Hartmut Abele Atominstitut

30
Hartmut Abele Atominstitut Strings, Axions and cold Neutrons Exploring the Properties of Fundamental Interactions with neutrons Up To and Including Gravity a, A, B, C

description

Strings, Axions and cold Neutrons Exploring the Properties of Fundamental Interactions with neutrons Up To and Including Gravity. Hartmut Abele Atominstitut. a, A, B, C. Acceleration of the Universe Friedman DGL. Hartmut Abele, Technische Universität München. 2. 2. Friedman DGL. Axions - PowerPoint PPT Presentation

Transcript of Hartmut Abele Atominstitut

Page 1: Hartmut Abele Atominstitut

Hartmut Abele

Atominstitut

Strings, Axions and cold Neutrons

Exploring the Properties of Fundamental Interactions with neutrons

Up To and Including Gravity

a, A, B, C

Page 2: Hartmut Abele Atominstitut

Hartmut Abele, Technische Universität München 22

Acceleration of the UniverseFriedman DGL

2

Hubble parameter: .

8Friedman Eq.: 3

Gravity Energy

4accelerated universe:

N

aH consta

H G

aa

( 2 )

3NG

Page 3: Hartmut Abele Atominstitut

Hartmut Abele, Technische Universität München 33

Friedman DGL

2

Hubble parameter: .

8Friedman Eq.: 3

Gravity Energy

4accelerated universe:

N

aH consta

H G

aa

( 2 )

3NG

2

Hubble parameter: .

8Friedman Eq.: 3

... ...

new Gravity Vacuum E ne r gy

N

aH consta

H G

4

accelerated universe: ( 2 )3

NGaa

/1 2( ) (1 )rm mV r G er

ADD ‘99: Repulsive forces gauge fields in the bulk

Strength = 106

– 109

, range < 100 µm,

B&C ‘05: Cosmological Constant linked to

Size of extra dimensions

~ 5µm, < 106

Axions

0.2 µm < < 2 cm

Dark Matter

Page 4: Hartmut Abele Atominstitut

1. Quantum Bounce the dynamics of ultra-cold neutrons in the gravity potential

Julio Gea-Banacloche, Am. J. Phys.1999

Quantum interference: sensitivity to fifth forces

Hartmut Abele, Atominstitut, TU Wien

Page 5: Hartmut Abele Atominstitut

Hartmut Abele, Technische Universität München 55

Limits

Count rate: 0.5s-1 N = 106 after 25 daysObservation time T = 100ms

6 3

6

2

10 10/

/

/ 0.33 / 6 10 peV

N

Nt E tE t

E T s

6

6

6 5 2

10

6 10 peV

3 10 10 10

N

E

2 2| |/ 12( , ) 2 2 10 peVznV z m Ge

Fifth force:

Page 6: Hartmut Abele Atominstitut

2.1 Limits on Axions/CP-Violation

SM: 0 < q < 2 EDM neutron→ q < 10-10 Axion: Spin-Mass coupling gsgp/ħc: q 0

Page 7: Hartmut Abele Atominstitut

Science week TU Munich 08, Georg Raffelt:

2 cmc

2 cm 0.2 µm

A. Westphal, H.A. et al. 2007

Page 8: Hartmut Abele Atominstitut

λ [m]

|gSg

P|/ħ

c

10-6 10-4 10-2 100

10 -30

10 -27

10 -24

10 -21

10 -18

10 -15

10 -12

PVLAS

Youdin et al., 1996

Ni et al., 1999

Heckel et al., 2006

Heckel et al., 2006:

Ni et al., 1999:

Our limit

Polarized Particle is an electron

Polarized Particle is a neutron

S. Hoedl et al.,

prospect

Hammond et al., 2007

Axion Limits Baeßler et al., PRD 2007

Westphal, Baeßler, H.A. arXiv:hep-ph/0703108

Page 9: Hartmut Abele Atominstitut

The Experimental Team:T. Jenke, H. Lemmel, H.A., ATI Vienna

P. Geltenbort, ILL

D. Stadler, Univ. HD

H. Saul, G. Kessler, T. Lins, TUM

Hartmut Abele, Atominstitut, TU Wien

Page 10: Hartmut Abele Atominstitut

3. P-Violation, the SM and β-decay of the neutron

Beta-Decay of the Neutron

See review article: The neutron. Its properties and basic interactions,

Prog. Part. Nucl. Phys. 60 1-81 (2008)

Page 11: Hartmut Abele Atominstitut

3. The Neutron Alphabet, Observables

Electron

Proton

Neutrino

Neutron Spin

A

B

C

A: P-odd, Dr. Mund (2007) B: P-odd, Schumann et al., PRL 99, 191803 (2007)C: P-odd, Schumann et al., PRL 100, 151801 (2008)a aSPECTb project D: T-odd, Dr. PlonkaG PSI 08, Bodek et al.N PSI 08, Bodek et al.R: T-odd, PSI 08, Bodek et al. PNPI

a

D

R N

Hartmut Abele, Atominstitut, TU Wien

Page 12: Hartmut Abele Atominstitut

Hartmut Abele, Technische Universität München 12

Page 13: Hartmut Abele Atominstitut

Hartmut Abele, ATI Vienna 13

a,A = gA/ gV

A + Vud from CKM matrix

A + B + Right Handed Currents (RHC)?

Letters and SM spelling

WL WR

PERKEO: Schumann et al., PRL 99, 191803 (2007)

Page 14: Hartmut Abele Atominstitut

Hartmut Abele, Atominstitut TU Wien 14

Why ratio = gA/ gV from Neutrons?Processes with the same Feynman-Diagram

Slide from D. Dubbers

Page 15: Hartmut Abele Atominstitut

Hartmut Abele, Technische Universität München 15

a,A = gA/ gV

A + Vud from CKM matrix

Letters and SM spelling

0%

50%

100%

'down' 'strange' 'bottom'

down strange bottom

ud us ub

cd cs cb

td ts tb

V V VV V VV V V

d ds sb b

|Vud|2 + |Vus|2 + |Vub|2 = 1-

Quark mixing is rotation in flavor space

CKM-Matrix is unitary

5 4

1 2 2 23 7(1 3 ) 2

Re

ud Ff mV cG

h

Page 16: Hartmut Abele Atominstitut

Hartmut Abele, Atominstitut, Wien 16

Is Unitary in the quark sector violated?

94.4%

4.8%

0.00001%

Vus

Vud

VubCKM Unitarity test first row

with A = - 0.1189(7)we get = gA/gV = -1.2739(19)

rad.corr.

0.9713(13)0.9717(4) (4)(12)

udV

Kaon

B-Meson (PDG 2002)

0.2196(23)0.0036(9)

us

ub

V

V

2 2 2 1ud us ubV V V

3 (PERKEO 2002)

2 2 2 10.0084 0.0028 ,

ud us ubV V V

Page 17: Hartmut Abele Atominstitut

Hartmut Abele, ATI Vienna 17

a,A = gA/ gV

A + Vud from CKM matrix

A + B + Right Handed Currents (RHC)?

Letters and SM spelling

WL WR

PERKEO: Schumann et al., PRL 99, 191803 (2007)

Page 18: Hartmut Abele Atominstitut

1818

Origin of nature’s lefthandednessStandard Model: Elektroweak interaction 100% lefthanded

Grand unified theories:Universe was left-right symmetric at the beginningParity violation = 'emergent' Order parameter <100%

Neutron decay: Correlation B + A:Mass right handed W-Boson: mR > 280 GeV/c2

Phase: -0.20 <<0.07

WL WR

Hartmut Abele, Atominstitut, TU Wien

Page 19: Hartmut Abele Atominstitut

A + B + C, Neutrons 19

A + B + C Scalar Interactions Tensor Interactions

Letters and SM spellingS, TV-A

World average 2007

gT/gA gT/gA

PERKEO: Schumann et al.,

PRL 100, 151801 (2008)

Page 20: Hartmut Abele Atominstitut

New SM: Role of low energy studies in the LHC era

Double frontier in the search for new physics- Collider experiments (pp, e+e-, etc) at higher energies (E >> MZ)

- Searches at lower energies (E < MZ) but high precision

(and beyond!)

Ramsey-Musolf: ILL workshop `08

Page 21: Hartmut Abele Atominstitut

Super symmetry effects:B-coefficientEffect large:

g-2

neutron-beta-decy

3

~

~ 10W

SUSY

M M

9

~

~

~ 10W

SUSY

M m

m M

10

-5

Ramsey-Musolf: http://arxiv.org/abs/hep-ph/0608064v2H. Abele, Atominstitut, TU Wien

Page 22: Hartmut Abele Atominstitut

Hartmut Abele, Technische Universität München 22

Cold Neutrons @ PF1B, MEPHISTO, (PSI)

High Flux: = 2 x 1010 cm-2s-1

Decay rate of 1 MHz / metre

Polarizer: 99.7 ± 0.1 %Spin Flipper: 100.05 ± 0.1 %Analyzer: 100 % 3He-cells

Spectrometer

Page 23: Hartmut Abele Atominstitut

v- selector

Spin flipper

PolarizerDecay Volume, 8m

Chopper

Beam stop

e,p selector Analyzing area

PERC: A clean, bright and versatile source of neutron decay products

n-guide + solenoid: field B0polarized, monochromatic n-pulse

n + γ-beam stopsolenoid, field B1

solenoid, field B2p+ + e− window-framep+ + e− beam

D. Dubbers, H. Abele, S. Baeßler, B. Maerkisch, M. Schumann, T. Soldner, O. Zimmer, arXiv:0709.4440.

Page 24: Hartmut Abele Atominstitut

Hartmut Abele, ATI Wien 24

..I.ILn 16n

6n

0β s10411063

Expected count ratesCont. unpol:

After mag. Barrier:

Polarized to 98%:

Pulsed:

Pulsed polarized 99.7%

,n.nBB

byx

I 14ββ

1

02

00s s106170

24

21

Tn·Is=1.2104s−1

.

.I.Iz'L'L

L'L

I'I

'I 13ss

22

0

n

ns s105080

91

Tn'Is'=300s−1

.

Page 25: Hartmut Abele Atominstitut

Hartmut Abele, Technische Universität München 25

SOURCE OF ERROR COMMENT SIZE OF CORRECT.

SIZE OF ERROR:

non-uniform n-beam for ΔΦ/Φ = 10 % over 1 cm width 2.5·10−4 5·10−5

other edge effects on e/p-window for worst case at max. energy 4·10−4 1·10−4

magn. mirror effect, contin's n-beam 1.4·10−2 2·10−4

magn. mirror effect, pulsed n-beam for ΔB/B = 10 % over 8 m length 5·10−5 <10−5

non-adiabatic e/p-transport 5·10−5 5·10−5

background from n-guide}is separately measurable

2∙10−3 1·10−4

background from n-beam stop 2·10−4 1·10−5

backscattering off e/p-window 2·10−5 1·10−5

backscattering off e/p-beam dump 5∙10−5 1∙10−5

backscatt. off plastic scintillator}for worst case

2∙10−3 4·10−4

~ same with active e/p-beam dump − 1·10−4

neutron polarisation present status 3·10−3 1·10−3

Dubbers, Baessler, Märkisch, Schumann, Soldner, Zimmer, H.A., arXiv 2007

Page 26: Hartmut Abele Atominstitut

Hartmut Abele, Atominstitut, Wien 26

CASCADE-Project @ University of HD

a GEM-based gasdetector for neutronsSolid converter systemHighly integrated readout electronics

- Accessories:- Electronics.- Gas flow controllers.- 10B coatings.

ElectronsIons

pict

ures

from

Sau

li

The GEM inherently has high rates capability of 10 MHz/cm2

!

10 B-Converter

taken from Sauli et al.: http://www.cern.ch/GDD

Neutrons

Page 27: Hartmut Abele Atominstitut

CASCADE-U for UCN and VCN Detection

Readout structure

Converter gap

Entrance gap

Kapton Copper

GEM Entrance Window

Transfer gap GEM

Drift electrode

Gas In Gas Out

Boron layer

n n n

CASCADE-U Detection Principle

Adapter to Wilson-flange

Teflon ring

Top-flange

Sidewall-flange

Bottom-flange

Transparency by M. Klein, CASCADE-Detector

Page 28: Hartmut Abele Atominstitut

Standard-Model-Parameters- Axial vector to Vector coupling

- CKM-Matrix element

- Unitarity test

- Phase

- Weak Magnetismus

other variablesall -p weak cross sections

Number of neutrino flavors

Baryon density in the universe

22

4908 2sec(1 3 )udV

2 2 2 1us us usV V V

A

V

gg

q T-symm. V-A 1ie

2cm38/ 0.67 10 /p E GeV

2.5 0.6N

(3/ .3 0.7)%crit

q 180.06(7)

Page 29: Hartmut Abele Atominstitut

And beyond:

RHC- Mass W boson

- Mixing Angle

Scalar interactions gs

Tensor interactions gt

Fierz interference b

Neutrino helicity <1

< GeV

-0.20 0.07

< <

2280 /RWm c

Schumann et al., Phys. Rev. Lett. 99, 191803 (2007), arXiv:0706.3788.

Page 30: Hartmut Abele Atominstitut

1. String-Theories & NeutronsGravitation and the question of large extra dimensions

2. CP-Violation & NeutronsAxionsBaryon asymmetry of the universe SUSY

3. P-Violation & NeutronsCorrelation coefficients in neutron beta-decay and

Mixing of quarksSUSY

See review article: The neutron. Its properties and basic interactions,

H.A., Prog. Part. Nucl. Phys. 60 (2008) 1-81