ECEN620: Network Theory Broadband Circuit …spalermo/ecen620/lecture03_ee620_pll_overview.pdfAnalog...

20
Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN620: Network Theory Broadband Circuit Design Fall 2012 Lecture 3: PLL Overview & Analysis

Transcript of ECEN620: Network Theory Broadband Circuit …spalermo/ecen620/lecture03_ee620_pll_overview.pdfAnalog...

Sam Palermo Analog & Mixed-Signal Center

Texas A&M University

ECEN620: Network Theory Broadband Circuit Design

Fall 2012

Lecture 3: PLL Overview & Analysis

Agenda

2

• PLL Overview & Applications

• PLL Linear Model

• Phase & Frequency Relationships

• PLL Transfer Functions

References

• M. Perrott, High Speed Communication Circuits and Systems Course, MIT Open Courseware

• Chapter 2 of Phase-Locked Loops, 3rd Ed., R. Best, McGraw-Hill, 1997.

• Chapter 2 of Phaselock Techniques, F. Gardner, John Wiley & Sons, 2005.

3

PLL Block Diagram

4

[Perrott]

• A phase-locked loop (PLL) is a negative feedback system where an oscillator-generated signal is phase AND frequency locked to a reference signal

PLL Applications

• PLLs applications • Frequency synthesis

• Multiplying a 100MHz reference clock to 10GHz

• Skew cancellation • Phase aligning an internal clock to an I/O clock

• Clock recovery • Extract from incoming data stream the clock frequency and

optimum phase of high-speed sampling clocks

• Modulation/De-modulation • Wireless systems • Spread-spectrum clocking

5

Forward Clock I/O Circuits

6

• TX PLL

• TX Clock Distribution

• Replica TX Clock Driver

• Channel

• Forward Clock Amplifier

• RX Clock Distribution

• De-Skew Circuit • DLL/PI • Injection-Locked Oscillator

Embedded Clock I/O Circuits

7

• TX PLL

• TX Clock Distribution

• CDR • Per-channel PLL-based • Dual-loop w/ Global PLL &

• Local DLL/PI • Local Phase-Rotator PLLs • Global PLL requires RX

clock distribution to individual channels

Linear PLL Model

8

Phase Detector

• Detects phase difference between feedback clock and reference clock • The loop filter will filter the phase detector output, thus to characterize

phase detector gain, extract average output voltage (or current for charge-pump PLLs)

9

φref

φfb

φe

Loop Filter

• Lowpass filter extracts average of phase detector error pulses

10

I

I

VCO ControlVoltage

C1

R

C2

Charging

Discharging

VDD

VSSF(s)

Voltage-Controlled Oscillator

• Time-domain phase relationship

11

VDDVDD/20

ω0 1KVCO

( ) ( ) ( )tvKtt cVCOoutout +=∆+= 00 ωωωω

( ) ( ) ( )∫ ∫=∆= dtdt tvKtt cVCOoutout ωφLaplace Domain Model

φout(t)

Loop Divider

• Time-domain model

12

( ) ( )tN

t outfb ωω 1=

( ) ( ) ( )∫ == tN

tN

t outoutfb φωφ 1dt1

[Perrott]

φout(t) φfb(t)

Phase & Frequency Relationships

13

• Phase Step

( ) ( )

( ) ( )∫=

=

t

o

t

tdt

ττωφ

ωφ

d

td

phase of time) vschange of (rate derivativefirst theisFrequency Angular

( ) ( ) ( )

( ) ( ) ( )( )ttu

tu

111

111

tsint

phase and tfrequency angular with t sinusoid aConsider

φω

φω

+=

( ) ( )

( ) ( ) ( )( )

frequencyin change No

sin 11

1

tuttu

tut

∆Φ+=

∆Φ=

ω

φ

∆Φ

[Best]

Phase & Frequency Relationships

14

• Frequency Step ( )

( ) ( ) ( )( )

( )

phasein ramp a produces stepfrequency A

where

sinsin

1

1001

01

tt

tttttu

t

ωφ

φωωω

ωωω

∆=

+=∆+=

∆+=

[Best]

( ) tt ωφ ∆=1

( )

( ) ( )( )

( )

phasein change quadratic a produces rampfrequency A

2 where

sin2

sinsin

21

102

00

01

01

tt

ttttdtu

tt

t

••

∆=

+=

∆+=

∆+=

∆+=

ωφ

φωωωττωω

ωωω

Phase & Frequency Relationships

15

[Best]

• Frequency Ramp

0ω t•

∆+ ωω0

( ) 21 2

tt•

∆=

ωφ

Understanding PLL Frequency Response

• Linear “small-signal” analysis is useful for understand PLL dynamics if • PLL is locked (or near lock) • Input phase deviation amplitude is small enough to maintain operation in

lock range

• Frequency domain analysis can tell us how well the PLL tracks the input phase as it changes at a certain frequency

• PLL transfer function is different depending on which point in the loop the output is responding to

16

Input phase response VCO output response

[Fischette]

Open-Loop PLL Transfer Function

17

( ) ( )( )

( )s

sFKKsssG VCOPD

e

out =ΦΦ

=

• Open-loop response generally decreases with frequency

Closed-Loop PLL Transfer Function

18

( ) ( )( )

( )( )

( )( )

NsFKKs

sFKK

NsG

sGsssH

VCOPD

VCOPD

ref

out

+=

+=

ΦΦ

=1

( )

( ) ( )

( ) ( )N

sGN

sG

NsG

sNsFKKl

sG

VCOPD

+=+

−−=∆

=−=∆

−=−=

=

101t Determinan System

101t DeterminanPath Forward

Gain Loop

GainPath Forward

1

1

• Low-pass response whose overall order is set by F(s)

PLL Error Transfer Function

19

( ) ( )( ) ( ) ( )

NsFKKs

s

NsGs

ssEVCOPDref

e

+=

+=

ΦΦ

=1

1

( ) ( )

( ) ( )N

sGN

sG

NsG

sNsFKKl VCOPD

+=+

−−=∆

=−=∆

−=−=

=

101t Determinan System

101t DeterminanPath Forward

Gain Loop

1GainPath Forward

1

1

• Ideally, we want this to be zero • Phase error generally increases with

frequency due to this high-pass response

Next Time

• PLL System Analysis • 1st-Order PLLs • 2nd-Order PLLs

• Type 1 • Type 2

• PLL Frequency Response • Noise Transfer Functions • Tracking Response

20