Digital Logic Circuits

31
CHAPTER 13 Digital Logic Circuits

description

CHAPTER 13. Digital Logic Circuits. Figure 13.1. Voltage analog of internal combustion engine in-cylinder pressure. Figure 13.1. 13-1. Digital representation of an analog signal. Figure 13.2. Figure 13.2. 13-2. A binary signal. Figure 13.3. Figure 13.3. 13-3. Table 13.1. - PowerPoint PPT Presentation

Transcript of Digital Logic Circuits

Page 1: Digital Logic Circuits

CHAPTER

13

Digital Logic Circuits

Page 2: Digital Logic Circuits

Figure 13.1

13-1

Voltage analog of internal combustion engine in-cylinder pressure

Figure 13.1

Page 3: Digital Logic Circuits

Digital representation of an analog signal

Figure 13.2

Figure 13.2

13-2

Page 4: Digital Logic Circuits

A binary signalFigure 13.3

13-3

Figure 13.3

Page 5: Digital Logic Circuits

Table 13.1

Page 6: Digital Logic Circuits

Complements and Negative Numbers

Sign-magnitude convention

Example of Twos Complement Operation

( cf : 92 – 114 = - 22)

Page 7: Digital Logic Circuits

Digital Code Systems

Hexadecimal code

BCD code

Three-bit Gray code

Page 8: Digital Logic Circuits

Figure 13.11, Table

13.9

Logical addition and the OR gateFigure 13.11

13-4

Rules for logical addition (OR)Table 13.9

Page 9: Digital Logic Circuits

Figure 13.12, Table 13.10

Logical multiplication and the AND gateFigure 13.12

13-5

Rules for logical multiplication (AND)

Table 13.10

Page 10: Digital Logic Circuits

Figure 13.13

Example of logic function implementation with logic gatesFigure 13.13

13-6

Page 11: Digital Logic Circuits

Table 13.11

Page 12: Digital Logic Circuits

Figure 13.17

De Morgan’s lawsFigure 13.17

13-7

Page 13: Digital Logic Circuits

Figure 13.18

Sum-of-products and product-of-sums logic functionsFigure 13.18

13-8

Page 14: Digital Logic Circuits

Figure 13.21

Equivalence of NAND and NOR gates with AND and OR gatesFigure 13.21

13-9

Page 15: Digital Logic Circuits

Figure 13.23

Figure 13.23

13-10

Page 16: Digital Logic Circuits

Figure 13.24

NOR gate as an inverterFigure 13.24

13-11

Page 17: Digital Logic Circuits

Figure 13.27, 13.28

XOR gateFigure 13.27

13-12

Realization of an XOR gateFigure 13.28

Page 18: Digital Logic Circuits

Figure 13.29

Page 19: Digital Logic Circuits

Figure 13.30

Truth table and Karnaugh map representations of a logic functionFigure 13.30

13-13

Page 20: Digital Logic Circuits

Figure 13.31

Karnaugh map for a four-variable expressionFigure 13.31

13-14

Page 21: Digital Logic Circuits

One- and two-cell subcubes for the Karnaugh map of Figure 13.31

Figure 13.32

13-15

Figure 13.32

Page 22: Digital Logic Circuits

Figure 13.34

Karnaugh map for the function W · X · Y · Z + W · X · Y · Z + W · X · Y · Z + W · X · Y · ZFigure 13.34

13-16

Page 23: Digital Logic Circuits

Figure 13.46, 13.47

Page 24: Digital Logic Circuits

Figure 13.55

4-to-1 MUXFigure 13.55

13-17

Page 25: Digital Logic Circuits

Figure 13.56

Internal structure of the 4-to-1 MUXFigure 13.56

13-18

Page 26: Digital Logic Circuits

Figure 13.57, Table

13.13

Functional diagram of four-input MUXFigure 13.57

13-19

Table 13.13

Page 27: Digital Logic Circuits

Figure 13.58

Read-only memoryFigure 13.58

13-20

Page 28: Digital Logic Circuits

Figure 13.59

Page 29: Digital Logic Circuits

A 2-to-4 decoder

Internal organization of SRAM

Page 30: Digital Logic Circuits

An example of PLD (Programmable Logic Device; GAL16V8)

OLMC (Output Logic Macrocell):Register Mode

Simple Mode Logic Diagram

Page 31: Digital Logic Circuits

Figure 13.65

Programming Example by using a HDL (Hardware description language)