FET Circuits

37
1 FYSE400 ANALOG ELECTRONICS LECTURE 4 FET Circuits

Transcript of FET Circuits

Page 1: FET Circuits

1

FYSE400 ANALOG ELECTRONICS

LECTURE 4

FET Circuits

Page 2: FET Circuits

2

DISCRETE COMPONENT FET

FET (Field-Effect Transistor)

MOSFET (Metal-Oxide_Semiconductor FET)

Enhancement-modeDepletion-mode

P-channelN-channel P-channelN-channel

JFET (Junction Field-Effect Transistor)

Depletion-mode

P-channelN-channel

p-channeln

n

Drain

Source

Gate

n-channelp p

Drain

Source

Gate

D

S

G

D

S

G

p-substrate

n

n

D

S

G

D

SG

©Loberg University of Jyväskylä

Page 3: FET Circuits

3

Drain voltage

Supply Quisent ac instant ac rms ac+dc instant ac+dc average

Drain current

Gate voltage

Gate current

Source voltage

Source current

DDV DQV dv dV Dv DV

DDI DQI di dI Di DI

GGV GQV gv gV Gv GV

GGI GQI gi gI Gi GI

SSV SQVsv sV Sv SV

SSI SQI si sI Si SI

Symbols in FET-amplifiers

DISCRETE COMPONENT FET

©Loberg University of Jyväskylä

Page 4: FET Circuits

4

JFETDISCRETE COMPONENT FET

n-channel

Drain

Source

Gatep p

VGG1

0+-

ID1

0+-

--

+

+

VDD

Drain

Source

Gatep p

VGG2

0+-

ID2

0+-

--

+

+

VDD

n-channel

A biased n-channel JFET

1D2D1GG2GG IIVV

Large signal analysis

©Loberg University of Jyväskylä

Page 5: FET Circuits

5

DISCRETE COMPONENT FET JFET

A biased n-channel JFET

DSSI

VDS

VGS= 0V

0IVV D)off(GSGS

Vp

ID

VGS= -1V

Pinch-off when VGS= -1V

Breakdown

Drain Characteristic Curve

Breakdown p)off(GS VV

Pinch-off voltageVp when VGS=0

Cutoff voltage VGS(off)

0VV GS)off(GS DSSD II0

Input range for VGS when VDS > Vp

Large signal analysis

©Loberg University of Jyväskylä

Page 6: FET Circuits

6

DISCRETE COMPONENT FET JFET

A biased n-channel JFET

Pinch-off voltage Vp

Family of drain characteristic curves for 2N5484

2N5484

VGS= 0V

VGS= -0.2V

VGS= -0.4V

VGS= -0.6V

VGS= -0.8V

VGS= -1V

VDS

Assumption: VGS= 0V

Ohmic region

Breakdown

V1.1V )off(GS

DSSI

Active region

Example of typical rf JFET 2N5484

Large signal analysis

Active operation region

©Loberg University of Jyväskylä

Data sheet of 2N5484

Page 7: FET Circuits

7

VGS

0

VDS

IDID

-0.2-0.4-0.6-0.8-1-1.2

Transfer characteristic curve for

2N5484 when VDS = 3V.

V15.1V )off(GS

DSSIVGS= 0V

VGS= -0.2V

VGS= -0.4V

VGS= -0.6V

VGS= -0.8V

DISCRETE COMPONENT FET

A biased n-channel JFET

JFET

Example of typical rf JFET 2N5484

2

)off(GS

GSDSSD

V

V1II

Approximation

The slope of drain characteristic

in active region is zero.

Example : VGS(off) = -1.15V and -1V < VGS < 0

Large signal analysisActive region

©Loberg University of Jyväskylä

Page 8: FET Circuits

8

DISCRETE COMPONENT FET

A biased n-channel JFET

JFET

Large signal analysisActive region

The four basic biasing schemes

Self bias Voltage-divider bias Constant current-source bias Constant voltage bias

D

S

G

DR

GR

DDV

N

D

SG

DR

GR SR

DDV

N

0VGN

D

S

G

DR

2R SR

DDV

N

1R

D

SG

DR

GR

DDV

N

GGV

©Loberg University of Jyväskylä

Page 9: FET Circuits

9

DISCRETE COMPONENT FET JFET

A biased n-channel JFET Large signal analysis

SELF-BIAS

D

S

G0VGN

DR

GR SR

DDV

SQI

N

00VRI GSQSSQ

0RIVRIV SSQDSQDDQDD

DQSQ II

SDQGSQ RIV

SDDQDDDSQ RRIVV

0IGQ

Active region

©Loberg University of Jyväskylä

Page 10: FET Circuits

10

DISCRETE COMPONENT FET JFET

A biased n-channel JFET Large signal analysis

SELF-BIAS

Transfer characteristic curve for

2N5484 when VDS = 3V.

VGS0

ID [mA]

-0.2-0.4-0.6-0.8-1-1.2

0.5

1.5

2.5

3.5

1.4 mA

DQGSQSSDQGSQ IVRRIV

S

DQ

DSQDD

D RI

VVR

JFET 2N54842

)off(GS

GSQ

DSSDQV

V1II

If we know parameters VGS(off) and IDSS , we can

solve VGSQ by using the following equation.

Or graphical analysis : We can solve VGSQ by using the

transfer characteristic curve.

GS

S

D VR

1I

Self-bias dc LOAD LINE

Active region

©Loberg University of Jyväskylä

Page 11: FET Circuits

11

DISCRETE COMPONENT FET

A biased n-channel JFET Large signal analysis

JFET

Transfer characteristic curve for

2N5484 when VDS = 3V.

VGS0

ID [mA]

-0.2-0.4-0.6-0.8-1-1.2

0.5

1.5

2.5

3.5

1.4 mA

JFET 2N5484

SELF-BIAS EXAMPLE

VDSQ= 3VAssumptions :

Typically mA4.1I2

1I DSSDQ

V15.1V )off(GS mA3IDSS

V364.013

4.1V15.1VGSQ

260mA4.1

V364,0RS

k9.1260mA4.1

VV6R

DSQ

D

Active region

©Loberg University of Jyväskylä

Page 12: FET Circuits

12

DISCRETE COMPONENT FET

A biased n-channel JFET Large signal analysis

JFET

VOLTAGE-DIVIDER BIAS

SQDQ II D

S

G0VGN

DR

2R SR

DDV

SQI

N

1R

SNV

DQII

DD

21

2GN V

RR

RV

GSGNSN VVV

On biaspoint Q :

2

)off(GS

GSQ

DSSDQV

V1II

SGSGND RVVI

DSS

DQ

)off(GSGSQI

I1VV

0RRIVV SDDDSDD

GS

S

GN

S

D VR

1V

R

1I

Voltage-divider bias dc LOAD LINE

Active region

©Loberg University of Jyväskylä

Page 13: FET Circuits

13

V364.0I

I1VV

DSS

DQ

)off(GSGSQ

V036.1VRIVRVVI GSQSDQGNQSGSQGNQDQ

V4.1RIV SDQSNQ

M68.7V036.1

V036.1V9M1

V

VVRRV

RR

RV

GNQ

GNQDD

21DD

21

2GN

k29.3k1mA4.1

V3V9R

I

VVR0RRIVV S

DQ

DSQDD

DSDDDSDD

DISCRETE COMPONENT FET

A biased n-channel JFET Large signal analysis

JFET

VOLTAGE-DIVIDER BIAS EXAMPLE

Active region

©Loberg University of Jyväskylä

VDSQ= 3VAssumptions :

Typically mA4.1I2

1I DSSDQ

V15.1V )off(GS mA3IDSS

k1RS M1R2

Page 14: FET Circuits

14

mA4.1IDQ

V3VDSQ

k1RS

Assumptions :

V036.1VGNQ

VVSNQ 4.1

V364.0VGSQ

k29.3RD

M68.7R1

Calculated

values:

DISCRETE COMPONENT FET

A biased n-channel JFET Large signal analysis

JFET

VOLTAGE-DIVIDER BIAS EXAMPLE

Active region

©Loberg University of Jyväskylä

M1R2

Simulated bias point values

2R

1R

SR

DR

Page 15: FET Circuits

15

Transfer characteristic curve for

2N5484 when VDS = 3V.

VGS0

ID [mA]

-0.2-0.4-0.6-0.8-1-1.2

0.5

1.5

2.5

3.5

1.4 mA

JFET 2N5484

mA04.1R

VI

S

GND

V04.1VV GNGS

Large signal analysis

Graphical analysis

DISCRETE COMPONENT FET

A biased n-channel JFET

JFET

VOLTAGE-DIVIDER BIAS EXAMPLE

GS

S

GN

S

D VR

1V

R

1I

Active region

©Loberg University of Jyväskylä

Page 16: FET Circuits

16

Large signal analysis

DISCRETE COMPONENT FET

A biased n-channel JFET

JFET

CONSTANT CURRENT-SOURCE BIAS

Active region

D

S

G0VGN

DR

GR

OR

DDV

mA4.1ISQ

N

0IGQ

Assumption :

Ideal current-source

Constant ID=1.4 mA

Constant VDN

Limited to source follower type applications

Current-source must be bypassed with capacitor

to get drain ac-signal.

VGS0

ID [mA]

-0.2-0.4-0.6-0.8-1-1.2

0.5

1.5

2.5

3.5

1.4 mA

JFET 2N5484

Slope = 0

Full bypass

©Loberg University of Jyväskylä

Page 17: FET Circuits

17

Large signal analysis

DISCRETE COMPONENT FET

A biased n-channel JFET

JFET

CONSTANT CURRENT-SOURCE BIAS EXAMPLE

Active region

Output: DRAIN signal

Bypass capacitor

Simulation with BYPASS CAPACITOR

Input: GATE ac-signal Vpp= 20mV

©Loberg University of Jyväskylä

Page 18: FET Circuits

18

Large signal analysis

DISCRETE COMPONENT FET

A biased n-channel JFET

JFET

CONSTANT CURRENT-SOURCE BIAS EXAMPLE

Active region

Simulation without BYPASS CAPACITOR

Input: GATE

ac-signal Vpp= 20mV

Output: DRAIN

ac-signal Vpp=0

Output: SOURCE

ac-signal Vpp= 20mV

©Loberg University of Jyväskylä

Page 19: FET Circuits

19

D

SG

DR

GR

DDV

N

GGV

Large signal analysis

DISCRETE COMPONENT FET

A biased n-channel JFET

JFET

CONSTANT VOLTAGE BIAS

Active region

VGS0

ID [mA]

-0.2

-0.4

-0.6-0.8-1-1.2

0.5

1.5

2.5

3.5

1.4 mA

JFET 2N5484

Bias dc LOAD LINE

GGV

DRAIN VOLTAGE VDQN = 4.34V

DRAIN CURRENT IDQ = 1.42mA

N

©Loberg University of Jyväskylä

Page 20: FET Circuits

20

Large signal analysis

DISCRETE COMPONENT FET

Q-Point Stability of a biased n-channel JFET

JFET

The transfer characteristic of JFET can differ considerably from one device to another of same type.

Datasheet 2N5484

Active region

©Loberg University of Jyväskylä

Page 21: FET Circuits

21

Large signal analysis

DISCRETE COMPONENT FET

Q-Point Stability of a biased n-channel JFET

JFET

Transfer characteristic curve for

2N5484

VGS

0

ID [mA]

-0.5-1.5-2-2,5-3

2

4

5

2DI

1GSV

3

11DI

1DI

biasdividervoltageDbiasselfD II

2Q

1Q

1Q

mA5I (max)DSS

mA1I (min)DSS

1GSV2GSV

-1

The drain current IDQ is much more stable with VOLTAGE-DIVIDER bias.

Active region

©Loberg University of Jyväskylä

Page 22: FET Circuits

22

Large signal analysis

DISCRETE COMPONENT FET

Q-Point Stability of a biased n-channel JFET

JFET

Active region

SELF-BIAS WITH CURRENT-SOURCE

The drain current IDQ is essentially independent of VGS .

Increased Q-point stability.

Biasing with the constant-current source.

D

S

G0VGN

DR

GR

DDV

SQI

N

DQI

Transfer characteristic curve for

2N5484

VGS

0

ID [mA]

-0.5-1.5-2-2,5-3

2

4

5

3

12Q 1Q

mA5I (max)DSS

mA1I (min)DSS

V3V (max)GSoff

-1

V3.0V (min)GSoff

Note!

©Loberg University of Jyväskylä

Page 23: FET Circuits

23

DISCRETE COMPONENT FET

Large signal analysis

JFET

Active region

DQ

E

EE

E

BEEEE I

R

V

R

VVI

BEEE VV

0VRIV EEEEBE

D

S

G0VGN

DR

GR

DDV

EI

DQI

ER

EEV

N

SELF-BIAS WITH CURRENT-SOURCE EXAMPLE

Q-Point Stability of a biased n-channel JFET

©Loberg University of Jyväskylä

Page 24: FET Circuits

24

DISCRETE COMPONENT FET

Large signal analysis

JFET

Active region

SELF-BIAS WITH CURRENT-SOURCE EXAMPLE

Q-Point Stability of a biased n-channel JFET

mA4.1k10

V7.0V7.14

R

VVI

E

BEEEE

VD = 4.40V

IDQ = 1.40mA

©Loberg University of Jyväskylä

Page 25: FET Circuits

25

DISCRETE COMPONENT FET

Large signal analysis

JFET

A biased n-channel JFET Ohmic region

Ohmic region

Slope

DS

DDS

V

IG

DSD

DSDS

G

1

I

VR

Drain-to-source resistance

Drain-to-source resistance is controlled by VGS .VDS

0V 1GS

0V 2GS

2GS3GS VV

3GS4GS VV

ID

Increasing RDS

©Loberg University of Jyväskylä

Page 26: FET Circuits

26

DISCRETE COMPONENT FET Enhancement-mode MOSFET

MOSFET (Metal Oxide Semiconductor Field-Effect Transistor)

Avaustyyppinen

Drain characteristics with

Channel-Length Modulation

n-channel

D

S

G

Drain characteristics of

n-channel enhancement MOSFETDSV

Ohmic region (Linear)

Saturation

region

DI

Subthreshold

Boundary

TOGS VV p-channel

D

S

G

Large signal analysis

©Loberg University of Jyväskylä

Page 27: FET Circuits

27

Ohmic Region

2

DSDSTOGSD VVVV2L

WkI

DSTOGS VVV

Boundary Region

2

DSD VL

WkI

DSTOGS VVV

DS

2

TOGSDS V1VVL

WkI

Saturation RegionDSTOGS VVV

W/L = aspect ratio

W = channel width

L = channel length

VTO = threshold voltage

k = process parameter

Typical values of parameter k

25010 VAto

0nC2

1k

µn = electron mobility

C0 = gate capacitance per unit area fF/µm2

Early voltage = 1/λ

DISCRETE COMPONENT FET Enhancement-mode MOSFET

MOSFET (Metal Oxide Semiconductor Field-Effect Transistor)

Avaustyyppinen

Large signal analysis

©Loberg University of Jyväskylä

Page 28: FET Circuits

28

DISCRETE COMPONENT FET

MOSFET (Metal Oxide Semiconductor Field-Effect Transistor)

Ohmic Region

2

DSDSTOGSD VVVV2L

W

2

KPI

DSTOGS VVV

SPICE MODEL

2TOGSDS VVL

W

2

KPI

Saturation RegionDSTOGS VVV

DS

2

TOGSDS V1VVL

W

2

KPI

Saturation Region with channel-length

modulation

(large signal)

Typical values :

VTO = 0.7V KP = 30 µA/V2

0nCKP

Enhancement-mode MOSFET

©Loberg University of Jyväskylä

Page 29: FET Circuits

29

Sulkutyyppinen

DI

DSV

Ohmic region (Linear)

Saturation

(Forward active)

Boundary

0VGS

0VGS

0V 1GS

1GS2GS VV

Drain characteristics of

n-channel depletion MOSFET

Depletion-mode MOSFET

MOSFET (Metal Oxide Semiconductor Field-Effect Transistor)

DISCRETE COMPONENT FET

n-channel

D

S

G

p-channel

D

S

G

Large signal analysis

©Loberg University of Jyväskylä

Page 30: FET Circuits

30

DISCRETE COMPONENT FET

Avaustyyppinen

Biasing MOSFET EXAMPLE

G

D

S

R1

R2 RS

RD

VDD

Assumption: Early Voltage is very high, λ=0

Bias point in the Saturation RegionDSTOGS VVV

2VA30KP 1LW

B21 Rk100RR

0IGG

820RS

V12VDD

Enhancement-mode MOSFET

D

SVGSQ

VGG

IGGRB

IDQ

SR

Large signal analysis

©Loberg University of Jyväskylä

Page 31: FET Circuits

31

DISCRETE COMPONENT FET

A420VVL

W

2

KPI

2

TOGSQDQ

0RIVV SDQGSQGG

2TOSDQGGDQ VRIVKI

0IRIVKVRIVK2KV DQ

2

SDQTOGGSDQTO

2

GG

V34.6K

IRIVV

DQ

SDQTOGG

Where 2VA152

KPK

Avaustyyppinen

Biasing MOSFET EXAMPLE

Enhancement-mode MOSFET

D

SVGSQ

VGG

IGGRB

IDQ

SR

0IGG

Large signal analysis

©Loberg University of Jyväskylä

Page 32: FET Circuits

32

B21 Rk100RR DD21

1

GG VRRR

1V

k4.189RV

VR B

GG

DD1 k212

RR

RRR

B1

1B2

0RIVV SDQGSQGG V0.6RIVV SDQGGGSQ

Biasing MOSFET EXAMPLE

Enhancement-mode MOSFET

Avaustyyppinen

DISCRETE COMPONENT FET

Large signal analysis

©Loberg University of Jyväskylä

Page 33: FET Circuits

33

Bias point in the Saturation Region DSTOGS VVV

DSTOGSQ VV3.5V7.0V0.6VV

MOSFET stays in the saturation region if VDSQ > 5.3V when IDQ = 420µA

0RIVRIV SDQDSQDDQDD

k15RD

420µA

ID

VDS

5.3V

V0.6VGS

Saturation region

VDD

Load lines

DISCRETE COMPONENT FET

Biasing MOSFET EXAMPLE

Enhancement-mode MOSFET

Avaustyyppinen

Large signal analysis

©Loberg University of Jyväskylä

Page 34: FET Circuits

34

2GS1GS2GS2DS VVVV

21 DSDS II

G1

S

D

S

D

G2

+VDD

R

M2 M1

IDS1

To Load

2DSR II

VGS

MOSFET Sub Circuit Current Mirror

Saturation (Forward active) Region

DSV

V3VGS

V4VGS

V5VGS

V6VGS

1 32 54 6

MOS (M2) resistance characteristic

V1VTO

DI

Identical FETS

Identical MOSFETS Large signal analysis

©Loberg University of Jyväskylä

Page 35: FET Circuits

35

MOSFET Sub Circuit

2GS1GS2GS2DS VVVV

1

2

1DS

2DS

LW

LW

I

I

Different MOSFETs

RK

VVV

RK2

1

RK2

1VV DD2

TO

2

TOTOGS

2TOGS2DS VVKI where

22

2 KP

L

WK

(MOSFET M2)

Assumption : λ = 0

Current Mirror

Different MOSFETS

G1

S

D

S

D

G2

+VDD

R

M2 M1

IDS1

To Load

2DSR II

VGS

12 MM

1

1

2

2

L

W

L

W

Large signal analysis

©Loberg University of Jyväskylä

Page 36: FET Circuits

36

MOSFET Sub Circuit Current Mirror

VDD

IRR

D

S

D

S D

S D

S

IO2

IO3

IO4

M1 M2

M3

M4

VGS

RK

VVV

RK2

1

RK2

1VV DD2

TO

2

TOTOGS

2

KP

L

WK

1

1

2TOGS1DS VVKI

(MOSFET M1)

11

22

1DS

2O

LW

LW

I

I

11

33

1DS

3O

LW

LW

I

I

11

44

1DS

4O

LW

LW

I

I

Different MOSFETS Large signal analysis

©Loberg University of Jyväskylä

Page 37: FET Circuits

37

The End of Part 4

MOSFET Sub Circuit

©Loberg University of Jyväskylä