HWAHAK KONGHAK Vol. 40, No. 4, August, 2002, pp. 415-421cheric.org/PDF/HHKH/HK40/HK40-4-0415.pdf¤¥...

7
415 HWAHAK KONGHAK Vol. 40, No. 4, August, 2002, pp. 415-421 Water-in-Carbon Dioxide p- (2002 3 27 , 2002 5 16 ) Study on the Synthesis of TiO 2 Nanoparticles in a Water-in-Carbon Dioxide Microemulsion and Their Photocatalytic Activity for p-Nitrophenol Degradation Man Sig Lee, Gun-Dae Lee and Seong-Soo Hong Division of Chemical Engineering, Pukyong National University, Pusan 608-739, Korea (Received 27 March 2002; accepted 16 May 2002) CO 2 PFPE-NH 4 (ammonium carboxylate perfluoro polyether) PDMAEMA(poly(2-(dimethylamino)- ethyl methacrylate))-b-PFOMA(poly(1H, 1H, 2H, 2H-perfluoroocthyl methacrylate)) W/C TiO 2 . TGA-DTA, FT-IR, XRD, TEM W 0 (H 2 O/ surfactant molar ratio) . TiO 2 p- . TiO 2 250-450 o C 450 o C anatase . W/C W o . p- , . Abstract - Titania nanoparticles were prepared by controlled hydrolysis of titanium tetraisopropoxide(TTIP) in PFPE-NH 4 (ammonium carboxylate perfluoropolyether) and PDMAEMA(poly(2-(dimethylamino)ethyl methacrylate))-b-PFOMA(poly(1H, 1H, 2H, 2H-perfluoroocthyl methacrylate))/Water-in-CarbonDioxide Microemulsions. The physical properties, such as crystallite size and crystallinity according to W o ratio have been investigated by TGA-DTA, FT-IR, XRD and TEM. In addition, the pho- tocatalytic degradation of p-nitrophenol has been studied by using batch reactor in the presence of UV light in order to com- pare the photocatalytic activity of prepared nanosized titania. The residual organic compound and hydroxyl group were completely removed in calcination temperature from the 250-450 o C and the amorphous phase changed into anatase structure above 450 o C. The crystallinity and crystallite size of nanoparticles produced in water-in-carbon dioxide microemulsions increased with an increase of the W o ratio. In the photocatalytic degradation of p-nitrophenol, the photocatalytic activity is mainly determined by the crystallite size of titania and the reaction rate increased with an decrease of crystallite size. Key words: Titania Nanoparticles, PFPE-NH 4 , PDMAEMA-b-PFOMA, W/C Microemulsions, Photocatalytic Degradation of p-Nitrophenol 1. (NT: nano-technology) , . . . , . , . , - , , , / , , , / , . To whom correspondence should be addressed. E-mail: [email protected]

Transcript of HWAHAK KONGHAK Vol. 40, No. 4, August, 2002, pp. 415-421cheric.org/PDF/HHKH/HK40/HK40-4-0415.pdf¤¥...

HWAHAK KONGHAK Vol. 40, No. 4, August, 2002, pp. 415-421

Water-in-Carbon Dioxide ��������� ��� � ��� �� � p-������ ���� �� ��

����������†

����� �����(2002� 3 27 ��, 2002� 5 16 �)

Study on the Synthesis of TiO2 Nanoparticles in a Water-in-Carbon Dioxide Microemulsion and Their Photocatalytic Activity for p-Nitrophenol Degradation

Man Sig Lee, Gun-Dae Lee and Seong-Soo Hong†

Division of Chemical Engineering, Pukyong National University, Pusan 608-739, Korea(Received 27 March 2002; accepted 16 May 2002)

� �

CO2� �� ��� �� PFPE-NH4(ammonium carboxylate perfluoro polyether) PDMAEMA(poly(2-(dimethylamino)-

ethyl methacrylate))-b-PFOMA(poly(1H, 1H, 2H, 2H-perfluoroocthyl methacrylate)) �� ��� ���� W/C �����

��� �� �� ��� TiO2� �����. TGA-DTA, FT-IR, XRD, TEM ! ���� �� "# ��$ W0(H2O/

surfactant molar ratio)%� &' "#� �� ()� *+, �-! �����. . ��/ TiO2 �� "#� 012

, 3�! 456� 7� 89: ;<=>� ���� p-?@�AB� 0 �! �����. ��/ TiO2 �� "#C D�

EF 250-450oC G7�H I�*-J �KL*� 9� MN 450oC �O %() P��H anatase P�� O Q� MR�.

W/C ��������H ��/ �� "#� ()� ()��C Wo %S TSU�V TS���. p-?@�AB� 09

�;<�H ;<�W ()��� XY! Z[\], ()� ��S ^!�V ;<�� TS���.

Abstract − Titania nanoparticles were prepared by controlled hydrolysis of titanium tetraisopropoxide(TTIP) in PFPE-NH4

(ammonium carboxylate perfluoropolyether) and PDMAEMA(poly(2-(dimethylamino)ethyl methacrylate))-b-PFOMA(poly(1H, 1H,

2H, 2H-perfluoroocthyl methacrylate))/Water-in-CarbonDioxide Microemulsions. The physical properties, such as crystallite

size and crystallinity according to Wo ratio have been investigated by TGA-DTA, FT-IR, XRD and TEM. In addition, the pho-

tocatalytic degradation of p-nitrophenol has been studied by using batch reactor in the presence of UV light in order to com-

pare the photocatalytic activity of prepared nanosized titania. The residual organic compound and hydroxyl group were

completely removed in calcination temperature from the 250-450oC and the amorphous phase changed into anatase structure

above 450oC. The crystallinity and crystallite size of nanoparticles produced in water-in-carbon dioxide microemulsions

increased with an increase of the Wo ratio. In the photocatalytic degradation of p-nitrophenol, the photocatalytic activity is

mainly determined by the crystallite size of titania and the reaction rate increased with an decrease of crystallite size.

Key words: Titania Nanoparticles, PFPE-NH4, PDMAEMA-b-PFOMA, W/C Microemulsions, Photocatalytic Degradation ofp-Nitrophenol

1. � �

�� ����(NT: nano-technology) �� �� �� �� �

�, ��� ���� ��� ����� �� ��� �� !"� #

$%& '( ��) *+,-� #.. �/& ����0 12 3

45 6� �� 7����5 8)9 �� :; <+=� � >+

?@- ABC �� D+7E� #.. F��� G��5 6���

HIJ !K LM� �N OP- Q=� RS �T=� PU=

V) WXT Y #.. PU=� �Z [ �M)\] ^_-` �a

+,^b aV) `/ C� cd& Q=� e1E� #�, [&

f- >+ �g !K �N LMh i�C �T=j. @�-�

OkC Cl-m) n� o@E� #.. pqrh st- uv'7

:w0 OP�� <+=� W\� PU= �@-� #Vx, RS

yz� �z OP=V) BX&.. yz�5 <+=� {2=, |-}=,

@r ~1=, ��R)���= �V) ��E�, �z�5 <+=�

~1/?�=, �z<+=, 7�~�=, �z'7/�f= �V) ��E

k, 6��� n� e1E� #.. �/& Q=w� �O+�� ��†To whom correspondence should be addressed.E-mail: [email protected]

415

416 ����������

.

t

LM0 ��+ �j �� �� ,�� jc-� #.. yz <+=

$�5 ��R)���=� ��D+Oh �@-` ���(oil in

water, O/W) [ �z���(water in oil, W/O) �+^� �� R

�0 !K LMh OP- Q=V) ��R)���0 R� ��

� ��5 �N0 LM R�, ��, R� �sh �S P�T Y #k,

��� D1� ABC J�E� #.. Bard� Yoneyama �[1, 2]� �

�R)��� PbS 7<: OP �� �@-` �� ABh Y�-

�.. Arriagada �[3]� ��Z ��D+Oh o@-` �� R�0

SiO2h, Yuki Tsujimoto �[4]� ��Z, ��Z ��D+Oh o@-`

TiO2h OP-` p�4 >+ � -�.. ��� Syed Qutubuddin �

[5]� ��Z ��D+Oh o@-` �� R�0 TiO2/SiO2h <+-

�..

[& Holmes �[6]� �¡0 W/O ��R)����5 j. Jj¢ W/C

(water in carbon dioxide) ��R)���= �@-` �� R�0

CdS !K LMh OP-�..

��V) CO2 zW�V) £�¤¥� ¦�, @r §¨Cl+�

©Vx, ª� «�, ¬+� ­7+� ©k ®¯& :;�.. >� 7�

�V) D+� ©�, �D@� Cl-. °��5 �¡0 `/ @r

w0 W�±V) CO2C �<&�� W4 �� AB� �@E� #V�,

W\�0 7<:w� CO2�5 @4�C ¦² � ³Oh ́ µ-� 3&

ABw� ¶· v�) �'E� #.[7-14].

1990̧ W ¹� º» ��D+OC CO2�5 @4E a j��, �

/& ¼�w� W/C ��R)��� ½¾0 Cl+ O^¿.[7, 8].

� À� Harrison �[9]� W/C ½¾�5 :0 �� �� ��R)�

��� Cl-. a O^-��, Eastoe �[10]� W/C ��R)�

��0 zÁ R�h ÁÂ-� 34 SANS(small-angle neutron

scattering) �@-�Vx, Z� 25oC, ¤¥ 500 bar0 PÃ�5 spherical

water droplets0 �Ä� 25Å£ �­-�.. 1990̧ W $�

Johnston �[11, 12]� W/C ��R)���� polyethylene glycol-in-CO2microemulsion� ammonium carboxylate perfluoropolyether [CF3O(CF2CF

(CF3)O)3CF2-COO−Na4+, PFPE-NH4)]h �@tV)Æ �+T Y #.�

j�-�..

C, ��� Kaler �[13]� SANSh �@-` PFPE-NH40 W/C

��5 spherical water dropletsC �Ç� �ÈÉ. a L~-�..

�Ê& �ËÌ® Desimone �[14]� CO2�5 @4�h ~C^b� 3

4 fluoropolymers, block copolymers� W& ABh -�..

�� 8)9 §¨: Í���)5 RS ÎÏ Ð� # �'7ÑÒ

o@& pqr� 0& YÍ� Q=� ¬+� Ó-� �:��V)

� ÔÕ+� Ó& c�7<: d��V) Í�T Y #.� j� E

� #.[15, 16]. [& Z�, pH, §¨:0 Ö� �0 ��� �×� �

S �È�m) Í�PÃ� #k5� OØ� Ù0 ©.. �Ú�� zZ

z¤�5 Í�C Cl-. a� ¦� Ö��5� �4v�C Û

»-� ÜVm) !Ý c4:;0 OÙ� �<-. a � �� ,�

�Þ� #Vx, >� 2ß §¨:;0 �+� Ù0 ©. a� C,

à ,��� T Y #..

á AB�5 CO2� @4 l¥� âY& PFPE-NH4(ammonium car-

boxylate perfluoropolyether)ã PDMAEMA(poly(2-(dimethylamino)ethyl

methacrylate))-b-PFOMA(poly(1H, 1H, 2H, 2H-perfluoroocthyl metha-

crylate)) ��D+Oh o@-` W/C ��R)���=V) �� R�

0 TiO2h OP-�.. [& W/C ��R)��� �@& �� LM

OP^ R(H2O/TTIP molar ratio)� 2�5 Wo(H2O/Surfactant molar ratio)

�� �· LM0 R�ã ��, R��s, ¼¯+ �� !" ���

W4 H²jä�, W/C ��R)���=� 04 OP¢ �� R� TiO2

0 pqr� >+ H²j� 34 p-Þå)æç0 p�4 D+ P

o-�..

2. � �

2-1. �� � �� ��

qr 2B:;­ titanium tetraisopropoxide(TTIP, 97%, Aldrich Chem

USA) >*^Ø BL-` �W) o@-��, @r �'7Ò» y

7¢ z¾), CY?� è%& :� é �Z7¢ ~�Yh êê o@

-�.. ��� ½+� è%& ��D+O PFPE-NH4ã PDMAEMA-

b-PFOMAh êê <+-` o@-��, �M BP Fig. 1� �Èë

ì..

PFPE-NH4 ��D+O0 <+� perfluoropolyether carboxylic acid

(PFPE-COOH, Ausimont, Italy)ã ammonium hydroxide(A.C.S. reagen

grade, Aldrich)h BL-` o@-��, <+ Q=� Zielinski �[13]�

04 MK� í6Ek#..

PDMAEMA-b-PFOMA0 ��Ì $<(group transfer polymerization)

� ²�î �3� -�5 ïð£ Í�¢ c� ¹M�5 Y�Eì..

Tetrahydrofuran(THF, J. T. Baker, USA) 20 ml� tetrabutylammonium

bibenzoate(TBABB) 10 mgh �ñ Îo òó �@-` ?�� Î

L-�.. THF calcium hydrideh �@- ̀1ß ~�& .� benzophenone,

sodium �@-` o@-� ô2� ¯O-��, TBABB Dicker �

[17]� 1í& Q=V) <+- ̀o@-�.. 5� Ì® ×& À methyl

trimethylsilyl dimethylketene acetal(MTSDA, 95%, Aldrich) 0.174 g

Îo�h �@-` õC&.. .^ 5� ¯� ×-` ö÷-S ¯O¢

2-(dimethylamino) ethyl methacrylate(DMAEMA, 98%, Aldrich) 1.5 g

øø� ?�� ÎL^b�, 1̂ Ë Ì® ²�î �3��5 ?^ù

.. � À ¯O¢ 1H, 1H, 2H, 2H-perfluoroocthyl methacrylate(FOMA)

5 g Îo�h �@-` N�� ú² # poly(2-(dimethylamino) ethyl

methacrylate)(PDMAEMA)@y� ÎL-�..

30� Ì® ×& À Û¤ ~1-` THFã ûÒü OÙ-��,

DMAEMA �� $<� ý'� 04 þÿ-�.. ��S <+¢

PDMAEMA-b-PFOMA 10−3 Torr�5 24̂ Ë Ì® ÃP^� o@-

�Vx, �MÝ� 1H NMR �� �4 2 K-b-10.5 K­ aV) ���..

Fig. 1. Chemical structure of PFPE-NH4 and PDMAEMA-b-PFOMA.

���� �40� �4� 2002� 8�

W/C ��� �� � �� ��� ����� �� 417

Fig. 2 W/C ��R)��� �@-` �� LM TiO2h OP-

� 3& ,"��x, ? ," RS ?�, CO2 G* ,", MÌZ

� P��, ¤¥ °¯�, �¤ G* ," ×� �V) ��k� #

.. >� ?� ëر+� Ó& ­ð ÓV) M� O_Eì

Vx, ?�0 ��� 50.75mm, �� 179mm��, ë\0 \ Ø

32.7 ml ̄ �(ë�: 17.25 mm, ��: 140 mm)�.. ��� ?� ë0

z Á ¤¥ °¯-� 34 2�\� �� 13 mm0 o��k �

�ã �\�� ¤¥�C \�Eì..

W/C ��R)���� 04 �� R�0 TiO2h OP-� 3& G¯

�h Fig. 3� �Èëì.. �Ô ?�ë� PÃ� 4�- �0 ��

D+Oã : õC& À CO2h G*& .� �¤ ,"h �@-`

?�0 ¤¥� 2,000 psiC E�� &..

�¯ Z��5 ��� ½+ c�h 34 30�Ë �v ×& À inlet

�4 PÃ� 4�- TTIPh ÎL-�, ?�0 ¤¥ 4,000 psi�

5 30�Ë �v <+^� ¼¯7-�..

��S OP¢ !�� 105oC�5 24̂ Ë ÃP^� À ��¢ c

�:; OÙã TiO2 ¼¯7h 34 500oC�5 3̂ Ë Ì® »+^ù..

2-2. TiO2 � �

105oC�5 24̂ Ë ÃP¢ LM Z�� �· LM0 ��4, ¼¯

7 z�7h ÁÂ-� 34 differential thermal analyzer(DTA, Perkin-

Elmer, USA)ã thermal gravimetric analyzer(TGA, Perkin-Elmer, USA)h

êê o@-` ��-�Vx, DTAã TGA ;» �3��5 �Z Z

� 10oC/min0 v�) 50-900oC �30 Z��5 ÁÂ-�..

OP¢ ¼¯LM0 ¯�& 7� BPã �M ¼< z¾h ú�j�

3-` FT-IR spectrophotometer(Bruker, IFS-88, Germany)h o@-�

Vx, pellet� KBr, �, �3 400-4,000 cm−1�5 ÁÂ-�..

qr0 ¼¯BP !K ¼¯R�h H²j� 3-` X-ray diffraction

(XRD, D/MaXIIC, Rigaku) o@-�.. [& X-� �� R� z?

- �­0 ��)\] !K ¼¯R� L Scherrer � 04 ²!ã

�� B-�.[18].

L=

qr0 ¹!KBP Á R�, ��, R��s � �­-� 34

LaB6 è�"å� 0& Cv2¤ 200 kV) o@- transmission

electron microscope(HR-TEM, Jeol, JEM-2010)h o@-` ÁÂ-�..

2-3. � ��

pqr� >+ H²j� 34 ?: p-Þå)æç� W& pD+

l¥ Po-�Vx, ?:0 ¹�Ö� 20 ppm, qr0 õCÝ�

0.1 g/L, ?y0 pH 7) �¯-S -` Ç#-�.. ?:� �¯

^�. $%-�Vx, UV(Shimadzu, UV-240)h �@-` ��-�

.. ?," Fig. 4� �Èëì..

?," RS �� ?�, �¤Y��, '»G*,", &ê,"

×�) ��k� #.. ?� ��V) O_EìVx {� È

LV) Ek M��'ïh ?� v� (� �)��� -` M��

K λ⋅β cosθ⋅------------------

Fig. 2. Schematic diagram of experimental apparatus.1. Low temperature 6. Magnetic bar2. High pressure equipment 7. Water bath3. Inlet 8. Stirrer4. Pressure gauge 9. Outlet5. Reactor 10. On-off valve

Fig. 3. Preparation procedure of TiO2 nanoparticles by W/C micro-emulsion.

Fig. 4. Schematic diagram of photocatalytic apparatus.1. Moisture trap 6. Mercury lamp2. Metering valve 7. Water bath3. On/off valve 8. Magnetic stirrer4. Three way selection valve 9. Bubble flow meter5. Syringe

HWAHAK KONGHAK Vol. 40, No. 4, August, 2002

418 ����������

� qr � �W& *qT Y #�� -�.. pfV) 500 W �

¤Y�'ï(Kum-Kang)h o@-�Vx, pf0 d+ ,�� 3-`

?�h -� ß�¢ zM ®� .k /0^ù.. 2¥� �¤Y�'

ï P��h o@-` ��-S G*-�Vx, pf� 0& ?:0

Z� z� �I-` ?y� 'ï o�� Ì�& cv0 &êYh

o@-` 3012 oC) c�-�..

3. �� �

3-1. TiO2 � ���

3-1-1. ���

ê PÃ� �� OP¢ LMh �Z v� 10oC/minV) 50-900oC

�3�5 DTA-TGAh o@-` � ��& ¼�h Fig. 5� �Èëì.

. PFPE-NH4h o@-` OP¢ LM0 TGA ¼� 100oC \��5

;Ý� Pu2 Û»E� ̂ _-` 280oCã 330oC \��5 6Ô� Û

»-�.. PDMAEMA-b-PFOMAh o@-` OP¢ LM0 TGA ¼

� 100oC\��5 ;Ý� Pu2 Û»E� ^_-` Ø 380oC\

��5 6Ô� Û»-�.. � �À 450oC�5 900oC�� $ÝÛ»

C Ù0 �k�� Üä..

&3 DTA ��¼��5 PFPE-NH4h o@-` OP¢ LM 100oC

\��5 4� Rã 280oC, 330oC\��5 � e0 1� Rh Á

ÂT Y #ìVx, PDMAEMA-b-PFOMAh o@-` OP¢ LM

100oC\��5 4� Rã 350oC, 420oC 650oC \��5 1�

Rh ÁÂT Y #ì..

100oC \�0 4� R OP¢ LM� :��V) 4�Ek #

\�Y0 é�� 0& aV) �êEx, PFPE-NH4ã PDMAEMA-b-

PFOMAh êê o@-` OP¢ LM0 280oC \�� 350oC\�0

1� R LM� ��¢ ��D+Oã Y'7:0 �4� 04 �

­¢ R) 5�¢.. [& PFPE-NH40 330oC \�� PDMAEMA

-b-PFOMA0 420oC \�0 1� R �¼¯+ BP�5 anatase B

P) ¼¯7C ̂ _6 0!-x, TGA ¼��5 H Y #7� 450oC

�z0 Z��5 ?� 0& $Ý Û»h Ì-� Üä�, [& Fig.

50 FT-IR0 �� ¼��5� 500oC) »+¢ LM0 8å9�

1,300-1,800 cm−1 �3 RC Û»¢ aV)\] 450oC �z�5 �

¼¯+ BPC anatase BP) :2� z2�C �k;� H Y #..

PFPE-NH4h o@-` OP¢ LM 450oC �z�5 < �z0 z

�7h �­ T Y ©ì�=, PDMAEMA-b-PFOMAh o@-` OP

¢ LM 630oC\��5 1� RC ��� �È;.. � R

anatase ¼¯� rutile ¼¯V) �7- a 0!-x, 850oC �z�5

��4C Ù0 © a� rutile BP) :2� �7Eì� j`>..

³?� j� ¢ ò� 0-� anatase�5 rutile)0 2� Z� 450oC

�5 1,200oC��0 �3­@, �/& ¼¯BP 2�Z�C z�-S

�È� a� 2B�0 A�, +; BPã LM0 OP PÃ� 0

4 0¡¢.� j�-� #.[19]. ��� W\�0 7��­ Q=V)

OP¢ TiO2 > ®¯& anatase0 ¼¯BPh C�x, �h �Í�-

� rutile zV) �&.[20].

��5 PFPE-NH4ã PDMAEMA-b-PFOMAh êê o@-` OP

¢ LM0 �� ÙÌ� z�-S �È� a� W/C ��R)���

� o@EkJ ��D+O0 A�ã ¼¯LM o�� ¡�- ��D

+O0 +; ß�� 04 �­¢ aV) o�¢..

3-1-2. FT-IR ��

PFPE-NH4ã PDMAEMA-b-PFOMAh o@-` OP¢ ¼¯LM0

7�BPã �M¼< z¾h ú�j� 34 Wo=5, R=20 PÃ�5 O

P¢ !UMh 105oC�5 24̂ Ë ÃP& LMã ÃP À 500oC�5

3̂ Ë »+& TiO2 LMh FT-IR) ��-�Vx, � ¼�h Fig. 6�

�Èëì..

105oC�5 ÃP= -` OP& TiO2 LM 900 cm−1�5 1,300 cm−1

�3 ��0 c�:� 0& 4Y Rã 3,400 cm−1 \�� 1,620 cm−1

\�0 −OH �� 0& 4Y Rw� z�� Ó& Ó�) �È;..

�� 500oC) »+^� �â� 900 cm−1�5 1,300 cm−1 �3 ��0

c�:� 0& 4Y R Ù0 �È�� ÜäVx, 3,400 cm−1 \�

� 1,620 cm−1 \�0 −OH �� 0& 4Y R z�� Û»-�..

� ¼� :�� 4�¢ :� �S OÙE�= 7�� 4�¢ :��

Tiã ¼<¢ −OH � �×� ,� Z��5� �S OÙC E� Ü

a 0!&.. � ¼� Wang �[21]� Ti(OBun))\] OP& TiO2

0 �� ¼�ã �Ê& �� j`Îì..

FT-IR �� ¼�)\] W\�0 c�:� »+Z� 500oC�5 Ù

0 W\� OÙEì�, [& »+Z� 500oC�5 �\� −OH ¼<

½+-� # aV) �ê¢.. [& ��S ¼¯7¢ TiO2 > ®¯

& anatase BPh C� aV) 5�¢..

3-1-3. X-� ����

Fig. 7� PFPE-NH4, PDMAEMA-b-PFOMAh êê o@-` Wo �

� �� OP¢ LM0 X-� ���� ¼�h �Èëì..

Fig. 7�5 W/C ��R)����5 OP¢ LMh 500oC) »+-

� �â Wo �� Á�©� �� anatase ¼¯ BPh C�.. »+ Z

� 105oC�5 ��ê 25o�5 ²Î Ø-S �È;Vx, 2��V)

�¼¯+ BPh C� a �­T Y #.. ��V) LM0 »+

� LM0 ¼¯+ e�-@ o@E�, »+Z�C ~C-�5 TiO2

LM �¼¯+ BP�5 anatase zV), anatase�5 rutile zV) �

ß ��¢.. Chhabra� Ohtani �[20, 22]� �¼¯+ BP�5 anataseFig. 5. TGA-DTA curves of nanoparticles prepared using different sur-

factants: Wo=20, R=2, (a) TGA, (b) DTA.

���� �40� �4� 2002� 8�

W/C ��� �� � �� ��� ����� �� 419

BP) z2� Ø 480oC �z0 Z��5 �kÉ.� j�-� #

.. ��5 á AB�5 OP& TiO2 LM� 500oC�5 »+-�

anatase ¼¯BPh ½+-� #� H Y #.. [& Wo0 �C ~C

TY� ��ê 25o�5 �È� [101]�0 R��� Bñ4� a

C Y #@ �a� LM0 ¼¯+� ~C-� D³V) �ê¢..

Table 1� OP¢ LM0 ¼¯+ Scherrer � 04 �'¢ LM

0 R�h �Èëì.[18].

êê0 ��D+O o@� 04 OP¢ LM Wo �C ~Ct� �

� E�¼¯R� ~C-�Vx, [& PFPE-NH4h o@-` OP

¢ LM 12 nm�5 18 nm), PDMAEMA-b-PFOMAh o@-` O

P¢ LM 9 nm�5 17 nm) E�¼¯R�C êê ~C-�.. �ã

�� ¼� ��R)���� 04 �� LM OP^ <+PÃ, Fh

w� Wo �, R �C �T �� o@EkJ ��D+O0 A��

��5 ¼¯+� ¼¯R�C G�� a H Y #..

3-1-4. TEM ��

W/C ��R)���� ?� ë PÃ� 4�- �0 ��D+O

ã : õC& À �'7Ò»h G*tV)Æ ½+EìVx, �D TiO2

2B:;­ TTIPh ÎLtV)Æ CY�4 ?� 04 LMh �+^

ù.. �D ?�0 ¤¥ 4,000 psi�5 Ø 30�Ë ×& À ¯�^ù

�â H�-�5 ²Î I!& JK0 LMC �'7Ò» z�5 {2

©� râ ®¯-S �'Ek #ì.. ��5 ��D+O PFPE-NH4ã

PDMAEMA-b-PFOMAh �@-` R � 2�5 Wo �0 �7� �· ¼

¯LM0 R�, ��. R��s � �­-� 34 »+Z� 500oC)

¼¯7& À TEM ��& ¼�h Fig. 8, 9ã Table 1� êê �Èëì..

R � 2�5 Wo �� ��5 ½+¢ ¼¯� W�) B½�x, Wo �

C ¦ Y� LMR��s ��-�.. [& ¼¯R� Wo �C ~

CTY� ~C- �� �ÈëìVx, PFPE-NH4h o@-` OP

¢ LM 12 nm�5 19 nm, PDMAEMA-b-PFOMAh o@-` OP

¢ LM 8 nm�5 18 nm) êê ~C-�.. �w0 ¼� L0

XRD ���5 Scherrer � 04 �'¢ E�¼¯R�ã Ù0 �"-

a �­ T Y #.. [& Wo �� �· LM0 R��7 Wo �

C ~C-� W/C ��R)��� ë0 CY�4� M`- :LMR

�(water pool size)C N�@ �­¢ aV) 5�¢..

Fig. 6. FT-IR spectra of nanoparticles prepared using (a) PFPE-NH4and (b) PDMAEMA- b-PFOMA(Wo=20, R=2).

Fig. 7. XRD patterns of nanosized TiO2 powders prepared at differentWo ratio: (a) PFPE-NH4, (b) PDMAEMA- b-PFOMA.

Table 1. Crystallinity and crystallite size of nanosized TiO2 powders byXRD and TEM analysis

Catalyst preparation conditiona

XRD TEM

IntensitycCrystallite sizeb

(nm)Crystallite size

(nm)

PFPE-NH4 W0=5d 134 12 12W0=10 154 17 17W0=20 191 18 19

PDMAEMA-b-PFOMA

W0=5 155 19 18W0=10 106 16 12W0=20 130 17 18

a: calcined at 500oCb: obtained by Scherrer equationc: anatase peak intensity at 2θ=25o

d: mole ratio of water to surfactant

HWAHAK KONGHAK Vol. 40, No. 4, August, 2002

420 ����������

��V) W/O ��R)���=V) �� R�0 ��h =w�

34 C, n� o@E� ®¯+�5 âY& +; O ��Z AOT

(sodium bis(2-ethylhexyl) sulfosuccinate) ��D+O �z��� ë

0 :LMR�(water pool size) Wo �� �� ²!ã �� P�¢.

� j�-� #.[23].

hydrodynamic radius(nm)=0.175 Wo+1.5

W\� ��R)���=� 04 OP¢ uv, �� ��� �È F

�:;0 ¼¯R� ��� R�ã LMR� o�0 zÁÁ�� �­

E�, :� ��D+O0 P �­ Wo �� ô*�V) 0¡- aV

) j�-� #.[24, 25]. ��5 |-}=� 04 TiO2h OP-@ #

k :� Q�+� LM+, ¼¯-@ $%& %­V) _@¢.. R

Wo �C ~CTY� LMR� �sC º��-�, ¼¯Ë0 ?S 6z

� ~C- a� W/C ��R)��� ë0 CY�4� M`- :

LMR�(water pool size)C ~C-� [& :LM Î30 ��� ½+

� M`- ��D+O0 �� Û»-` Ti-HTo�Uã :0 CY�

4 ?� *V� �k� LM R� P�� kW�, ¼¯Ë0 ?S 6

z� Cv7¢ aV) 5�¢..

Fig. 90 (d) Wo=20, R=20 PÃ�5 <+-` ÃP-� �20 L

Mh @O� �'^� Cv2¤ 60 kV) TEM ��& ¼��..

(d) W/C ��R)���� 04 OP¢ LMC ��� ë�5 Ù

0 B½0 LMC ½+¢ a �­T Y #Vx, ½+¢ B½ LM Î

30 �� K X �'7һ Y7+ CJ 1H, 1H, 2H, 2H-PFOMA

) j`J.. �� PÃV) OP¢ LMh 500oC) »+& À z Á

Â& ¼� (c)ã �×-�, ÃP �2� �ÈÉ ¼¯ LM Î30 ��

D+O �4 Ek ©k�� TiO2 ¼¯=� ¡�- a �­T Y

#..

2�& òã ��, ��R)���� 04 �� LM OP^ Wo �ã

o@EkJ ��D+O0 A�� ��5 ¼¯R�, �� R��s�

�� !" a H Y #..

3-2. � ��

��V) §¨:0 Í�� #k5 pqr ?� 1ß ? X�

5 langmuir-hinshelwood ? �Bh �·.� HI� #.[26-28].

R � ?� .�� �� v� V) í^ Z Y #Vx,

[& 3 ��-� .�� �� ¢..

C = Co exp(−kt)

`�5 Co ?:0 ¹� Ö���, k v�zY�.. k ?P

à R, ?Z�, -0 +;, pH �� ��5 G��S E�, [& � ª

� N;Y� ?+� NJ. a 0!&..

dcdt----- kc=–

Fig. 8. TEM images of nanosized TiO2 powders prepared at different Wo ratio in PFPE-NH4 stabilized W/C microemulsion: (a) Wo=5, (b)Wo=10,(c) Wo=20.

Fig. 9. TEM images of nanoparticles prepared at different Wo ratio andPDMAEMA- b-PFOMA stabilized W/C microemulsion: (a) Wo=5,(b) Wo=10, (c) Wo=20 and (d) Wo=20(without calcination).

���� �40� �4� 2002� 8�

W/C ��� �� � �� ��� ����� �� 421

P.:

. K.:

tz,

ck,

:

is,

de,

.:

Table 2 ��D+O PFPE-NH4h �@-` OP¢ qr0 ?:

p-Þå)æç� W& pD+ l¥ H²á ¼��x, êê v�zY)

�Èëì..

»+Z� 500oC, R � 2�5 Wo �� �· v�zY Wo � 5, 10,

20� �â 7.5[10−3, 6.5[10−3, 2.8[10−3 min−1) êê pD+ j�

Vx, Wo �C Û»TY� v�zY ~C-�..

��V) ¼¯ BPC Ì�T �â TiO20 /�C �¯-m) L

MR�C _ Y� - �3 ;� \j� �� R.� T

Y #�, [& �3 qr FS� ? D+�0 YC ~CEm) ?

v�C N�S ¢..

pqr ?0 D+� qr LMR�ã0 AÁ+ H²j� 34 L

5 ]�¢ TEM �� ¼�ã �×-�, Wo �C Û»TY� ¼¯R�

� Û»E a �­T Y #..

��5 W/C ��R)���=�5 ��D+O PFPE-NH4h �@-

` OP¢ TiO2 p-Þå)æç� W& p�4 ?�5 qr0 LM

R�C ?+� !" $%& ­M) _@- a H Y #..

�z0 ¼��5 p-Þå)æç� W& pD+� ^Y& anatase BP

h C��, ¼¯LMR�C C, _� Wo=5, R=2�5 OP¢ qrC

v�zY 7.5[10−3 min−1) C, âY-�..

4. � �

W/C ��R)��� �@-` �� R�0 TiO2 LMh OP-�

�, � D ��D+O0 A� Wo(H2O/surfactant)�� �· LM0

:�� >+� p-Þå)æç� W& p�4 D+� W4 AB& ¼�

.�� �� ¼_ iì..

(1) ��D+O PFPE-NH4ã PDMAEMA-b-PFOMAh o@-` O

P¢ LM 280oC, 350oC \��5 ��¢ ��D+Oã Y'7:0

�4C êê �k;�, 330oC, 420oC \��5 �¼¯+ BP�5

anatase BP) ¼¯7C ^_Ek 450oC�z�5 �¼¯+ BPC

anatase BP) :2� z2� Eì.. [& OP¢ TiO20 �� ÙÌ�

o@EkJ ��D+O0 A�� �� �� Ð aV) �È;..

(2) OP¢ qr W�) B½�� ��-S ½+EìVx, Wo �C

~CTY� ¼¯+� ¼¯ R� ~C-�� [& � R� 8-19 nm

h j�.. ��� W/C ��R)����5 Wo �ã ��� ½+� o

@¢ ��D+O0 A�� ��5 L��s, �+LM0 R� �� à

�� !" aV) �È;..

(3) p-Þå)æç0 p�4 ?�5 W/C ��R)���� 04 O

P¢ �� R�0 TiO2 qr Wo �C Û»TY� pD+� âY-�

Vx, TiO2 LM0 R�C �� RS !" aV) �È;..

á AB &`���� >¯�¹AB(R01-2000-00323)�fV) Y

�EìVx AB� �f� ÛoUUÞ..

���

1. Ogawa, S., Hu, K. and Band, A. J.: J. Phys. Chem. B, 101, 5707(1997).

2. Torimoto, T., Sakata, T., Mori, H. and Yoneyama, H.: J. Phys. Chem., 98,

3036(1994).

3. Arriagada, F. J. and Osseo-Asare, K.: J. Colloids Interface Sci., 170,

8 (1995).

4. Yasushige, M., Yasuhiro, O. and Yuki, T.: J. Nanoparticle Res., 3,

219(2001).

5. Fu, X. and Qutubuddin, S.: Colloids surf., 179, 65(2001).

6. Holmes, J. D., Bhargava, P. A., Korgel, B. A. and Johnston, K.

Langmuir, 15, 6613(1999).

7. Consani, K. A. and Smith, R. D.: J. Supercrit. Fluids, 3, 51(1990).

8. Beckman, E. J., Hoefling, T. A. and Enick, R. M.: J. Phys. Chem., 95,

7127(1995).

9. Harrison, K., Goveas, J., Johnston, K. P. and O'Rear, E. A.: Lang-

muir, 10, 3536(1994).

10. Eastoe, J., Steytler, D. C., Bayazit, Z., Martel, S. and Heenan, R

Langmuir, 12, 1423(1996).

11. Johnston, K. P., Harrison, K. L., Clarke, M. J., Howdle, S. M., Hei

M. P., Bright, F. V., Carlier, C. and Randolph, T. W.: Science, 217,

624(1996).

12. Johnston, K. P., Harrison, K. L. and Sanchez, I. C.: Langmuir, 12,

2637(1996).

13. Ziekinsju, R. G., Kline, S. R., Kaler, E. W. and Rosov, N.: Lang-

muir, 13, 3934(1997).

14. DeSimone, J. M., Londono, D., Combes, J. R., McClain, J., Roma

T. J., Canelas, D. A. Beyys, D. E., Wignall, G. D. and Samulski, E. T.J.

Am. Chem. Soc., 118, 971(1996).

15. Palmisano, L., Augugliaro, V., Schiavello, M. and Sclafani, A.: J.

Mol. Catal., 56, 284(1989).

16. Sclafani, A., Palmisano, L. and Schiavello, M.: J. Phys. Chem., 94,

829(1990).

17. Dicker, I. B., Cohen, G. M., Farnhan, W. B., Hertler, W. R., Lagan

E. D. and Sogah, D. Y.: Macromolecules, 23, 4034(1990).

18. Cullity, B. D.: “Elements of X-Ray Diffraction,” Adison-Wesley, Read-

ing, MA(1978).

19. Kumar, P. N. K.: Ph. D. Thesis, University of Twente, 7500 AE Ensche

The Netherlands(1993).

20. Chhabra, V., Pillai, V., Mishra, B. K., Morrone, A. and Shah, D. O

Langmuir, 11, 3307(1995).

21. Wang, Z. C., Chen, J. F. and Hu, X. F.: Mater. Letters, 43, 87(2000).

22. Ohtani, B., Ogawa, Y. and Nishimoto, S.: J. Phys. Chem. B, 101, 3746

(1997).

23. Fletcher, P. D. I., Howe, A. M. and Robinson, B. M.: J. Chem. Soc., Fara-

day Trans. 183, 985(1987).

24. Fendler, J. H.: Chem. Rev. 87, 887(1987).

25. Barnickel, P., Wokaun, A., Sayer, W. and Eicke, H.-F.: J. Colloid Inter-

face Sci., 148, 80(1991).

26. Wolf, K., Yazdani, A. and Yates, P.: J. Air Waste Manage. Assoc., 41,

1055(1991).

27. Turchi, C. S. and Ollis, D. F.: J. Catal., 122, 178(1990).

28. Davis, A. P. and Hao, O. J.: J. Catal., 131, 285(1991).

Table 2. Apparent first-order constant(k') of p-nitrophenol photodegradationat different Wo ratio

Catalyst preparation conditions k'(×10−3 min−1)

PFPE-NH4

W0=50 7.5W0=10 6.5W0=20 2.8

HWAHAK KONGHAK Vol. 40, No. 4, August, 2002