HWAHAK KONGHAK - CHERIC · 2003-02-28 · HWAHAK KONGHAK - CHERIC ... c

7
51 HWAHAK KONGHAK Vol. 41, No. 1, February, 2003, pp. 51-57 CO 2 * ** , * 136-791 39-1 ** 120-749 134 (2001 12 26 , 2002 10 22 ) Effects of Cosolvent on Supercritical CO 2 Debinding in Metal Injection Molding Process Yong-Ho Kim, Jong Sung Lim , Youn-Woo Lee, Jong-Ku Park* and Chang Ha Lee** Supercritical Fluid Research Lab., *Ceramic Processing Center, Korea Institute of Science & Technology, 39-1 Hawolgok-dong, Sungbuk-gu, Seoul 136-791, Korea **Department of Chemical Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, Korea (Received 26 December 2001; accepted 22 October 2002) . . CO 2 . methanol, 1-butanol, n-hexane, dichloromethane . Paraffin wax 348.15 K, 25 MPa 5 w% n-hexane CO 2 2 , . Fick diffusion model , paraffin wax . Abstract - In this study, we have investigated the effect of cosolvents on supercritical CO 2 debinding in metal injection molding(MIM) process. We used methanol, 1-butanol, n-hexane, and dichloromethane as cosolvents. In paraffin wax based sys- tem, the debinding rate was enhanced when non-polar or midium-polar cosolvents such as n-hexane or dichloromethane was added into supercritical CO 2 , while it was decreased when polar cosolvents such as methanol or 1-butanol was added. For exam- ple, the debinding rate was enhanced more than two times by adding 5wt% of n-hexane into supercritical CO 2 under 348.2 K, 25 MPa in paraffin wax based system. It was also found that the debinding rate was much more enhanced with increasing con- centration of n-hexane or dichloromethane in paraffin wax based system and increasing system pressure. The kinetics of debind- ing were investigated using the Fick’s diffusion model and they showed good agreement with experimental data. By using this model, the diffusivities of paraffin wax into supercritical solvent could be evaluated in each experimental conditions. Key words: Supercritical Debinding, Cosolvents, Metal Injection Molding, Supercritical CO 2 1. (Metal Injection Molding(MIM)) (near-net shaping) 2 . MIM , . (debinding) . MIM . 15-50% binder . MIM [1, 2]. (solvent extraction) (thermal debinding) . [3] To whom correspondence should be addressed. E-mail: [email protected]

Transcript of HWAHAK KONGHAK - CHERIC · 2003-02-28 · HWAHAK KONGHAK - CHERIC ... c

HWAHAK KONGHAK Vol. 41, No. 1, February, 2003, pp. 51-57

���� ���� � � � CO2� ��� ���� �� ��

�������†������*�� �**

�������� �� ����, *�������136-791 ��� ��� ���� 39-1

**�� �! �� � "����120-749 ��� � #� $%� 134

(2001& 12� 26' (), 2002& 10� 22' *+)

Effects of Cosolvent on Supercritical CO2 Debinding in Metal Injection Molding Process

Yong-Ho Kim, Jong Sung Lim†, Youn-Woo Lee, Jong-Ku Park* and Chang Ha Lee**

Supercritical Fluid Research Lab., *Ceramic Processing Center, Korea Institute of Science & Technology, 39-1 Hawolgok-dong, Sungbuk-gu, Seoul 136-791, Korea

**Department of Chemical Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, Korea(Received 26 December 2001; accepted 22 October 2002)

� �

������� �� � � � ��� ��� ���� ��� ����� � . !"# !$% ��� $&

' !# ()�*�� ()+,� -!. /� �' � 0� 12� 3! 4# . 5 67��� 89:;4)�

<�* = ��� CO2' !# >? �*�� � � >?�@� AB� CD� EF0G . �%� methanol,

1-butanol, n-hexane, dichloromethane� 40G . Paraffin wax HIJKL �M� NO 348.15 K, 25 MPa� PQ��

5 w% n-hexane� � 0R ST ��� CO2U� !0V >?W XY >?9� 2Z !� � 0GE, [�\ �

� ]� � � ^_ >?�@� `a bc�d T ef . g# >?9�' Fick� diffusion model� h�� �i# I\

jkl\ m nB0� o� pL0GE, !' !0V paraffin wax� pi�' 7W T ef .

Abstract − In this study, we have investigated the effect of cosolvents on supercritical CO2 debinding in metal injection

molding(MIM) process. We used methanol, 1-butanol, n-hexane, and dichloromethane as cosolvents. In paraffin wax based sys-

tem, the debinding rate was enhanced when non-polar or midium-polar cosolvents such as n-hexane or dichloromethane was

added into supercritical CO2, while it was decreased when polar cosolvents such as methanol or 1-butanol was added. For exam-

ple, the debinding rate was enhanced more than two times by adding 5wt% of n-hexane into supercritical CO2 under 348.2 K,

25 MPa in paraffin wax based system. It was also found that the debinding rate was much more enhanced with increasing con-

centration of n-hexane or dichloromethane in paraffin wax based system and increasing system pressure. The kinetics of debind-

ing were investigated using the Fick’s diffusion model and they showed good agreement with experimental data. By using this

model, the diffusivities of paraffin wax into supercritical solvent could be evaluated in each experimental conditions.

Key words: Supercritical Debinding, Cosolvents, Metal Injection Molding, Supercritical CO2

1. � �

��������(Metal Injection Molding(MIM)) ��(near-net

shaping)� �� ���� �� �� ��� � � 2��� �� �

� �� !" #$ %& ' ( )� * +,� -. )/. 01� MIM

23� ����� 4�56�� .�789:; ��< ( )=> �

���2 ?@�� A., ����BC DE� F�GHI JKL M�

N DE�O PDQR S2 �TUV K� �R� WXK/. �1Y �

R� Z[(debinding) �R�� Y/. Z[�R ��\C ���� ]

7BC DE�O �TK� �R!"^ MIM�R23 PX_� GB `

�+ * �`� �[Ka N/. �Y �b�c" 15-50%C binderO �

TUV K� �R�I de2 ��\2 f Dg� h!i ( )� �

R��. �' ( )/. j�3 ��\C k��� Dg�� DE�O

lm �=" �T' ( )� In� o� pq_r[. )!s �1Y

�?" MIMQ tuN vw� xeC y #�� DE�O �TK

� In2 z,� {. )/[1, 2].

I|C Z[�R!"� DE�O }L3 �TK� ~Z[�(solvent

extraction)�� ��U2 CU �TK� ��Z[�(thermal debinding)

� � _r �/. 01� ~Z[�[3]C �� � _� ~C ?U†To whom correspondence should be addressed.E-mail: [email protected]

51

52 ��������������� �

�!" �KL � � ��_. )� R�., ��Z[�[4, 5] G

BQ 2�[� f� PX_I de2 ���� �23 e�,� -.

)/. �� �r l�a DE�O �TKI JU3 DE�� �~��

� )� I\��Q ��G� �TK� �~Z[�(catalytic debinding)[6]

� ��_�/. DE�� ���� )� 9&(ntric acid) � ��&

(oxalic acid)C I\O � KL DE�O �TKa _��, #���

Z[�=� Fe/Ni �� Fe/Co(4-5µm, ��g$ 60%)C �� � 4 mm/h

��, Al2O3(�2µm, ��g$ 56%)C �� � 0.75 mm/h, WC-12%Co

(2.2µm, ��g$ 50%)C �� � 0.6 mm/h R=�. ��_�/[7].

�> I|C ��2 �U lm �=" Z[O (�' ( )!� �~�

�!" NOx �5� %�_s �O �TUV K� �,� -. )/.

�� �r ?��� � , h¡� `¢!" Z[�RC £In" #

{_� ¤� z¥o ?\O � Y In[8-10]�. �� ?��� � 

23� � ¦KL f ��23 I|C ��§/ ���¥� ]¨G

©/. z¥o ?\� I\2 �ª« lm ¬&=O -!�3= ­\�

® ¯=" �KL �(Y U°� -� v±� )/. �Y �h�!

" |²K� ?\�I de2 Z[QRG ��+°(surface tension)�

�r ���� ]7��C ����!" l�a ³´KL DE�O �

T' ( )/. ¡ pq23� �� �SC pq[11]O µKL z¥o

CO2O � Y In� I|C ��Z[� §/ ~� ����s �¶�

2 )r3= I|C ��§/ Dg� �/� ¤� ¬�Y · )/.

¡ pq23� z¥o CO22 � ~O M�KL z¥o CO2C �9�

k¦GH�3 � ~� Z[�=�C toO .¸K¹/. � ~"�

methanol, 1-butanol, n-hexan, dichloromethane(DCM)� � K¹/. z

¥o CO2� �º�C �9� -. )r �º� 89� UGH��

»Q��I� K� º�C 89 ¼ U_[ ½¾ z¥o CO2C �

9� k¦G�AI JU � ~O M�K� ¿� f� �À[. )

/[12-16]. �1Y � ~O M�g!"^ UGH.7 K� 89Q ?

�Y U= Á��Â(δ)Ã� -=> z¥o CO2C �9� k¦Gi (

)!s Z[�R2 � Gi �� DE�C ÄÅ� Æ�� �ÇK/.

' ( )/.

2. ��� ��

2-1. Solubility parameter theory-Hildebrand parameter

h��!" ~� 9BC U° { 89C U= Á��Â(δ)

" È�Y/. U= Á��Â� ̈ � y�2�[ k¦$(internal energy

change of vaporization)Q �b(molar volume)"3 q' ( ). �

1Y ÊË� Iz" KL Hildebrand � Scott /ÌQ ®� U= Á

�� ÊË2 �TY Hildebrand-Scatchard RÍ�Î(regular solution

theory)O �ÏK¹/[17].

(1)

(2)

LI3 ∆E12� ¨� y�2�[ k¦$, φ1, φ2� 89 1, 2C �b�

c, vm É�b, C.E.D� �Ð2�[(cohesive energy density)O �Y/.

h��!" ∆E12� Ñ�(> Ò � �� -a _Ó" δ1-δ2C Ã�

Ñ!� ¼ UN/. �' ( )/. 01� Hildebrand-Scatchard RÍ

­�Î º��� v( �ÔÑ � �� ��7o2 � KI JU �

ÏN Õ�r3 º� ­�� v( �ÔÑ � )� ��ÖEo2� �

� ×�ÇK¹/. �1Y e�,� UDKI JU Blanks� Prausnitz[18]

Hansen[19, 20], Chen[21]Ø ∆EO º�°(polar force), �&°(dispersion

force), (PDE°(hydrogen bonding force)!" �Ù3 UÚK¹. �1

Y ¬+N �ÐÁ��ÂO � KL Hidebrand �Î� ÊÄK¹/[22].

2-2. ����-Fick’s second law

~y23 ��\O µU �T_� DE�C ¬&=� �7C �@

�2 C|K� Û�s �7C �@� h��!" Ü=� ÝT�

~�7C ÞI� Ñ� d ß�à/. ?\y23 soluteC ¬&� hrá

d h��!" FickC �2�Í(Fick’s second law)� � Ks, Crank

[23]� Shewmon[24]� soluteC ¬&=Õ� /ÌQ ®� ?=K¹/.

(3)

LI3 C� GâyC soluteC ã=O �äy� ¤�., D� soluteC

¬&�=O �äå/. GâC {æO l�� K. Gâ ��23� ¬&

� hRKa hr�s Gâ ç23� ¬&� hr�[ ½�/. ' d

Õ (3)� UÚKI JY �oèé /ÌQ ®� �R' ( )/.

C=C023 0<x<l, t=0

C=0 h d x=l, x=0, t>0

SlabC ��, GB t� [� ê Gây2 ë¾)� soluteC Û� �ä

y� /ÌQ ®� �ì' ( )/.

(4)

h��!" GB2 j� Gây2 ë¾ )� soluteC Û� GâC J

í2 j� è�î /�Ó" R¬Y ã=O qKI� rï/. �1Y �

?" Èðã= �� ÊË� WXK., Èðã=" Õ (4)O �ìK�

/ÌQ ®/.

(5)

(6)

Õ (6) ñ0.8 C0C ��2 Õ (7)Q ®� ��Õ!" �ì' ( )/.

(7)

j�3 Õ (7)2 CU ¬&o( DO q' ( )/.

3.

3-1. ����

¡ pq2 � N ���� Èð]7ÞI� 1.31µm� �� z�

E� ÖE ��"3 ò5óQ ôõ ��" �ör÷ )!s, (A)#Y`

Ú23 q]K¹/. WC-Ni��� ����KI JU � _� DE�

� /ÌQ ®� � ��!" q�_r )/. DE�` #��� �[K

s ?@� �L� Aø�� ADE�, ����\2 Io� ù=O �

LK. Z[G2 ��\y2 ë¾ )r ����\� gÉ(slumping)_

� ¤� úI JY �DE�, ADE�C ?@�� §ûK. DE��

����BC ,ü�� ÊÄKL ������ F�Gi ø�!" M

�K� M��� 0¤�/. ¡ pq23� ADE�" paraffin wax�

microcrystalline wax { �[O � K¹. �DE�" low-density-

polyethylene(LDPE) 0ý. M��"� stearic acidO � K¹/. Table

1 ¡ ¿23 � N binder system� �äå ¤�/. ����Q D

E�C ÖE�� �b�" 50:50��!s, DE� ` Z[QR23 �

E12∆φ1φ2

----------- vm δ1 δ2–( )2=

δ C.E.D.( )1 2⁄ H∆ RT–vm

--------------------1 2⁄ E∆

vm

-------1 2⁄

= = =

∂C∂t------- D∂2C

∂x2---------=

c x t,( )4c0

π-------- 1

2n 1+--------------

n 0=

∑ exp D 2n 1+( )2π2t–

l2------------------------------------

sin 2n 1+( )πxl

-------------------------=

c

c t( ) 1l--- c x t,( )dx

0

l

∫8c0

π2-------- 1

2n 1+( )2---------------------

n 0=

∑ exp D 2n 1+( )2π2t–

l2------------------------------------

= =

cco---- 8

π2----- 1

2n 1+( )2---------------------

n 0=

∑ exp D 2n 1+( )2π2t–

l2------------------------------------

=

c

cco---- 8

π2-----= exp Dπ2t–

l2---------------

���� �41� �1� 2003� 2�

���� ������ � ��� CO2� ��� ����� ��! "# 53

T_rV' ADE�� S\ DE�C 71.3 wt%O �[K¹/. ¡ Z

[¿2 � ' ����\O �èKI JKL �Ä ����Q DE

�O 50:50 �b�" ÖEI(JSB-250, R�Io)2 þ. 413.15 K23

2GB .�a ÖEK¹/. �ÿa ÖEN ÖE8� 413.15 K" ��_�

����I(ID25EN, LG)2 þ. �°� �KL ��K¹/. Fig. 1

����Y WC-Ni ²9C ����\O �äå �à!", ���

21mm {æ� 3 mm�s, Go�C h�" � N/. ¿2 � N CO2�

� ~� Table 22 �äy�/. � ~"� n-hexane, dichloromethane

(DCM), methanol, 1-butanol� � K¹/.

3-2. ��

Fig. 223 §� ·� ®�, ¡ ¿+í� Þa 3��!" �� ( )

/. � ��� � ��"3 ­�C CO2O Z[ cell" �K� .

���(NP-D-321, NS Pump Co., LTD, �#?$ 17.4 ml/min)� �

~O �K� .���(NP-S-321, NS Pump Co., LTD, �#?$

8.7 ml/min), 0ý. �_� �&¦ PO ¿Ü=" ��K�

electric pre-heater" q�_r )/. { ��� Z[�"3 Z[ cellC

ÞI� �" 10 cm, �" 11 cm, Ý� 18 cm�. y� $ 300 cc�s

SUS316!" �ÑK¹/. Z[ cell �. 120oC, 40 MPaª[ � � �

ÇKs, Gâ� �a þ. � ( )=> ���2 ]q(I.D.=5 cm)O �

��. Z[è ��Q ��2 ́ G�� �üKL Z[QR� �Ï!" t

¸' ( )=> K¹/. Z[ cellC �°�R2� pressure transducer

(SENSOTEC, TJE/0743-06TJA)� digital indicator(SENSOTEC, L20000WM1)

O � K¹!s dead weight gauge(NAGANO KEIKI PD 12)" §R

KL ���JO �0.005 MPa" ?[G©/. � ��� �ý�"3 Æ

�N ADE�� z¥o CO2C ÖE?\� back pressure regulator

(TESCOM, 26-1722-24)O µU G5�C �°� hRKa ?[_�3

�ýI" ��N/. ��N z¥o CO2� �ýI23 �°� �� �

�!" ��_r U°� �Ka _. �d Ú�N .�C DE�

� �ýI ·�2 ��a N/. �ýN ��C CO2I\� �ýI !

" ��_s, CO2� ��_� ��2� rotameter� �&?$oO !í

KL Z[QR2 � N CO2C Û� o&' ( )=> K¹/. ¿�

µKL DE�� �TN GâC "a� R¯�#(OHAUS, E04130)�

� KL �RK¹/.

3-3. ����

����IO � KL �ÑY Gâ� Z[ cell (Fig. 2(6))2 þ�/.

Z[èC ]qO ûS$ ¯%Y & �I'Üè� electric pre-heaterO

�K� Ü=" ()/. ¿ èé2 (� Ü=� ?[_� CO2 cylinder

C *+O �. .���O Ñ@G� Z[è y�O ��G,/. @G2

� ~ reservoir� pDN .���= Ñ@G�3 Z[è y�" �

~O A]G,/. A]_� � ~C Û reservoirC -�� §�3 è

Fig. 1. Metal injection molded part(watch-band).

Table 1. Characteristic of the binder systems

Composition(wt%) Density(g/cm3) Melting pont(K)

Binder Asystem

Paraffin wax Major binder 71.3 0.82-0.85 338.15-343.15LDPE Minor binder 23.2 0.90-0.94 371.15-388.15

Stearic acid Surfactant 5.5 0.84 340.15-342.15

Binder Bsystem

Microcrystalline wax Major binder 71.3 0.84-0.87 350.15-353.15LDPE Minor binder 23.2 0.90-0.94 371.15-388.15

Stearic acid Surfactant 5.5 0.84 340.15-342.15

Table 2. Source, purity and solubility parameter of the chemicals usedin this study

Chemical Source Purity(%)Solubility parameter(a)

(J1/2/cm3/2)[19]

n-Hexane MALLINCKRODT 99.8 17.24Dichloromethane MALLINCKRODT 99.9 19.93Methanol J. T. Baker 100 14.281-Butanol KANTO 99.0 11.30(a)at 298.15 K

Fig. 2. A schematic diagram of the experimental apparatus.1. CO2 cylinder 9. Air bath2. High pressure pump 10. Pressure transducer3. Cooling circulator 11. Rupture4. Pre-heater 12. Back-pressure regulator5. Cosolvent reservoir 13. Separator6. Extraction vessel 14. Rotameter7. Metal sample 15. Dry gas meter8. Thermocouple

HWAHAK KONGHAK Vol. 41, No. 1, February, 2003

54 ��������������� �

.Y/. CO2 /0C Û ��C strokeO è.KL (Æ. Z[+í

y� �° back pressure regulatorO � KL è.Y/. ¡ ¿23

� CO2C ?$� 1 l/min(at 1 atm)!" ?[K¹/. �K� Ü=� �

°� ?[_� Z[ cell y23� � ~� ÖEN z¥o CO22 CU

3 Z[� �ör[a _s, � ÖE?\� back pressure regulatorO

µKL hRY ?$!" ��N/. ��N ÖE?\� separator23 D

E�� CO2" �ý_., CO2� �&?$oO µQK�3 P�N CO2

Û� �&N ê !" ��N/. Z[N Û GC "ak¦2 CU

�RKs DE�C 70 wt%(ADE�C 98 wt%)� �T< dª[ ¿

� (�K¹/. Z[QR23� h��!" ADE� (paraffin wax) �

� �TK. �DE�� .�7 89(LDPE) �TK[ ½�/. �D

E�� ADE�� �TN & ����\C ��� ?[KIJU3 G

ây2 ë¾ )rV Y/. �� �DE�� �T_� Z[ ê PDQR

!" Gâ� �@G ��\2 Dg� %IT� �\� 1[� ì��

hr�/. �1Y .�7 89 PDQRC h��� ��U QR�

Tí�3 �TN/.

4. �� ��

4-1. Paraffin wax microcrystalline wax�� ���� ��

h��!" z¥o CO2� �º�� 2. )r º�§/� �º�

9� UGH�� 3 »Q���. 45÷ )/. ¡ pq23 � N

{ �[ wax̀ paraffin wax� �7qè� Ä�� ¦(P� AO �ö.

)r3 dispersion force� �7qè2 [��� 6� �[K. )/. j�3

�º� �9� ~� ùY 89��. �' ( )/. 01� microcrystalline

waxC ��� Ä�� ¦(P§/� isoparaffin �� naphthene� AO �

ö. ). DR� ~� Ñ. í¯K/. ' ( )/[25].

¡ ¿23� � ~" methanol, 1-butanol, n-hexane, DCM� �

K¹/. 7� paraffin wax� ADE�" � N Gâ� 348.15 K, 25

MPaC z¥o CO2" Z[K� QR23 5 wt%C methanol, 1-butanol,

n-hexane, DCM� 88 M�K¹� d 1GB@Ï �T_� DE�C "

a�c� Fig. 32 �äy�/. �23 9K¹:� paraffin waxC �

º� �9 de2 n-hexane�� DCMQ ®� �&°(dispersion force)

� [��� � ~" M�K¹� d Z[c� ~� F�_� ¤� ¬

�' ( )�/. ;, <( z¥o CO2O � KL Z[K� ¤§/ n-

hexaneQ DCM� M�K� paraffin waxO UGH5� z¥o ~

C U°� ¨�KL Z[GB� �=_[� methanol�� 1-butanol

� M�K¹� d� z¥o ~� º�C �9� -a _r paraffin

wax� ~2 ¼ U_[ ½¾ <( z¥o CO2�� � K¹� d

§/ �$5 Z[GB� ¨�Ka _� ¤�/. �Y h��!" %8

_� U= ÊËQ� /�a º�� ùY methanol� � ~" �

K¹� d§/ º�� �#�!" �Y 1-butanol� � ~" � >�

�� Z[ »c� 3? @r[� ¤!" �äA/. �1Y DQ� �

~� paraffin waxBC U= Ê˧/ paraffin waxO ���� ]7

2 ¼ ,ü_=> ��� Ê9GH� stearic acid� � ~BC U=

ÊË!" !B < ( )/. Fig. 4� �1Y �?O !BKI JU ��

�� ]7 �23 paraffin wax� Z[_� QR� B�Ka =զK

L �ìY 0C�/. 0C23 §:� z¥o CO2 ~y2 �&_r

)� methanol �7�� ������" �r� (Fig. 4(b)) paraffin wax�

����� DEGH. )� stearic acidO UG� (Fig. 4(c)) paraffin

waxO ���� ]7��23 ZüGH� (Fig. 4(d)) D'� Ka N/.

;, Z[�=O E�K� AN X� paraffin wax2 #Y FG��

~C U°�I de2 º� ~O M�K� ~C �9� º�� 2

a _Ó" ~� paraffin waxO FG�!" UK5� �9� �K

_r S\�� U=� @r[a N/. /�, { º� ~2 #U3�

!BK� º� ~-stearic acidBC DE°� ����-stearic acidC D

E°§/ ùKL ���� ]7� paraffin waxBC DE� Hr[��,

�d methanol-stearic acidC DE°� 1-butanol-stearic acid §/ ÞÓ

" Z[c� �#�!" Þa �ä�� ¤�/. Methanol�� 1-butanol

Q stearic acidBC DE°� U= ÊË23 �I' �� Table 223

§� ¤Q ®� methanol δ=14.28 J1/2/cm3/2[19]�. 1-butanol δ=

10.30 J1/2/cm3/2[19]�s, stearic acid� Hildelbrand-Scatchard RÍ ­

�Î(Õ (2))2 CT δ=18.20 J1/2/cm3/2� _��(�d stearic acidC ∆E

� Fedors[26]2 CU o&N Ã� � K¹/), { 89C solubility

parameterC ��� Ñ�(> U°� ÞÓ" stearic acid� 1-butanol

§/� methanol2 3 ¼ UN/� ¤� 4 ( )/. �1Y ì�

z¥o Æ�QR23 � ~� -. )� #��� D'� !BK� ¤

!"^ � ~ ÄR2 )r �1Y �ýO �UY/� »Q�� �

~O �a ÁJ' ( )� ¤�/. ;, z¥o CO2O � Y Z[¿

23 � ~O M�' d� Z[K.7 K� 89Q U= Á��Â

� ?�Y � ~O M�K� ¤� ~� »Q���. �' ( )/.

Fig. 5� 358.15 K, 25 MPaC z¥o CO2 èé23 microcrystalline

waxO ADE�" � Y GâC ����, microcrystalline wax� �Fig. 3. Effect of cosolvent on binder removal rate in sc-CO2 debinding

for 1 hr at 348.15 K, 25 MPa: Binder A system.

Fig. 4. A schematic diagram of binder removal procedure in metal porewith cosolvent. ; paraffin wax, ; stearic acid, �; methanol,�; CO2.

���� �41� �1� 2003� 2�

���� ������ � ��� CO2� ��� ����� ��! "# 55

23 9Y ·� ®� �7qè� Ä� ¦(P K �[� )� ¦

(PC qèO L{ MgK. ). DRqè� Ñ. í¯KL z¥o

CO22� ¼ U_[ ½� v±� )/[27]. 01� � ~O M�K�

è�î F�N DQO N� ( )�/. �� <(Y z¥o CO2§/�

º�C � ~O M�K� �7qè `23 Ä�� ¾O qèO 3 »

Q�!" UGHI de2 Z[c� ¨�K� ¤�., �º�C �

~O M�K� �7qè` Ä�� qèO 3 »Q�!" UGHI d

e2 <(Y z¥o CO2§/ Z[c� ¨�K� ¤�/. �1Y DQ

� Joseph Ø[28]2 CU ��N xe� µU3= ¬� ' ( )/. � xe

2 CK� z¥o CO22 � ~O M�KL pristane(C19H40), phytane

(C20H42)Q ®� �Ä� ¦(P89� Æ�' d <( z¥o CO2O

~" � K� ¤§/� carbondisulfide, methanol� 88 10% M�

K� ¤� Æ� (c� F�G,/. K¹/.

4-2. ��� ��� �� ���� ��

M�_� � ~C ã=2 j�3= U=� k¦KI de2 Z[

c� k¦Y/. P ( )/. Fig. 6(a)� binder A2 tY Gâ�

348.15 K, 25 MPaC èé23 DCMC ã=O k¦Gi d �ä�� Z

[cQ GBQC 0���., (b)� �C ��23 1GB@ÏC Z[c

�� �IY 0���/. Fig. 6C 0��23 4 ( ):� DCMC ã

=� ¨�'(> Z[c� ¨�K� ¤� ¬� ' ( )�/. ;, <(

Y z¥o CO2�!" Z[K� ��23� GâyC paraffin waxO L

{ �TK�� 2GB 30�� PX_�[�, ® èé23 5 wt%C

DCMO M�' ��� 2GB �2, 10 wt%C DCMO M�' ���

1GB 30� �2 LQ paraffin waxO �T' ( )�/. �Y ¿�

µKL N Z[c� FickC diffusion model2 � G� o&Y DQ

Fick’s second law� ~� ¼ híK� ¤� 4 ( )�/. Table 32�

Fick’s second lawO µKL o&Y ¬&=O � ~C ã=2 j� �

IKL �äy�/.

4-3. ���� !" #$� CO2�� ���� %&� �� ��

�� ��

�°k¦2 jm Z[GBC RF� è�KI JKL 10 wt%C DCM

� M�Y z¥o CO2Z[ ¿23 Ü=O 348.15 K" hRKa ?[

Ks �°� 20 MPa23 28 MPa" ¨�G� ¿� (�K¹/. Fig.

7(a)� S\�� GB2 tKL �äå 0���., (b)� 1GB@ÏC

Z[c�� �IY 0���/. � ~O M�K� z¥o CO2 Z[C

��= <( z¥o CO2�� � Y Z[[11]C ��� ST�[" �

°C ¨�2 j� ~C U°� ¨�KL Z[c� ¨�K� ¤�

4 ( )/. Fig. 7� §� 10 wt%C DCMO M�' �� ® èé2

3 �°� 20 MPah d� 1GB 30� UýV ¤� 28 MPa" �°�

¨�GH� Z[GB� 30� �=_r 1GB �2 GâyC paraffin

wax(DE�C 71.3 wt%)� L{ �T_� ¤� ¬� ' ( )�/. �

��2= Fick’s second lawO µKL ¬&=O o&K¹. ¿DQ�

~� ¼ híK� ¤� Fig. 7� µKL 4 ( )/. Table 4� �°k

¦2 j�3 o&N ¬&=O �IY ¤�/.

5. � �

¡ pq23� ���� �����R ` z¥o CO2O � Y Z[

��23 Z[GB� 3? �=GH.7 L1 �[ � ~O M�KL

Z[�=O �RK¹. � ~C ã=� Z[ �°C RF� .¸K¹

/. DQO RýU §� /ÌQ ®/.

Fig. 5. Effect of cosolvent on binder removal rate in sc-CO2 debindingfor 3 hrs at 358.15 K, 25 MPa: Binder B system.

Fig. 6. Effect of the concentration of cosolvent(DCM) on binder removalrate in sc-CO2 debinding at 348.15 K, 25 MPa: (a) for the totalexperimental time, __: calculated by eq.(6); (b) for 1hr debinding.

Table 3. Comparison of diffusivities calculated by the Fick’s law withconcentration of cosolvent

Temp.(K) Pressure(MPa) Concentration(wt%) Diffusivity(m2/sec)(b)

348.15 2510 5.015×10−10

5 3.492×10−10

0 2.735×10−10

(b)Diffusivity of the paraffin wax

HWAHAK KONGHAK Vol. 41, No. 1, February, 2003

56 ��������������� �

for

by

-

ate-

,”

c-

of

r-

ing

m-

P.,

ss

(1) ����N GâC DE�O z¥o CO2" �TK� ¿23 Ä

�C �7qèO -. )� paraffin waxO ADE�" � Y GâC

�� n-hexane�� DCM� ®� �&°� [��� � ~O M�K

� paraffin wax� W¦°� ¨�_r Z[GB� f� �=Gi ( )

�/. �O �r n-hexane� 5 wt% M�Y �� <(Y z¥o CO2 Z

[§/ Z[GB� 2� �� �=_�/. 01� º� ~� methanol

�� 1-butanol� M�K� �$5 Z[»c� �Pg� 4 ( )�/.

(2) Ä�Q �Ä�C �7qèO -. )� microcrystalline waxC �

�2� methanol, 1-butanol, n-hexane, DCMC � ~2 L{ »Q��

Z[c� �äyr <( z¥o CO2�� � K¹� d§/ Z[GB

� �=_�/.

(3) � ~O M�K� z¥o CO2 Z[ ¿23 � ~C ã=�

¨�'(> 0ý. Z[�°� ¨�'(> ~C U°� ¨�_r

Z[�=� F�_�/.

� �

¡ pq� 1999X= QYIn�  �[R pq�Z� [�!" (�

_�!s, �2 #U ��[\ô/.

����

c : concentration of solute [g]

: average concentration of remained solute [g]

D : diffusivity of solute [m2/sec]

∆E : internal energy change of vaporization [J/mol]

∆H : molar enthalpy [J/mol]

l : tickness of injection molded part [m]

P : pressure [MPa]

R : gas constant

T : temperature [K]

t : time [sec]

vm : molar volume [cm3/mole]

x : mole fraction

'()* +,

δ : solubility parameter [J1/2/cm3/2]

φ : volume fraction

-. ,

0 : initial value

1 : component 1

2 : component 2

����

1. Shivashankar, T. S. and German, R. M., “Effective Length Scale

Predicting Solvent-Debinding Times of Components Produced

Powder Injection Molding,” J. Am. Ceram. Soc., 82(5), 1146-1152(1999).

2. Summers, E. M. and Akinc, M., “Wick Debinding of Molybdenum

Silicon-Boron Extrudates,”J. Am. Ceram. Soc., 83(7), 1670-1674(2000).

3. Johnson, K. P., “Process for Fabricating Parts from Particulate M

rial,” U. S. Patent No. 4,765,950(1988).

4. Wiech, R. E., “Method for Removing Binder from a Green Body

U. S. Patent No. 4,404,166(1983).

5. Wei, T. S. and German, R. M., “Two-Stage Fast Debinding of Inje

tion Molding Powder Compacts,” U. S. Patent No. 5,028,367(1991).

6. Krueger, D. C., “Process for Improving the Debinding Rate

Ceramic and Metal Injection Molded Products,” U. S. Patent No. 5,531,958

(1996).

7. Park, J. K., “Metal Injection Molding Technology,”Bulletin of the

Korean Ceramic Society, 12, 27-31(1997).

8. Shimizu, T. and Mochizuki, S., “Application of Supercritical Ca

bon Dioxide Debinding Method to MIM Process,” Mechanical Engi-

neering Laboratory, 51(2), 41-48(1997).

9. Chartier, T., Ferrato, M. and Baumard, J. B., “Influence of the Debind

Method on the Mechanical Properties of Plastic Formed Cera

ics,” J. European. Ceram. Soc., 15, 899-903(1995).

10. Rei, M., Milke, E. C., Gomes, R. M., Schaeffer, L. and Souza, J.

“Low-Pressure Injection Molding Processing of a 316-L Stainle

c

Fig. 7. Effect of pressure on binder removal rate in sc-CO2 debindingwith 10 wt% DCM at 348.15 K, 25 MPa: (a) for the total exper-imental time, __: calculated by eq.(6); (b) for 1 hr debinding.

Table 4. Comparison of diffusivities calculated by the Fick’s law withpressure at constant concentration of cosolvent

Temp.(K) Cosolvent Pressure(MPa) Diffusivity(m2/sec)(b)

348.1510 wt% DCM

28 6.492×10−10

25 5.015×10−10

20 4.349×10−10

none 25 2.735×10−10

(b)Diffusivity of the paraffin wax

���� �41� �1� 2003� 2�

���� ������ � ��� CO2� ��� ����� ��! "# 57

rs,

ey

-A

a-

ci-

-

ai,

-

ti-

riti-

a-

m

2).

Steel Feedstock,”Materials Letters, 52, 360-365(2002).

11. Kim, Y. H., Lim, J. S., Lee, Y. W., Kim, S. N. and Park, J. K., “Binder

Removal by Supercritical CO2 in Powder Injection Molded WC-

Co,” J. KPMI, 8(2), 91-97(2001).

12. Dobbs, J. M., Wong, J. M., Lahiere, R. J. and Johnston, K. P., “Mod-

ification of Supercritical Fluid Phase Behavior Using Polar Cosol-

vents,”Ind. Eng. Chem. Res., 26, 56-65(1987).

13. Dobbs, J. M., Wong, J. M. and Johnston, K. P., “Nonpolar Co-Solvents

for Solubility Enhancement in Supercritical Fluid Carbon Dioxide,”J.

Chem. Eng. Data, 31, 303-308(1986).

14. Nishikawa, E., Wakao, N. and Nakashima, N., “Binder Removal from

Ceramic Green Body in the Environment of Supercritical Carbon

Dioxide with and without Entrainers,”J. Supercrit. Fluids, 4(4), 265-

269(1991).

15. Foster, N. R., Singh, H., Yun, J., Tomasko, D. L. and Macnaughton, S. J.,

“Polar and Nonpolar Cosolvent Effects on the Solubility of Cholesterol in

Supercritical Fluids,”Ind. Eng. Chem. Res., 32, 2849-2853(1993).

16. Koo, B. S., Seo, J. T. and Bae, H. K., “The Effect of Cosolvent on Des-

orption of Wool Grease with Supercritical Fluid,”HWAHAK KONGHAK,

31(2), 229-234(1993).

17. Hildebrand, J. H. and Scott, R. L., The Solubility of Non-Electro-

lytes, 3rd ed., Dover, New York(1949).

18. Blanks, R. F. and Prausnitz, J. M., “Thermodynamics of Polymer

Solubility in Polar and Nonpolar Systems,”Ind. Eng. Chem., Fundam.,

3(1), 1-8(1964).

19. Hansen, C. M., “The Three Dimensional Solubility Parameter-Key

to Paint Component Affinities: I. Solvents, Plasticizers, Polyme

and Resins,”J. Paint Tech., 39(505), 104-116(1967).

20. Hansen, C. M., “The Three Dimensional Solubility Parameter-K

to Paint Component Affinities: II and III,”J. Paint Tech., 39(511),

505-510(1967).

21. Chen, S. A., “Polymer Miscibility in Organic Solvents and in Plasticizers

Two-Dimensional Approach,” J. Appl. Polym. Sci., 15, 1247-1266(1971).

22. Lee, J. O., “Use of the Solubility Parameter Concept in the Estim

tion of Polymer-Solvent Interactions,” Polymer, 12(1), 1-9(1988).

23. Crank, J., The Mathematics of Diffusion, 2nd ed., Oxford University

Press, Oxford(1977).

24. Shewmon, P. G., Diffusion in Solids, McGraw-Hill, U.S(1963).

25. Kaufman, J. J. and Stratton, A. W., “Encyclopedia of Polymer S

ence and Engineering,” John Wiley & Sons(1989).

26. Fedors, R. F., “A Method for Estimating Both the Solubility Param

eters and Molar Volumes of Liquids,” Polym. Eng. Sci., 14(2), 147-154

(1974).

27. Takishima, S., Matsumoto, H., Nagasaki, H., Masuoka, H., Muk

Y. and Sakai, T., “Debinding from Alumina Green Body by Com

bined Use of the Supercritical Fluid Extraction Technique and Ac

vated Carbon,”Kagaku Kogaku Robunshi, 17(4), 716-724(1991).

28. Joseph, M. L., Storozynsky, E. and Ashraf-Khorassani, M., Superc

cal Fluid Technology-Theoretical and Applied Approaches to An

lytical Chemistry, Bright, F. V., McNally, M. E. P., Eds.; ACS Symposiu

Series 488; American Chemical Society; Washington. D. C., 336(199

HWAHAK KONGHAK Vol. 41, No. 1, February, 2003