Functionarea IGCT Si IGBT

download Functionarea IGCT Si IGBT

of 58

description

.

Transcript of Functionarea IGCT Si IGBT

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-1

    Steffen BernetBerlin University of Technology

    Power Electronics LabBerlin, Germany

    Function, Technology and Features of IGCTs and High Voltage IGBTs

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-2

    Outline1. Introduction

    2. Structure, Function and Characteristics of IGBTs

    3. Structure, Function and Characteristics of IGCTs

    4. Latest IGCT Technology Developments

    IGCT Series Connection

    10kV IGCTs

    5. Conclusions

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-3

    Power Semiconductors

  • Press-PackPress-Pack

    1836

    4500V; 4000A 6000V; 6000A

    MITSUBISHI

    Press-PackPress-Pack

    15.7512.65

    4500V; 3500A5500V; 2300A

    ABBIGCTIPM6.754500V; 1500AABB

    Press-Pack3.963300V; 1200ATOSHIBAModule3.963300V; 1200A HITACHI

    Module3.963300V; 1200A4500V

    MITSUBISHI

    ModuleModule

    3.963.6

    3300V; 1200A, 6500V; 600A

    EUPECIGBTPress-Pack184500V; 4000A ABBPress-Pack366000V; 6000A HITACHIPress-Pack366000V; 6000A MITSUBISHIGTO

    CaseSwitchPower(MVA)

    RatingsCompanyPower Semiconductor

    Power Semiconductors for MV Converters

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-5

    Advantages:1. High on-state current density2. High blocking voltage and switch power3. High off-state dv/dt withstand capability4. Integration of inverse diode on the same

    silicon wafer5. Small part count in the reliable press-

    pack case

    Characteristics of Conventional GTOs

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-6

    Udc

    Turn-off Waveforms of GTOs

    Characteristics

    Typical Turn-off Gain:IT/IRG = 3 5

    dv/dt = (500-1000) V/s

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-7

    Gate

    Unit

    20 V

    ShrinkingPlasma

    Turn- off Behaviour of GTOs

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-8

    Disadvantages:1. Inhomogeneous turn-off transient2. Limitation of dv/dt to about 500-

    1000V/s3. Bulky and expensive snubber circuits4. Complex gate drive5. High gate drive power

    Characteristics of Conventional GTOs

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-9

    Structure of a NPT - IGBT Chip

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-10

    Conduction State of a NPT - IGBT

    B A

    p+

    BA Gate Emitter

    SiO2

    p+

    Al

    n+

    p-

    Emitter

    p+

    n-p+n-

    -

    -

    -

    -

    -

    --

    --

    --

    --

    -Collector

    p-d

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    ++

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    2 3 1 1 3 2

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-11

    Silicon Chip 220 mSolder 80 m

    Chip 1 Chip n. . . Aluminium oxide - Isolation 380 mUpper & lower copper layer 300 mSolder 80 mBaseplate(Copper) 3 mmThermal compound 50 mHeatsink

    Structure of an IGBT Module

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-12

    Hard Turn on Transient of an IGBT Module

    (FZ1200R33KF1 (3300V; 1200A), Vdc=2250V, Io=1050A, Tj=25C)

    -2 0 2 4 6 8 10 12 14 s 18

    2.5

    2.0

    1.5

    1.0

    0.5

    0

    2.0

    kA

    1.0

    0

    VCE[kV]

    IC[kA]

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-13

    Hard Turn off Transient of an IGBT Module

    (FZ1200R33KF1 (3300V; 1200A), Vdc=2250V, Io=1050A, Tj=25C)

    -2 0 2 4 6 8 10 12 14 s 18

    1.2

    0.8

    0.4

    0

    3.0

    2.0

    1.0

    0

    IC[kA]

    VCE[kV]

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-14

    Protection: Limitation of short circuit current by

    IGBT (e.g. VGE=15V; IC=3*Ir ) Turn off transient within 10s Short Circuit Safe Operating Area:

    Vdcmax=2500V; ICmax=3.5*Ir Failure: Heavy destruction of IGBT by

    overcurrent Mostly open circuit after destruction

    Characteristics of High Power IGBT Modules

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-15

    Reliability: Aluminum wires and bonds are critical

    parts at power cycling tests Increase of thermal resistance by

    migration of thermal contact grease and inhomogeneous thermal contacts

    Characteristics of High Power IGBT Modules

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-16

    Very low gate drivepower (e.g. 3-5 W)

    Control of dv/dt and di/dt

    Active overvoltageprotection activeclamping (e.g. forseries connection)

    Active short circuitprotection

    Characteristics of IGBT Gate Units

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-17

    Advantages1. Full insulation of base plate (simple cooling)2. Simple mounting3. Low cost plastic package

    Disadvantages1. Undefined failure mode (mostly open terminals)2. Possibility of explosion3. Poor power cycling capability4. Single sided cooling

    Characteristics of IGBT Modules

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-18

    Physical Arrangement of an IGBT Press Pack

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-19

    Advantages1. Short circuit in failure mode enables redundant

    converter design (e.g. (n+1), (n+2))2. No explosion3. Double sided cooling

    Disadvantages1. No insulation of heat sink2. Higher packaging costs

    Characteristics of IGBT Press Packs

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-20

    Physical Arrangement of IGCTs

    91mm 4.5kV IGCT for water cooling51 mm 4.5kV IGCT for air cooling

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-21

    Electric Field and Doping Level of 4,5 kV PT- und NPT-GTOs

    0.0E+0

    2.0E+4

    4.0E+4

    6.0E+4

    8.0E+4

    1.0E+5

    1.2E+5

    1.4E+5

    12

    13

    14

    15

    16

    17

    18

    19

    20

    0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0

    n+ p+p n-

    n+ p+p nn-

    distance from cathode [m]

    E(PT)

    E(NPT)

    NPT:

    VAC = 5000 V

    PT:

    Log doping concentration [cm-3]

    E

    l

    e

    c

    t

    r

    i

    c

    f

    i

    e

    l

    d

    [

    V

    /

    c

    m

    ]

    UAC = 5000 V

    Comparison of PT and NPT Structure

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-22

    IGCT Turn-off Waveforms

    4

    1

    Ia (kA)Vdm

    Tj = 90C

    Itgq

    4

    3

    2

    1

    0

    -10

    -20

    Vg (V)

    2

    3

    0

    anode - voltage Vd

    anode - current Ia

    gate voltage Vg

    thyristor transistorx

    Vd (kV)

    2015 3025 35 t!!m!s)

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-23

    Protection: Active turn-off transient for Ishort (t)

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-24

    Storage time: ts-IGCT=1/15*ts-GTO Despite of increase of Igqrm:

    Qg-IGCT=0.4*Qg-GTO Transparent anode : On-state gate

    current of IGCT is reduced by 50% IGCT gate drive power is reduced by

    50% Uncritical minimum switching times do

    not require control on IGCT gate drive

    Characteristics of an IGCT- Gate Drive in Comparison to a GTO Gate Drive

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-25

    Reliability: Low part count and press-pack case

    enable high reliability Qualification tests and field eperience:

    FIT(Failure in one billionhours)

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-26

    Turn-off Transient of an IGCT Inverse Diode

    -1500

    -750

    0

    750

    1500

    2250

    A

    -4

    -2

    0

    2

    4

    6

    kV

    0 5 10 15 20

    s

    (4500V; 1560A - RCIGCT; VDC=2800V, IF=1300A; VDM=4335A;

    di/dt=400A/s)

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-27

    Motivation of Research- General Development Trend

    Increasing importance of PWM-VSIs- Replacement of Cycloconverter and LCI- Increasing use in energy systems (e.g. Windparks, HVDC,

    STATCOMs, Active Filters, High Power UPS) Increase of converter voltage and power

    - Converter voltage of Vout,RMS = 6 kV 10 kV - Series Connection of IGCTs

    (e.g. n=3 devices per switch position in 3L-NPC VSI)- Increase of device voltage at useful silicon utilization

    (e.g. 10kV IGCT / diode: Vout,RMS =6 kV 7.2 kV in 3L-NPC VSI)

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-28

    Voltage definitions

    VDRM

    VDC NOM(continuous @ TJmax)

    VDC MAX( 15 seconds @ TJmax)

    100 s

    10 ms

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-29

    Device Voltage Ratings in 3-Level Inverter (N =1)

    Nominal RMS Line Voltage

    Nominal DC Half- Link Voltage

    15% Vll,, 100 FIT and long-term DC

    stability

    Maximum DC Half Link Voltage

    33% Vll, , SOA and short-term

    DC stability

    Maximum Repetitive

    Blocking Voltage

    VRMS (kV) VDC NOM (kV) VDCMAX (kV) VDRM (kV) 2.3 1.9 2.2 3.3 3.3 2.7 3.1 4.5

    4.16 3.4 3.9 5.5 6 4.9 5.6 8

    6.6 5.4 6.2 9 6.9 5.6 6.5 9.5 7.2 5.9 6.8 10

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-30

    Number N of Series Connected Devices in 3L NPC VSI

    Nominal RMS Line Voltage

    N of 4.5 kV IGCTs / Diodes

    N of 5.5 kV IGCTs / Diodes

    N of 10 kV IGCTs / Diodes

    VRMS (kV) 2.3 1 - - 3.3 1 - -

    4.16 - 1 - 6 2 - 1

    6.6 3 2 1 6.9 3 2 1 7.2 3 2 1

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-31

    IGCT - Series ConnectionReasons for Voltage Unbalance of Series Connected DevicesStatic Deviating leakage currents

    Dynamic Delay between Gate Signals Deviating switching behavior (e.g.)

    Different tail or reverse recovery charges Different switching times (dv/dts, di/dts)

    Consider The IGCT has a latching thyristor structure ! Control of dv/dt or clamping of switch voltage by gate control in active region is not possible in contrast to the IGBT or MOSFET ! External balancing 2-Pole required !

    Bal.

    2-Pole

    Bal. 2-Pole

    Bal. 2-Pole

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-32

    Balancing Circuit

    Dynamic voltage balancing: RC-Snubber Static voltage balancing: balancing resistor

    RpRSnub

    CSnub

    Design Tradeoffs: low losses CSnub good balancing CSnub , selected IGCTs

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-33

    Design Criteria

    avoid Vmax > 4.5kV (immediate device destruction)

    t

    VGCT

    switching transients

    average blocking voltage lower than 2.8kV (FIT)

    4.5kV

    2.8kV

    Values given for 4.5kV IGCTs

    Blockingms

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-34

    snubberresistor

    snubbercapacitor

    currentsensor

    IGCT - Series Connection (RC - Snubber)Test Setup Buck Converter

    VDC=6 kV, Iout=4 kA n=2

    91mm 4.5kV IGCTs 68mm 4.5kV diodes

    Snubber Rsnub=1 Csnub= 500 nF Rp=25 k

    Rp

    Rsnub

    Csnub

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-35

    0

    1

    2

    3

    100 101 102 103 104 105

    IGCT 1IGCT 2

    current

    voltage

    time (s)

    I

    G

    C

    T

    v

    o

    l

    t

    a

    g

    e

    ,

    I

    G

    C

    T

    c

    u

    r

    r

    e

    n

    t

    (

    k

    V

    ,

    k

    A

    )

    VDC=4.6kV; Iout=2kA; n=2; Tj=115C; Csnub=500nF; Rsnub=1

    IGCT Series Connection - Turn-off Transient

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-36

    1.6

    0

    2

    4

    6

    8

    10

    with snubbersnubberless 8.5

    6.4

    9.28

    Etotal

    0.630

    0.650

    0.5

    8

    Eon,SnubberEoff,SnubberEon, IGCTEoff, IGCT

    L

    o

    s

    s

    e

    s

    (

    J

    )

    LossesVDC = 4.5 kV, Iout = 2 kA

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-37

    Technical Data Phase Leg / 3~ Inverter

    Parameter Value / Typenominal dc input voltage VDC = 13.2 kV (10%)rms output current Iout = 1.5 kAnominal peak output current Iout, peak = 2.5 kAoutput power Sout = 8 MVA / 24 MVAcarrier frequency fs = 700 HzIGCT 5SHY35L4503 (4.5kV 91mm)diode (4.5kV 68mm) D65S45 (4.5kV 68mm)

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-38

    IGCT Series Connection - Output Waveforms

    14.2kV

    V4

    VoutIout

    VDC=14.2kV; Iout,rms=1.5kA;fs=700Hz; fout=50Hz

    -10

    -5

    0

    5

    10

    0 5 10 15 20-2

    -1

    0

    1

    2

    Vout Iout

    Time / ms

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-39

    IGCT Series Connection - Test Setup

    0,9m

    DC-LinkCapacitorsDC-LinkCapacitors

    LoadInductorLoadInductor

    IGCT-StackIGCT-Stack

    RC-SnubberRC-Snubber

    Photo Phase Leg

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-40

    Trade-off Curves of 5.5 kV and 10 kV IGCTs Similar losses of ideal series connection of 5.5 kV IGCTs and 10 kV IGCTs

    Additional snubber losses in real series connection (e.g.)

    Static: PR (Rp=25 k) Dynamic: Esnub,C 0.15 Eoff,IGCT

    (4.5 kV IGCTs / N=2 @VDC=4500V, Ilout=2 kA)

    J=20A/cm2

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-41

    Compared to an IGCT series connection (N=2)10 kV IGCTs / diodes feature: Comparable losses for fs=200 Hz-1 kHz Reduction of part count

    - by 71% (S 5.5 MVA)- by 41% (S > 5.5 MVA)

    Increase of reliability- by 56% (S 5.5 MVA)- by 12% (S > 5.5 MVA)

    Simpler stack design Avoidance of RC snubber

    Simpler maintenance Avoidance of semiconductor selection and RC snubber

    Potential of 10 kV IGCTs and Diodes

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-42

    Design of 10 kV IGCTs

    Cathode

    1050 m

    n+ Cathodep Base

    n Basen BufferLayer

    Low Efficiency

    p - Anode

    GateAnode

    Manufacturing process in line with standard IGCT / GTO process Double diffused p-base Heavily doped cathode emitter Buffer layer for field stopping Low efficiency p Anode

    Cosmic ray withstand capability: 2 FIT / cm2

    n-base thickness: 1050 m Substrate doping level: 4.2 1012 cm-3

    Silicon resistivity: 1000 cm

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-43

    Engineering Sample of 68 mm 10 kV IGCT

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-44

    Forward Blocking Characteristics at 25C

    (

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-45

    Forward Blocking Characteristics at 125C

    (

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-46

    On-state Characteristics

    (4.5V @ 1 kA, 125C)VT = VT0 + rdIAVT0 (Threshold voltage): 3.5VRd (On-state resistance):1m

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-47

    Test circuit and stack design (VDC=2.4kV-7kV, IA=100A-1kA, Tj=25C-115C, Lcl=13.6H, Ccl=1F, Rcl=2.3 )

    Turn-off Characteristics

    1R

    0,68uF27k

    1R

    0,68uF27k

    1R

    0,68uF27k

    1R

    0,68uF27k

    Cbat

    Lh

    R

    D

    DUT

    D

    C

    L

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-48

    Turn-off Waveforms

    Switching characteristics:VDC=5.7 kV, IA=900 A,Tj=85C: Eoff=11 Ws, tf=1 s, ttail=6 s, VAK,max=6.7 kV

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-49

    Turn-off WaveformsVAK [V] 1kV / div IA [A] 100A / div

    Time [s] 5s / div Time [s] 5s / divOperating conditions:VDC=2.5kV 5.7kV, IA=800A 900A, Tj=85CSwitching characteristics:VDC=5.7kV, IA=900A: Eoff=11 Ws, VAK,max=6.6kV, tf=1s, ttail=6s

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-50

    Turn-off Waveforms (SOAR)

    Operating conditions:VDC=7kV, IA=1000A, Tj=85CSwitching characteristics:Eoff=14.8 J, VAK,max=8 kV, toff=8s, tf=1s, ttail=5s

    World Record !

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-51

    T = 1ms10 kA ITSM

    -125C TJ MAX

    -13 K/kWRth J-C

    IA = 1000 A, VDC = 6 kV 11 WsEOFF

    VDC = 6 kV1000 AITGQ

    1 kA (rd = 1 m, VTO = 3.5 V)

    4.5 V VTM

    -22 V VGR

    for 100 FIT, 100 % DC6 kVVDC

    Tj = 0 - 125 C10 kVVDRM

    ConditionsElectrical and thermal characteristics

    Specification of 68mm 10kV IGCTs

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-52

    IGBTs and IGCTs replace GTOs in MV Converters Advantages of IGBTs

    IGBT MOS-controlled device Low power GU GU control of dv/dt and di/dt Short circuit current limitation and active turn off Active clamping

    Simple mechanics Simple scalability

    Conclusions

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-53

    Disadvantages of IGBTs Higher losses and poorer Si-utilization than IGCTs Limited power cycling capability of IGBT modules Costs (especially of IGBT press packs)

    Development trends Reduction of losses and costs by new technologies and high volume production

    Conclusions

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-54

    1. Traction Converters (LSC, MSC)

    2. Energy Systems (e.g. HVDC, SVC)

    3. Industrial Medium Voltage Drives

    Applications of HV - IGBTs

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-55

    ConclusionsAdvantages of IGCTs

    Maximum Silicon Utilization Low costs / MVA Small Part Count + Press pack

    High Reliability + Explosion Free Inverters Low On-state and Total Losses

    High Efficiency and Power Density 4.5 kV / 5.5 kV IGCT product family

    300 kVA-10 MVA Inverters without Series or Parallel Connection

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-56

    Conclusions

    Disadvantages of IGCTs Shoot through protection

    High mechanical stress for IM / SM

    Thyristor structure No dv/dt or di/dt control ClampLarger gate drive power and size

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-57

    Development trends IGCT: Mature device Increase of device voltage (e.g. 10kV IGCT) Increase of Tjmax (e.g Tjmax=175C). Low cost, efficient series connection

    Conclusions

  • Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-58

    1. Industrial Medium Voltage Drives

    2. Energy Systems- Railway Interties- Power Quality Products

    - e.g. Dynamic Voltage Restorer- Wind Energy Systems

    Applications of IGCTs