ENGIN 211, Engineering Math - cs.umb.edu

16
1 Complex Numbers ENGIN 211, Engineering Math

Transcript of ENGIN 211, Engineering Math - cs.umb.edu

1

Complex Numbers

ENGIN 211, Engineering Math

Imaginary Number and the Symbol ๐ฝ

2

Consider the solutions for this quadratic equation: ๐‘ฅ2 + 1 = 0

๐‘ฅ = ยฑ โˆ’1

โˆ’1 is called the imaginary number, and we use the symbol ๐‘— to

represent it: ๐‘— = โˆ’1.

Thus, the solutions ๐‘ฅ = ยฑ๐‘—

Obviously, ๐‘—2 = โˆ’1

This notation allowed us to deal with a large number of quadratic equations of

the form: ๐‘Ž๐‘ฅ2 + ๐‘๐‘ฅ + ๐‘ = 0

with the solution ๐‘ฅ =โˆ’๐‘ยฑ ๐‘2โˆ’4๐‘Ž๐‘

2๐‘Ž

In case ๐‘2 โˆ’ 4๐‘Ž๐‘ < 0, so we can rewrite

๐‘ฅ =โˆ’๐‘ ยฑ ๐‘— 4๐‘Ž๐‘ โˆ’ ๐‘2

2๐‘Ž

Complex Numbers

3

Example: ๐‘ฅ2 + 2๐‘ฅ + 3 = 0

We have two roots

๐‘ฅ1 = โˆ’1 + ๐‘— 2 and ๐‘ฅ2 = โˆ’1 โˆ’ ๐‘— 2

Both roots consisting of a real number and an imaginary number are

complex number.

Re(๐‘ฅ1) = โˆ’1 โ€“ real part of the complex number ๐‘ฅ1

Im(๐‘ฅ1) = 2 โ€“ imaginary part of the complex number ๐‘ฅ1

Re(๐‘ฅ2) = โˆ’1 โ€“ real part of the complex number ๐‘ฅ2

Im ๐‘ฅ2 = โˆ’ 2 โ€“ imaginary part of the complex number ๐‘ฅ2

Note: Both Re(๐‘ฅ) and Im(๐‘ฅ) are real numbers themselves.

Operations of Complex Numbers

4

Addition: โˆ’2 + ๐‘—6 + 3 โˆ’ ๐‘—4 = 1 + ๐‘—2

Subtraction: โˆ’2 + ๐‘—6 โˆ’ 3 โˆ’ ๐‘—4 = โˆ’5 + ๐‘—10

Powers of ๐‘—,

๐‘—2 = โˆ’1, ๐‘—3 = ๐‘—2๐‘— = โˆ’๐‘—, ๐‘—4 = ๐‘—2๐‘—2 = โˆ’1 โˆ’1 = 1, โ€ฆ

Multiplication:

โˆ’2 + ๐‘—6 3 โˆ’ ๐‘—4 = โˆ’2 3 + โˆ’2 โˆ’๐‘—4 + ๐‘—6 3 + (๐‘—6)(โˆ’๐‘—4)

= โˆ’6 + ๐‘—8 + ๐‘—18 โˆ’ ๐‘—224 = โˆ’6 + ๐‘—26 โˆ’ โˆ’1 24= 18 + ๐‘—26

Complex Conjugates

Complex conjugate:

๐‘Ž + ๐‘—๐‘ and ๐‘Ž โˆ’ ๐‘—๐‘ are complex conjugate pairs

๐‘Ž + ๐‘—๐‘ ๐‘Ž โˆ’ ๐‘—๐‘ = ๐‘Ž2 โˆ’ ๐‘—๐‘ 2 = ๐‘Ž2 + ๐‘2

โ€“ always a real number

Example:

5

3 + ๐‘—4 3 โˆ’ ๐‘—4 = 32 + 42 = 25

Division of Complex Numbers

6

Division by a real number 3+๐‘—4

2= 1.5 + ๐‘—2

Division by another complex number

3 + ๐‘—4

2 โˆ’ ๐‘—3=

3 + ๐‘—4 2 + ๐‘—3

2 โˆ’ ๐‘—3 2 + ๐‘—3

=6 โˆ’ 12 + ๐‘—(8 + 9)

4 + 9=

โˆ’6 + ๐‘—17

13= โˆ’0.46 + ๐‘—1.31

Division by itself

3 + ๐‘—4

3 + ๐‘—4=

3 + ๐‘—4 3 โˆ’ ๐‘—4

3 + ๐‘—4 3 โˆ’ ๐‘—4=

25

25= 1

Equal Complex Numbers

7

If two complex number are equal, their corresponding real and imaginary

parts must be equal:

๐‘Ž + ๐‘—๐‘ = ๐‘ + ๐‘—๐‘‘

Implies:

๐‘Ž = ๐‘, and ๐‘ = ๐‘‘

Because we can write

๐‘Ž โˆ’ ๐‘ = ๐‘—(๐‘‘ โˆ’ ๐‘)

And a real number never equals an imaginary number.

Example:

๐‘ฅ = ๐‘ฅ1 + ๐‘—๐‘ฅ2 = 6 + ๐‘—8

Then ๐‘ฅ1 = 6, and ๐‘ฅ2 = 8.

Complex Plane (Argand Diagram)

8

Real axis

Imaginary axis ๐‘ง = ๐‘Ž + ๐‘—๐‘

(๐‘Ž, ๐‘)

๐‘Ž

๐‘

Graphical addition of two complex numbers

2

2

3

1

3

5

Polar Form

9

Real axis

Imaginary axis

๐‘ง = ๐‘Ž + ๐‘—๐‘

๐‘Ž

๐‘ ฮธ

๐‘Ÿ

Conversion between polar and rectangular forms

๐‘Ÿ = ๐‘Ž2 + ๐‘2, ๐œƒ = tanโˆ’1๐‘

๐‘Ž

๐‘Ž = ๐‘Ÿ cos ๐œƒ , ๐‘ = ๐‘Ÿ sin ๐œƒ , โˆ’๐œ‹ โ‰ค ๐œƒ โ‰ค ๐œ‹

Example: ๐‘ง = 6 โˆ’ ๐‘—8 can be converted into polar form,

๐‘Ÿ = 62 + 82 = 10, ๐œƒ = tanโˆ’1 โˆ’8

6= โˆ’36๐‘œ52โ€ฒ

๐‘Ÿ: modulus of the complex number ๐‘ง

๐œƒ: argument of the complex number ๐‘ง

Exponential Form

10

Maclaurin Series

๐‘’๐‘ฅ = 1 + ๐‘ฅ +๐‘ฅ2

2!+

๐‘ฅ3

3!+

๐‘ฅ4

4!+

๐‘ฅ5

5!+ โ‹ฏ

Let ๐‘ฅ = ๐‘—๐œƒ,

๐‘’๐‘—๐œƒ = 1 + ๐‘—๐œƒ +๐‘—๐œƒ 2

2!+

๐‘—๐œƒ 3

3!+

๐‘—๐œƒ 4

4!+

๐‘—๐œƒ 5

5!+ โ‹ฏ

= 1 โˆ’

๐œƒ2

2!+

๐œƒ4

4!โˆ’ โ‹ฏ + ๐‘— ๐œƒ โˆ’

๐œƒ3

3!+

๐œƒ5

5!โˆ’ โ‹ฏ

= cos ๐œƒ + ๐‘— sin ๐œƒ โˆ’ ๐„๐ฎ๐ฅ๐ž๐ซโ€ฒ๐ฌ ๐ข๐๐ž๐ง๐ญ๐ข๐ญ๐ฒ

Thus, ๐‘Ÿ cos ๐œƒ + ๐‘— sin ๐œƒ = ๐‘Ÿ๐‘’๐‘—๐œƒ โ€“ exponential form

Three ways: ๐‘ง = ๐‘Ž + ๐‘—๐‘ = ๐‘Ÿ cos ๐œƒ + ๐‘— sin ๐œƒ = ๐‘Ÿ๐‘’๐‘—๐œƒ

Which Form Is Better?

11

It depends on what you want to do:

For addition and subtraction, it is better to work with the

rectangular form ๐‘ง = ๐‘Ž + ๐‘—๐‘

For multiplication and division, it is better to work with

exponential form, ๐‘ง = ๐‘Ÿ๐‘’๐‘—๐œƒ, e.g.,

4๐‘’๐‘—60๐‘œ

2๐‘’๐‘—30๐‘œ = 2๐‘’๐‘— 60๐‘œโˆ’30๐‘œ= 2๐‘’๐‘—30๐‘œ

To convert between rectangular and exponential form, we work

thru polar form, ๐‘ง = ๐‘Ÿ cos ๐œƒ + ๐‘— sin ๐œƒ

3 + ๐‘—4 = 5 cos 36๐‘œ52โ€ฒ + ๐‘— sin 36๐‘œ52โ€ฒ = 5๐‘’๐‘—36๐‘œ52โ€ฒ

Powers

12

Consider: ๐‘ง = ๐‘Ÿ๐‘’๐‘—๐œƒ

๐‘ง2 = ๐‘Ÿ๐‘’๐‘—๐œƒ 2= ๐‘Ÿ2๐‘’๐‘—2๐œƒ = ๐‘Ÿ2 cos 2๐œƒ + ๐‘— sin 2๐œƒ , โ€ฆ ๐‘ง๐‘› = ๐‘Ÿ๐‘’๐‘—๐œƒ ๐‘›

=

๐‘Ÿ๐‘›๐‘’๐‘—๐‘›๐œƒ = ๐‘Ÿ๐‘› cos ๐‘›๐œƒ + ๐‘— sin ๐‘›๐œƒ โˆ’ DeMoivreโ€™s theorem

If ๐‘›๐œƒ > ๐œ‹, we need to add or subtract multiples of 2๐œ‹ so that the equivalent

angle ๐œ‘ stays within ๐œ‘ โ‰ค ๐œ‹.

Example: ๐‘ง = 2๐‘’๐‘—120๐‘œ= 2โˆ 120๐‘œ, ๐‘ง5 = 25๐‘’๐‘—5ร—120๐‘œ

= 32โˆ 600๐‘œ = 32โˆ  โˆ’120๐‘œ

120๐‘œ

โˆ’120๐‘œ

๐‘ง

๐‘ง5

Roots

13

Roots of a complex number is somewhat complicated and requires careful

attention in manipulation.

Example, ๐‘ค = 32โˆ โˆ’120๐‘œ= 32๐‘’โˆ’๐‘—120๐‘œ, letโ€™s find ๐‘ค1/5=?

1) We can take do the following

32๐‘’โˆ’๐‘—120๐‘œ 1/5= 32 1/5๐‘’โˆ’๐‘—120๐‘œ/5 = 2๐‘’โˆ’๐‘—24๐‘œ

= ๐Ÿโˆ  โˆ’ ๐Ÿ๐Ÿ’๐’

But we certainly expect to recover ๐‘ง = 2๐‘’๐‘—120๐‘œ= 2โˆ 120๐‘œ because

๐‘ง5 = 32โˆ  โˆ’120๐‘œ from the previous example of powers, so what

happened?

2) Of course, we can say โˆ  โˆ’ 120๐‘œ is also โˆ 360๐‘œ โˆ’ 120๐‘œ = โˆ 240๐‘œ, so now

32๐‘’โˆ’๐‘—120๐‘œ 1/5= 32๐‘’๐‘—240๐‘œ 1/5

= 32 1/5๐‘’๐‘—240๐‘œ/5 = 2๐‘’๐‘—48๐‘œ= ๐Ÿโˆ ๐Ÿ’๐Ÿ–๐’

But the solution ๐‘ง = 2๐‘’๐‘—120๐‘œ= 2โˆ 120๐‘œ is still not recovered.

Roots (Contโ€™d)

14

3) Well, we can keep adding โˆ 720๐‘œ โˆ’ 120๐‘œ = โˆ 600๐‘œ, so now

32๐‘’โˆ’๐‘—120๐‘œ 1/5= 32๐‘’๐‘—600๐‘œ 1/5

= 32 1/5๐‘’๐‘—600๐‘œ/5 = 2๐‘’๐‘—120๐‘œ= ๐Ÿโˆ ๐Ÿ๐Ÿ๐ŸŽ๐’ This is

it, but how do we know we have gotten them all?

4) We can also subtract 360๐‘œ, so โˆ  โˆ’ 360๐‘œ โˆ’ 120๐‘œ = โˆ  โˆ’480๐‘œ, then

32๐‘’โˆ’๐‘—120๐‘œ 1/5= 32๐‘’โˆ’๐‘—480๐‘œ 1/5

= 32 1/5๐‘’โˆ’๐‘—480๐‘œ/5 = 2๐‘’โˆ’๐‘—96๐‘œ= ๐Ÿโˆ  โˆ’๐Ÿ—๐Ÿ”๐’

5) Of course, we can also obtain

32๐‘’โˆ’๐‘—120๐‘œ 1/5= 32๐‘’โˆ’๐‘—840๐‘œ 1/5

= 32 1/5๐‘’โˆ’๐‘—840๐‘œ/5 = 2๐‘’โˆ’๐‘—168๐‘œ= ๐Ÿโˆ  โˆ’๐Ÿ๐Ÿ”๐Ÿ–๐’

When do we stop?

Roots (Contโ€™d)

15

Letโ€™s plot these roots in the complex plane.

๐Ÿโˆ  โˆ’ ๐Ÿ๐Ÿ’๐’

๐Ÿโˆ ๐Ÿ’๐Ÿ–๐’ ๐Ÿโˆ ๐Ÿ๐Ÿ๐ŸŽ๐’

๐Ÿโˆ  โˆ’๐Ÿ—๐Ÿ”๐’

๐Ÿโˆ  โˆ’๐Ÿ๐Ÿ”๐Ÿ–๐’

๐Ÿ‘๐Ÿ๐’†โˆ’๐’‹๐Ÿ๐Ÿ๐ŸŽ๐’

We can see that these five roots are

equally separated by 360๐‘œ

5= 72๐‘œ.

It is generally true that the n-th order roots have n number of values that are

equally separated by ๐Ÿ‘๐Ÿ”๐ŸŽ๐’

๐’.

So in practice, we only need to find one as we did in Step 1), and the remaining ๐‘› โˆ’ 1 roots will be generated similar to the illustration in the complex plane plot.

The one nearest to the positive real axis is called the principal root.

1

2

3

4 5

Summary Key points:

Recognize ๐‘— = โˆ’1 for imaginary number

Three forms of the complex number: rectangular,

polar, and exponential

Conversions between the three forms

Complex conjugate pairs

Addition, subtraction, multiplication (powers), and

division

Roots of ๐‘›-th order (equally spaced by 360๐‘œ/๐‘› on a

circle)

16