhw —'— (X—'-X •— —'—

tcvi/> »»i/)Z_jna.u.^u.o i' , u-»>-'nt tj>^ ^a.— csfZJ.^: '-^————»—— ~»— f_jw<a-»—>~-xi— u ij« o>— ^3<—> t— to. *~» »axj3ixio »— •-OTf »  vi  vi _j oj a. •—

<_j

's. •—  Ti _i ^r >—

<—^—i<t

k. i— 1_ x ^ 3i-z- a »<£—' M-^in iKi.^^Do.jj »H~uua jw-ai • _)•-.>.— j_a__i-O <T JJ ».CJ » •— 'OO 1—O— .5a'Jl • >-' II CL—<0»——' II -^^^V- i>— Q.I—  ^ilh-X^J_3 Y OOC_)

5;r.' ticj^w'-'—»*-•-•-*O*- it » 0 3 » »o-£Z»- ••'jj.o «-iw'j.i— n. a. o. 'tj *- cl a. n <i n juclo. h

<:»— ? MOjtjiflooKM^w -T3 ^: fcooxrvji— «o._ioo»-< xii ii n h ii a. it iijciiiaa.ii n _j

rrz;—'H-—— •— x :?^^<- >ro.or\j x cia.<a <;cr •-< ^-oo^J'v. j^i ii _ji. n cj —i<i n —•_i—

'^r^ijx ujwwtvjj ^ t.< j i_— '— <' ^iTjrxji^irjuajMaQ.k-i.if-t^uu.ax

•..,  r 

rx  5. —<— <r 7>:\ c—-fj i«— i—<  s 1— aj_i«i _ir><_i s-ss.y- j_i— cd^—<atjx>xx^j

-tUD^i-x_i—— cjxa.i-iu-iujlij uu.NUaiou<i-J<ii^'jLiai-aQ.a.Q.t-aat-<uQ.aa.u

O

•> >*

-1 oQ. »- ro

CL-J Oa •i

MOO  NJ

oa Oz »

>-»m i—

•-U- oMat;pa ->—z. » Ot-ao •^X aacxa o »5 h-

a: o^a<«-* »oo

uzox *K>fVJ<ioao—i

_j •> » »'vJ

O-J^iOhw^U<••xa »«ac

21< »x *- f*-h-(Maa^<i<oa »xCOX ••rX. •>

O.O'OX-t»h--^<X

tc *a<x—i^: •>«.#>

oa LnxrgQiH<tl<. »a < ?^s * **x1— SO^ :JC

X<—'3-JO-CL ••'Ni

O •> -T^.a.

X_|(NJOi—

<aiX. »t— •— '2C<nr

^i-a.t- »

Page 129: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 129/221

\r\-o &o—> (Njrn>f Nor^aD(Nf0^io»o^aoosO^(Nirn>ti^^or^ooa^O«-«fvJrn>tir\>o^ooa^O»-^POfO>t

oo ooo ooo oooooooooooooooooooooooooooooooooooooo ooo ooo oooooooooooooooooooooooooooooooooooo

rg

• «- •- X3TM *> <T(\J Q.

t-a. * X ZI O -J

< _ o >a X •»<0.-^0 o o_j Q—lOaai- » »< CJfLL »•• m •> a 3TO «UJ_4

0_|<N X Q. » Q-OXa. —ill a. QCfM mOOll-XOf O OD -OOk-_jO_ •» 3 a ••<

ao3 —1 -J •> ooooo a. a.-* MX *>

CC h- »-Z> co^a:•>< i— t-o 3X<arm o O * XO»-OQ. » •><\j Q. »UJ

OC •» *>j v-3: 0<*gQ-t-.<t o 3iO •4-0— ™iZ £. a •> _JUJ •t-o> k- -j-^ Q-CJQ. O O u.3: »- ->Q-

O <> o OCT O-qch-•_IX _J * •» OQ.OCCQ-< Ol QCfVJ o<OoOLL OO

x>_J »UJ

IO.J a <o a ooo13U O < h— i—•

»•—

.

^_y • •»• i Of—* -eg og

-r-^X. ^vl •NO Ot— CGZS

_JLL< u 2:> »OIOo.a:u. .£ GC «• £»(_}•>— o. > o. «•— <-*<—<Q.OO o —'< Ol— UJ-£

O »ci »- s:> a»aro»oo < Oi o m •• •• •>

NIK i— OO OoOZfMOCL-J LU  O-H -h-,213

zao CD <_><M rg~<oO>—•.«. •i «-h- Ot—< »OciO Z rgo »UJQ.•.< r£ o o •» —TVJOX-vi^O-ft •> •fN) oo. o

«£Q ..fVJQ OK- 1— Q.Q.'-/)<ft. or- a. » »'t*oolio—O • -<0'ft ft. »nf *oujuj•»_IQ.  -(-I O^l <>0£. »(_)ru

— OX -—>£. OCJ'-) -*£'3J>— _Ji.Q.0O —irvj—tf\|<l •£

— 0<-0'-L'_) (J » <>0> - »-£ ILLL.U.U. X1<1<1H- <ly -~ —•jf-^-*—- •^im—o^^mo ooujujujlu _j (•< u.at-— uj t—£*— r— .-a. •• JH<li. »-U.<J.O — OLJLJLJ O. I—I —J—l'JJUJO^ a-

'/<- — —•-^'-» x £ _*ajt— ..£. -» j*— y, >— lu»— u. *:oo<w>o ^— cgf\j<i <5cdcdlj<1'^i

»_ (\j_ »xh-)i-i i— -.LU' 5' »-i.<I _Jry. »UJLL jCLJUJ _# X'JOOO >— — V— 'JiJMCJUt- <. #

,_la-———— •>at:iri<jC »— Or\jcu iOOCG II 0CO.CJ It M l| ll—log^-irg^rNj _».-ic\jcj>— || n || n u lu II

I

_)oia/insor-cr 0^:0—icllj <i»-o_ .jaj_icjTi—q.1 u -.—»>>j:ijj n — t— M o—————o-~j

|,rx ^,-) ,^_<r^rvj l_) (_Q_ _)—.»—o •• »Q.u. • •.•—iOO ^ 1— -••-•<—'OOO JOU -oo— II —•—••—••—••—i n «—

i -£ n a. 0.0.0.0.0. ootntuh-'^iQi—>•-< 7Z-'— ii n >—<«—w^.~- n H ii n M n —. ii ii -^^.— w^»»r^,——.—j'? jn ii ii ii ii ii » »o t 0.1 •.ii_<i»———«._ii.a |/)—~'~—— '-'>—'~» -''^m^ |n<—a'-.t~ • ~*—<,-*.-*—i<.i_)Q_—i-y _j _j _i _i q. -J —iiuuju—— i—'oj'-u uaj—>— ^-«-— 'x——»—<<~gQ.o.h- 1— uj<it-jq.1l 4.^a.au.-5 z^o<u. ,i<iG(L<^u riJ^c':oL^uuuU'-' 1\i--,N-H ,\iH'H \ir\ji-_i_jujiiiiijwujf fjt J t'Ji'J *ooo^-oooo j'JU'JJ'.Ju.a.ix'jij<jo-> -> -« ^ jjHt- »— »—— «3 <:cxiotu'Nj

-('j^ —< -^ r\i —<'Njr, i

Page 130: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 130/221

in >o h- oo o^o —•ro J-ir\ vo n- qd cr>o «-• cvjro «$

0'ff'01^^OOOOOOOOO',*^^^'J

oooooooooooocoooooo

UJ •>

OM-< •>

u<s: ah-3t UL

5:aj * UJ

ILCO—* olu *5:

oo-<> ».

o< * st

•I— u.

_JOJQ- UJ

ULCOK aUJ »o oCfM< •«

UILU _j

•-Q.C* u.

00_l UJ

«<Zit -21 uXHO h

x< <O-d-UJ t—

uac UJ

•>< » •fc

aC 00

Q.(NCC 1—1

H-I *1—K-O Xi < «*

Ocolu a:

_Jl—Qf a.

U_<M •»

-h~ zCC - »

_i(NJ QC

Ol- _J

Q ——u—<T -^oO^O_j£-< »<Cl.• »-h- .Jock-

's: r\JUJCl. -n.

JDNl-ri;O •+- _J

x--tr£ UQ.<  O< > Xh» •.H-CL<0

OJ^U. ^f\iua »<t

XXH JJN *ZLUuOLJOCJ oc •• -yy^r£<Xtl<<l ii.—* 'JflGt *r— uj uJUJ _J — jl a.^.

JLi'JUHJ LL •- »-»m• vj II II ^-i— — OOh- aro ~*t—x-:.*-» H — i-i. X oca H- > «-X JOit•—•——•— ,:» CO. — Q_'? rx ».<r o.<-»—JOJX'J II UJH- —It— t— ,JLJ

N- -» II II II CJ II— 3_)>UJ ->*_>

— x ^x~— •—»ii — »'< *£(_> * » Lj -£.

ooi—

.

4'J'JU—— <-*— _jKJU.H -JUL*—t— <l 1<l r-l.^ 1— —  OU_*£ _JOJ JJi— -JtJJzlOLU^J'-,J.iJ>_>. JL —tjiH- uj^T'-jIj I<T'jU^

Ni'jinO s Q.XO.O.U JJ'-l 1'J'J'_> 'il

—<<-j -n ~<

•J a>

T. .'.r _

Page 131: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 131/221

<iri^c ooo»o ror« >^vr>Lnsor*-coo—<<\JO> ro^i/>>Oh-coa,o—<f\jf>^if\>or*»oo^o-^fO>ti/>f\j von

OO ooo oooooooooooo ooooooooooooooooooooooo ooi

ooo -»oza om>- » IT—

MIX, CL<—on: ~zoza h->mQ. » Ql O**O » ».rg

IX U.

Oft. oooc* •• LfMfNft.

-*9C —•— »

U< C0_i—k-Z O—O—••> ixmojo o.<— in

hjo—ao•*-rvjooocrsjZXQ.lfMftt-Q.••< »« »».J »

cc •»a*_io:o—

^i^Q.a o

••or*- — Oct-ac^-i—i—» *m.-H

'OS. -i^O—l *

<a:-*ivi—xo^ Q-OSKin ——2: »zaj« zz_I<T—1 »»»•-< ZS-ZZ.Z.ZZ.Z.Z.ZZ.ZLZ.? ZZZ.Z. - •.—-h^ ZZ.~~ zzoclql——— a. »»»»»»•»•»»»»•»•>»»» »_»^z 11 11 —> • ~zzz.zzzz •> »

X •• -OOO •• 2C ^^4-4^^^**^—|^^_*^_(_*^^^_. 11 11 .«„ Z -1 -* »••.» • -r*-*<_|C0Lnmm— _J » II II ll II II II II II II II II II II II II II II II 1-1—^ •» •• •> l| M •—••—<—4-^.—»-^ M ||

•Q. r-lw»»~*0 t_) ptMWUK I it IWHWWWI II I I ll

'

I I II I I I » » ||.~.^» —

< —« •—1 11 II || II II II

•—<i—

z i— o. ~vi 2: _jm a 11 »«»»«»»«»*»»fr»»»»»«»« <«~w_wa 11 » •—~«——— • »

jt 'v)Z<^<j ad cr »»*•»•—•f—'*-<-^«— —»*-^— •— —<•—'•—••—••— —•—— <—-^-jadcD *->-' —.—^»——-*

-* -x - - »a. rt 1—— <cl eg _i a. »ni _j oj <*g_j_j'_»<i'—x.qc «--ia—«««—(n_ii— cl^—>—» »z_iqc »^u.'— lp ~or-a3cr> cJu.Q.H-OQ-3oaa.'-<acZ5:<i— Z—U_—^m^or^aO'.^0•J_CL_^ • »-000-~_)0<l Jlltl-H-iH^^MaH<^WXX^i-XU>-Q.-IJJJ.(Xi--<-i'-<-<-H(MQ:i-CLQ-TtmtnLnoctxcD uoaaaQ.aaao.aQ.aaaaaHK<>-QaouauauaaQ.aaaaa.

G. »— OJ a. LL in ~< '\i rg ^h f -j rg (\j r>j  ~vl ' \J r\j r\| rg rg r\i rg r\j r\j rsj f\j rg r\j rg r\i r\j f\j r\j r\i t \jU\(»-N^r-Nl>-NM>-f>-r»

UJ »_J ^X^OOOOOOOOOOOOO''JOOOCJOOOOO<;j<_)OOOOf->CJOOOO _)00000ZSJ^Kaa-HH^.— ^-.-(-.HHHHHp--.-l-l^^--lr4-.H^H-l-IH^^^^-<-l-l-l-H-.^

h- r •* ~-^inuAU^u^u^Lf>LnLOunLninir\irvir\u^»nif\ur((f>uou^LOLnLnLnLa

O • —-< Tin ujujiuujluluijjujujlijujlu

a: —ivu —uuaa'j'jaooufjauaouuuQUQuaQQauQOi- »—»—»——»—»—»— »^*——— 1

JK_I«- .L—luUUJUJUJ JJJJ'JJ -UlU JJLUUJ'JJ LULUUJiJJUj LULULU LULU UJ'JJLUUJUJ IU'JLC(-0C CL 0C0C QLOC CLQC.0C j£j

Page 132: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 132/221

(sjm^ ir> sor» oo CT*o p* >*• ir vOr- oo&

—I ,—l—J—I — ,-H^ ,-H _l_<•—I—J i—lr—l^_*

ooooooooooooocooUJ

o<2:

I —— zz-«<£.,£_: » .—>—<-<

2 » »—l~<if II II

.._J_I_*II II

»__-J

II l| II•— ta»--I - -

II___. ft ft II MM

Q

<

<Q

3Q.

Xo

X—m>*^m»^ •

'-t\ll

»—1 ».

11

UCCCUJ<XCDTO._5

-ex

^x

1— <.-»^.aca >-<'-'3 —•>«»

:>—'nj-j—icjr<x— xoc —

iX*£h- xi.jx-a.-J_j xo:

 r-r»r-rs«r-r*r -r-r--fo •—*moooooooooq>~> —

* —

»•»»»•.*.».«. »j«x—-I at

 ———.— ^.4. '-KH(-ZI*ZUJ UJ JJ l_J UJ U*i JJ uj u_< «3<l <-i

<i. cc•— »- •— »— r-M-i— H-» aj zj.jiD

aotccc-atatoccccccpLJLJ-'hjujz.f jc. jE^-£ j£ .s ._ .* Uw u_a. a-ctojJ

f-

%q>t

I

d>oo O^4—4i—I —

i-HfMLT,

Page 133: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 133/221

©«-* (\j frv ,$. \r\ <c h»oo^o •-* f\jm -^ in >o f*» oooo »rN f» i£ *ok oo c>o •-<cm fM <n

0000 00 00 00 CD 00 00 00 CDC C7* O^Q^O^O* 0*0'?'^O0OOOOOOOOHH 'J '-H

oooooooooooocoooooooooooooooooooooo

fNJ

u

CLOC

o »•+-

  •</>

is:

<cc(J-J

•uorou<•cc

X •»

<s:•a:

Ql »X~4<a:<CC

*

X(\J<cO<IDXZcCO ••oj

za.

o~•+-

<cc

<<

CC

CO CO

'Ifact

-UU.

H-

ojq:

t— ^ir\ir\

o •. .cj>

o>r ii

-o >— ii

OOOCUU

CTfNJ—

'

vp •iv->rif\ • »* »m

>r u cc ii mI XXX II

<c<<.>- cc

L_)<<I<l<_J

r- •>r^(M— cc

•W« | »-• •

I»CT

il il t^m-cac afc

-^— <-• cc

*-»* ii n ^5CJUli— >——<*•occcc^ic *uj^:oo -t oo cc m cc uj

Page 134: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 134/221

<£C < < <ro{«

,

>>$->©ir>o^r,-ootf'Oi-<(\j<'riNtiri>or* eoco^Hm^ino^co •tf'ir*

iri«4i>I,—i •—•.-*•—i.m .-*«•* (\|<N)<\J<\J<NJ fNI CM <\J (NJfNJCflfC^Of^r^rOrO ^'J'r\jrvjf\jrsjf\j(vjf\j<vjrsjfvj(\)rvjrsjfvj<Nj<\jfNjrvj <\i(\j«\»fNjrsjrvj<ii<\j(MfSi <mpm

oooooooooccccoooco OOQOOOOOOO oo3T

a. *oc»o•*>4

seah- »<ma-*

a—_J »CC

a^s: --*<t-a.a

» »

f\jir>

ao» «

•m—»0C

a.a.o •

t-i •+- oH-_J •• oa.t-i_j o»xu t—

coo— V.

3-j *>fr

ION —1

Q- *LL oaca: ojaa •

OlOC •• *^t-QC •

a_j< rvi

••oca »m a. #o * » a:

Z-J< ot— OlZTmh-•.co>#.

I

rsJQ.a* • CD CC 03 CD

O * »xo • 2.2:2:3cZ-^XttO • c:><<<< CO CO

au.<mo o (Jiaaaar?^LL^ —4 o + + + +<<iIIJ>T\ o O--—'—»-*» Q.CL

Q *U   oo o pHNJCOO. + +—O »

1r- 1— SC_IQ.Ohh-»^

ixxo ^ u^irt-XH-vririh-a.<* • •S\ • Q.Q.O.Q. -^»—

iX »U_UJ« » 411 l 1 u-u.

jjqC -mcC * qiarfvis:^ i i

J»«HCJ « o _J PK-LLI— LL----H

zzccir •» o jfK<oc<rciuLu-OJH^ni + u ^^- o a.u.u-q-<xcxOt- +ro^ 3 1 xc

U# * * •* — —r*-J • »-•*hO UQUJJU^Ol.JOU M- rWQCQCQCOt* »^»— mo* jcvjacccar^OOOOctct—X jr l| OJ:cr<2:^ro'J'J'ioDt-<QC — • cj>rco< •1115:003 »rjx —J i ' • O.Q. |1 ouooxxo^>-~ II : ii ii ii a : 11 11 11 1 00

J^_IUC3L 11 |loca* q.ocJOaocot.23 <v 1^. 51 f\j

| 1 OZ£^JOQ-3H*>yin_i«<I 1:<ii-i^HH

(/5HW(X^-OC3UQ.CH.ja.Q.a.d.Q.0.•«*C\j

<N

i

<*

o• h-

•>„ 1— k

a:* **.d>

crr--j<>rCUO^-J^cuMxoo:

«• •#— -:

<T> 11 co • >•

•cjo 11 oz1 a • x

11 ex.

era 11 «<3q:hxu.2hoC|)_J<«J>-UJZH-OU-OCQOCUJ

Page 135: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 135/221

sOf- oo so <— f\J (^ «* ur* rvjm >t i^ »o h»

pjog rvi (nj (\j rvj rsj rvj cm rvj <\j rsj cm rvi rvj cm

ooooooooooocoooo

Xo

aia CO

Page 136: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 136/221

Page 137: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 137/221

Page 138: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 138/221

<rr, »frm >o^ oo cr*o-*^ ro r«^ >t ir >o r»- 00o-«Mro «$

ooooooo^* ••*** «-•—* —**•* «-•—*—t CsJrsj«M <\Jf\J

co coco co cocd roro po ro poph po tococo to po fOco pf\po

oooooooooooooooooooooo

*<

O.UIa: cd

ait-O.

h- »atcsi •

03 pnj

-J * *U.-« »•o *

of * a:xrg «v<X •

< * f\j

•^ v.

r a. •

QCCsl V.--»> ~

|

—< •> LLI-~

3C— • H—».> -H •<

U~< K V.UJ•< JC rvi  Oh-

<m;> c o o I

O * _) v. # •

»t/> li. — 0—«-J»->  V • >s^-

•H- 2. * U •

a • cc -if- —rvj

ON V. eg # —

.

••»— O 3 -•«— <\J

O * <. — •O'3'^'Ni* -M- *»*»

J>t— VOO #UJ# •>(M ZD<<3-» • cj_i* #K^r«»j .*->.*

Oi-^ I U_» —ISX + fNJ> + >n^Ot- ^N-> 3— <I »H- I

rgt\jc\i

i_/ig —»u.O->v_)'-»- fM '''-IN-'<NJtt * -».*

jCQ.H-nC>v# >W-H rg-}l->— I— •» C\J^-»»^»u^ai\(N ***:•— i— <g <t

_U—lft'M<^-  JQ-CJfNJ* fMQC^— .> <*£<£^a »p»QCot: i

—<zj— 3^s.c3i«-^ —<i<—< vT-T#'v_)* QC I

-«J6K- 00 I— --v-CLocj<i— x—<* t\j».wiwt-u:'\jH<<,iq ••-«.«£ *.h- »— fNj_>+ ii u* -£cj<ia: n n ^a »rg •>att— ii s.>^->sj_j,ij^y)^»'jr'%j<NjQt

-£<<r m r o ii n '/i-£ n — <r u_t— /) it iitiio'0^:^-0 ii 'jinji— ii

'\j ii i— ii ii it cnjisj n a.K-f-£_j_3>-uJ -aa. _>>— (\if\J_JOJLL, ^ovj'\j<a<ir\j_jujLU^ )Ornnc'j>t-t-aii-K']Ci->> _< * <i co *x uj

Page 139: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 139/221

m >o r«- ao 0»o»*cmfo^m <© h» oo o>© -*\im >#i^jo 1* od c»o <-•<njm<M fM<M (\i r\jmmmmrommmm re >t «* >*<*

<JJ{«#* *« > IT tf> u*>

fo r*\ fnc> enro c\ rore re re rere rerere re'pe re re re|reih reIWO eere re

oooooooooo ooooooooooloooooooo

a •<IQ.KQ.U.OJ•LUGO

aoo—<o *

»— »(\J

a.z<•u.*-

EOUJUJZDOaoXO •

a. »<—

•_l<JU.H-QlUIUIh-OOOQ.O » M«BI

• »(\i • •

JOOX 1-4i^

a<-ici.1 1

H-*«J rem>-x< ou• •> » * *x<-« *«<h-X *»«»

old a. QQ• *_)

XIreac< Q.Q.

JO. • SV• *ec -J-i<N<-0< r- Q.Q.0<-*»- o r-K•<\JUJ -* a. a.-*— *sl * (/)wo * •• • —~-~»•—* <\J vO INSQ-r-Q. # cr Q-»—

I

'_> •>— « «^ S • •

•OOO in s. —.^^(\Jinii-i<  *1 rsi *^ ^

1 1 •O-^lu O <-* —i ~rr>m»•t— ac * » Q. •—iUU>-

'

O » » * >T --_J r-#» -CX— <\J —» N, r— LU «

| #* * r-

a. xi -J— ^ *Q < -J— *~—N-X Q.X f\J# QCS h- aoows&u ———* * o< CkUJ r-XX«-»

QCO< O.f\J.**C0 p- ox r— O.Q.<Nj_ »UJ NHura^r J-IU # r—<lwV>»r—a.<i<x o

i_IOO(T<I_l •* »-* CDQ. I r\j

oj^ •» X -j a. ^rvj <jo *— uj in _/ uj a. _> -* «-*

Q->^~ ia\H • •w» utujioxp-h #'J J. CM —»— l/)CJ«T>T r-SinUh-

| Q.Q.»-« txi

aj »0 XC\J» — >-.•» —<r- JS-*ir\J—SO— -K

Zt-< »CL_)wXonwsau^ssi «w«.rs)1

MiOI-< SCU# U -n—-J'J_J> • Q.O.^H || || i* t

t-O'i ut-asi^o. /ia.aoiix 11 M —Z3-I • *iKuauxi- n n ii o ii ii zoai II

Ou.'-''''njh- il it Cj II II a^-IJL-Oawlilr- » Qt

<* »ij. jai^ ii '/iio h h-a.n'nu.u.ooiJM<l

OIUJ •> Mr——. <•—»|-<_JUJIJJUJ II UJLU<<^X r—

_J Q. <_l O. 'X fN/X H- ^^OJX(J<_)Q.UUOJUJUJCJOJ/) oto x a. *— cj'u^xur-ouiiju^aacoiN

-^f\j-n

r-r^r-r^p-r-r«»r»

inminin

<Njf\jojr\i<

• • • »r—

u\u\u\u\aj

*•** I

-<rsi-^if\i^

II«<aO-r-m-r-J—ILULUUJ<<ccrocuII II II

ii ii ^

XX<<r-3O-Q-r-r-LUr-OJjLUUJdJLU^

Page 140: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 140/221

m pp> N*> 4-

ro ro CO ro

o O—UUJ

o o

pm >frm>o oo ©•-•njrPi^m r» o^o—'fsHO in r-oooo^(\i ^ nO

rvj f\jf\j(M rsj romfommro f> m^t^^-t *fr >t>*>frinmin m iri

ro poppipo ro romroromeo po romcorom ro ppippipnfopnpo pn pn

>fin'Or>,-aDa*0'-<fNjro>tir»NOOroooop^o^oooooo>ooooooooOvto<ooooooomoirioi/MfMrMfMf\if\NO<o>o»o>o*OvO (vjrocsj mro 4 «t in in

roromroporOfOfOrnrorororn pn m po pn po ropo mmooooooooooooo o o o o o— o o o o

a. o —ai •> •> m ^O-* «» * *•« po

u< •> o— •*« •

•+- mo-*»- o_jiua —mouu * •-•

Luooh- r-iftN»LLI »>0 ULPVJ'-' »0orsj< x3«-<<-»m

UILU O *<0~'•Q-oc o—»»— mi-t

— <.z —>incoooa.V »5 Ow *^ •>

x»^o m»-i———»I< —30x0

Q.Q.LU _J «inrsjin

X_J<* X *w»< » xopm—*-*

a. » amxo2:a.r\jco O'-ain»^-i »p\j_jw •>

-t—o — jKOC—36 *< O * »«JO0</5lu in—— ^-m-»_Jn-0C woOUJ—'Ox<\i (/)inmM»^m

-JPvJ —-XJCXO *Q-

_)>— 2r »a.in—t—

q * » •.-j-ot-'-i</)JOO<t-if\ •>

c£i— <o.'nm •»<«—»»K-h-~-—— t— o

x pm '-U— a. <mox a. it.

_j3»vi »x>'n •.(—-»

•_> •• «*. — »«05.x—tcno.——i\jo< cl

<o<a:oo^inuja» •->— »mmt— —at •>

^l \JX^0—_ »< •—ID .£ r>j a. o£ —<——'«—O^ a.o.>oiuoin• <^^ •» •» »in »m~--

<at\i min»—in2.u.i— .> « •-.«— P\l~0 «»

a. »•* H-V1»— <I<3——•—*•— -JtX »K-'JJO

^;jjuuQ.^.^.rsi^if\ aoxoo—<<x>ir\Qu || ojmqonuu.-<Q- II ao tux— —• 11 'X» oo i«n od xx•—«C_) D »LJOH—O— • —' • -< ••—• — »»-•  NCtliJ »-• •>— »^^—'JLZD 1—* •••-• »•* 'JO 1-

• » -• *• <

hOLi^-<i^ »-irN ^j— -o— vo X <J >0«- QCXX -O -C— --U -C -O II/)7) ~o <o—ro » »2: </>—»<^»— ^j —^—>H-w>-ir\QowH «Ki —tso-H—.*— «_ ^- x x >r-— t— •—•>— ^o ^-<>—n—tr»- ——>-»—DQ.'ni s^raoMl ijj ,auj<'j)*a»^ouj^iJj'^'OX— < -^oj^oj^o »>^i— ijj <l >jlx —»o'j«-<'ij<iuj<ij^u- «3 »u'X'n-iu 1— ;> »— 5 >—i.  -ij t— 3L' i— 2. c^ * -rny— > t— ?r «ix 'X'>—>»—>; • •• tj»— > — >'ClUJK-—i^-.U — — «l «aMlM'C/ »-< jf—Ci »XX h-i/'jC—'3C «-U>X >-iy_ a XX XX i-i-X»-'TC

-jLj-xJi.—>r_j-^uj xj LicjjLLJai:uii-,^iixo(XUX'x-p--tr c_)fX'_)u.v_i\^vr4t_)'jL(_ia.u^'^ouuauau'/nju>'J | Jt-cQu: ^:u- fa..ta. c_) * u. .* u_ in r- *- u su. *u.-N^'Jiu.id. —•—'O-Cll jell

^'NJfM »-^ f\l  H^ LT\ >-• —^fNipn^r —ii\|rO H(\J 1-Tin >o •*- oo* o 1—«r\j -n ^Tin >o r*-a> (7

s

tj O O OO — »-l-^ r-* —<^^ — —«—4 —1 ^ QOCX) X» 13 00 X) 'X)QO  » T>00 'JJ

133

u. ^

i/>

U.

00

UJ

at

O  *v

• >.Q UJ •-X PVJ ^- eg

oc UJ O 1- 35 H- »•< <S>CC O M cC » l— -J

UJ QCCC •> O X X <-J UJUJ — O PO ^» IN •> •-«

*-U- UJ 4 _l •» »— O X -» XIJJUJ z> ~— UJ X — P~ Im4 <I

a. 2: a: Cf Q. > r\J f\J -J ««

— 2. < CC U. —1 3 \x< I/O 2.

h- a. of X UJ X •vool— ^-t 1*4 Oa— <av - O H M O^ P\J Q£

X «v a u CM X — 1— I— X— X > X •> •» ~- — a: 2:

1— «* LUX r- -» X X -H 010 » to* -cc OQ0>^ •— m 3 oci— •one -». XI

—» -0 X\±} -» z m —

fM ^ t <t X N4 X«s • <T~~S •— < X z: ^ X — Oi- • «— CC

^ c C M STO 00 X  V r\l I— XoOXX PM >J>

^^ CL Cl QCUJ LU f— «« Q 0*00 1— XI—* u. UJUJ

X Oct O00 PM

— X-m— 1—00 u-a: UJ u h- r\J 3 r~>v » » «••

<a: — acta 1— » _J > t> l/) X «—1 z oca •— LUU_X<-> —

.

r> —

.

uj » in >—> LO

JJ ~ X — Q-UJvOcr:*^ 1—1 U) X 1— QCX_J — X£ ct o: • V X PO w 3 o< r-l _J

CJ < ox a. 00 XX _J CC •— 1— i— LU (—

s Q. _J— «> c^xoao u. •> JC < ao ^:

X. '/> IL—* — UJOUJ.J UJ _l X •^^^ acxt-ac •k^^ <LU -J »- h— _i :x:u- 0— < (M .— ,—

,

UJD < •»•»

^'JI X>^ <-.— z » 3t O 0— q:>s — >—x Q-^XX •—•X -«

t— OCC o>n 21-~ OXluXuJ •X X/iT i ^-m 2.XvOO winca< > r-H O.X wOLLOiil — v0 Z«-ir-4«-> pm x_i <r> _i * _i

CL  C  O »• a^in t/*;r-lix^a — •. UJ > >m t— Q. •>•'—' o.in X3 •*l— X. » » ^ X. »-uo - 4- » • xo 1— •

t— '£ oa -*>4- aJi^: X O0 • X^v —0 XX>r h-O XJI 1— —< • i. xmx —«o XlX^ •—n— r« tr- x ^-t m

l/~*OlAJ h— —O -ICT sC it:'-' «OUJ 1 ^UL P\J u •-X •n

'-UXCQ t— <* I— •-• CjPnj •» XX --CC 1 «f\J -^«— — •• 1— r—f^^ t^

Ji<5. s*0L JtU. X.O • «k«^ 2TX3 > O xxo in X<1 *J3 — l_J— X H~-i-<X »-^ \i_) >C _J<_) •b O <-U •—1 X. —

2^ '_)'JJ ~i<T f*-X CLO •><iiri2'-HI •-^ •> ^j Q.in ^•ajX _> 'i-'j: IX. - rr> _4 U)^ X_)-V m X ^ l_J *s X_)^PvJOC^ 3 -X. -JCJ0C r-jx->>.^»— •- <%) a. ^i ;\ic£>«.

^I^C _> a. ix) 1—»f\l X -u>— cr. -^ .£ >X _J «£. .x. •—> Ht-OJUJ » -** >*

Page 141: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 141/221

r^coo^o <n ^ aLrLT\Lf\^0 sO '•O <c

CM/OflO w ^ ro

oooo-^owo ooo o h-m m mo o o

>o CO00 coom <i*m

ot*- OO00

ro

o

r«Win>©r -ao or»r-r»^.f*-h» oo

<\JO©0©0©0>0-*r- r»» oo

o o o

~4 » Cf

X o< -. -> — t-»— — Z<—

'

•- olu <-» v. a «-» <(S3 < <  v •_• -4 u.

X LU LU 0< 3 UJ

N- CD V.PSJ <LU • OO V LUX -• <

* » X— z ac •* xx — in**, o x *-» oh- •— a h* xm •»* O

— »o ^- o x «j

<\J oOXh- O *X > COf\J < UJO< < X5> »

>— oorvj>- UJ ^ — (—< LU oo oo ex — <\x co a< co w oa » -j*-x u. zo qcuj_j .-» ojf*- o ax a. iu< «-« Qisl — — -» >- _<

— z » — UJ t-is o xx— -• <xx — uj o^v < ogco

<inco oo cc

<•> uj

zas^ »_ un -< < o ujx ac <-»•> uj uj * >~ uj xm » c0

x co »xa: uj q r\j^ — ox< • or-o ini x »•< •-•x

h- — z-4t- a c*>»x «— *-o>UJ •— UJO— z » o z <•

—tCO «- <-'>C£ — < X < X OCX<n oo «— noujx o r»

<< X— «ZI oi oo > < uj-*-.

Xt- a.— llujo <— oc mX uj— ac v,^0-_l _)X LL.*- H-— IJJ  s. <£ \— t- Cf— Olu — -»

>*_/lu <in uju • lux aj^u< •» x lyictnc >——*v<Q • » mX (vILTi S.NMJX -»<) 003Q —'Xin —to xu.*o »<-h Z3in>-ujo> •-• * ujooh- <— in

«xx —• • >ru.-* — • z—'Oac — >r aeono x^ODfNj —O (NJUJ •— tT\ < • O.IXKX •» »— ,-<—. •» o — • x lux—< cao qcu. —in•• xu. xx>-* <.cj o aco^ x--* oca. «-• •

xx a.— o-^t— »-r^ < »x uu. o x *-oocf^vO -Jin ovi^< luu. zaixu <— ^-xr«- oo^uj <x -^ »— ••— luu>(^^ ujvn ^y» * ecu.'jj •> >* «oo —

>m^xco * x eC » h- »x a.—>. »x *vx o^uix »x ooxcr *fM_3 (M »-«i\j o— XQCrf^OQUUJX »-«M **-* —> •^^— —^ r^«. t\i^s: »4C H-r» ^-4 x^* x^<<i—. «^— -..^ -»,-*«»_( _j ¥£—. — cr LJ^:— rsi

^-•h- »-hix-\(\j h-lj »>r »ii>ji4£Hjx »r»mou>TH»«— »o-^

-jia.a ii d oo m ii acf-iao— (j£»-«oo-<ii co».qonm< n com

xxx -o ^o a.^ vo -i) ick >o >o a no-*

^<oh-o<^^-«•»— r-4fn^*H-— h-i—< a.v0—»H-—- xcr—»H-ir—< rsjijJ<UJ< X <NMiJ<UJ<-^XX 1--fMLU<lU<X<J<NlJJ^CC

xxx —•qc—'tc »x •—oC'-'ncx • » '-•'ji<-'QC »x «-»qc>-lj'j>j-< X.U ct: uo:u xr- .j otu acuo x x xo ococt ox^ucx ouj^r\i uiLLiu.M-'a cu.iu-'\inN.«raiLL*u.iNrNjajiLLauj

Cj'-' <N <^^ ^n Of*- co O^O^jf\l rsj '^j'-sj r\j f\jr\j rg <\|^

COCO CO JO Jl ao -nao CO coco

Page 142: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 142/221

» O3L LO »LL «»»..->

LU CLOD

c LU-o LULO•> o»- Q

-J oa. OLL 2 X

i-i<Mro>tvfv <~»<\im>a>Ln«0f -cD0>O«-*PJ ^ -ot^QD o«*-*«NJ'0^'i^>0^eco s O«-^f\J'^'^, «n»o^ao

OOOOO<CNfl00*OOOOOOOOOOOOOWOinOOO5 lOOOOOOOOOOOOOOOOOOO0'0,(MJ> •* ** »*

f^rnf^rn^ 4 4 4ooooo o o o

o —O —< aor' u_» LU

o c•-

uLL •2 —

UJ — •• h- O <—

O—O— LU O —O—ILOO 5 • x:

•a.— ir\ » 00 IL

Ll-ST— o LU LU

u.q.ul_j — a. aLU  -LUG. LL >- Oi^aua cj »— —*—i— » » O •. i—

^o—- •> < •—

X<00 3 LU -J-«•UJiOlTi LU Q. LLi—

ac-£—— q. > uj—a •— > h- o

U.Q. *- t— aa^TlUJt— »— -~ » »L-»iu'_> oo a. -»o-*oo< <s » a. m<_J< »LU LU r-l iT will at

OLU— TC Q_ |l »Q LUX Q.

Oc^O*>V O-CJ LL *• O —I O< »ir\~ t— * ^1 uj~ > m >.£(•)—O t— — »l— *•-' < rJ^ <I

*u_u.'n— •• _*. lu —»— ^» •>  x.

xujll—a — <:03: —i —i —

_)OLL> iO 2. •/ H« * w-S L. O* rOCiOO CD— t— OO XUJ OOX ^ vC 0*3.X »-I7) X t— —1 Q_h- >-<0 O • • O<aooa. a. q- r\j iu< \^< • ^ o ;>

•u_ir<r_u lu z C u*:o xiu m —< r> <^jj—'OjCj ot •> » * • »oi f\i v. cr |

'.£ <_>•-* • —I *i <M <lO _-»vj- » _J-> »^ X«£ :*~» » <l — o y-QC «*mMO —< — <l

— xo-» f- <•>—»• qcz — a:«— ctn}- jv» -^ a.h- »m<Jj .x »— —• >—» tx »^c »-< q_ i/j »tr u.—• •• j».

3 - —  — 3- <£ Q. — 'SJ UJG:<t «» »-J_-T »-< t— _J _l '_)

Q. <'j ,J0(y)aJLLi<i ^2: u. lt at—luJxio i—tuj(\)-^ + _ia— _i—»— c_)

t— irU_COf— QtLU ~» LL. '_>».XU- CJLT—» _J _J •* X *— _JQt^ —

LJ f^u3.c_) at-} ^ •»»• »m —<—» »(_j —»t-.c_>^* —

|-\- + _i <+

\ _j •

jj - ^ u(^au«j>—<'vj ii i o o^: it o lt(/)—.-»_iot o uoa tc—jcttc cj

2 ^ OOOOO II 0-?~3 <M O CT» II—

» CT> H-^LO-JLU »0 II >'^)—»Q- II <t CL —— u '-to .mj^ct •——• ># «n » •«—••—• » —a.—»to ii oo '—K^ i

iijq.ii un»— —• »»»»• ii  i u* >o^)'-»^o ^artoi— i— n o n <i_j i. _j

r^ o -' r. ^r. lt it, a^—-0+ <^i »» ^o«/> — i i>—a o< ^sl ii ^?.: u _'ot—<ux<i

_, ^ ——— ^-i» . n<£—i^LJ'M^T LU lxJ^-LL LU T-HQ,<CdJi-H a£f\l»— Z _J -a «.0<—••—

r 'u -joouo^-u-wh ii i— ii ii—«^ >- >-<y.uj»-«i— —znan <jo.Lr^Q.iiaT-it-L

I- -i <K<1<1<1 LL Q.X Q.X II II <-*<— >-i CJ II —4 II JKOOO OO—i£ >. *£ ~>

~d >— uajujijajuu.uu- rJ.xuaxax ii v q£cj< j-^a: llul -J-i^.> ->->t_) j» j»_JOCJa.LJ(_iajy> CJ X'lCV XQir.lujO— ^^O^C-i^^'^ JC jCU—*- C •- -•-J-J—«<3<I<IO'<l<I_iOO»-*00

o* o ' •-* «M rn tlo >o o—•—i r\j f\i <nj r\j r\l<\» fM -omO :j* cr CT <J* <7>cn C7» OCT

Page 143: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 143/221

CT>©**c\im>fr «0h-00CT'O«-<<NJrri^' >or^oo^o-*^co>r in>Or*<EC> 0^r\Jrn^inw3r -coc>0--<r\iro

•4,*t^«t<4-'^ ^•«t'.t>t%t4

,'4

,

>t«t ^**^wr**«*<* *'**•** <# -**'*•'*•*•«#'*«*' «4-*- «#<*** <*

OOOOOOlTOOOOOOOOOITiOOOOOOOOOOOOOOOOOOOOOOOOOOOO^ in

o o— t-o— - ujx ujfit — >-

^•-.H-Z >4 Ul (t <

»_J»~0 »>fU. *.uu—

U.OXO • i<UJK3 •

OU ZO »-0Cif>OZx «/»x«-zx *-a.»-i

h- X •*-<* -* *< mvwHiz •,> XO »ujuj *<NJZ300 v h—> -Hae^-mmoeoz r*-co

< — UJ < •> XUJU.UJ »I3» *h>Z •C0Hh«O3mlJ? XZO00 •»/)UJU o •«

O —•ao£<>rujXi—uje*m-I -TLL MLH ILUJOLL> H- X • ZU.QC^-LU UJ LU—IXIOUJOQ luuoZ *fNjrOft* uj» IO'-'lu »#-<^» O »»

ooaeoa n »o uj ii z:

zac> »XDO KQCCL•- Xt/>I»-a£:<tO«-U»<~a£

>03h <fMUJ0LOQC* UJUJ ftOCO Xx>-a.iZ-j ocuj:*-^r«- ccq*—on> <r»- ujo

•H-< CC CLZ <UJOU, X0g<>—3««QoOUJ vt

<£*<»-•- —Q <\i

»UQ XX O -CLCOCO Xac«t<N» .-• X<<U4TOO *f\J QKN»JOMHW «ujuj<X Z »<D • XCCcC*-Zf\jz< Qcmcsi^ocoooftOX'^ u_ ftCOLU

I—

h-<-taC''V_J ftCOOOlL*-*-

acooo <X<UJUJOOCDO-ju.O'—^ *a:oc:>-<_jcvooo-a »xa uj

i

ujq.u4qc< il—• cO-

QCOCU OTOC •» O • U.

CC ;h- UH-V-UJU.moooxK^zau.r» u*jjmouj«QCujz»'_jui*-r\ia:>—cjujuljxaaz> » I au.o«uc* cc uku x or u. uj -uj xu_ » »x o

Q. »3UJZHUOX(XUUW

H >v ajm<ujo Luuji>T •XXjOC^^-H-^OXQtOJO '-«mO\:3 ftl/1^ »UJ —I

i^miinhif-x oxcc

-« vocr—xxlu ••ocxViju

<rr, w)<—l_)JJ2i^'-'i-iZ^ —'^:uia^r»<>JzULLI^<UJOUJo.cr~Q-h-_j^-——-w + rNj— ii h-^-x •> iomj tia:acMLUHsiinix<i;inm-jX i.2^«^ -X.JC *. II II Xi~« Ct>».*>Jc0^-O><Ct I— Q.^'S.QC «Ct—tCXCXOtOtCXCXQC^t— Ouua.uuajaa.a. h uu. 11 o.xxa:oas^z< clo <'>ouj umu » uuuuuouaizju- o<_>a jj*-«-^ -*:<_>•-< ^.z.^*. .coil » ,Nd<QC_j 4u» a: o u_i-iu.ii •u^U.u.u.u^'u.oocuj

—«csjm>rtn>d <-»r\jrn>rLn -h -*c\j

t»>t i/>>uo<Tin o  «-« <M m >rmor<-aoo»ornm rrin-r-TNj- o o o o aoooyoin

X>UJ

a it.

•COa:a»

o. •

o>oQC>rO

r^ a.<orr, o •> •>

O >—•• <^C l>* >^— av

ro — 00

_r oo—» aa-rn

>r <a.^-m Q-Z 1

cr s: *-»

uj— —<>r IT>

— u^t>r >r«^

| «-^cr (j*

<— QCl/)— • •»

a-h-* >u «-^

—i jarom LH

_|w« ^^-m* cr—._ia-i < — » »-JJO. -» ^- ~-t*T <w<

J * 1 -J * — -f >r If)

—•-J •• •m^tr •-r

^-jtxac oo—a. n <a. o<T^«^ —II «JQ. II UJ^ «-/)f\| UJi-t

X Z3 II >OI- I ^J —TC-ruazj-iQ. ^ 1

HOX <Q.«t ae» X

CO tucr• OCh

«e 3 »

u. uom« i^ t

X LUin>t oca.» a. • —

CO .

• i

<o o •

u. >i

_

» <X •

ITi XI-» -•o

>t roo.t •i

o Mu. — h-•> » » «•>

X xm N»>0 —i v »

•»

•in•-4

eg OU. >—

• - « ««

iTt X «t

a. X —> <i m « • »X * H- XCD (Nl UJ (T>

•> —z a> »>r o X' in

• » — i/) ^v0 *— »

u. oo<--z Xft i——vo a»X z> »ir\  -UJvJ

-

t m«» UQ •o <vT--CL «Oh> •»

• xa-z CO

<&>fC£< •a <u, •UiXU »

UMi ^ Xxu_ • *j_ CJa\ •X t >o ~H —X<^XU^ ft «•

f\i^-*aoaL « rg— •>^ •> '^-X ^m •—

•vTX ».-«lf\-» • • — f>4

X • ir» «j- a. >rooco tn —•—0>U*>* •^^<<LL -*COUJ-li-vO .— »«—-^ —*.^)- ••h- u.o »—'— >- h- »*-'H- ^r ^:

—<IX< >< I<««WC£

Page 144: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 144/221

APPENDIX III

REDUCED PERFORMANCE DATA

A. Order of listings

The referred performance parameters and general flow results for

runs 58 through 63, 68, 77, and 78 are listed in numerical order. The

data point number is listed on the far left hand side of each even

numbered page. Read horizontally across both the odd and even numbered

pages for the results pertaining to that data point.

B. Definition of parameters

The listed parameters are defined in Sec. 4.

C. Units

1. The units of referred parameters are listed at the top of each

column.

2. All velocities are feet per second.

3. All temperatures are degrees Rankine.

4. All angles are degrees. Positive angles are measured in the

direction of the rotor rotation vector.

5. All other parameters are dimensionless.

Page 145: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 145/221

Page 146: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 146/221

SHEET I OF I

r usnpgs» monterey, calif*

DM TESTS WITH TRANSONIC TURBINE TEST RIG

TIP CLEAR. = .033 IN. AXIAL CLEAR. STATOR-ROTOR= 0.620 IN./67 DATA REDUCTION METHOD MF

REFERRED 1 REFERRED REFERRED DEGREE OF DEGREE OFTORQUE POWER SPEED REACTION1 REACTIONFT-LB HP RPM (HUB) (TIP)

15.971 31.253 10279 .0237 .436815.429 30.841 10500 .0253 .440614.85 31.286 11067 .0295 .44^4 -

14.131 31.029 11534 .0378 .447613.673 31.343 12041 .0418 .453713.00 4 30.949 12502 .0485 .455412.28 4 30.449 13021 .0512 .460*11.82 8 30.326 13468 .0537 .463710.04 4 26.939 14090 .0572 .46268. 162 23.817 15328 .0554 .4698

)EVIATI0N 0.485 PCT. -1.042 PCT. t PAVG. /PATMO= 1.1202

22.06 1 53.610 12765 .0592 .464921.83 9 53.585 12889 .0620 .467-421.20 4 53.075 13149 .0619 .468120.449 52.270 13427 .0665 .473219.877 52.709 13929 .0703 .473619.206 52.496 14358 .0704 .473117.611 50.646 15107 .0808 .4896

DEVIATION +0.077 PCT. -0.061 PCT., PAVG. /PATMO= 1.2005

24.280 60.906 13177 .0814 .473824.193 61.229 13294 .0807 .47242 3 . 86 7 61.526 13541 .0825 .473023.484 61.430 13741 .0859 .477222.742 61.785 14271 .0898 .482921.37 4 61.767 15181 .0921 .483119.930 61.214 16135 .0995 .4901

DEVIATION +0.551 PCT. -0.371 PCT., PAVG. /PATMO= 1.1513

Page 147: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 147/221

GENERAL RESULTS

RUN NUMBER 58

W^M- Vt- X2- 40-

l

23-

45

67

8

9

10

121314

45161713192021222i24

PC I NT

1

23

4-5-

67

8

101112

14151643-18192024-222324

605.597.

0717800757

-5 94. 45 6 3

590591.589.586.588.578.571.715.712.718.714.710.706.706.765.763.761.759.760.754.755.

0871610303470217<

83789551035739795605-

93563495

213. 7811 6

2C7.9 1

2C6.6274.263.

8596241431

1146 91925169

221.6230. 2«

241.1£3^9 8 6 5266.1293.2'334.5

248.46 103

257393216228

08521001957973626732575682165591309809J2888260278824221428-229541

249.75797250.4257.8264.6

275.0296.4273.5

5009C9819409

5876177681C366

274.33911277.1377C284.98755297 .02563317.32715

TEMPERATURES (CEG R )

PLENUMTOTAL

562.561.561.561.562.562.562.562.562.561.569.569.5b9.

569.569.569.569.576.577.577.577.57 7.

577.578.

C9106577395773991992C9106-09106C910643335262219199243164431642612-3-

091060910643164601,84-731932397557812916509165091650C8569

STATOR(DISCHARGE

531.91919532.17212532.945315 33.0166533.17700533.444C9533.56130

534.526.527.

734867778323779

52 6.3632-3

526527527.

575201123088818

52 8. 10 05 9

527.528.529.

917976936035181

529.90356529530.530.

749025913161572

235.227.218.

556980888447209

240*33-293207.197.199.3 12

2

307.304.296.34-

68874856257766303862

274.260.343.

331.325.315.29-4m>

1276959253557620AZ36473147294910474

964379972461008798 3325

280.41138

ROTORDISCHARGE

^.00464-526.71216526.00684526.28003525.80078525.525.525.>2

527.515.515.-54-5,

515.515.515.5 1 5 ,

718516789668262

589893668957275464-060

516.516.516.

8913627881478529 7534444826445363306

516.22729515.63672515.21216

Page 148: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 148/221

W2 Ul U2

360.56836 385.25928 383.85791361.71460 393.35669 391.92603366.84717 414.59009 413.08228366.37329 432.22485 430.65259369.87207 451.29883 449.65747368.46582 468.57349 466.86914368.86914 488.00732 486.23242369.05908 504.92212 503.08545351.25684 528.13477 526.21387345.92773 574.38037 572.29126478.76514 481.52930 479.77783480.55518 486.20801 484.43945469.26587 495.92480 494.12109463.11548 506.36157 504.51978469.98804 525.29150 523.38110471.52783 541.63037 539.66064459.71191 569.95361 567.88086503.76587 500.24341 498.42407507.64697 504.92212 503.08545510.66284 514.45898 512.58789510.05591 522.19653 520.29736509.50146 542.35010 540.37793514.02881 576.89966 574.80127510.89331 613.24829 611.01782

ISENTROPIC TOTALFROM Ti OISCHARGE

521.87671 530.60449522.18237 530.26514522.27148 529.80981522.75513 530.36670522.58130 530.21387522.52222 530.55762522.59497 531.04663522.56348 5U. 57593523.81592 534.38940524.18481 537.21411509.82129 520.85962510.10327 520.94702509.20972 521.14136509.08301 521.72144509.48730 521.27759

510.27808 521.77490509.66650 523.28955507.00830 522.66943507.89722 522.84570508.49731 522.89575508.67773 523.31006508.04321 522.98560503.66626 522.97803508.05859 523.59131

Page 149: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 149/221

FLOW ANGLES

RUM -NU M BER

(CEGREES FROM AXIAL)

_^8

POINT

i

23—4—56

7-«—9

1011421314

1546-1718192021222324

ALPHA 1

70.3207970.1471970.1175770.064^170.0475870.0609669.9440869.9£4h70.0682869.9222169.7917969.62-8£5-69.8802069.80528

69. 673455 7 3 33 -

821037980873656

69.6421469.6042669.6516969.4233469.53738

ALPHA 2 BETA 1

69696969

22.3C27223.8400727.5764331 . 7156134.8751538.5586941. 87430

50.8994456.6232815.3274415.89893

42. 1558739.6742635.5425731 .3 359 5

20. 7649024.35106

26.43724IJJ-

36.2377814.7577114.7455815^ 9 384517.6328421.6502726.8822933^32498

27.3482723.0564017.4249613 .4 12 304.5689510.8314137.5851036.1885235.8203033.68849

29.7030026.0452120.8772139.5672138.6580736^9597535.6375432.8764025.97505X9^67Q2 7

EFFICIENCIES AND LOSSES

POINT

1

2

3-4-

5

67

-8

91011

12

131415161718192021222324

EFFICIENCYTOTAL STATIC ZETAROTOR

0.75889 0.325370.76479 0.298080.77450 0.25530

. 766E9 iL.^45680.77204 0.226980.76045 0.227610.74707 0.221850.73873 0.224090.69617 0.258770.62630 0.282130.77315 0.238930.77175 0.23084

0.76496 0.263310.75205 0.280670.75934 0.24480n - 7 «5 7 * 7 n* ?? K>?\0.73649 0.270030.73996 0.312260.74589 0.293340.7MO*5 0*276570.74707 0.279700.74715 0.279070.74404 0.245960*73441 0.25364

1 '

Page 150: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 150/221

ABSOLUTE RELATIVEBETA 2 DELTA BETA MACH 1 MACH 1

57.74443 99.90030

v

58.49832 98.17258 0.5352 0.243158.89896 94.44153 0.5279 0.232959.0 3250 90. 36845 0.5255 0.219759.28270

\7 • -7 vjw ^r ^86.63097

\J • * C. J -r

0.5213 0.208159.21751 82.27391 0.5221 0.200659.15654 76.58150 0.5206 0.193059.05365 72.46594 i 0.5181 0.186258.22336 62.79230 0.5199 0.183457.85263 47.02121 0.5104 0.174559.79359 97.37869 0.5041 0.176259.91846 96.10698 \ 0.6362 0.277359.09369 94.91399 0.6325 0.272858.62050 92.30899 0.6382 0.270859.23347 88.93648 0.6353 0.2636

59.36630 85.41151 0.6309 0.252358.65613 79.53334 0.6272 0.243658.33118 97.89839 0.6267 0.231458.66498 97.32304 0.6798 0.304558.89758 95.85733 0.6775 0.300558.81387 94.45142 0.6748 0.293858.67542 91.55182 0.6730 0.288658.97610 84.95116 0.6741 0.279158.73427 78.40454 0.6677

0.66870.26100.2483

ZETA

rr

BLOCKAGE

STATOR FACTOR0.04092 .91621

*

0.05046 .913440.05598 .914200.06512 0-.915240.05877 .916550.06277 .915320.06835 .915780.06303 .91X920.05507 .916600.06038 .919710.07222 .921340.07888 Q,.923530.06434 0,.92108

0.06758 0,,922550.07655 0,.922450.08583 O..S22540.06855 0, 921410.06647 0. 923500.07133 0. 923810.07447 0. 9 24£40.07719 0. 925690.07318 0. 925810.09183 0. 924790.08412 0*S2538

Page 151: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 151/221

REPORT

FURdlNt TYPE

PUINT

-T- U R B C -P ROPUL S IO N L ABCBA TQR

REDUCED PERFORMANCE DATA C.F TURBINE FR

MOD I I CONFIGURATIONTEST RUN NO. 59

PRESSURERATIO

RADIAL ROTORDATE OF TEST

ISENTROPICHEAO COEFF.(R=4.125 IN.)

EFFICIENCYTOT-STATICPERCENT

REFERREDFLOW RATELBM/SEC

1

2

45

6789

10

31023114

31G5315830503097308431003115

3.49893.3037

^r 09122.92572.49182.40352.2 27 8

75.5576.29

^7-7^21

1.2895

2.04971.79621.5472

75.2976.3274.8873.8272.1669.2366.13

3.14653. 1586

3 . 154^3. 13943.14263.1334^^43^53.13473.13013.1021

FCR PCINTS 1 TU 10 AVG. PRESSURE RATIO= 1.3082 t MAX,

11121314

1516

1.5C831.51041.512 3

1.5123

1.51591.5173

3. 26 10

3.04532.9609

2.79082.456^

76.8777 . 2376.6176.56

76.6?^7-5^90

3.5734^.£7-47-3.57243.5725

3.5724^.57.27

FCR PCINTS 11 TO 16 AVG. PRESSURE RATIO= 1.5127 MAX,

17181920212223242 5

1.40341.4034

403840254025.4029

^4^04-3.30903. 17593.04132^ 9174

77 .4 8

40551.40891.4099

2

2

2

1

8387601531090247

76.7374.9576.577 8. 4 <

78.1977.9576.30X4«04-

3, 34343.33373.34053.34483.34073.33853.34083.3337-3.32 59

FCR PCINTS 17 TO 25 AVG. PRESSURE RATI0= 1.4047 MAX

CCNTD. ON SHEE

Page 152: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 152/221

SHEET 1 OF 2

i USNPGS» MONTEREY, CALIF,

DM TESTS WITH TRANSONIC TURBINE TEST RIG

TIP CLEAR. = .033 IN. AXIAL CLEAR. STATOR-ROTOR;/67 DATA REDUCTION METHOO MF

1.000 IN,

REFERREDTORQUEFT-LB

REFERREDPOWERHP

REFERREDSPEEDRPM

OEGREE OFREACTION(HUB)

DEGREE OFREACTION(TIP)

i 5 . 80 615.73215.22814.47713.36112.9212.26111.50 710.3418.80 9

31.13331.65531.92531.41830.96330.68430.19329.60428.47925.341

10347105701101311400121741247512936135151446715112

.0083

.0110

.0123

.0190

.0278

.0358

.0386

.0412

.0410

.0101

.4470

.4530

.4479

.4450

.4564

.4531

.4680

.4696

.4725

.4565

DEVIATION +0.573 PCT. -1.428 PCT., PAVG./PATMO^ 1.1268

21.5302 1 . 32 5

20.79 3

20.49019.96018.571

53.64354.09953.77153.73754.06553.678

13088133261358413 7771422915183

.0474

.0510

.0527

.0545

.0580

.0625

.4746

.4766

.4773

.4798

.4803

.4858

DEVIATION +0.303 PCT. -0.292 PCT., PAVG./PATMO= 1.2082

19.00618.43217.68217.67717.70617.41416.67 41 5 . 40 3

13.971

42.13741.60940.75941.58642.52942.42242.53941.83640.577

116461185812109123581261812797134021426815257

.0236

.0259

.0281

.0315

.0326

.0348

.0380

.0488

.0519

.4592

.4622

.4648

.4626

.4666

.4652

.4698

.4768

.4781

DEVIATION +0.366 PCT. -0.160 PCT., PAVG./PATM0= 1.1645

T 2

Page 153: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 153/221

REPORT

I-Utf&C PRGPULS13AI LABORATORY

REDUCED PERFCRMANCE DATA CF TURBINE FRC

TURBINE TYPE MUD I I CONFIGURATIONTEST RUN NO. 59

RADIAL ROTOR TDATE OF TEST

POINT PRESSURERATIO

ISENTRCPICHEAD COEFF.<R=4.125 IN,)

EFFICIENCYTOT-STATICPERCENT

REFERREDFLOW RATELBM/SEC

2627

293031

-J2

1.59911.59901.60091.60081.60061.60301.6073

3.63493.52123 . 41613. 18252.98632.79692 . 4 6 24

75.6375.4575**2-76.1475.7676.32

3.68623.68473.68213.67993.67863.6777U6-737

FOR POINTS 26 TO 32 AVG. PRESSURE RATI0= 1.6015 t MAX.C

Page 154: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 154/221

SHEET 2 OF 2

USNPGS, MONTEREY, CALIF.

M TESTS WITH TRANSONIC TURBINE TEST RIG

IP CLEAR. = .033 IN. AXIAL CLEAR. STATOR-ROTOR= 1.000 IN./67 DATA REDUCTION METHOD MF

>E

REFERRED REFERRED REFERRED DEGREE OF DEGREE OFTORQUE POWER SPEED REACTION REACTIONFT-LB HP RPM (HUB) (TIP)

24.55 5 61 .676 13195 .0647 .482124.09 9 61.498 13405 .0664 .4833

23.71561.500 13622 .0681 .4855

23.116 62.122 14117 .0725 .489022.271 61.774 14571 .0752 .489821.73 8 62.396 15078 .0759 .490120.30 4 62.278 16113 .0835 .4979

VIATION *0.3t>2 PCT. -0.159 PCT., PAVG./PATMO= 1.15

Page 155: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 155/221

GENERAL RESULTS

- — — VELOCITIES (FT/SEC)RUN NUMBER 59

^PCINT - -V4 V2 VO

1 613.06104 210.39188 278.261962 605.26318 2C8. 97163 267.47046

60 8. 4975 6 217 . 17159 2-5-9-^46*7-5

4 611.15332 228.75798 251.281745 596.76416 24C. 12752 227.863956 595.41309 247.21349 221.742527 594W42*a ^59«96£7-5 21^.604358 591.09570 273.66455 207.328169 593.74536 303.43140 202.04755

10 588.38184 333.72192 199.7887111 727.236^2 258*57*9X 3U...4711912 725.38477 260.72949 304.7885713 725.27759 265.66235 299.5510314 723.05737 268.16284 293.9118715 720.2583X1 273.9C576 284^0402816 718.12671 291.87915 267.8259317 684.85083 231.91692 304.7089818 683.1C498 237.35011 297.93628

_L9 _ 680^62866 247.40923 290.3095720 680.32251 246.6C745 284.4231021 679.27588 245. 31918 277.4245611 672.09619 245.7C757 269.1672423 672.05908 257.5f789 257^928724 673.43921 28C.7C361 243.3745725 6/1.08252 3C6. 87842 229.6430126 774.23022 272.51514 346.5190421 7 7 3.3Z524 274.91089 __34-0^76-92928 773.14575 277.80908 335.36328

29 769.99902 281.60107 321.8144530 767.21997 289.07642 310.76001^4 762.34-L28 292.89771 2SL8*7885732 757.48120 3C8. 90332 280.37109

Page 156: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 156/221

W2 Ul U2

355.39307 388.67822 387.26465366.95581 397.27954 395.83447365.44995 413.94238 412.43677356.57007 428.55396 426.99512364.26343 457.77686 456.11182364.13574 469.11328 467.40723360.51074 486.42383 484.65454362.71460 508.19678 506.34863360.30005 544.00586 542.02734344.28125 568.33423 566.26709471.41040 495.92480 494.12109476.26050 505.10205 503.26489473.03350 515.10669 513.23340474.43213 522.62842 520.72778

479.42993 539.68701 537.72412479.64697 576.14380 574.04834412.10889 440.89795 439.29443406.90234 448.77954 447.14746397.55688 458.13672 456.47021404.56885 467.56567 465.86523414.86353 477.39063 475.65430420.12720 484.15649 482.39575420.84668 507.04541 505.20117416.33301 539.83105 537.86768414.04370 577.25928 575.16016511.573^7 504.56201 502.72705509.17114 512.83936 510.97412508.30249 521.29688 519.40088513.65308 540.37109 538.40552

511.75488 557.82544 555.79688520.67041 577.25928 575.16016526.03687 616.95508 614.71118

Page 157: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 157/221

TEMPERATURES (CEG R )

PCINT

l

2

34

5

67

8-9-

101112

-1314151617

1819202 t-

222324-25-26272829303132

PLENUMTOTAL

564.65625^565.33936

565.33936565.51025565.55156565.85156565.85156565.85156565.85156-566.C2246574.52S05574.66816575.37621-575.88501575.71558576.22388573.51099

573. 17163572.83203572.83203572.83203572.83203572.83203572.83203572.832-03585.17C17585.67456586.01099586.34717-586.515145H6. 51514586.68311

STATORCISCHARGE

523.38159534.85522

534.52856534.42993536.21753536.35156536.41797536.77783

_ 536.5166C-537.21509530.52051531.06350

-53L+6C498532.38086532.54761533.311045 34.4&291

534.34229534.26369534.31836-534.43677535.24414535.24829535.09375

535.29028535.9C479536.270755 3 7.01099537.53442538. 15918538.93799

ROTORDISCHARGE

529.22339529.50781

528.90088528.99341529.37012529.27661529.29224529.25098528.93237530.47827519.95264519.7849152CU28784520.67407519.95850519.93530527.95923

527.82959528.01807527.2978552-6+38159526.44385525.85937525.42285525+27905523,35083523.83545523.9655852 3.49J80523.58960522.82788522.22314

Page 158: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 158/221

Page 159: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 159/221

FLOW ANGLES (CEGREES FROM AXIAL)

HUH NUWB£R- 59-

FLINT ALPHA 1 ALPHA 2 BETA 1

l 70.59125 24.63344 42.935172 70.25215 23.39796 40.128943 70.35716 27.35992 37.883874 70.58066 33*39029- 36.037085 7C. 10620 37.36863 26.979516 70.14183 39.49748 24.199197 70.16603 43.20201 19.897698 70-033-20 46 .10776 L3*207129 70.15860 51.11537 4.11323

10 7C.2C630 56.04420 -4.2238411 69.99789 20.33228 36.9993312 69.959^0 21. 8983 35.3540313 69.88861 23.83044 33.6411014 69.86005 24.98961 32.10754

15 69.74545 27.12794 28.6150716 69.66-498 3 3.43983 2U2859617 70.87402 22.18254 42.5742618 70.87019 25.29848 41.2910319 70.77545 29.58777 39.4686620- 70.73326 29*79395 3^*8839321 70.76463 29.33020 36.2294212 70. 55257 29.45518 33.7637223 70.54350 33.71577 29.4968924 70.57672 - 40. 16-486 _ 23*0478825 70.61256 45.91084 14.0551226 69.94922 13.78541 40.0007327 69.91418 15.99491 38.79381 I

28 69.91113 -_17.875I£- 37.6412229 69.86955 20.32784 34.56747

30 69.78464 23.97716 31.4486431 69.63132 25.58481 27.3749811 69.55777 31*17242 19.33398

Page 160: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 160/221

BF-TA 2 DELTA BETA  SSBPf ^MHft~IZ',

4

25?t 100.38071=fi:SS2M 22:ra gill* s-**

5 '-57.61150 93.64857 n II22 0.2359-58.41461 85.39412 n'ltof 0.2286-58.40718 82.60637 n s??I 0.2217-58.28790 78.18559 n 1155 0.2007-58.46017 71.66728 n'^7 0.1953-58.08430 62.19753 n'^nl 0.1890-57.21953 52 99568 C>'Z??l 0.1825-59.04654 96.04587 S?7? 0.1779-59.28407 94163811 nil 0.1758-59.09074 92173184 n'UlZ 0.2758~55M?^ 9f:I 8938 Brftil g-ig?*-59.^38^2 88.051^Q n a-joi 0.2650-59.48280

80.76877 o'tllk0.2598

 ifl ??lfi101.16788 0 6342 g'1112 j

I|HIa?? 99.46326 0.6041#

?Aftft I

-ia*0A§tZ 21-Z0512 0.6027 lllq-?«oaI/1 § 95.94708 0.6005 n?£2?58.96747 95.19688 n7nn? 0.2561

,

'IVUtti ^ISOl 015992 g.2509-59.39467 88.891^/^ n cqk 0.2447 '

:fi-3^?9 82103438 o:5?24 g-§3J358.95627 73.01138 n ?oi7 0.2267,

-58.84502 98.84575 2'^?? 0.2146-58.73372 97152753 n'llll 0.2024-53.65710 96.29832 n'2ft

2| 0.3054

-59.06348 93163095 n'£fno 0.3002-53.92709 90137573 o'a??? 0.2953-59.5 1045

86.88544 n'Ulo0.2832

-59.83841 iVAffiS %:%]%% 0.2734

0.6654 0.2463

Page 161: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 161/221

EFFICIENCIES AND LOSSES

PCINT EFFICIENCY ZETATCTAL STATIC KCTOR

T 0.7 5552 0.3 52 26

2 0.76286 0.298843 0.77211 0.283164 • 0.75288 0.312395 0.76317 0.243166 0.74884 0.243827 0.73818 0.26281a CU72161 - - 0.248009 0.69230 0.25403

10 0.66134 0.2294811 0.76867 0.2673012 0.77225 0.2493-8,13 0.76612 0.2559114 0.76561 0.2481615 0.76619 0.2246416 0^35898 - -CU2L253

17 0.77480 0.3224518 0.76729 0.3328919 0.74951 0.3557620 - — 0.7656S _.Q^a23Q2-21 0.78402 0.2814422 0.78192 0.2507723 0.77955 0.2386624 JU76 30 3 £L.254_A225 C.74C43 0.2473526 0.75627 0.2923727 0.75449 0.29433ZB 0.7 53 2 3 CL*2_945629 0.76138 0.2692430 0.75765 0.2635731 0.76318 0.22525

Page 162: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 162/221

ZETASTATOR

0.030510.05363

0.043820.047090.052580.066230.053680.066540.060280.048620.057310.062080.064270.068020.077440.079280.02198

0.022940.027070.024880.0244?0.045310.045280.036350.042060.057180.058060.058850.061760.066310.08030

1

13LCCKAGEFACTOR

,9C5 79~

.91012

.90884.90QJ4

.915190..90930.91582

3 .91423.91221

0,.91401.92014

, 0,.920390..91974,92054.91982

. 0,.921110..90150

,899900..902400,.9Q4480,,904360..903670..904320,,9 01900,.902080,.922610. 922720. 922140,.922920,.923220,,92247c,.92279

Page 163: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 163/221

REPORT

^URftC- 4>ft£PU4,-S4 Q N L A B ORATORY

TURBINE TYPE

REDUCED PERFORMANCE DATA GF TURBINE FRi

MOC II CONFIGURATIONTEST RUN NO. 60

RADIAL ROTORDATE OF TEST

PCINT PRESSURERATIO

ISENTRCPICHEAD COEFF(R=4.125 IN

EFFICIENCYTOT-STATICPERCENT

REFERREDFLOW RATELBM/SEC

298 1

3023

3043304 7

297729852996

1.2987

47307325

562C389517509949

1.77361.5296

75.3175.53

74.9572.9272.3647,7461. 82

3. 15183. 1465

3.14243. 13873.14073. 12553,12943. 1360

ECR PCINTS 1 TO 8 AVG. PRESSURE RATI0= 1.3005 MAX

9

1011121314

1516

1.4C031.40221.403c

396239963962

39641.3996

3.50923.00942.8271,2,60152.40332.2430

1.9770U 7-48-3

75.2176.0575.4275,34--74.8473.42

70.5168. 3-7-

3.41353.40853.40593. 38533.38123.3585

3.35653.3442

ECR PCINTS 9 TO 16 AVG. PRESSURE RATIO= 1.3993 MAX.

1718192021222324

1.49921.49981.49551.49501.49691.49711.49401.4953

3„££2-8-3.32943.15972.85442, 7 143-2.52492.36712.1156

7 4.14-74.7174.5175.9475.6374.7974.2871.09

3.57843.57903.56393.55723.54983.55483.54203.5395

FOR PCINTS 17 TO 24 AVG. PRESSLRE RATIO= 1.4966 , MAX.Ji

CCNTD. ON SHEE:1

Page 164: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 164/221

Page 165: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 165/221

REPCPT

TURBC PRG£J :ATOR>

RECUCED PERFORMANCE DATA CF TURBINE FRC

TURBINE TYPE MOO I I CONFIGURE ICNTEST RUN NO. 60

RADIAL ROTOR 1

DATE OF TEST

PCINT PRESSURERATIO

ISENTRCPICHEAC CCEFF.(R=4.125 IN.)

EFFICIENCYTCT-STATICPERCENT

REFERREDFLOW RATELBM/SEC

2526

27Zd2930-31

32

1.6C52L.6076

1.60651.61061.60001.61511.61551.5974

3.65413.4064

^47C5-2.99742.78982.61422.49482.3780

74.1274.64

74.6775.0174.6175.7474.9375.04

3.70943.7051

3^703 33.68753.68133.67963.69403.6621

f-CR PCINTS 25 TO 32 AVG. PRESSURE RATIO= 1.6073 MAX.C

Page 166: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 166/221

SHEET 2 OF 2

USNPGS, MONTEREY, CALIF.

1M TESTS WITH TRANSONIC TURBINE TEST RIG

IP CLEAR. = .033 IN. AXIAL CLEAR. ST ATOR-ROTOR;/67 DATA REDUCTION METHOD MF

0.200 IN

REFERREDTORQUEFT-LB

REFERREDPOWERHP

REFERREDSPEEDRPM

DEGREE OFREACTION(HUB)

DEGREE OFREACTION(TIP)

24.37423. 70422.851

22.28 121.20 8

2 1 . 02 220.41819.556

61.29661.83061.741

62.07160.84162.87662.53160.666

132101370214193

146 3415070157121608816296

111511461138

11311147118111891150

.4435

.4485

.4500

.4520.4538

.4597

.4639

.460 3

)EVIATIUN 4-0.516 PCT 0.614 PCT., PAVG./PATMO= 1.1690

Page 167: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 167/221

Page 168: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 168/221

W2 Ul U2

355.85889 383.89185 382.49561359.52734 431.57666 430.00708360.98047 449.42725 447.79297359.28857 467.56567 465.86523358.90454 485.27197 483.50708363.05005 507.26123 505.41626355.45483 538.93164 536.97119349.93164 579.59863 577.49048413.19946 433.55615 431.97949419.62500 469.11328 467.40723416.21265 484.69653 482.93359415.61792 501.50317 499.67896414.55322 523.67212 521.76758410.47070 540.26294 538.29810406.40308 575.60400 573.51025410.93018 614.07568 611.84229457.21411 475.08716 473.35937460.56348 487.68359 485.90967458.29614 498.98389 497.16895464.70752 524.89575 522.98657466.65308 538.85937 536.89966463.53198 559.08521 557.05176461.09814 576.10767 574.01270452.07300 609.97314 607.75488506.19482 503.19458 501.36450512.47852 522.30469 520.40479511.42920 541.41455 539.44556515.82568 558.47314 556.44189508.85205 575.28027 573.18774

521.98096599.78833

597.60693522.66138 614.14795 611.91431512.84888 622.17334 619.91040

Page 169: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 169/221

TEMPERATURES ICEG R )

PCINT

1

23

4

678

1011121 1

141516az181920212223242*26272829303132

PLENUMTOTAL

565.51025565.85156566. 19312566.53418566.53418566.53418566.70483566.70483570*79277570.96289570.96289570.96289

,13281,302983029830298

, 3593J698738681603760,03760.

575.20728575.37671575.37671580^6201?581.46387

571571571571574574574575575

582582583.583583583

3071381299

149901499031836

STATOROISCHARGE

.C,35.R6108536526.536.5 38538.538.538.523.

5747188037988043H35

534.534.535.535.

49463679696545461108

535.536.535.33±

4426341528343261450?

531.522.532.533.

853520644799341? 87B4

523.533.533.521.

8C200611C881177?C654

532.533.534.535.

425C5820807692936279

534.535.535.

8C61589771562994 36?&795412641683374

ROTOROISCHARGE

531.28198530.44141530.31543530.23706531.199??530.531.531.5?6525.525.526.525

851323488874951aiai2

526.526.525_522

96021777341308666943

52?522521

521521.521._5_1S_

519.520.520.-521518.518.520.

30640416999233423975042724680245142223

3459556519961912835 78520536719121830136J870129858406738

Page 170: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 170/221

ISENTROPIC TOTALFROM Tl DISCHARGE

526.45923 534.86450526.56396 534.73193526.59009 535.00610526.50634 535.40723528.03882 536.84058527.98779 537.00244

528.11523 538.95386528.04053 541.44922520.62158 531.35254521.02905 530.91919520.81738 531.13696521.66089 531.77100521.17578 531.92114521.96802 533.08691521.92749 534.58667521.75806 535.46704514.58691 527.76172514.88696 527.66528515.67676 528.26392515.77490 527.55518515.98657 527.61401

516.13599 528.27954516.41650 528.98047518.98535 530.88965510.46143 526.09595511.48120 526.32080512.53564 527.13696512.99976 527.06152514.03052 528.38013512.62842 526.52246512.87427 527.05078514.23535 528.40332

163

Page 171: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 171/221

FLOW ANGLES (CEGREES FROM AXIAL)

RUN NUM8~6fl 60

POINT ALPHA L ALPHA 2 BETA 1

70.12555 23.27457 41.1716870.02550 33.29710 31.8545270.01773 36.53429 28.1142770.15733 40 *2 5459 24.6745269.74147 43.32562 16.6952269.73343 45.95955 10.5062169.75447 51.30089 1.5838369.67-46-6 §6 .1 60 6 5- —9-*-8£7^6

69.91943 20.42540 40.2458269.76682 26.54305 33.6462769.82042 3C. 49716 30.9973669.7^9*3 —33 . 795 8 2 — 2 6.40 QO7

13 69.88152 37.85228 22.5304614 69.83392 41.28296 17.84143

15 69.86528 46.78522 8.9341816 — 69.802-95- 50.56835- -0,69 32917 69.75453 19.49399 38.7647218 69.69338 21.25023 36.6944619 69.66797 24.01357 34.3520220 69.7347^ 2-7-,32-42-5 10.15&3121 69.66547 29.66226 27.0799022 69.61591 33.77127 23.0743023 69.67595 36.94687 19.4294624-- 69.29051 43t1A£53 Hnr6278725 69.69371 14.38838 39.2782626 69.58099 17.22316 36.0706327 69.53946 21.10298 33.008132-8- 69.55104 ^l,2662-£ 10,2-12-4029 69.55072 27.62206 26.90227

30 69.61208 29.16492 23.3703931 69.42662 31.34332 19.8179312 69.6*140 ^.^±£1 14,46302

Page 172: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 172/221

BETA 2 DELTA BETA

57.61368 98.7853558.13632 89.9908458.09726 86.21153

58.03015 82.7076758.14604 74.8412658.62727 69.1334857.87584 59.4596657.10950 47.2218358.01578 98.2616058.63820 92.2844758.30461 89.3019758.6 3007 85.0301458.52859 81.0590558.49373 76.3351658.1 3435 67.0685358.45067 57.7573757.9 1841 96.6831453.26292 94.95738

53.26276 92.6147858.87917 89.0374859.09212 86.1720158.82448 81.8987758.84175 78.2712158.08763 69.7155058.28905 97.5673158.69072 94.7613558.64711 91.6552459.04758 89.2802758.79694 85.6992059.51515 82.8855459.42139 79.2393259.37007 77.53510

ABSOLUTEMACH I

RELATIVEMACH 1

0,

0,

0,0.

0,

0,

,5259.5222.5224.5244,5112.5102

0,

0,0,0,0,0,

,2375,2100,2024,1959.1848,1797

0.50990.51020.59010.58440.58470.57670.57980.57500.57300.57380.63660.63500.62970.62940.62620.62570.62380.62420.68070.67560,67320.67170.66740.67230.66870.6655

0.17650.17990.26550.24280.23530.22270.21590.20830.19970.19810.2825

0.27480.26500.25210.24440.23690.22970.22540.30520.29160.28060.27160.26150.25510.24980, 2434

165

Page 173: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 173/221

EFFICIENCIES AUQ LCSSES

PCINT EFFICIENCY ZETATCTAL STATIC ROTOR

1 0.75313 0.31793

2 0.75528 0.270593 0.75218 0.261904 0.74948 0.264485 0.72920 0.235556 0.72365 0.215857 0.67760 0.24487*-- C.61S24 — &^2JJ-WZ9 0.75207 0.30741

10 0.76054 0.25685U 0.75423 0.2614112 0^75^42 .0,2-4332-

13 0.74835 0.2457514 0.73422 0.2435915 0.7C507 0.2544216 0.6&372- — ^2-3£19

17 0.74135 0.3092918 0.74712 0.2925619 0.74513 0.2842720 Q. 759^4 .0*2453321 0.75629 0.2319122 0.74791 0.2319323 0.74293 0.232172 4 O^TOa^Z £U158A325 0.74125 0.3077826 0.74639 0.2808727 0.74669 0.2689928 C75012 0.2482329 0.74615 0.2500330 0.75737 0.2217231 0.74988 0.21808

166

Page 174: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 174/221

ZETASTATOR

0.053310.06250

0.060730.049350.074580.076060.079260.073720.058910.070930.069440.072580.065090.072880.072980.077020.06880

0.070310.075760.073870.082810.083300.080060.132690.067010.077010.081350.088750.085520.083940.08994

BLOCKAGEFACTOR

0.917260.91685

0.916060.946^4-0.924150.920460.92074a. 9 243£0.921920.922140.921670^942-630.920940.916810.918180.-91&2-10.9 23 74

0.924690.92325

| 0.9-22-520.920330.921870.920980-9-04 9 50.927080.926680.92666

0.923820.920680.92501a.92aa6

Page 175: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 175/221

REPORT

TURBt P#04HW_SIGN tA&GRATORY

TUReiNE TYPE

KECUCEO PERFCRMANCE DATA OF TURBINE FRC

MCC II CONFIGURATIONTEST RUN NO. 61

RADIAL ROTOR 1

DATE OF TEST

POINT PRESSURERATIO

ISENTRCPICHEAC CCEFF(R=4.125 IN

EFFICIENCYTOT-STATICPERCENT

REFERREDFLOW RATELBM/SEC

1

2

-345

67

8

1.30 761.3005

1.30181.30231.30181.30261.30271.3029

3.49362.7523

- 2. 56742.39322. 19512.0432

- 1 . 78431.5503

75.6475.60

75.3275.6474.6672.4447*9662. 71

3.17643.1331

3*12963.12093.12083.11763*14 7 1

3. 1153

FOR PCINTS 1 TO 8 AVG. PRESSURE RATIC= 1.3028 , MAX.C

9

1011121314

1544

1.40451.3954

397239613967

3.39122.95782.76642. 5927

3981

1.39791.396 5

2.22612.1180

1.97034. 739 4

76. 1177.1376.8175 .

7

73.9672.35

71.97

3.40683.36833.36873*34473.35863.3545

3.35244&*50 3^35^82

FCR PCINTS 9 TO 16 AVG. PRESSURE RATIO= 1.3978 MAX. I

Page 176: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 176/221

SHEET 1 OF 1

USNPGS, MONTEREY, CALIF,

)M TESTS WITH TRANSONIC TURBINE TEST RIG

IP CLEAR. = .033 IN. AXIAL CLEAR. STATOR-ROTOR'67 DATA REDUCTION METHOD MF

0.410 IN.

REFERREDTOROUEFT-LB

REFERREDPOWERHP

REFERREDSPEEDRPM

DEGREE OFREACTIONIHUB)

DEGREE OFREACTION(TIP)

1 5 . 90 41 3 . 7813.26 8

12.83912.1291 1 . 35 3

9.95 48.55 9

31.23730.19430.156

30.24529.81328.95627.17525.071

103171151011939

1237512912133981434015388

.0385

.0505

.0559

.0627.0628

.0668

.0667

.0625

.4321

.4443

.4492

.4520.4551• 4618.4625.4658

)EVIATI0N +0.369 PCT. -0.174 PCT., PAVG./PATMO= 1.1276

18.93617.55816.94 2

16.14114.58 3

13.9171 3 . 34 2

11.93 5

42.27141.58741.56740,86039.86639.05938.816

36.903

1172612442128881^298143601474315283

14242

.0546

.0623

.0632_^489.0755.0786.0786

^0765

.4477

.4532

.4566

.4405

.4668

.4675

.4706

.4744

)EVIATI0N +0.478 PCT. -0.169 PCT., PAVG./PATMO= 1.1658

Page 177: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 177/221

GENERAL RESULTS

VELOCITI E S ( F T/S E C)RUN NUMBER 61

89

104-4-

121314t§-

16

PCI N T

PCINT

^4r -^2- -*4-

608.63745594.60693592 . 0900 9

591.05347589.83594587.653325 88 .79810

2C9228237 . 23 88 3

6094885414

243257272

777515481C32666

588.50391668.70215661.29663660.1 68 70655.65356655.06934650.38794650 .93115651.30957

3C0.5C537342233.241

229259950137057

250 . 11 6 002582e6296.^£7-

97949569114521583301

339.26733

TEMPERATURES (CEG R )

PLENUM

TOTAL566 .C22 46566.53418566.70483567.04590567^0*593567.04590567.21655567.38696569^644-84-570.28247570.45264570.62280570,62280

570.62280570.79272570.96289

STATOR

DISCHARGE5 35 . 19751537.11401537.53320537.97532538 . 09595538.30981538.36841538.56763

533.89282534.18701534.85156_5^A^945^B^

535.42383535.53491535.66406

276.238.

5649401244

22 8. 03 4 53219.211.205.-2^0-T

201294.271.^6-2,

530477967130698^^-696

251.235.229.225.

69652432134641104 29 7

791993568673326944r7^

223.57727

ROTOR

DISCHARGE53 .733 8 9531.14844530.98975530.871345 30 . 4243530.94507531.29688531.69263524 .88 1 84525.42139525.24561525.6621152-5^29^39

525.55127525.34912525.72949

Page 178: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 178/221

W2 Ul \J2

359.2356.3359.4363.3362.6358.9

350.7347.6418.9417.0417.6414.7410.9411.3413.5408.2

136240580112215346970039

4219521062650854103531201699007889111899

388.433.449.465.486.504.

539.579.442.469.486.502.542.556.577.613.

030520883828345838130639634619

90332418954094268896603761508827832709961875050024

386.431.447.464.484.502.

537.577.440.467.484.500.540.554.575.611.

619145131864941143802961451196

93945311528002998071833983244630615685060881326880

ISENTROPICFROM Tl

TOTALDISCHARGE

525.1526.7526.9527.1527.2527.2527.2527.4518.8520.2520.3520.7520.5520.8

520.8521.0

80138198455671143828048343414678349634375303939509776401

96481733

534.535.535.535.536.537.539.541.529.530.530.531.532.532.

533.535.

3898950659673108164126196116211142643848437992692945117243161308686426

2343730737

Page 179: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 179/221

FLOW ANGLES (CLGREES FROM AXIAL)

RUN NUM BE R 64

POINT ALPHA 1 ALPHA 2 BETA 1

T~ 70.23701 23.40265 41.916372 70.162dl 34.40492 32.030583 70.15144 36.89117 28.16434

__4 7- . 21237 39 . 1 44 09 2-4^2931-85 70.14384 42.75870 18.928776 70.15227 46.29941 13.635417 70.15292 52.12648 3.98376-£- 7C.13OA0 56. 51073 =4*39U69 70.05685 20.88130 39.22562

10 70.13091 27.22986 34.1123711 70.05336 30.53574 30.74525IZ 69. 9 6812-———BiUi-2793 24^8790013 70.04123 41.5C076 18.1837514 69.92375 43.5C195 13.6355315 69.93015 45. 93950 8.70869

69 . 92419 SC . 95045 -0.45 22-3

EFFICIENCI ES A hO LOSSES

POINT

1

23^5

6J

-8

91011

12131415-U

EFFICIENCY ZETATOTAL STATIC ROTOR

0.75640 0.344580.75599 0.29774C. 75317 0.27934

. 754-3-8- . 258600.74663 0.249960.72435 0.266480.67963 0.292380.42-7-CM3 0.3Q6690.76112 0.296810.77133 0.268830.76811 0.257620.7 5J47- __ 0.259690.73962

0.261080.72353 0.257220.71971 0.24640Q.-6&50-4 0.26266

Page 180: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 180/221

BETA 2

•57.658.058.158.658.558.357.557.1•58.5•59.058.958.858.5•58.4•58.8•58.4

2077022934354241714383305493000545042463450774591035791028802723

DELTA BETA

99.5371490.0328786.2986982.9355977.5002072.0187161.5386849.7081997.7706693.1369989.6903285.7535976.6940972.1146267.5374857.97499

ABSOLUTEMACH 1

0.53650.52320.52080.51970.51860.51650.51750.51720.59100.58370.582 5

0.57820.57760.5732a.^7360.5739

RELATIVEMACH I

0.24380.20940.20060.19300.18620.18050.17610.17720.26020.2396

2312222020752025

0.19920.1970

ZETASTATOR

0.031300.04280

0.048000.047270.047760.049900.046450.048510.052330.049010.053020.058030.052610.066210.062570.05772

BLOCKAGEFACTOR

0.919550.91853

0.918600.918810.919560.919420. 91 8^20.921310.918740.918690^ 920180.920740.919590.919750.9226-3

173

Page 181: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 181/221

REPORT

TURBC PROPULSION LABGRAT^fP

REDUCED PERFORMANCE DATA OF TURBINE FR(

TURBINE TYPE MOD II CONFIGURATIONTEST RUN NO. 62

RADIAL ROTOROATE OF TEST

POINT PRESSURERATIO

ISENTROPICHEAD COEFF.(R=4.125 IN.)

EFFICIENCYTOT-STATICPERCENT

REFERREDFLOW RATELBM/SEC

I

2

—45

6—7-

8

910-t4121314-15-

1.50231.5048

1.50461.50331.50711.5069L4992-1.49831.59531.59491.6034

16

1.59971.5S781.59441^596-4-

3.47763.3088

3 . 07922.88322.7C312.5183

-2 . 356C2.07483.58533.40163 . 3003

1.5980

3.07372.83012.69732 . 502

76.7276.45

77 . 1577.5276.6676.387 4. 8873.0275.7776.427 6. 16

2.3909

76.6877.6875.9175.43

3.56093.5583

3 . 558 93.56133.55783.55633 . 536 33.53393.68883.68673 . 6903

76.36

3.66353.66753.66813 .66703.6641

Page 182: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 182/221

SHEET 1 OF 1

t USNPGSt MONTEREY, CALIF.

JM TESTS WITH TRANSONIC TURBINE TEST RIG

TIP CLEAR. = .033 IN. AXIAL CLEAR. STATOR-ROTOR= 0.410 IN.

/67 OATA REDUCTION METHOD MF

REFERRED REFERRED REFERREO DEGREE OF DEGREE OFTORQUE POWER SPEED REACTION REACTIONFT-LB HP RPM (HUB) (TIP)

22.01 1 52.862 12616 .0708 .457321.419 52.837 12959 .0733 .462920.85 4 53.319 13431 .0782 .466570.269 53.505 13866 .0793 .465419.446 ^3.167 14362 .0836 .470618.68 9 52.932 14878 .0854 .472317.518 50.990 15290 .0919 .47531 6 . 00 9 49.625 16283 .0930 .479824.39 3 61.550 13255 .0890 .46652 3.94 2 62.003 13604 .0934 .469923.652 62.515 13884 .0978 .473922.761 62. 198 14355 .1009 .479527.122 62.926 14942 .0972 .47532 1 . 06 5 61.244 15273 .1021 .480920.373 60.990 15726 .1063 .483019.97 3 61.817 16258 .1059 .4819

175

Page 183: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 183/221

GENERAL KESULTS

RUN NUMBER 62,_4£j/SE£V _

-RG-IM 4M.

1

2

45

6

7

89

10

12131445 -

16

715.714.710^7C8.7C6.705.

695*697.753.75C.7 50*745.744.739.740.749.

222175920402 8 3 2

151866379451807

351329987891260535642927260132859860859441089

2482532*6262271281

2923162662682712732792892S-8

3C8

V2-— -

.t>9847

.26920

.9^926-

.41211

.43091

.4C283

. 78*35.92944

.85229

.33813

.7 8-198

.93774

.43604

.19824

.34L55

.61816

314.306.293 .

283.273.265.

25 5.245.333.323.31Z*303.292.284.

-278.273.

Wi

914794235829785504889694801855

66228883508383860620656745603082349463130441991187

TEMPERATURES (DEG R )

PC1NT

1

23

4

67

89-

101112L414

1516

PLENUMTOTAL

564.^6565.68C91566.36353567.04590567.24655^567.21655567.38696567.72803568.92065-569.09106569.26123569.43164569.60184569.60181569.60181569.60181

STATORDISCHARGE

089441894541309316896457Z—7973665015262216 1 3 53170413877021069

052250244186865

ROTORDISCHARGE

4-^87305512.60791512.64771512.90112_54 2*94 553512.64941513.76C99514.06343509.04785508.70898508.31250508.24683507.56519508. 59595508.35791507.06519

Page 184: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 184/221

W2 Ul U?

469.38354 473.89966 472.17603468.33223 487.21533 485.44360474.92993 505.28174 503.44434477.07617 521.98071 520.08228475.56299 540.73071 538.76416475.35547 560.12891 558.09131466.74561 575.74805 573.65381465.12573 613.32031 611.08936510.52954 499.77563 497.95801514.37427 513.01953 511.15356517.74780 523.67212 521.76758519.46899 541.48657 539.51709523.95703 563.72778 561.67725514.05591 576.21582 574.12012512.85913 593.31055 591.15259512.06860 613.39209 611.16113

ISENTROPIC TOTALFROM Tl DISCHARGE

505.25928 517.01978506.00000 517.94556506.93408 518.14331507.84839 518.63110507.78027 519.04614507.80664 519.23877508.58521 520.89429509.02930 522.42163501.26172 514.97339501.54053 514.70068501.21362 514.45898501.80444 514.49121502.38281 514.06274502.68091 515.55542502.38184 515.76440501.28149 514.99072

177

Page 185: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 185/221

FLCW ANGLES

HUN NUM B ER -

(CEGKEfcS FROM AXIAL)

_62

POINT

1

2

3

5

67

3-9

10111213141516

ALPHA 1

69.9 868269.9514069.8069869.7451469.6850769.6985869.7078169.44&3069.6982069.6413769.57109<,9. 604-9169.5259669.4723169.4718269.S03-X4

ALPHA 2 BETA 1

15.919.121.2

350500948723

.2-4-*4-6653^

28.131.635.8

C49023129557

6 9 .4443069.69820 —44.67209

12.723179^4-8039

38.4044269.64137 14.50363 36.1698569.57109 15.97250 34.4423569.604^91 19.00783 — 34..46Q44

22.226.629.8

844259612738S-835-

38.9884336.9213433.31815

26.4320122.5338118.35512_ 9^4-803938.4044236.1698534.4423534^4604427.1975324.2125921.030411 9 . 1 6924

PCINT

1

2

3

45

67

8-

9

10111213141516

EFF4C1ENC1

EFFICIENCYTOTAL STATIC

4J3SSE.S-

76720764457715277520766617637974880

0.7-3O200.75773

76417761637667977676759077543 3

7636C

ZETARCTOR

0.269090.270030.23818-0^2-15990.220130.211130.22873^226170.267920.249720.245670, 22768

0.190460.217610.22043-0^21.599

Page 186: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 186/221

BETA 2

-59.37073-59.26849-59.72229-59.8 7840-59.77103-59.72945-59.45837-59.40483'59.34532-59.66508-59.6908160.09337-60.43001•59.8 164459.6912159.71338

DELTA BETA

98.3591696.1898393.0404490.0251586.2030382.2632677.8134968.8852297.7497495.8349394.1331691.2534887.6275384.0290?30.7216278.88312

ABSOLUTEMACH 1

0.63840.63710.63230.6 3010.62860.62750.62180.61940.67330.6702

0.66970.66450.66370.65910.65930.6684

RELATIVEMACH 1

0.28110.27320.26120.2 52 3

0.24370.23570.22720.21840.29810.2888

0.28340.27070.26100.25340.24770.2443

ZETASTATOR

.06139

.06300] .07039.07471.07808.07845

0..077130,.078930,.07217')..07446o .079920,.083200, 088190, 089210, 086760. 06660

BLTCKAGLFACTOR

C.9l Q 92C. 91973

0.921490.92258C. 921^10.9 22?0.921^10.9227?0.925300.92622C. 9 26 3

0.921*20.922050.924980.925220.92370

179

Page 187: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 187/221

REPORT

TURBC PROPLM.S1GN -LA8-GRAT0R)

TUREINE TYPE

RtCUCEC PERFORMANCE DATA OF TURBINE FR(

MCC I i CCNFIGURM IONTEST RUN NO. 63

RADIAL ROTORDATE OF TEST

POINT PKbSSUKERATIO

ISENTRCPICHEAD COEFF(R=4.125 IN

EFFICIENCYTOT-STATICPERCENT

REFERREDFLOW RATEL8M/SEC

1

2

3

300 7

301b

304830 7 5

3.47833.2664

2^757-7-

1.29872.39482.0136

76.7177.86

77^4276.3574.25

3. 15043. 1495

3,14423.13273. 1046

FCR PC I NTS 1 TC 5 A-VG.. -P-RES^UK& 1=^-1,302 7 MAX.

67

89

10

1.4C261.40441.4C47i.40 3

r>

1.4023

3.46192.99932-, 6 0-2a2.25211.9555

77.78.7 7.75.72.

C2032 5-

8774

3.38493.36223^364 7

3.36873.3585

FC-R POINTS 6 TO 10 AVGw PRESSURE -RAT10= 4^4035 MAX,

11

12131415

4^.9 5

4 509455145614538

3.4043

3.01942.67522.31542.0025

76.54

78.3177.0474.3773.04

3.4814

3.48303.47283.46953.4576

i-^K PcINTS 11 TO 15 AVC, PRESSURE RATIO- U4531 MAX.I

1617181920

5C0850145C0850 31

4617120048427103

1.5064 2.24 3 6

76.6 3

77.6777.3176. 1274.49

3.56473.55703.55323.54773.5238

TC-R POINTS It TO 20 AVG. PRESSURE RATUJ= 1.5025 MAX

2122232425

59916U20604559505919

FGR POINTS 21 TO

3.59 3C 75. 763. 1133 75.452.74 38 76.212.4286 75.371.9371 72.09

'5 AVG. PRESSURE RATIO=

3.67483.67353.66563.64943.6447

1.5985 MAX.f

Page 188: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 188/221

SHEET I OF L

f USNPGS , MONTEREY, CALIF,

JM TESTS WITH TRANSONIC TURBINE TEST RIG

TIP CLEAR. = .033 IN. AXIAL CLEAR. STATOR-ROTOR= 1.500 IN.

/67 OATA REDUCTION METHOD MF

REFERREDTORQUEFT-LR

RFFERREDPOWERHP

REFERREDSPEEDRPM

DEGREF OFREACTION(HUB)

DEGREE OFREACTION(TIP)

15.81215.56 5

14.26213.1031 1 . 44 2

30.83031.3513 1.41031.09529.237

1024310581115691246113423

.0310

.0309

.0334

.0304

.0254

.4506

.4522

.458?

.4660

.4672

DEVIATION +0.374 PCT. -0.304 PCT., PAVG./PATMO= 1.1238

19.20118.12516.61715.19613.519

42.34343.01842.35741.58539.655

1158412468133901437615409

.0113

.0225

.0303

.026 9

.0427

46364710478047844797

)EVIATION +0.086 PCT. -0.086 PCT., PAVG./PATMO= 1.1639

20.33919.6318. 19016.33614.839

47.26648.50047.92346.30445.137

1220812979138391488915978

.0226

.0307

.0406

.0455

.0466

.469 5

.4738

.4800

.4833

.4858

DEVIATION +0.209 PCT. -0.248 PCT., PAVG./PATMO= 1.1980

21.93 2

2 1 . 05 8

20. 13219.21917.04

52.73353.38353.02952.31751.111

1263013310138371429915757

03280395042404600562

.4747

.4794

.4844

.4860

.4898

)EVIATI0N +0.261 PCT. -0.114 PCT., PAVG./PATMO= 1.1978

24.38022.63621.44 8

19.75 1

16.817

61.59661.54962.21860.54257.603

13272142831523816102

17993

.0533

.0628

.0679

.0721

.0721

.4851

.4913

.4970

.4990

.4999

)EVIATION +0.376 PCT. -0.416 PCT., PAVG./PATMO= 1.1652

181

Page 189: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 189/221

GENERAL RESULTS

V£L0GlTI -E^-4-E TV SEG4

RUN NUMBER 63

- POINT VI Y2- Wl-

1 599.80225 2C4. 33617 271.017822 599.29321 2C7. 25876 262.686773 59-3,96021 £2-3.02359 -_234V352494 591.C8081 239.78516 220.214005 585.03369 267.08325 204. 506856 671.88428 229.73703 300.220217 - 665.849-82 238-98238 275,391118 659.02783 253.92865 252.846399 655.41187 276.8C933 237.17805

10 654.32983 3C7. 56104 226.7906611 -

694.42313 .24 1.86237- 305*368-6512 690.00879 247.13632 285.3064013 688.06274 263.80029 266.9885314 683.89258 2^0.85718 24^.5460515 684.69.87-3— 317*8122-6 238.9476216 722.52148 252.07901 318.82 59 3

17 720.61060 258.1C571 301.8242218 717.70776 266.53882 288.5097719 714.9655 8 276*57593 278.6076720 712.58765 3C6. 99780 255.4491721 764.07933 269.23315 33*1.0825222 762.33252 282.63062 314.9467823 755.3 3 6 1 8 2j£2*U>55^ ^9^.S&9AO24 748.55103 3C8. 01392 275.6272025 7*8.67236 356.88013 260.53735

TEMP ER ATURE S ( EEC R )

PCINT PLENUM STATOR ROTORTOTAL DISCHARGE DISCHARGE

561.91992 531.96340 527.19531562.09106 532.20532 526.71948562.26221 532.9C601 526.2023956 2.26221 533 .1899-4 52-5.7-64 96562.43335 533.95288 526.39697566.02246 528.45825 521.39282566.70483 529.81567 520.99146567.21655 531^07-647- 5^4.23560567.38696 531.64209 521.20752567.38696 531.76001 521.44409569.43164 529.3C493 520.629395 70.11 2 3 £33*49444^ 519.91577570.45264 531.05762 519.92651570.79272 531.87378 520.46265570.79272 531.76198 520.0432157 2.662 3 5 _5^<J,2-224>£ 549.23242572.83203 529.62183 518.43237573.17163 530.30884 518.64722573.30737 530.77148 518.89600573.68091 531,424149- 548.55078576.73193 528.15137 515.76318577.40894 529.05029 515.78296577.57812 53C.1C303 514.76367577.74731 521.12134 515*38525577.91650 531.27539 515.41235

Page 190: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 190/221

W2 Ul U2

360.44604 383.81982 387.42383365.77075 396.55981 395.11743368.14526 433.66431 432.08691369.01855 467.09790 465.39893361.64355 503.23047 501.40039416.72773 435.67969 434.09497424.60278 469.18506 467.47876424.66846 504.13013 502.29687423.70264 541.30664 539.33789415.88330 580.21045 578.10010442.68164 460.51196 458.83716454.73291 489.87891 488.09692450.62939 522.52051 520.62012443.97168 562.32422 560.27881

442.17969 603.45923 601.26465469.09521 477.78638 476.04883472.99683 503.59033 501.75879470.52148 523.67212 521.76758467.12622 541.23462 539.26611466.27759 596.58545 594.41553511.86743 503.84229 502.00977506.45068 542.56641 540.59302517.38916 578.91504 576.80908512.21045 611.80859 609.58325505.09326 683.78613 681.29907

ISENTRGPIC TOTAL

FROM Tl OISCHARGF521.98608 530.66968522.14966 530.29395522.55981 530.34131522.64941 530.54639523.74341 532.33276515.67554 525.78467516.47827 525.74390517.31616 526.60107517.97485 527.58350517.71021 529.31543514.71582 575.49707515.48877 524.99805515.46484 525.71729

515.99438 527.50220515.87280 528.44800512.73169 524.52002512.75537 523.97583513.19409 524.55884513.41626 525.26123513.53247 526.39331507.90332 521.79492508.13843 522.42993508.69580 521.86670509.74414 523.27979509.95190 526.01050

183

Page 191: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 191/221

FLCH ANGLES (LEGREES FROM AXIAL)

RON NUMBER 6 3

PCINT ALPHA i ALPHA 2 BETA 1

i 7C. 35411 21.81581 41.920592 70.26996 23.49132 39.630663 70.13914 31.57175 31.769714 70.05412 38.165£3 - 23^703635 70.1C789 45.78113 13.257026 70.27859 19.79764 40.957737 70.13554 25.26402 34.761614 70-0339L 3^33392 -27^L26469 69.89589 39.01917 18.22337

10 69.96709 46.CC826 8.7576311 70.0C932 19.21899 38.9749512 69.65732 22.55379 33.6099913 69.88042 30.05518 27.5660714 69.75^66 38.16559 18.5377015 69.86665 44.31706 9.4909816 _ 69.97151 16.96639 39^0914317 69.94691 21.43475 35.0496718 69.94304 25. 99173 31.4446419 69.83475 29.98824 27.7921420 69.89735 39.097C9 16.5090821 69.62234 13.36659 38.9896922 69.79715 22.23427 33.2894323 69.63574 26.49768 26.1781324 69.63120 32.92389 19.0443125 69.68765 43.77295 4.03426

P C I M

1

2

345

6

7

8

9

10111213141516171819202122

2i2425

EFFICIENCIES ANC LOSSES

tFFICIENCY ZETATOTAL STATIC ROTOR

C. 76711 0.328900. 77860 0.295290.77419 0.249650.76349 0.22259C. 74248 0.20502C. 77020 0.28754C. 78033 0.2 364 7

C. 772550.213480.75871 0.18583

0.72745 0.214810.76544 0.270350.78314 0.209930.77C39 0.214960.74375 0.22123C, . 7 If, \f\ 0.21251

0.26608.766 290. 77667 0.238490.77309 0.23372

7 f, 1 1 Q XX I7(ii

0.74487 0.224370.75761 0.268760.75455 0.26821Q 76?fl5 Q— 2 1 QHf\

0.75367V-r

.c.

L 7 OO0.211830.72C87 0.21292

Page 192: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 192/221

BETA 2

•58.2442958.68962•58.9266159.2 772458.99927

•58.75459•59.4025959.6532759.49716•59.09282•58.9418559.8 7349•59.55618•58.99731•59.0527659.0740259.4733059.3907359.1483359.27144

59.2206358.8977559.6438859.6843759.32286

DELTA BETA

100.1648998.3202890.6963282.9808772.25629

99.7123394.1642086.7797477.7205467.8504597.9167993.4834787.1222577.5350268.5437398.1655094.5229690.8353786.9404875.78052

98.2103192.1871885.8220178.7286863.35712

ABSOLUTEMACH 1

0.530 3

0.52980.52470.5220

0.51630.59610.58990.58320.57970.57870.61560.61100.60890.60480.60550.64050.63860.63560.6329

0.63040.67810.67590.66910.66240.6624

RELATIVEMACH 1

0.23960.23220.20970.1945

0.18050.2663O.24400.22380.20980.20060.27070.25260.23630.22070.21130.28260.26750.25550.2466

0.22600.30090.27920.25940.24390.2305

ZETASTATOR

0.026640.02970

0.050450.063350.062130.049200.059260.070570.080520.071200.064310.071920.074550.082780.074740.064350.063320.065420.072750.075540.073110.071300.084860.087050.08278

BLOCKAGEFACTOA

0.920700.92006

£*947 380.912750.911720.911800.913570.910680.912740.913860.916310.918310.91655C. 916730.915340.918470.91821

0.918890.917480.912410.918550.919880.916980.918650.91857

185

Page 193: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 193/221

REPORT

TORBC PRCP3JL SIGN LABGRATOR

TURBINE TYPE

REUUCFD PERFCR^ANCE DATA CF TURBINE FR

yuc i i configirat i-cn

TEST RUN NO. 6BRADIAL ROTOR

DATE OF TEST

POINI PRESSURER A T I c:

ISENTRCPICHEAL CGEFF(R=4.125 IN

EFFICIENCYTOT-STATICPERCENT

REFERREDFLO* RATELBM/SEC

1

2

345

6

7

401239 7 4

396139713986399640084006

599 1

941C7 5 565491390624 4 2

95277445

7979

79,7878,7775,

72,

4221

154807372828

3. 33813.3155

3.31933.31033. 31283.30493.3C943.3110

FCR PCIN1S 1 TO 8 AVG. PRESSURE RATIO= 1.3989 VAX,

9

1011121314

1516

3 3 8

3C52298429H92980299 8

299629 8 7

426802 5 8

7233518C151288 16

6441-268

78.4078.7378.4078.0177.2075.23

71.3766.08

3. 10503. 10603.06533.06823.06403.06373.06043.0562

FOR PCINlb 9 TC 16 AVG. PRESSLRE RATI0= 1.3003 , MAX.

1718192021222324

49955026503C5C30506640 3 4

50475028

3.33793. 10032.89562.69512.55722.37852. 12111.8661

81.80.79.80.80.78.76.74.

1273503128397608

50835074505350 3 6

3.49873.4 99 3

3.49343.4869

ECR PLIN1S 17 TC 24 AVG. PRESSURE RATI0= 1.5032 MAX

CGNTD. ON SHFE

Page 194: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 194/221

sheet i of 2

:y usnpgs, monterey, calif.

om tests with transonic turbine test rig

tip clear. = .015 in. axial clear. stator-rntor= 1.000 in,

/67 oata reduction method mf

REFERRED i REFERRED REFERRED DEGREE OF DEGREE OFTORQUE POWER SPEED REACTION 1 REACTIONFT-LB HP RPM (HUB) (TIP)

19.320 42.937 11674 .0582 .526017.73 4 42.206 12502 .0676 .5277

17.150 42.113 12899 .0711 .527616.32 8 41.731 13425 .0744 .531215.766 41.672 13885 .0797 .532815.118 41.281 14344 .0829 .532813.75 5 40.317 15397 .0860 .53641 2 . 48 7 38.717 16287 .0849 .5374

DEVIATION +0.162 PCT. -0.203 PCT., PAVG. /PATMO= i.1662

15.880 31.317 10360 .0403 .509115.015 31.584 11050 .0457 .51431 3 . 86 6 30.452 11537 .0591 .516813.289 30.373 12006 .0604 .517512.124 29.945 12974 .0675 .521911.07 6 29.324 13907 .0671 .5246

9.60 8 27.769 14873 .0644 .52468.43 7 25.612 15946 .0631 .5232

DEVIATION 0.377 PCT. -0.173 PCT., PAVG. /PATMO= 1.1281

22.414 54.827 12849 .0784 .53632 1 . 54 5 54.815 13365 .0856 .538620.50 53.984 13833 .0883 .540619.968 54.504 14339 .0910 .54311 9 . 46 9 54.705 14760 .0980 .54691 8 . 29 2 53.168 15268 .0964 .545916.904 52.079 16183 .0999 .549215.253 50.026 17229 .0998 .5525

DEVIATION 0.223 PCT. -0.247 PCT., PAVG. /PATMO= 1.2035

T 2

Page 195: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 195/221

REPORT

T0R6C PROPULSION LABORATOR

TURBINE TYPl

RECUCEC PERFORMANCE DATA OF TURBINE FR

NCC I I CONFIGURATIONTEST RUN NO. 68

RADIAL ROTORDATE OF TEST

POINT PRESSURERATIO

ISENTRCPICHFAC COEFF<R=4.125 IN

EFFICIENCYTOT-STATICPERCENT

REFERREDFLOW RATELBM/SEC

252b

2 72829303132

b96439 3 7

5923^92 3

595459 4 5

596 8

6045

49413098

C8C390C9688656163887C977

7a7 8

787879787774

0406

427507484939

FOR PC1NTS 25 TO 32 AVG. PRESSURE RATIO= 1.5957

63136293

620961836155609561266146

, MAX

Page 196: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 196/221

SHEET 2 OF 2

V USNPGS t MONTEREY, CALIF.

OM TESTS WITH TRANSONIC TURBINE TEST RIG

TIP CLEAR. = .015 IN. AXIAL CLEAR. ST ATOR-ROTOR= I.000 IN,/67 DATA REDUCTION METHOD MF

REFERRED REFERRED REFERRED DEGREE OF DEGREE OFTORUUE POWER SPEED REACTION REACTIONFT-LB HP RPM (HUB) (TIP)

24.431 62.486 13435 .0985 .550123.730 62.255 13781 .1031 .5511

22.925 62.290 14273 .1075 .551022.325 62.508 14708 .1119 .554821.606 62.958 15307 .1115 .556820.885 62.312 15673 .1158 .559419.959 61.754 16253 .1198 .558318.052 59.891 17428 .1210 .5653

DEVIATION +0.550 PCT. -0.214 PCT., PAVG./PATMO= 1.1675

Page 197: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 197/221

LENEH/iL RESULTS

vEtecTTf esRUN MjNBER 68

K-IM

1

2

3

45

67

8

9

10ii121314151617Id1920

212226242526272829303132

6296236176146 14

6H6 1.3

6155705 665535555495515 505 556806796 76670

66367466-9

666734711711705720698712703

.60229

.66309

.*05078

.05322

.24048.50122

.85913

.22510

.71802

.34839

.04248

.04199

.02100

. 16846

.23804

.07227

. 1C522

.49731

.43311

.19727.03149

.47168

.4 56 JO

.73047

. 12256

.84619

.03564

.78149

.50732

.76465

.59644

V2 wl

215,.74155 267.,49707220.7 ?A

,52319 246,238.229,

,61536,26138,08687

cm <

230,.92804238..47234 224.,41199

246,.26219 220..55176270,.03633 218,,75084257.,00098 221,,20448152,.36496 246,.26928157.,88794 230,,002412C0,,75482 213,,055162C9,.93118 207,,71129225,.56129 197,,04674246,.13707 196,,14902274.,92139 199.,72488311. , 73022 211,,06706236,,35636 283,,84180239,,04375 273, , 14209244*rf3-&45 26 3,,70605246..5C63C 254,,01537

247,,90678 247.,53049264.,55005 244.,68663jpi A ^ 7 RA 238.

238,,47722,95050

c c i <

3C6.iu jr Of,07910

259.,53955 312,,17017258,3 (-C

,61084 292.282,272.

,02 78 3,95898,61816

itt,261,,80762271, , 15287 269.,84473269,2UC*

22217 259.3C J

25537t»A 7 ~\ A

c. O j t

3C7,, UJ7 Uo,06958

crJ t .

253,, JO Uo25223

Page 198: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 198/221

W2 Ul U2

466.39575 439.06250 437.46582459.32959 470.19287 468.48267462.93481 485.12817 483.36377462.8 3032 504.92212 503.08545463.08691 522.19653 520.29736462.55273 539.47119 537.50903

461.38721 579.05884 576.95264455.13452 612.52856 610.30078400.14893 389.03833 387.62329401.92041 414.95020 413.44092401.42383 433.30420 431.72852399.11694 450.93872 449.29883404.11377 487.28760 485.51514403.04395 522.34082 520.44067400.40747 558.61719 556.58545392.31030 598.88867 596.71045526.73828 483.68872 481.92920525.12646 503.84229 502.00977517.70239 521.51294 519.61621528.22046 541.05469 539.08691537.64966 556.96191 554.93604513.98779 576.03564 573.94067514.83276 610.65674 608.43579511.35767 649.92090 647.55688543.21289 507.87305 506.02588560.84717 521.00903 519.11426557.78882 539.61523 537.65259564.42456 556.13403 554.11133552.29590 578.87891 576.77368569.02197 592.62646 590.47119552.05371 614.57959 612.34424554.50195 658.88208 656.48560

Page 199: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 199/221

TEMPERATURES (CEG R )

PCIM PLENUM STATC* ROTORTCTAL CISCHARGE DISCHARGE

566.G2246 533.03735 520.7744156^.02246 533.65674 521.0275956b.C2246 534.25684 521.00537566.02246 534.64673 521.034675 66* 02-24-6- -524 . 6 4 64 8 -52-0rS2J764566.C2246 534.72949 520.79761566.C2246 534.7C288 520.76807566.C2246 534.46167 521.0693456*. 3 1445 -527*25757-— 52-8rSB892564.31445 537.5£936 528.44531564.48535 539.0C635 529.26123564.48535 538.85010 529.06201564.48535 539.40127 520-. 89966564.48535 539.22021 528.73950564.48535 539.29834 529.08813564.48535 538.83203 529.51538567.04590 528.56055 542.-03564

568.75C4953C. 37451

513.48291568.75049 53C. 66870 513.98877569.77197 532.36987 514.34448569.77197 532.17285 544.03003569.60181 531.79712 514.59546569.77197 532.477C5 514.92847569.43164 532.47192 515.20898571.84274 526.#9^5€ 510.29150571.98267 529.9C283 510.66089571.98267 529.81714 510.41406572.15259 53C. 79004 510.27832572.32251 -529.G91SO- 509^.56616572.15259 531.55249 509.99023572.15259 529.87817 509.81030571.98267 530.78882 510.27808

I

2

3

4cD

67

8

V1011121 5

141516ir?

1819202421232425262128O303132

Page 200: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 200/221

ISENTROPIC TOTALFROM Ti (DISCHARGE

517.36523 524.64746517.82983 525.07422518.37671 525.21216

518.54492 525.47217518.31958 525.55981518.28784 525.84399518.04956 526.83594517.82202 528.40942525.64844 531.96875525.70923 531.70386527.02710 532.61621526.81641 532.72925527.15942 533.13330526.86670 533.78076527.00537 535.37744526.63403 537.60156508.84595 516.68579510.21240 518.23779

510.33643 518.97290511.81763 519.40088512.14160 519.14404511.00757 520.41919511.40747 521.50073511.36719 523.00464502.90137 515.89673505.68408 516.22607505.51221 516.06445506.16162 515.98193504.37305 515.68604506.5 1904 516.02148504.75732 516.57104505.05298 518.12427

193

Page 201: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 201/221

PLC* ANGLES (CEGKtES FROM AXIAL)

RUN NUM&ER 68

FCINT ALPHA 1 ALPHA 2 BETA 1

1 69.42986 6.2C296 34.211002 69.46504 J6. 04895 27.491473 69.17795 18.75490 22.811364 69.15904 23 + 36 1 73 17.516945 69.16827 27.12178 13.32352b 69.18079 3C. 81245 6.796777 69.11861 36.25180 -1.532978 69.25374 44.37505 -9.524499 69.60263 10.48623 36.19571

10 69.47C99 17.26091 30.22377U 69.29149 22.22058 23.3059712 69.30286 27.34261 19.1921413 69.15773 34.25801 7.53149lh 69.16222 41.27179 -2.15077lb 69.26352 47.3369C -12.7530416 69.37051 53.57162 22,0544717 69.41624 2.68796 32.6100218 69.36816 7.99896 28.8288719 69.30685 14.08164 24.9746420 69.08856 15.79937 19.6022321 68.80219 16. 07816 14.3531022 69.27106 26.43953 12.8367023 69.17560 32.57431 3.6258624 69.13222 39,38423 -6.5315425 69.78142 6.19440 35.5690026 69.01720 4.65913 29.3099827 69.13025 9.41667 26.3356326 68.98648 11.33125 21.9754629 09.53262 16.87099 20.9311130 68.80513 17.63009 13.0706731 69.27347 25.71196 11.6600232 68.90446 32.69691 -0.55185

Page 202: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 202/221

BETA 2 DELTA BETA ^MAcH ^WcTlifj'tflf3, 96.83263-o<>. 52338 90-01485 n kc/li

 JI-SII29 85.43036 8:5506 g-|?$3-62.74347 80.26041 n *a«i 2' 2 1 77-62.72014 76104366 '? 0.2102-62.79019 7ll58694 n'VtH 0.2021-62.63774 6l l0477 n'Ukn 0.1979-62.19701 52.67252 0*54?? 0.1945

-61.73676 97198247 ofttl 0.1929 ^•2?2SS 92.17763 0.ioi7 g-J? iSI*tII12 B5. 72127 0.4985 n'ln^

-Si's??? 81. 33T89 0.4861 §'?fl7?^•3 2715 70.0586? n aqta vJ.lofZ-62.67790 60152711

#

4«?t 0.1825-62.27017 49.51712 04ftli 0.1730

-63.36536 95.97537 n Zfl7rt X*? 754

~aH8$2J 92.03488 8:6033 S^?? 4-62.70741 87.68205 n Anif 0.2518

=St*?4II9 82.91994 0.i989 2JMI63.83243 78.1855? n sool 0.2335

-62.61212 66.2379ft n *afi 0.2186

-62.44278 illlll?? A lofl 0.2164:2Ht2?7 97.2591? 8:1242 g*§}08aI*rI2U 91.94969 0:6528 S*IU?62.55627 88.89191 n unn 0.2774

-62.94745 84.92291 8 aJS§ 0.2587-62.3 1339 83:24449 n*£?27 0-.-2507

=||:i?2?i &f° g:|f?J8:1*4

-«. ?23« 6?:in?$8:|iJ| 8:11110.6228 0.2242

Page 203: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 203/221

REPORT

TURBO PROPULSION LABORATORY

TURBINE TYPE

REDUCED PERFORMANCE DATA OF TURBINE FRC

MOO II CONFIGURATIONTEST RUN NO. 77

RADIAL ROTOR T

DATE OF TEST

POINT PRESSURERATIO

ISENTROPICHEAD COEFF.(R=4.125 IN.)

EFFICIENCYTOT-STATICPERCENT

REFERREDFLOW RATELBM/SEC

1

23

4

1.29881.301L1.30081.2991

3.04312.51061.87381.3709

80.8879.1675.6863.49

3.10393.08983.07193.0765

FOR POINTS 1 TU 4 AVG. PRESSURE RATIO= 1.2999 , MAX.D

5

67

8

1.40121.39861.39921.4002

2.92532.58982.10421.7431

80.1378.7877.2773.96

3.34563.33303.32923.3288

FOR POINTS 5 TO 8 AVG. PRESSURE RATIO= 1.3998 MAX.D

91011

12

299130043011

2988

3.04992.49771.8770

1.3682

80.3679.1275.54

64.84

3.09873.07763.0677

3.0758FOR POINTS 9 TO 12 AVG. PRESSURE RATIO^ 1.2998 MAX.C

13141516

1.40091.40121.39821.3989

2.90532.58882.10281.7436

79.3781.0279.4073.69

3.34783 . 34 1

3.32543.3250

FOR POINTS 13 TO 16 AVG. PRESSURE RATIO= 1.3998 MAX.C

Page 204: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 204/221

SHEET 1 OF 1

USNPGS, MONTEREY, CALIF,

IN TESTS WITH TRANSONIC TURBINE TEST RIG

IP CLEAR. = .015 IN. AXIAL CLEAR. STATOR-ROTOR= 0.410 IN,8/09 DATA REDUCTION METHOD MF

REFERREDTORQUEFT-LB

REFERREDPOWERHP

REFERREDSPEEDRPM

DEGREE OFREACTION(HUB)

DEGREE OFREACTION(TIP)

15.32013.60211.165

8.004

31.84631.23229.661

24.802

109201206213955

16277

.0791

.0881

.0930

.0790

.4697

.4809

.4891

.4894EVIATION 4-0.090 PCT. -0.090 PCT., PAVG./PATMO= 1.3001

18.12416.65714.72012.835

43.42042.29841.49639.795

12585133391480816287

0983105410981096

.4860

.4898

.4982

.5030

EVIATION +0.101 PCT. -0.089 PCT., PAVG./PATMO= 1.4000

15.22013.49411.1438.160

31.61831.03429.59025.299

10913120811395016285

.0536

.0630

.0749

.0633

.4894

.4985

.5052

.4988

lEVIATION +0.096 PCT. -0.083 PCT., PAVG./PATMO= 1.3000

17.89717.21415.08S12.758

43.008f. *J O   > **

42^50539.497

12624133771479816262

.0763

.0818

.0907

.0915

.5022

.5093

.5136

.5153

lEVIATION +0.101 PCT. -0.113 PCT., PAVG./PATMO= 1.4000

Page 205: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 205/221

GENERAL RESULTS

1

23456789

10111213141516

1

23

45

67

89

1011121314

1516

POINT

POINT

VELOCITIES (FT/SEC)RUN NUMBER 77

VI V2 Ml

597.13525 204.92401 250.02606592,03052 227.75537 223.17967589.87573 274.98022 197.69690589.99756 356.32886 203.44823663.16846 234.80237 267.52051659.09692 251.06436 249.45665656.36011 282.94702 227.17372657.43433 323.28101 218.57817597.68286 205.78839 250.05664594.06396 228.95029 223.77377590.47974 275.38525 198.11826589.22388 350.74365 204.17590661.61597 237.10893 266.39404660.47095 244.08421 250.21523655.28418 274.53711 227.03908654.52490 321.71631 218.29687

TEMPERATURES (DEG R )

PLENUM STATOR ROTORTOTAL DISCHARGE DISCHARGE

565.68091 536.01001 529.20361565.68091 536.51514 528.86987565.51025 536.55640 528.18848565.51025 536,54443 529.03662568.58008 531.98413 522.05762568.58008 532.43213 522.32935568.58008 532.73169 521.64380568.75049 532.78467 521.41479564.82715 535.10181 528.55103565.16870 535.80225 528.41992565.33936 536.32617 528.03955565.51025 536.62036 528.84058567.55762 531.13281 521.44434567.89844 531.59961 520.59375

568.23926 532.50830 520.69189568.58008 532.93188 521.58521

Page 206: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 206/221

W2 Ul U2

378.26514 410.55957 409.06641374.42065 453.49414 451.84473371.00781 524.60791 522.69971359.02148 611.88037 609.65527434.99902 474.36743 472.64209426.38208 502.79883 500.96997427.30835 558.18555 556.15527426.23340 614.00391 611.77075374.20850 409.98364 408.49243370.53052 454.03418 452.38281369.91821 524.31982 522.41309363.95093 612.20459 609.97778430.99390 475.41138 473.68213439.34595 503.95044 502.11743437.36938 557.64551 555.61743425.77441 612.99634 610.76685

ISENTROPIC TOTALFROM Ti DISCHARGE

524.67725 532.69800524.68530 533.18628524.47168 534.48047524.78345 539.60205516.44531 526.64526516.70288 527.57446516.63940 528.30566516.53638 530.11133523.85767 532.07495524.12695 532.78174524.24683 534.35010524.97339 539.07739515.72974 526.12256515.85083 525.55127516.51123 526.96362

516.83374 530.19775

Page 207: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 207/221

-AhB- -b-6S5tS-

PCINT

123—4-

567—8~

91011

-*2131415

4r6171819

-2#212223

-24-252627

-2*-2930

31

EFFICIENCYTOTAL STATIC

ZETARCTOR

0.794210.792150.791530r7-&4*3-0.780730.773740.752810*722 8 1

0.784000.787300.783990*7 8 0100.772020.752310.71365

0. 66 0770.811160.807280.795020. 8 030 6

0.802790.783860.767630.7 4 850.78038C. 780590.784180.7 8 7 * 90.790710.78477

0.77488

0.163030.159490.13448

-0.129 1 7^

0.130270.131080.141560.1 677 40.200050.174430.14899.151 6

0.121740.131000.14548

. 19 4 790.126100.129 840.14613

. 104 310.079450.147000.145200.158460.235080. 164160.16397

. 139 6 70.175310.12027

0.17236O. 17*AO

Page 208: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 208/221

ZETASTATOR

0.096980.100270.112650.121020.119400.121450. 118540.111480.089170.097260.113560.108130.118150.114600.118460.101570.094870.098500.102830.117100.133880.102530.112030.114790.060090.113290.107340.119200.081940.132170.09717O . 1 7 ->L.R

BLQCKAGtFACTOR

0.92208

0.920460.923020.921370.922630.920550.922540.92309^0.920200.921620.919480.920460.922620.921460.920030.9189^

0.924580.924850.925080.92549C. 925080.926030.925360.*25130.927810.929160.928190.929100.927750.927820.92838

0.92815

Page 209: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 209/221

POINT

1

2

345

67

8910111213141516

POINT

1

2345

67

8

910111213

141516

FLOW ANGLES

RUN NUMBER

ALPHA 1

70.6480370,5584170.6881370.6195170.5455270.5561770.51382

70.5988570.7867170.6518670.6788970.5527370.4425270.5190170.4778770.52094

EFFICIENCIES

EFFICIENCY

TOTAL STATIC0.808790.791590.756850.634900.801300.787780.772680.739590.803590.791160.755380.648370.79371

0.810150.793980.73688

(DEGREES FRiDM AXIAL)

77

ALPHA 2 BETA 1

23.27373 37.6827234.25290 28.0009547.27664 9.3377658.32417 -15.7764423.72371 34.3476031.70511 28.4160041.07169 15.46605

48.68642 1.5889124.29871 38.1333535.32518 28.4136047.43404 9.5600757.93956 -16.0929024.97395a O tiA Q C

33.75851TO 11T1Qto. *» 3003 dO • DdC 5*7

39.19341 15.3153748.70358 1.06723

ANO LOSSES

7PTA. C 1 M

ROTOR0,,279910,,269740,,253190.,294600.,267440,,276430,,254720,,252490,,291530.,278860,,257980,,270820.,27460

0.,233630. 215350,,24814

Page 210: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 210/221

BETA 2

-60.15440•59.8154059.8109758.5889760.3853659.9370360.0531559.95233-59.9197159.72617-59.76328

-59.23282-60.08556-60.91484-60.89053-60.08833

DELTA BETA

97..8371387,,8163569,,1487342,,8125394,,7329688..3530375,.5191861,,5412498,,0530588,.1397769,,32333

43,,1399293,,8440789,,2372376,.2059061,.15556

ABSOLUTEMACH 1

0.52600.52130.51930.51950.58640.58250.57990.58090.52690.52340.5200

0.51870.58550.58420.57910.5782

RELATIVEMACH 1

0.22020.19650.17410.17910.23650.2205C.20C70.19310.22050.19720.1745

0.17980.23570.22130.20070.1928

ZETASTATGR

0.007740.00189

0.001400.002810.005560.004970.005210.000850.007340.003710.002400.008110.010530.006290.007390.00977

BLOCKAGEFACTOR

0.923660.92199

0.920100.919920.923270.923700.925110.925440.920840.917630.918380.918810.923220.923870.924210.92425

203

Page 211: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 211/221

REPORT

TURBO PROPULSION LABORATORY

TURBINE TYPE

REDUCEO PERFORMANCE OATA OF TURBINE FR

MOD II CONFIGURATIONTEST RUN NO. 78

RADIAL ROTORDATE OF TEST

POINT PRESSURERATIO

ISENTROPICHEAD COEFF.(R=4.125 IN.)

EFFICIENCYTOT-STATICPERCENT

REFERREDFLOW RATELBM/SEC

AX-

o.zoo//

1.29671.2994

1.29901.2994

3.04622.5066

1.89871.3403

79.0177.56

74.1263.04

3.10183.0773

3.06323.0864

FOR POINTS 1 TO 4 AVG. PRESSURE RATIO= 1.2986 MAX,

0.410

/5»   6

7

18

1.29701.29971.29941.2994

3.03582.51191.92161.3445

79.6478.6174.9563.82

3.08783.07283.06963.0865

FOR POINTS 5 TO 8 AVG. PRESSURE RATIO= 1.2989 , MAX.

AX*1.000

1.29901.30041.2997

1.2970

3.02312.52411.90611.3271

79.9178.7975.7264.31

3.09293.07933.06883.0773

FOR POINTS 9 TO 12 AVG. PRESSURE RATI0= 1.2990 MAX.

Page 212: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 212/221

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 20

Cameron Station

Alexandria, Virginia 22314

2 Library 2

Naval Postgraduate School

Monterey, California 93940

3. Commander, Naval Air Systems Command 1

Navy Department

Washington, D. C. 20360

4. Commander, Naval Ship Systems Command 1

Navy Department

Washington, D. C. 20360

5. Capt. A. Bodnaruk, USN 1

Naval Ship Systems Command (Code 6140)

Navy Department

Washington, D. C. 20360

6. Office of Naval Research (Power Branch) 1

Attn. Mr. J. K. Patton, Jr.

Navy Department

Washington, D. C. 20360

7. Mr. R. Beichel 1

Liquid Rocket Plant

Aerojet-General Corporation

Sacramento, California 95809

8. Chairman, Department of Aeronautics 2

Naval Postgraduate School

Monterey, California 93940

9. Professor M. H. Vavra 3

Department of Aeronautics

Naval Postgraduate SchoolMonterey, California 93940

10. Lt. J. A. Messegee, USN 3

USS Coral Sea, CVA 43

F.P.0.

San Francisco, California

Page 213: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 213/221

Page 214: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 214/221

Security Classification

DOCUMENT CONTROL DATA • R&D(Security ctaaeUicatlon ot tttlm, body of abatract and Indexing annotation muet be entered tehen the ereraJI repeet la canealHed)

ORIGINATING ACTIVITY (Corporate author)

Postgraduate School

California

2a. REPORT SECURITY C L. ASSIRICA TIOM

Unclassified

2*. CROUP

REPORT TITLE

Influence of Axial and Radial Clearances on the Performance of a Turbine StageWith Blunt Edge Non-Twisted Blades

DESCRIPTIVE NOTES (Type ot report and ineluaive datea)

Thesis

AUTHORW (Lmet name, tint name, initial)

Messegee, James A.

REPORT DATE

September 1967

7«- TOTAL NO. OF RASES

205

7b. NO. OR REF»

9

CONTRACT OR GRANT NO.

PROJECT NO.

• *. ORIGINATOR'S REPORT NUMBERfS)

UaJuwu^I^cK cLkaX,

»b. OTHER REPORT NO(S) (A ny other numbere that may be aaelgned

AVAILABILITY/LIMITATION NOTICES

T S 1 gn TIB. r i^^HP^^^necy

and each tr*

Hl'UUly imiTPWWfP*P»

SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

ABSTRACT

This thesis was undertaken to determine the effects of axial and radial

on the performance of a single stage turbine with blunt leading edges

non-twisted blades. A series of tests was conducted on the so-called Mod II

using the Transonic Turbine Test Rig of the Turbo-Propulsion Laboratory,

of Aeronautics, of the Naval Postgraduate School. The results of

hese tests are presented together with a comparison of the experimental results

results predicted by a three-dimensional turbine performance calculatingIn addition, measured flow conditions upstream of the stator, between

stator and the rotor, and at the rotor discharge are presented and compared

predicted values.

Page 215: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 215/221

UNCLASSIFIEDSecurity Classification

KEY WO R OSROLE

axial turbine

axial clearance

radial clearance

blunt blades

N°.?..1473 <back)208 IINCLASSri'IKD

01 I) 1 - 10 / • r, q 7 I Security Classification A - | 1 4 <)

Page 216: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 216/221

Page 217: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 217/221

Page 218: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 218/221

Page 219: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 219/221

Page 220: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 220/221

Page 221: Influence of Axial n Radial_performance_turbine_messegee

8/12/2019 Influence of Axial n Radial_performance_turbine_messegee

http://slidepdf.com/reader/full/influence-of-axial-n-radialperformanceturbinemessegee 221/221

SSofaxiaiandrad1cle=es

3 2768 001 88280 6

DUDLEY KNOX LIBRARY

 *;'<'

&»?

''•'

' SUM 9HE