HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 337-342 · 340 41 3 2003 6 ol ~5 25 C, 2.5 wt% /401...

6
337 HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 337-342 - * ** ( ) 435-030 543 * 156-756 221 ** 305-345 6 (2002 3 21 , 2003 3 20 ) A Study on the Characteristics of Tantalum Condenser over the Pyrolysis Temperature of Manganese nitrate by using a Dry-Radiational Furnace Jae Kun Kim , Jee Young Yoo*, Hye Kyong Min and Hee Chan Ko** Partsnic R&D Center, 543 Dangjeong-dong, Kunpo, Kyonggi 435-030, Korea *Department of Chemical Engineering, Chung-Ang University, 221 Huksuk-dong, Dongjak-gu, Seoul 156-756, Korea Hanwha Group R&D Center, 6 Shinsung-dong, Yusung-gu, Daejeon 305-345, Korea (Received 21 March 2002; accepted 20 March 2003) - - (MnO 2 ) . TG/DSC (dehydration) 180-230 o C MnO 2 230-250 o C MnO 2 . 200-300 o C 20 o C , 240-260 o C . 30 wt% 3 SEM - , , , . Abstract - The characteristics of manganese dioxide(MnO 2 ) layer for the solid electrolyte of tantalum condenser formed in accordance with its pyrolysis temperature by a dry-radiational pyrolysis instead of a traditional wet-convectional pyrolysis of manganese nitrate was studied. As a result of TG/DSC analysis, manganese nitrate was started to be pyrolyzed at the temper- ature range from 180 to 230 o C through dehydration process and was transformed into MnO 2 single phase at the temperature range from 230 to 250 o C. Tantalum pellets were pyrolyzed at intervals of 20 o C from 200 to 300 o C in a radiational furnace on the basis of TG/DSC results and then re-anodized. There were nothing particular physical problems on the dielectric layer after pyrolysis. The condensers pyrolyzed between 240 and 260 o C recorded better properties like as a higher withstanding voltage and a lower leakage current. According to the impedance and SEM analysis results on the tantalum condenser pyrolytically decomposed 3 times with 30 wt% manganese nitrate aqueous solution, it was verified that uniform and stable manganese diox- ide layers were formed by a dry-radiational pyrolysis and its properties like as capacitance, dissipation factor, internal resis- tance and frequency dependency were improved with the increase of the pyrolysis temperature. Key words: Manganese Dioxide, Tantalum Condenser, Dry-Radiational Furnace, Pyrolysis, Manganese Nitrate 1. , , , . [1], [2], [3], [4], [5, 6] To whom correspondence should be addressed. E-mail: [email protected]

Transcript of HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 337-342 · 340 41 3 2003 6 ol ~5 25 C, 2.5 wt% /401...

Page 1: HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 337-342 · 340 41 3 2003 6 ol ~5 25 C, 2.5 wt% /401 45l 3 wet capacitanceB fa" DM 100µF1 IJ Ö5 . 9 `a

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 337-342

-

†* **

() 435-030 543

* 156-756 221

** !"305-345 # $% &% 6

(2002' 3( 21) *+, 2003' 3( 20) ,-)

A Study on the Characteristics of Tantalum Condenser over the Pyrolysis Temperature of Manganese nitrate by using a Dry-Radiational Furnace

Jae Kun Kim†, Jee Young Yoo*, Hye Kyong Min and Hee Chan Ko**

Partsnic R&D Center, 543 Dangjeong-dong, Kunpo, Kyonggi 435-030, Korea*Department of Chemical Engineering, Chung-Ang University, 221 Huksuk-dong, Dongjak-gu, Seoul 156-756, Korea

Hanwha Group R&D Center, 6 Shinsung-dong, Yusung-gu, Daejeon 305-345, Korea(Received 21 March 2002; accepted 20 March 2003)

- - ! "#$

%&'( )*(MnO2) + ,- ./01. 234( TG/DSC 567 8(dehydration)9:

;< 180-230oC $ MnO2 =->?) @ABC 230-250oC $ MnO2 D@E) FAGH IJK L(MN1.

)O PK 200-300oC QR$ 20oC SJK T 3UV*O WX YZ [1 \'& ]^ _

E` abMG cdJC, 240-260oC QR$ e "#$ f'g h ij' ,-) Z801. 30 wt%K k

5e 8l E$ 3m 9: > ! "#$ n]op h SEM 5 WX 67

- q@% r:e )* +) =-MC s t8u :'v, \'_W, fwxy,

z8 -| ,-) ~EMH I) L(MN1.

Abstract − The characteristics of manganese dioxide(MnO2) layer for the solid electrolyte of tantalum condenser formed in

accordance with its pyrolysis temperature by a dry-radiational pyrolysis instead of a traditional wet-convectional pyrolysis of

manganese nitrate was studied. As a result of TG/DSC analysis, manganese nitrate was started to be pyrolyzed at the temper-

ature range from 180 to 230oC through dehydration process and was transformed into MnO2 single phase at the temperature

range from 230 to 250oC. Tantalum pellets were pyrolyzed at intervals of 20oC from 200 to 300oC in a radiational furnace onthe basis of TG/DSC results and then re-anodized. There were nothing particular physical problems on the dielectric layer after

pyrolysis. The condensers pyrolyzed between 240 and 260oC recorded better properties like as a higher withstanding voltage

and a lower leakage current. According to the impedance and SEM analysis results on the tantalum condenser pyrolytically

decomposed 3 times with 30 wt% manganese nitrate aqueous solution, it was verified that uniform and stable manganese diox-

ide layers were formed by a dry-radiational pyrolysis and its properties like as capacitance, dissipation factor, internal resis-

tance and frequency dependency were improved with the increase of the pyrolysis temperature.

Key words: Manganese Dioxide, Tantalum Condenser, Dry-Radiational Furnace, Pyrolysis, Manganese Nitrate

1.

!" #$% &'( )*, + ,-./ 0

/1 2 3456 478 0/

9 :/ ;< =0;<, >?;<, @A ;<B C:

D" E/ B F GH5IJ.

1 9 E/ 456 KL M

N9 OPKQ[1], RKQ[2], STKQ[3], UV 9

" WXKQ[4], YZ.9 [KQ[5, 6] \ ]^ J_" `a†To whom correspondence should be addressed.E-mail: [email protected]

337

Page 2: HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 337-342 · 340 41 3 2003 6 ol ~5 25 C, 2.5 wt% /401 45l 3 wet capacitanceB fa" DM 100µF1 IJ Ö5 . 9 `a

338

b #$, cd7')e, [KQ 8e, _ f8

%g hi" KQ jkblmE nJ[7-9].

1 E/ 3456 op 6 qrs

B b i n*, qrs n' Z

qrs _-tu(Ta2O5) o" v/ ,-wx1 iy56 z

Z tu ?9 |DY ~ 1 `5l B i5

6 i(self-healing) 1 iy56 ( nJ[7].

9 [KQ6 Q oKQM Q oKQ

$7' 3a 347E ne, C6

Z" Q oKQ [`a9 2B &E nJ[10].

e " Q oKQ `a$ 5E, 15-20

a9 [ `a1 56 `a >? "

% n ; , 9 " ! i¡¢%

£+ o¤5m ¥5E n*, + C9 ¦m§ ¨¨© $

ª;<, <« ¬B ~" E]p8 qrs ­h®(high CV powder)

34 <« o" 4;< \M ¯ F° ±¡$ £+ o¤

5m ¥5E nJ. ² 3[ KQM ¯ F° `a± G

! o" ³ ®´ µkmE nJ[7, 11-13].

5m¶ " £·" ?¸ ¹$5E, º9 [

± »m ªg ± ~2 G!7'¼ ;

½#$% ¾5E, + [ o" : ¿ÀÁÂe,

|Ã6 Ä> \ o" ?" #$% &'mm ¥" ?

¸' C9 " ÅÆÇ G! È gÉ¡ Ê45

E nJ. ² C FË 7E n6 Q-3[ ± \

o" ½#$% £v5J. " Ì : #$6 q

rs <Í`a n' Q-3 [KQ9 4 %1

%5 ~5l /9 3[ 9

½ qrs 9 41 #$5IJ.

2.

qrs 4 E/1 <Í5 ~5l º9 Q-o[

Î6 J 3KQ9 Q [B <Ê5IJ[7, 9]. [

9 Ï6 270Ð160Ð85 mm <Ê5I*, ÏÎ Ñ

6 10 mm ÒÓ9 ÔÕ 7Ö 5IJ. ÔÕ Ji9 M5

9 ×Ø-Ù(tapping hole)1 ÚE ÛÜÝ(bolting)5l Ï Þß1

Í£x i nÖ 5IJ. [ 3KQ9 [1 ~ +6

[ Ñ à áâ5l ãÃ5IJ.

[4 P06 75 wt% /(hitachi)1 345I*, ½

[ $1 ãa5 ~5l [ä1 v5IJ. 3KQ

9 4Ç 9 / 1 %5 ~5l

30,000 CV/g qrs ­h®(H.C.Starck)B 345IJ. 6 4

Ð3Ð2 mm(widthÐlengthÐheight) åæ8 ¬5I* åç

0.3 mm qrs Î'B ?» áâ5l _- 345IJ

. ¬ èé 6 10−5 torr9 EÅ` 5 ê 1,700oC

D(sinterring)5IJ. D ë 50oC Zm76 1 wt% i40 ?

30 Vìm aL 9 _-(anodizing)B v

5l Z tu(Ta2O5)1 5IJ[11].

[ `a í¨ Z tu Ç qrs B 30 wt%

îäÇ / i40 20 dipping5l qrs 9 3ïP |

pore Ï ð+ / i401 Yñò ó 20 [

5l ô1 ¬5IJ. [õ Ç NOx %Ue

ö ¹÷.1 <ø5 ~5l [% èé 6 ê 100oC a9

¢iB 345l H5IJ. ë [Ma õ <`76 [ðù

(thermal stress)e %U 9" Z tu9 ú?lB ­û5E,

ú? B i2 ~ 1 wt% iüýþ i40 ?

28 Vìm aL 9 ÿ_-(re-anodizing)B v5IJ. /

B 30 wt% îä5l 34" Z6 E çh Ì

% µk pore Ï9 ð" 40Yñ 'mE D p8

[% õ7' `(pore) Ï o" ô9

%% ' ;J. " [ ` ÏÑ9 Z

? Ç $Í(morphology)9 P " ]^B ~

[ `a1 z5 3 5IJ. ë ô ~

: ô1 %5IJ. tU ä1 ~5l _-/,

-9 » e, \9 ÑgÝ6 º Q-o

KQM z" KL v5IJ[14].

3[ 9 Ç 9 [ TG(thermogra-

vimetry: Sinku-Riko, TGD-9S)Î DSC(differential scanning calorimetry:

Sinku-Riko, DSC-9S)B 345l ä5I*, 3[

.(manganese oxide)9 Da$Í6 XRD(x-ray powder diffraction:

Scintag Co., SDS2000)1 5IJ. Z ?9

?×6 SEM(scanning electron microscopy: Philips, XL-30)fa1

5IJ. Ç 9 LCR fa(HP, 4284A)

B 345l a4(capacitance)M Zúv(dissipation factor)1 f

a5I*, 0.6 A9 aB %5l ÏÞ1 fa5E, faÇ Ï

Þ 5 J 0.6 A9 aB %5l 1 ó9 B

=ãB fa5IJ. " IM6-tU ä(Zahner)B

345l Ç 9 tU ä1 v5IJ.

3.

3-1.

: v 34Ç /9 3[ B a5E, 3[

9 ½1 %5 ~5l TG DSC

ä1 v5I*, DMB Fig. 1, 2 ]^ 5IJ.

TG ?9 /B /9 [ Ma 100oCB

ë /(Mn(NO3)2-xH2O)9 Di% <ø76 ri ¤1

ø 180-230oC C MnONO3 MnO29 :ù ¤,

230-250oC Äw MnONO3 MnO29 " B

MnO2 »?9 'm6 9 J» ¤1 øÃ6 1

i nJ. MnONO3 MnO29 Q (1)M Q (2)9

¤ ¡êx i nJ[7, 8, 10]. DSC ?6 117oC

ri ¤ 56 [ peak% eö *, 197oCÎ 207oC C

:ù [ ¤ 56 2G9 !" [ peak eö

Fig. 1. Thermogravimetry curve of an aqueous solution of manganesenitrate.

41 3 2003 6

Page 3: HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 337-342 · 340 41 3 2003 6 ol ~5 25 C, 2.5 wt% /401 45l 3 wet capacitanceB fa" DM 100µF1 IJ Ö5 . 9 `a

- ! "#$ %& 339

J. " 245oC ¤9 " 56 #h ¶" [

peak% eö$% TG ?9 õ owM Ã56 &m

'B eö(J. 6 YoshidaÎ Nishino[7]e Gotoh \[8] 9 3

4Ç /9 äDMÎ ]^ ) Ã56 DMJ.

(1)

(2)

(3)

Q-3[ 9" /9 TG DSC ä1

1 qrs 9 E/ 45 ~6 [

% 200-300oC *~ iy7'( Y1 i n*, [

9 ½ 41 %5 ~

5l 200oC 300oC $1 20oC ù 5l [

$1 ãa5IJ. h 3 [ .9 D

a$ÍB 5 ~5l 9 1 z+ / P0

1 [5E B ¢i H" ó XRD ä1 v5I*

DMB Fig. 3 ¡ê5IJ. XRD äDM ý, [ Í

β-MnO29 7-*[7] [ % µk/iÖ intensity

6 ¢%5IJ. ² TG/DSC DM 7-. 200oC

| E/9 9 &'m* % µ

k/iÖ β-MnO2 »?9 6 µkm6 7-J.

3-2.

[ Ma õ !56 3[, %U, . \ 9

" Z tu9 ú? lB ­û5E, ú? B i5 ~5l

[ `a èé ó ÿ_-B v5I*,

%KL aL 95l 28 V ãaÞìm9 Þ 1 f

a5E, 28 V aÞ ë 3µA 1 fa56 KL1 345

IJ. fao? ¨ 200oC, 4 úv % +aÇ

1 eö/ 240oC, %g È Z tu ú?1 x 0

?76 E 300oCB 15I*, [ 9 1ï ÿ_-

DMÎ ]^5l Fig. 4 5IJ. faDM [ 9 3%m

ýÒ ø9 z" o] Þ?2 ç>1 eö3% z

" Z tu1 eö(J. % ë 62-63½ ¶ 28 V

5IE, 28 V aÞ ë 61-63½ 3 µA 56 E

£#1 eö(J. e 9 ãa [ `a

ë J 2ï ÿ_-6 28 V aÞ 57-60½ »

47-*, ë 3µA 18-25½ »47-J. 6

1ï ÿ_- `a [ `a1 øÃ8 + Z tu9

£# !Ç 1 9|"J. 5, 1ï ÿ_-B øÃ8

º Z tu ?9 | DY~% ? i7-, .6 [

9 E ~ 5 % tu ÅyÇ

7»7*, " 3[ Ma1 øÃ8 h8 ³" Z

tu9 ú? !5m 9 7»ÇJ. e [

% ¢%xiÖ 28 V 3µA a% :'6

Æk % µk; ² [ Ma õ !56 [

e .9 Ä> ?o Ìï ¢%6 7»ÇJ.

1ï ÿ_- 9" Z tu9 i1 5 ~5l

Z tu Ç F° o5l 1ï _-B v5E

ë [`a1 øÃm 9E 120oC 20 ð" Ͷ1 v

" ë 2ï ÿ_-B v" DM, 1ï ÿ_-6 9

DMÎ z" Þ ?2 1 eö(m¶, 2ï ÿ_- 6

60½ 28 V »47-E 30½ ¶ 3µA Y%

1ï ÿ_- 9 Z tu?9 DY~% ? i<

1 i nJ.

3-3.

Z "Ç qrs B 345l 200-300oC *~

20oC ù / i409 [ B 5l

/ ô1 5E B 5l 1 %5

IJ. í¨ 30 V _-% èé 9 6 a41 ­û5

Mn NO3( )2 MnONO3 NO2+→

MnONO3 MnO2 NO2+→

Mn NO3( ) nH2O⋅ Mn NO3( )2 MnONO3 NnO2→+→

Fig. 2. Differential scanning calorimetry of an aqueous solution of man-ganese nitrate.

Fig. 3. X-ray diffraction pattern of the manganese oxide over the pyrol-ysis temperature in the dry-radiational furnace.

Fig. 4. Voltage versus re-anodized time curves of the pyrolyzed tanta-lum pellets in the dry-radiational furnace.

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003

Page 4: HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 337-342 · 340 41 3 2003 6 ol ~5 25 C, 2.5 wt% /401 45l 3 wet capacitanceB fa" DM 100µF1 IJ Ö5 . 9 `a

340

-

~5l 25oC, 2.5 wt% /401 345l wet capacitanceB fa

" DM 100µF1 Ö5IJ.

9 <Í`a h Ta2O5 Z tu Ç qrs

30 wt% îäÇ / i401 Yñò ó B Q-3

[56 `a1 3 5l qrs ` ÏÑ

ô1 5 5IJ. = <ÊÇ 9 a4

Zúv 120 Hz 1 kHz fa5E, B Table 1

¡ê5IJ. a49 çh 120 Hz6 220oC E 53.0µF,

240oC ¨ 49.3µF1 ÖY% ø9 z" i1 eö(J.

1 kHz9 E2­i6 200oC 26.9µF1 Ö" 1 <Ñ5E

6 34.8-39.3µF ]^ z" i1 eö(*,

% µk/iÖ a4 ê> ¢%56 ç>1 eö(J. 200oC

9 çh ý, 2­i ow %g [\" 1 Ö5IJ. ²

a4 f86 220oC ?9 [% &'( x

7»ÇJ. Zúv 9 çh 120 HzB 200oC

220oC 27.8%, 21.5%9 µ ?1 Ö5I* % ¢%xi

Ö 18.0%, 17.2%, 16.0%, 14.5% ÷ [ % ¢%xiÖ ú

v? 56 1 eö(J. " 1 kHz6 240oC 39.3%

%g +a" ?1 eö(*, 200oC, 220oC 50% ?

9 µ ?1 Ö" 1 <Ñ5E6 ê 40%9 ]^ +aÇ 1

Ö5IJ. ² úv f86 240oC ?9 /

9 3 [% &'( x 7ȂJ.

= 5G9 B <Ê5E 0.6 A9 aB 1 V

0.5 V> Þ1 µl%8 Þ o5l 1 %" ë »

@(short circuit)lB 5E, 1 çMë9 B fa5IJ.

»@ 'e ìm9 Þ1 ÏÞ, b9 ãa

Ç ÏÞ 5 0.6 A aB 1 % ë9 B =ã

a95IJ. AJ 5G9 o5l faÇ ÏÞM

=ãB 5l Table 2 a5IJ. ÏÞ9 çh 220-260oC

*~ o 4 V9 ?o µ ?1 Ö5I* 300oC

%g B ?1 eö(J. =ã9 çh % ¢%xiÖ Ì

ï ¢%56 ç>1 eö(*, 300oC6 3.0 V, 0.6 A %Í

5 2,440µA9 µ ?1 Ö5IJ. 6 2ï ÿ_- v9

o] Þ ?2 ç>M Ã56 DM, [ % ¢%

Y ² Z tu o" [ðù, %U .9 Ä>

?o ¢%5E n,1 9|"J.

a4, Zúv, ÏÞ, =ã9 41 Ex

/ o" Q-3[ 6 240oC% %g "

eö J. " : v 34Ç B º9 Q-oKQ

9 10-70 wt%9 J_" / i409 15 a [

`a1 " çh 120 Hz 90-100µF9 a4M 10%o

9 Zúv 1 Ö56 3vM ]^Æ8, 30 wt%9 »

3 3 [B 5l 50% ?9 4 14% o9

Zúv1 ÖY% Q-3KQ 9" / [ ¤

®´ 5E, ÃC" Íå9 1 %5 5*

B [ ¤9 Di E i n6 % 7-J.

3-4.

200-300oC 39 3[ = <ÊÇ qrs

o5l _-/,-9 lead »B 5E, ÝB v

5l " B $" ë 101-105 Hz 2­i *~

tU ä1 v5IJ. í¨ [ a49 2

­i9º DMB Fig. 5 ]^, 5IJ. 100 Hz 59 2­i

Äw6 ý, [ 50µF a9 ]F" a41 Æ

8 1 kHz ?9 E2­i ow6 [ % ¢%xiÖ

a4 ?o µkm6 DMB eö(J. + 200oC9 çh

120 Hz ? ù+ a4 56 %g [\" 2­i

1 eö(J. 300oC9 çh6 120 Hz ?9 ý, 2­i ow

4 G ?o ¶5* J Íb ] ?

o µ a4 iÃB ÖY% %g hi" 2­i

1 !H5IJ. E [Ç çh Ç

»?9 % µk;% Î ÃC% ¢%" I

Ç DM 7»ÇJ. 240-280oC [Ç çh iÃ9 ï

6 nm¶ ø9 Z3" ¬?1 eö3% z" 2­i

1 eö(J. 6 TG DSC ä " ÝJ 230-250oC

MnO2 ¤ AS » K'b- ;

7»ÇJ. z" 2­i Äw ~?9 '6 Fig. 6 ]^5IJ

. 200oCÎ 220oC9 çh6 103-105 Hz *~ ~? ø9 '5m

96 ç>1 eö/ 8 % µk/iÖ $ ~?

+ m ¢%5I*, + 103-104 Hz ow G%

¬ L6 _?1 eö(J. 300oC9 çh 103-105Hz ow

%g ¬ %ì° ~? 'B eö3% ô ?o

Table 1. Characteristics of tantalum-condenser over the temperature ofpyrolysis after three times of pyrolysis with 30 wt% manganese-nitrate solution

Pyrolysis temperature (oC)

Capacitance (µF) Dissipation factor (%)

120 Hz 1 kHz 120 Hz 1 kHz

200 49.9 26.9 27.8 54.1220 53.0 34.8 21.5 52.3240 49.3 36.1 18.0 39.3260 52.4 38.1 17.2 40.2280 50.0 37.2 16.0 42.2300 51.3 39.3 14.5 40.9

Table 2. Characteristics of tantalum-condenser over the temperature ofpyrolysis after three times of pyrolysis with 30 wt% manganese-nitrate solution

Pyrolysis temperature (oC)

Withstanding voltage (V)

Leakage current (µA)

200 3.5 250220 3.5 407240 3.5-4.0 300260 3.5-4.0 833280 3.5 1,433300 3.0 2,440

Fig. 5. Frequency dependence of capacitance over the pyrolysis temperature in the dry-radiational furnace.

41 3 2003 6

Page 5: HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 337-342 · 340 41 3 2003 6 ol ~5 25 C, 2.5 wt% /401 45l 3 wet capacitanceB fa" DM 100µF1 IJ Ö5 . 9 `a

- ! "#$ %& 341

e

%g 5E ÃC5 7-*, ² hi"

ô Ê45E n,1 i nJ. z" 2­i *~ Ï vi

Î Mi9 tUB ]^" nyquist plot Fig. 7 5IJ.

ý, [ b ø9 ¬9 1 eöÏ6

Æk / i40 o" 3 [% P 5 &'¼

*, + qrs Ï9 3ïP $Í9 | ` ? /

,-9 wx1 iy56 MnO2% 7' n,1 i nJ. "

9 Ϩ©1 7»x i n6 1 MHz9 E2­i ow9 v

i ©? ý, 9 100 mΩ 59 B iÃB

ÖY% k9 SEM fa DM 7-. 3 [

9 Ç MnO2 ô ]Ö 30 wt%9 / , [ `a

1 »m 3 5Im¶ ` Ï ]^ 5E ÃC5

7-,1 i nJ. [ = ]^ Æ8 % ¢%xi

Ö Ï¨© ÊkmE, å9 G ¢%56 +aÇ ç>1 e

ö(J. 200oC9 çh %g µ Ϩ©M ¶" Mi ¨©9 ¢

%ç>1 eöÏ6 [\" 1 eö/ 8 300oC9 çh Î

o %g hi" 1 eö(J. 6 a49 2­i9º

ä Ï4M Ã56 DMJ. tU DM õ qrs n

'6 NOU(inductance)Î 0OU(reactance)9 Ä> v/

Ê ; B P<5E v< ¨© Ê456 \%åQ¨©

1 fa5E B Fig. 8 5IJ. AR%m 300oC %g h

i" \%åQ¨© 1 eö(J.

Fig. 6. Phase characteristics of tantalum-condensers over the pyrolysistemperature in the dry-radiational furnace.

Fig. 7. Complex plane impedance diagram for tantalum-condensers overthe pyrolysis temperature in the dry-radiational furnace.

Fig. 8. Frequency dependence of equivalent series resistance over thpyrolysis temperature in the dry-radiational furnace.

Fig. 9. SEM photos of the surface of tantalum-condenser after pyrolysis process in the dry-radiational furnace.

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003

Page 6: HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 337-342 · 340 41 3 2003 6 ol ~5 25 C, 2.5 wt% /401 45l 3 wet capacitanceB fa" DM 100µF1 IJ Ö5 . 9 `a

342

e

-

as

se

s,

he

for

n

on

g

M.,

al

nd

T.,

ci-

T.,

3[ 9 $Í Z tu?9 WX

?×B ]^5 ~5l tU ä 34Ç z" Í Z

tu ? ô1 ¬5E p81 SEM fa5I

* DMB Fig. 9 ]^, 5IJ. ý, [ .

MnO2 ô ` ÏÑ ÔS5 7' n6 7-

* `9 uTª? !U7m 9VJ. =6 200, 220oC

]^ MnO2 âb J ¹" ?×9 È â ¬Ç 8

[ % µk/iÖ â% Êkm* ô m6

eö J. a49 2­i9º % DM 100 Hz 5

9 ¨2­ ow 200, 220oC [ b9 a4 E2­

i owM6 E [Ç çhÎ =J ïB Æm 9

6 ]Ö MnO2 â% 5m6 ¥5m¶ ?o È â

?× ` Ï Z tu? ô1 &' ¬7' n ;

ç(path)% ?o ¹5l Ϩ© E E2­i

o" ¤W X'mm¶ ð" 2­i Äw6 " ¹

" ô1 ç% ¬7' n

; 7' 6 @Y o" -wx1 ð+ iy"I

Ç DM 7»ÇJ. " 7» CH3COO-AgB Z%B

âb9 B Í£Y% â9 Î

9 a4 Zúv9 ?B #$" Gotoh \[8]9 DM

B [jñÇJ.

4.

/ i401 Q-3[ KQ 95l [ =

1 <Í5E B qrs E/ 45l

1 %5IJ. Pÿ" /9 TG/DSC XRD ä

DM 100oCB ë ri ¤ Åy7E 180-230oC C

MnONO3 MnO29 ¤ 'e* 230-250oC9

MnO2 »? &'m6 7-J. " Ç

β-MnO29 Da$ÍB \* [ % µ1iÖ

(intensity)% ¢%5IJ. 3 [ B 200, 220, 240, 260, 280,

300oC 5E 9 30 wt%9 / i401 3

45l B <Ê5E 1 %" DM [ Ma õ .

, Oç' ³" Z tu?9 ú? 'e

m 9VJ. o" [ 9 Ä>1 %" DM [

% µk/iÖ a4 úv >?76 z Ï

¨© 56 ç>1 eö(J. 6 [ % µk;

² MnONO39 MnO29 % !mE, D MnO29 »?

o" % µk( ?o " /ô1 ¬" I

" 7»ÇJ. a4, Zúv, ÏÞ, =ã

\9 41 ýÒ E" çh 240oC9 [ %

%g Z" eö J. " 30 wt%9 / i401

3 Q-3 [ " 9 çh º9 Q-o [ 9

10-70 wt%9 J_" 15 ? [B " o

] 50%9 4] 10%o9 Zúv1 ÖY `a »

÷9 %1 5IJ.

² >ë Q-3[ KQ1 4" qrs n'

/ i409 [ Di% |Ã6 Ä>

o" % #$ cd% Åy7'( x 3"ÇJ.

1. Sharp, D. S., “Thin Film Capacitor Employing Semiconductiv

Oxide Electrolytes,” U.S.Patent No. 3,397,446(1965).

2. Yoshida, A. and Nishino, A., “Method of Manufacturing Solid Elec

trolytic Capacitor,” U.S.Patent No. 4,046,645(1977).

3. Mindt, W., “Electroless Deposition of Certain Metal Oxide,”J. Elec-

trochem. Soc., 117, 615-618(1970).

4. Randorf, R. W. and Licht, S. J., “Sputtered Manganese Dioxide

Counterelectrodes in Thuin Film Capacitors,”J. Electrochem. Soc.,

119, 430(1972).

5. Yoshida, A. and Nishino, A., “Decomposable Slurry to Form Den

Manganese Oxide Layer for Tantalum Solid Electrolytic Capacitor”

Denki Kagaku, 57(9), 902-909(1989).

6. Nishino, A., Yoshida, A. and Hayakawa, H., in Proceedings of t

2nd International Symposium on MnO2, Tokyo, Japan, 305(1980).

7. Yoshida, A. and Nishino, A., “Pyrolytic Decomposition of Mn(NO3)2 in a

Radiation Furnace to Form a Dense Manganese Oxide Layer

Tantalum Solid Electrolytic Capacitors,” Denki Kagaku, 57(5), 408-

415(1989).

8. Gotoh, T., Abe, F., Ishizu, T. and Yoshio, M., “Effect of the Additio

of Silver Compounds during the Pyrolysis of Manganese Nitrate

Tantalum Anodic Oxide Film,” J. Power Sources, 60, 193-196(1996).

9. Nishino, A., Yoshida, A. and Hayakawa, H., “Method of Producin

Manganese Oxide Solid Electrolyte Capacitor,” U.S.Patent No. 4,042,420

(1977).

10. Albella, J. M., Fernandez-Navarrete, N. and Martinez-Duart, J.

“Pyrolytic Deposition of MnO2 Layers in Saturated Water Vapor

Atmospheres,”J. Electrochem. Soc., 127, 2180-2181(1980).

11. Hori, Y., “Recent Technological Trend of Capacitor,” NEC Technic

Report, 49(10), 68-71(1996).

12. Nishino, A., “Capacitors: Operating Principles, Current Market a

Technical Trends,”J. Power Sources, 60, 137-147(1996).

13. Kono, T., Kida, F., Kayamori, T., Takata, H., Sneda, H. and Date,

“Development of Worldwide Smallest 1608 Type Tantalum Capa

tor,” NEC Technical Report, 52(10), 53-57(1999).

14. Tanaka, M., Hara, E., Ohi, M., Date, T., Sato, H. and Ogaku,

“Development of 2012-Type 10µF/6.3 V Tantalum Capacitor,” NEC

Technical Report, 50(10), 56-59(1997).

41 3 2003 6